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Numerical control of a semilinear wave equation
on an interval

M.M. Cavalcanti, V.N. Domingos Cavalcanti, C. Rosier, and L. Rosier

Abstract We are concerned with the numerical exact controllability of the semi-
linear wave equation on the interval (0,1). We introduce a Picard iterative scheme
yielding a sequence of approximated solutions which converges towards a solution
of the null controllability problem, provided that the initial data are small enough.
The boundary control, which is applied at the endpoint x = 1, is taken in the space
H1

0 (0,T ) for T = 2. For the linear part, the control input is obtained by imposing
a transparent boundary condition at x = 1. Next, we provide several simulations
to show the efficiency of the algorithm, using collocation pseudospectral methods
on Chebychev grids to discretize the second order derivative in space in the wave
equation.

1 Introduction

The issue of the exact controllability of the wave equation is well understood
for a long time [24, 4]. Unfortunately, the numerical control of the wave equa-
tion turns out to be delicate, as the discrete control may not converge towards
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the continuous control of the wave equation. This is due to the emergence of
spurious high-frequencies oscillations for the discrete control problem. Several
strategies have been proposed to face this problem: multigrid strategy, filtering
of the high frequency modes, introduction of viscous terms, etc. We refer to
[14, 3, 26, 21, 8, 9, 20, 22] for some works about the numerical control of the
wave equation, and to [13, 27] for some surveys. See also [11, 6] for the numer-
ics corresponding to the wave equation with damping. We refer also to [5] for
the stabilization of hyperbolic systems, and to [1, 10] for the reduction of initial-
boundary value problems for hyperbolic PDEs to initial-value problems for integro-
differential-difference equations.

In most of the papers concerned with the theoretical or numerical control of the
wave equation, the control strategy is based upon the Hilbert Uniqueness Method
(HUM) introduced by J.-L. Lions. However, in dimension one there exists another
strategy based upon the use of transparent boundary conditions leading to the finite-
time stability of the system. This was first noticed by Majda in [19], and next used in
[17, 22] to give explicit control inputs for the wave equation in dimension one. The
transparent boundary conditions can be as well used for the finite-time stabilization
of systems of conservation laws on networks [18, 23, 2, 15]. The idea is to let waves
leave the domain in a natural way without bounce (or damping) at the boundary.

We shall see that the trajectory corresponding to the transparent boundary condi-
tions is the same as those obtained by applying homogeneous Dirichlet conditions
on a larger domain, thanks to the finite propagation speed of the wave equation.
Thus, to design numerically the control, we can replace HUM (unstable) by a nu-
merical method to solve a classical Cauchy problem for the wave equation (stable).

In this paper, we are concerned with the exact boundary controllability of a semi-
linear wave equation

yt t − yxx = f (y)

on the interval (0,1) from a numerical perspective. By the time reversibility of the
wave equation, it is sufficient to restrict ourselves to the null controllability problem.
The aim of the paper is to propose an algorithm at the continuous level which gives
a sequence of controls hn → h and a sequence of “trajectories” yn → y such that,
at the limit, y satisfies both

yt t − yxx = f (y), (t, x) ∈ (0,T ) × (0,1)
y(t,0) = 0, y(t,1) = h(t), t ∈ (0,T )
(y(0, .), yt (0, .)) = (ξ0, ξ1)

and
(y(T, .), yt (T, .)) = (0,0).

Here, (ξ0, ξ0) denotes any small initial data in some appropriate space, and the func-
tion f is locally Lipschitz continuous and it vanishes at 0. The state (y, yt ) and the
control h will be taken more regular (see [12]) than in the linear case ( f ≡ 0) in
order to give a sense to the nonlinear term f (y).
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The control hn is computed numerically by solving several linear control prob-
lems, and the state yn , obtained by solving numerically an initial boundary-value
problem, provides a numerical approximation of the trajectory y.

The paper is organized as follows. In Section 2, we describe our iterative scheme
and prove the convergence of both the trajectories and the control inputs in Theorem
1, the main result in the paper. Section 3 is devoted to the description of the numeri-
cal approach used here and Section 4 provides several numerical simulations. Some
concluding remarks are displayed in Section 5. Some technical lemmas needed to
prove Theorem 1 are gathered in an appendix.

2 Picard iteration scheme

We first propose, at the continuous level, an exponentially convergent iterative
scheme providing at the limit both the controlled trajectory and the control input
for the semilinear wave equation. Due to obvious storage limitations, it is prefer-
able to keep in the memory of the computer the control input h(t) computed at the
previous step than the corresponding trajectory y(t, x). That choice, needed for a
practical implementation of the algorithm, results in a scheme for which the con-
vergence turns to be more complicated to establish than for a scheme based on the
storage of the trajectory.

To describe the scheme, we need to introduce a few notations. For the sake of
simplicity, we write

Hk
x = Hk (0,1) (k ∈ Z), L2

x = L2(0,1), H1
t = H1(0,T )

and introduce the spaces

H0 := H1
0 (0,1) × L2(0,1) ⊂ H := {(y, z) ∈ H1

x × L2
x ; y(0) = 0}

endowed with the norm

| |(y, z) | |H =

(
| |yx | |

2
L2
x

+ | |z | |2
L2
x

) 1
2
.

Let
(
S(t)

)
t ∈R denote the unitary group on H0 generated by the operator A(y, z) =

(z, yxx ) with domain

D(A) = (H2(0,1) ∩ H1
0 (0,1)) × H1

0 (0,1) ⊂ H0.

Thus, for given (ξ0, ξ1) ∈ H0, if (y(t), z(t)) = S(t)(ξ0, ξ1), then z(t) = yt (t) and y

solves the system
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yt t − yxx = 0, (t, x) ∈ R × (0,1) (1)
y(t,0) = y(t,1) = 0, t ∈ R (2)
(y(0, .), yt (0, .)) = (ξ0, ξ1). (3)

Pick δ0 > 0 and f ∈ W 1,∞(−δ0, δ0) such that

f (0) = 0, and | | f ′ | |L∞ (−δ0,δ0) ≤ η < η0 <
1
2
. (4)

Let finally Λ : H0 → H1
0 (0,T ) denote a continuous map such that for any given

(ξ0,T , ξ1,T ) ∈ H0, the solution y of the controlled system

yt t − yxx = 0, (t, x) ∈ (0,T ) × (0,1) (5)
y(t,0) = 0, y(t,1) = h(t) := Λ(ξ0,T , ξ1,T )(t), t ∈ (0,T ) (6)
(y(0, .), yt (0, .)) = (0,0) (7)

satisfies
(y(T, .), yt (T, .)) = (ξ0,T , ξ1,T ).

From well-known results, Λ is well-defined and continuous from L2
x × H−1

x into
L2(0,T ) if T ≥ 2, but Λ is also well-defined and continuous fromH0 into H1

0 (0,T )
(see e.g. [12]). (Note that h(0) = 0 by (7) and h(T ) = ξ0,T (1) = 0, for ξ0,T ∈

H1
0 (0,1).) Thus, there is some constant CΛ > 0 such that

| |h| |H1
t
≤ CΛ | |(ξ0,T , ξ1,T ) | |H (8)

Actually Λ may be constructed explicitly by using d’Alembert’s formula, and this
is precisely the numerical strategy used here.

We are in a position to describe our Picard iterative scheme. Pick T = 2 and let
(ξ0, ξ1) ∈ H0.

1. First iteration.
We set h1(t) = 0 for t ∈ [0,T]. Let y1

1 solve the nonlinear system

y1
1, t t − y1

1,xx = f (y1
1 ), (t, x) ∈ (0,T ) × (0,1) (9)

y1
1 (t,0) = 0, y1

1 (t,1) = h1(t) = 0, t ∈ (0,T ) (10)

(y1
1 (0, .), y1

1t (0, .)) = (ξ0, ξ1). (11)

Next, we set
(δh)1 := −Λ(y1

1 (T, .), y1
1t (T, .)), (12)

and introduce the solution of the linear system
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y1
2, t t − y1

2,xx = 0, (t, x) ∈ (0,T ) × (0,1) (13)

y1
2 (t,0) = 0, y1

2 (t,1) = (δh)1(t), t ∈ (0,T ) (14)

(y1
2 (0, .), y1

2t (0, .)) = (0,0). (15)

Set y1 := y1
1 + y1

2 . Then, by construction, y1 solves

y1
t t − y1

xx = f (y1
1 ), (t, x) ∈ (0,T ) × (0,1) (16)

y1(t,0) = 0, y1(t,1) = h1(t) + (δh)1(t), t ∈ (0,T ) (17)
(y1(0, .), y1

t (0, .)) = (ξ0, ξ1), (18)

and it satisfies
(y1(T, .), y1

t (T, .)) = (0,0). (19)

Thus, (δh)1 is a correction term added to h1 in order that (19) be satisfied.

2. nth iteration (n ≥ 2).
Assume that hn−1 ∈ H1

0 (0,T ) and (δh)n−1 ∈ H1
0 (0,T ) have been constructed. Set

hn (t) := hn−1(t) + (δh)n−1(t), (20)

and let yn1 denote the solution of the nonlinear system

yn1, t t − yn1,xx = f (yn1 ), (t, x) ∈ (0,T ) × (0,1) (21)
yn1 (t,0) = 0, yn1 (t,1) = hn (t), t ∈ (0,T ) (22)

(yn1 (0, .), yn1t (0, .)) = (ξ0, ξ1). (23)

Next, set
(δh)n = −Λ(yn1 (T, .), yn1t (T, .)), (24)

and let yn2 denote the solution of the linear system

yn2, t t − yn2,xx = 0, (t, x) ∈ (0,T ) × (0,1) (25)
yn2 (t,0) = 0, yn2 (t,1) = (δh)n (t), t ∈ (0,T ) (26)

(yn2 (0, .), yn2t (0, .)) = (0,0). (27)

Let
yn := yn1 + yn2 . (28)

Then yn satisfies

ynt t − ynxx = f (yn1 ), (t, x) ∈ (0,T ) × (0,1) (29)
yn (t,0) = 0, yn (t,1) = hn (t) + (δh)n (t), t ∈ (0,T ) (30)
(yn (0, .), ynt (0, .)) = (ξ0, ξ1), (31)
(yn (T, .), ynt (T, .)) = (0,0). (32)
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We are in a position to state the convergence result for the Picard iterative scheme
at the continuous level.

Theorem 1 Let T = 2. Then there exist some constants δ ∈ (0, δ0), ε ∈ (0,1) and
C > 0 such that for any (ξ0, ξ1) ∈ H0 with

| |(ξ0, ξ1) | |H < δ (33)

the sequence (yn1 , y
n
2 ,h

n , (δh)n )n≥1 is well defined in C([0,T],H1
x )2× (H1

t )2 and we
have

| |(yn1 −y, y
n
1, t−yt ) | |C ([0,T ],H )+| |(yn2 , y

n
2, t ) | |C ([0,T ],H )+| |hn−h| |H1

t
+| |(δh)n | |H1

t
≤ Cεn ,

(34)
where (y, yt ,h) ∈ C([0,T],H ) × H1

0 (0,T ) satisfies

yt t − yxx = f (y), (t, x) ∈ (0,T ) × (0,1) (35)
y(t,0) = 0, y(t,1) = h(t), t ∈ (0,T ) (36)
(y(0, .), yt (0, .)) = (ξ0, ξ1), (37)

and
(y(T, .), yt (T, .)) = (0,0). (38)

Proof We need two lemmas whose proofs are postponed in appendix.

Lemma 1 (Estimates for the linear system) There exists a constant C1 > 0 such that
for any (z0, z1) ∈ H0, any h ∈ H1

t with h(0) = 0, and any g ∈ L1(0,T,L2
x ), the

solution of the system

zt t − zxx = g, (t, x) ∈ (0,T ) × (0,1) (39)
z(t,0) = 0, z(t,1) = h(t), t ∈ (0,T ) (40)
(z(0, .), zt (0, .)) = (z0, z1) (41)

�

fulfills

| |(z, zt ) | |C ([0,T ],H ) ≤ ||(z0, z1) | |H + | |g | |L1 (0,T ,L2
x ) + C1 | |h| |H1

t
. (42)

Let (z, zt ) = W (h) denote the solution of (39)-(41) for h ∈ H1(0,T ) with h(0) =

0 and (z0, z1,g) = (0,0,0).

Lemma 2 (Estimate for the nonlinear problem) Let C1 be as in Lemma 1. Then
there exist some constants δ1 ∈ (0, δ0), R > 0 and C2 > 0 such that for (z0, z1,h) ∈
H0 × H1

t with h(0) = 0 and

| |(z0, z1) | |H + C1 | |h| |H1
t
≤ δ1, (43)

the map
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Γ : (z, z̃) → S(t)(z0, z1) + W (h) +

∫ t

0
S(t − s)(0, f (z(s)))ds (44)

has a fixed-point (z, z̃) in the ball B(0,R) ⊂ C([0,T],H ). Furthermore, z̃ = zt , and
z solves the nonlinear system

zt t − zxx = f (z), (t, x) ∈ (0,T ) × (0,1) (45)
z(t,0) = 0, z(t,1) = h(t), t ∈ (0,T ) (46)
(z(0, .), zt (0, .)) = (z0, z1), (47)

�

and we have

| |(z, zt ) | |C ([0,T ],H ) ≤ C2
(
| |(z0, z1) | |H + C1 | |h| |H1

t

)
. (48)

The proof of Theorem 1 is done in two steps. In the first step, we show by induction
on n that | |hn | |H1

t
is uniformly bounded, and that for some ε ∈ (0,1)

| |(δh)n+1 | |H1
t
≤ ε | |(δh)n | |H1

t
.

In the second step, we combine the above estimates to prove the exponential conver-
gence of all the sequences. Pick any δ ∈ (0, δ1) and set (for notational convenience)
(δh)0(t) := sin(πt/T ). Let

ε :=
2CΛC1

π − 2η
η, C3 =

CΛC2

1 − ε
· (49)

where CΛ is as in (8). We have ε < 1 and C3 > 0 if 0 < η < η0 <
1
2 with η0 small

enough.

Step 1. Estimates of the control inputs.

Proposition 1 Let ε and C3 be as in (49). Then we have

| |hn | |H1
t
≤ C3δ, ∀n ≥ 1, (50)

| |(δh)n | |H1
t
≤ ε | |(δh)n−1 | |H1

t
, ∀n ≥ 1. (51)

�

Proof of Proposition 1. We proceed by induction on n ≥ 1. Assume first that n = 1.
Then (50) is obvious, for h1 = 0. To prove (51), we estimate (δh)1 in H1

t as follows:
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| |(δh)1 | |H1
t

= | |Λ(y1
1 (T, .), y1

1t (T, .)) | |H1
t

≤ CΛ | |(y1
1 (T, .), y1

1t (T, .)) | |H
≤ CΛC2 | |(ξ0, ξ1) | |H
≤ CΛC2δ (52)
≤ ε | |(δh)0 | |H1

t

if δ is small enough.
Assume that (50) and (51) are valid for any integer n′ < n, where n ≥ 2. Let us

check that (50) and (51) are also true for n. Since hn =
∑n−1

k=1 (δh)k , we have that

| |hn | |H1
t
≤

n−1∑
k=1

εk−1 | |(δh)1 | |H1
t

≤
CΛC2

1 − ε
δ = C3δ,

where we used (51) for k < n and (52). Let us proceed to the proof of (51). Let
wn := yn−1 − yn1 = (yn−1

1 + yn−1
2 ) − yn1 . Then wn satisfies

wn
t t − wn

xx = f (yn−1
1 ) − f (yn1 ), (t, x) ∈ (0,T ) × (0,1)

wn (t,0) = 0, wn (t,1) = 0, t ∈ (0,T )
wn (0, .) = wn

t (0, .) = 0,
(wn (T, .),wn

t (T, .)) = −(yn1 (T ), yn1t (T )). (53)

Thus, by (24), (42) and (53), we have

| |(δh)n | |H1
t
≤ CΛ | |(yn1 (T, .), yn1t (T, .)) | |H
≤ CΛ | |(wn ,wn

t ) | |C ([0,T ],H )

≤ CΛ | | f (yn−1
1 ) − f (yn1 ) | |L1 (0,T ,L2

x )

≤ CΛη | |yn−1
1 − yn1 | |L1 (0,T ,L2

x ) . (54)

For the last line, we used (4) and the estimate sup(| |yn−1
1 | |L∞t,x , | |y

n
1 | |L

∞
t,x

) ≤ δ0 valid
if δ is small enough. Indeed, using (48) and (50) for n − 1 and n,

| |yn1 | |L∞ ((0,T )×(0,1)) ≤ ||(yn1 )x | |L∞ (0,T ,L2 (0,1))

≤ C2
(
| |(ξ0, ξ1) | |H + C1 | |hn | |H1

t

)
≤ C2

(
δ + C1C3δ

)
≤ δ0

and similarly | |yn−1
1 | |L∞ ((0,T )×(0,1)) ≤ δ0, for δ small enough. It remains to estimate

| |yn−1
1 − yn1 | |L1 (0,T ,L2

x ) in terms of | |(δh)n−1 | |H1
t
. Let vn = yn−1

1 − yn1 . Then vn solves
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vnt t − vnxx = f (yn−1
1 ) − f (yn1 ), (t, x) ∈ (0,T ) × (0,1) (55)

vn (t,0) = 0, vn (t,1) = −(δh)n−1(t), t ∈ (0,T )
vn (0, .) = vnt (0, .) = 0.

An application of Lemma 1 yields

| |(yn−1
1 )x − (yn1 )x | |C ([0,T ],L2

x ) ≤ ||(y
n−1
1 − yn1 , y

n−1
1, t − yn1, t ) | |C ([0,T ],H )

≤ || f (yn−1
1 ) − f (yn1 ) | |L1 (0,T ,L2

x ) + C1 | |(δh)n−1 | |H1
t

≤ η | |yn−1
1 − yn1 | |L1 (0,T ,L2

x ) + C1 | |(δh)n−1 | |H1
t
· (56)

It follows from Poincaré’s inequality ‖ f ‖L2
x
≤ π−1‖ f x ‖L2

x
(valid for f ∈ H1

x with
f (0) = 0) that

| |yn−1
1 − yn1 | |L1 (0,T ,L2

x ) ≤
T
π
| |(yn−1

1 )x − (yn1 )x | |C ([0,T ],L2
x ) (57)

which, combined with (56), gives

| |yn−1
1 − yn1 | |L1 (0,T ,L2

x ) ≤ (1 −
Tη
π

)−1 C1T
π
| |(δh)n−1 | |H1

t
. (58)

Gathering together (54), (58) and the fact that T = 2, we conclude that

| |(δh)n | |H1
t
≤ ε | |(δh)n−1 | |H t

1

with ε as in (49). The proof of Proposition 1 is complete.

Step 2. Exponential decay
Let us start with the convergence of the sequence of controls (hn )n≥1. From (51)
and (52), we infer that

| |hn+1 − hn | |H1
t

= | |(δh)n | |H1
t
≤ CΛC2δε

n−1, ∀n ≥ 1, (59)

so that for n,p ≥ 1

| |hn+p − hn | |H1
t
≤ CΛC2δ(εn−1 + · · · + εn+p−2)

≤
CΛC2δ

1 − ε
εn−1. (60)

Thus (hn )n≥1 is a Cauchy sequence in H1
t , and its limit h ∈ H1

t satisfies

| |h − hn | |H1
t
≤

CΛC2δ

1 − ε
εn−1 (61)

by letting p→ ∞ in (60).
It follows from (25)-(27), (42), (51) and (52) that
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| |(yn2 , y
n
2, t ) | |C ([0,T ],H ) ≤ C1 | |(δh)n | |H1

t
≤ C1ε

n−1 | |(δh)1 | |H1
t

≤ CΛC1C2δε
n−1 =: C4δε

n−1,

and hence (yn2 , y
n
2, t ) → (0,0) in C([0,T],H ) as n → ∞. From (55), (58) and (59),

we infer that

| |(yn+1
1 −yn1 , y

n+1
1, t −y

n
1, t ) | |C ([0,T ],H ) ≤

(
C1+η(1−

Tη
π

)−1 C1T
π

)
| |(δh)n | |H1

t
≤ C5δε

n−1

with C5 =
(
C1 + η(1 − Tη

π )−1 C1T
π

)
CΛC2. This yields

| |(yn+p
1 − yn1 , y

n+p
1, t − yn1, t ) | |C ([0,T ],H ) ≤

C5δ

1 − ε
εn−1,

so that the sequence (yn1 , y
n
1, t ) converges towards some function (y, yt ) in C([0,T],H )

with y(t,0) = 0 and

| |(y − yn1 , yt − yn1, t ) | |C ([0,T ],H ) ≤
C5δ

1 − ε
εn−1.

Thus (34) is proved for some constant C > 0.
It remains to check that the pair (y,h) satisfies (35)-(38). (35)-(37) follow from

(21)-(23) and (34), while (38) follows from (28), (32) and (34).

3 Numerical schemes

Let us describe the numerical schemes used to compute yn1 , yn2 and (δh)n . To sim-
plify the notations, we remove the index n (corresponding to the nth Picard iteration)
in yn1 , yn2 and (δh)n . We focus on the computation of y1 and h, as y2 is not needed
to approximate y.

3.1 Chebychev collocation spectral method

We have to solve numerically several times the linear (or semilinear) wave equation
on a bounded domain. After an obvious change of spatial variables, we can assume
that x ∈ (−1,1), incorporating a coefficient c in the wave operator. Consider the
Cauchy problem for the semilinear wave equation:

ut t − c2uxx = g(t, x,u), (t, x) ∈ (0,T ) × (−1,1), (62)
u(t,−1) = h−1(t), u(t,1) = h1(t), t ∈ (0,T ), (63)
u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ (−1,1), (64)
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where g, h−1, h1, u0 and u1 are given functions. In this paper, we shall use the
Chebychev collocation spectral method to solve (62)-(64), as described e.g. in [25].
Let N ∈ N∗ be given. We introduce the Chebychev points x j = cos(θ j ), where
θ j = ( j − 1)π/N for 1 ≤ j ≤ N + 1. Note that x1 = 1 and xN+1 = −1. Any
smooth function v = v(x) defined on [−1,1] is conveniently approximated by the
Lagrange polynomial p ∈ R[x] of degree at most N defined by p(xi ) = v(xi ) for
1 ≤ j ≤ N + 1. It turns that a good approximation of du/dx can be obtained by
using the Chebychev differentiation matrix D = (Di j )1≤i, j≤N+1 defined as

D j j =

N+1∑
k = 1
k , j

(x j − xk )−1, 1 ≤ j ≤ N + 1,

Di j =
1
a j

N+1∑
k = 1

k , i, j

(xi − xk ), 1 ≤ i , j ≤ N + 1,

where a j =
∑N+1

k = 1
k , j

(x j − xk ) for 1 ≤ j ≤ N + 1. Indeed, introducing the vector

U = (Uj )1≤ j≤N+1 with Uj = u(x j ) (1 ≤ j ≤ N + 1) and setting Ũ = DU , Ũ =

(Ũj )1≤ j≤N+1, then we notice that the Lagrange polynomial q of degree ≤ N defined
by q(x j ) = Ũj for 1 ≤ j ≤ N + 1 provides a good approximation of du/dx; namely,
we have for some constants C > 0 and K > 1

|
du
dx

(x j ) − Ũj | ≤ CK−N , ∀N ≥ 1, ∀ j ∈ {1, ...,N + 1}.

(See e.g. [7, 25].)
Let M ∈ N∗ and ∆t = T/M , where T = 2. For 1 ≤ j ≤ N + 1, 0 ≤ m ≤ M ,

let Um
j stand for the numerical approximation of u(m∆t, x j ). To solve (62)-(64)

numerically, we use a leap-frog formula in t and Chebychev spectral differentiation
in x to get

(∆t)−2(Um+1
j − 2Um

j + Um−1
j ) − c2(D2 U) j = g(m∆t, x j ,Um

j ),
2 ≤ j ≤ N, 0 ≤ m ≤ M − 1,

Um+1
1 = h1((m + 1)∆t), Um+1

N+1 = h−1((m + 1)∆t), 0 ≤ m ≤ M − 1,

U0
j = u0(x j ), U−1

j = u0(x j ) − (∆t)u1(x j ), 2 ≤ j ≤ N.

3.2 Numerical scheme for the linear control problem

To compute (δh)n as in (24), we have to solve numerically the following linear
control problem: for given (y1(T, .), y1, t (T, .)) ∈ H0, find h ∈ H1

0 (0,T ) such that the
solution y2 of the system
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y2, t t − y2,xx = 0, (t, x) ∈ (0,T ) × (0,1) (65)
y2(t,0) = 0, y2(t,1) = h(t), t ∈ (0,T ) (66)
y2(0, x) = y2, t (0, x) = 0, x ∈ (0,1) (67)

satisfies

y2(T, x) = −y1(T, x), y2, t (T, x) = −y1, t (T, x), x ∈ (0,1). (68)

The change of unknown function z(t, x) = y2(T − t, x) transforms the exact control-
lability problem (65)-(68) into the following null controllability problem

zt t − zxx = 0, (t, x) ∈ (0,T ) × (0,1) (69)
z(t,0) = 0, z(t,1) = h(T − t), t ∈ (0,T ) (70)
z(0, x) = z0(x) = −y1(T, x), zt (0, x) = z1(x) = y1, t (T, x), x ∈ (0,1) (71)
z(T, x) = zt (T, x) = 0, x ∈ (0,1). (72)

Instead of considering a discretization of the control problem (69)-(72) and solving
a finite-dimensional control problem, we design a control for the problem (69)-
(72) based upon the finite-time stabilization method widely used for systems of
conservation laws (see e.g. [18, 23, 2, 15]). It is well known that the transparent
boundary condition zx = −zt taken at x = 1 (replacing the condition z(t,1) =

h(T − t)), which is a control in feedback form, leads to the finite-time stability of
(69)-(72). The idea is to let the waves leave the domain (0,1) in a free way, as they
do naturally when the spatial domain is R instead of (0,1). To achieve such a natural
control, we proceed as follows. We extend z0 and z1 as odd functions with compact
support. Namely, we set

z0(x) =




−y1(T, x) if 0 < x < 1,
y1(T,−x) if − 1 < x < 0,
0 if x ∈ (−∞,1) ∪ (1,+∞),

(73)

and

z1(x) =




y1, t (T, x) if 0 < x < 1,
−y1, t (T,−x) if − 1 < x < 0,
0 if x ∈ (−∞,1) ∪ (1,+∞).

(74)

Let z = z(t, x) solve now the system

zt t − zxx = 0, 0 < t < T, x ∈ R (75)
z(0, x) = z0(x), zt (0, x) = z1(x), x ∈ R. (76)

Since y1(T, .) ∈ H1
0 (0,1) and y1, t (T, .) ∈ L2(0,1), (z0, z1) ∈ H1(R) × L2(R) and

(z, zt ) ∈ C([0,T],H1(R) × L2(R)). Furthermore, z is odd in x, for z0 and z1 are
odd in x. Thus z(0, t) = 0 for all t ∈ (0,T ). Finally, it follows from D’Alembert’s
formula
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z(t, x) =
1
2

[z0(x + t) + z0(x − t)] +
1
2

∫ x+t

x−t

z1(s)ds (77)

and from the choice of z0, z1, and T = 2 that

z(T, x) = zt (T, x) = 0, for − 1 < x < 1. (78)

We infer from (77) that

supp z(t, .) ⊂ [−1 − t,1 + t] ⊂ [−3,3] for 0 ≤ t ≤ T = 2.

Thus, we can actually limit the computations to the spatial domain [−3,3] by impos-
ing homogenous Dirichlet boundary conditions at x = ±3, and use e.g. the scheme
described in Subsection 3.1. The control h(t) = z(T − t,1) is numerically obtained
by computing z(m∆t,1) for 0 ≤ m ≤ M . Note that 1 may not be a Chebychev point
3x j for some j ∈ [1,N + 1]. Assuming that 1 ∈ [3x j+1,3x j ], then a linear interpo-
lation between z(m∆t,3x j ), z(m∆t,3x j+1) gives an approximation of z(m∆t,1).

Another way to compute numerically h(t) = z(T − t,1) is to use (77) for x = 1,
which gives for t > 0

z(t,1) =
1
2

z0(1 − t) +
1
2

∫ 1

1−t
z1(s)ds. (79)

(This expression was already derived in [22].) The integral term in (79) can be esti-
mated by using the trapezoid rule.

A third way to compute numerically h(t) = z(T − t,1) is to go back to the
transparent boundary condition zx (t,1) = −zt (t,1) and to introduce the Riemann
invariants s := zt +zx and d := zt−zx . Set d0 := z1−z0

x . Then the transport equation
dt + dx = 0 is integrated as d(t, x) = d0(x − t). On the other hand zt = (s + d)/2
and s(t,1) = 0, for zx (t,1) = −zt (t,1). It follows that

z(t,1) =

∫ t

0
zt (s,1)ds =

1
2

∫ t

0
d(s,1)ds =

1
2

∫ t

0
d0(1 − s)ds (80)

which is nothing but (79). Numerically, h(T − m∆t) = z(m∆t,1) is approximated
by 1

4
∑m−1

n=0 [d0(1 − n∆t) + d0(1 − (n + 1)∆t)]. The main avantage of this way to
compute the control in the linear problem is that there is no need to solve the wave
equation for (t, x) ∈ (0,T ) × (−3,3). What is needed is the computation of d0, first
on the Chebychev points (x j )1≤ j≤N+1 (using the Chebychev differentiation matrix
to evaluate z0

x ), and next on the fine grid (1 − n∆t)0≤n≤M by using the associated
Lagrange polynomial.
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4 Numerical simulations

4.1 Linear problem

We first test the boundary control of the linear wave equation by using the numerical
integration of the linear wave equation (75)-(76) supplemented with the boundary
conditions z(t,±3) = 0. We take as initial data z0(x) = sin(πx) and z1(x) = 0 for
x ∈ (0,1) and we extend z0 and z1 toR as in (73)-(74). We use the numerical scheme
in Subsection 3.1 with N = 200 and ∆t = 0.1/N2. The simulation is displayed in
Figure 1. As expected, the solution z vanishes at T = 2 for x ∈ (−1,1). If we let
e(z0) denote the sup-norm of the vector of the values of z0 at the Chebychev points
inside (−1,1), which gives an estimate of ‖z0‖L∞ (−1,1) , then we obtain as relative
error

e(z(T, .))
e(z0)

≈ 2.5 10−3.

2

1.5

t

1

0.5
-2

-3
-2

x

-1
0

1 02
3

0z

2

Fig. 1 Free evolution of the linear wave equation.

4.2 Nonlinear control problem

From now on, we compute numerically the control h in the linear control problem
(69)-(72) by using a discretization of (80).
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4.2.1 The general case

We are concerned with the numerical simulation of the control problem (35)-(11),
where f is as in (4). We shall take f (u) = Cu2, where C ∈ R is some parameter.
We shall see that the parameter C has to take its values in a bounded interval for the
control problem to be numerically solved. We take as initial data

ξ0(x) = 1.5 sin(3πx), ξ1(x) = x2 for x ∈ (0,1).

For C = 4, we apply our Picard iterative scheme with n = 5 iterations, N = 200,
∆t = 1/N2. The simulation is displayed in Figure 2 (bottom). The relative error is
found to be e(z (T , .))

e(z0) ≈ 6.9 10−3. Another simulation is performed with C = 0 (linear
case) and is also displayed in Figure 2 (top). The presence of the nonlinear term 4u2

in the PDE leads to a visible change of the control input.

2

t

1

0

x
0.5 0

1
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Trajectory for C=0

0y

2
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-0.5

0

0.5

1

h

Control input for C=0

2

t

1

0

x
0.5 0

1

-2

Trajectory for C=4

0y

2

0 0.5 1 1.5 2

t

-1

-0.5

0

0.5

1

1.5

h

Control input for C=4

Fig. 2 Control of the nonlinear wave equation: f (u) = Cu2.
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4.2.2 The case of an odd function f

When f is odd, then the solution of the system

yt t − yxx = f (y), t ∈ (0,T ), x ∈ (−1,1),
y(t,±1) = ±h(t), t ∈ (0,T ),

y(0, x) = sign(x)ξ0( |x |), yt (t,0) = sign(x)ξ1(|x |), x ∈ (−1,1).

is odd, and hence it vanishes for x = 0. This allows to do the computations on the
interval (−1,1).

We first test our numerical scheme with f (u) = Cu3. It is numerically proved to
work well for C ∈ [−2 , 1.8]. For C = 2, we have a blow-up, while for C ≤ −3 we
never reach the null state at T = 2. This suggests that the Lipschitz condition (4)
cannot be replaced by the passivity-like sector condition f (y)y > 0. Note that, even
for small values of C, the best result is achieved for a “small” number of iterations:
the relative error reaches its minimal value and next increases as the number of
iterations tends to infinity. We take ξ0(x) = 2 sin(2πx) and ξ1(x) = 0 as initial
data, and N = 200 and ∆t = 4/N2 as parameters. For C = 1.5 we obtain as relative
error 5.7 10−3 with 5 iterations (see Figure 3). For C = −4, the “best” relative

2

t

1

-1

x

-0.5 0 00.5

-5

1

0y

5

0 0.5 1 1.5 2

t

-1.5

-1

-0.5

0

0.5

1

h

Fig. 3 Control of the semilinear wave equation: f (u) = 1.5 u3.
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error is 0.54 and it is obtained with 4 iterations (see Figure 4). Finally, with the
choice f (u) = C sin u (which is both Lipschitz continuous and bounded), we obtain
with C = 6 as relative error 0.26 with 3 iterations (see Figure 5). This suggests that
our algorithm based on a perturbative argument does not work for large (Lipschitz
continuous and bounded) perturbations.
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-0.5 0 00.5
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2
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Fig. 4 Control of the semilinear wave equation: f (u) = −4u3.
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Fig. 5 Control of the semilinear wave equation: f (u) = 6 sin u.

5 Conclusion

An iterative algorithm was proposed to derive a boundary control for the null con-
trollability of a semilinear wave equation in dimension one. Designing the control
of the linear part by using a transparent boundary condition and using a collocation
pseudospectral method on a Chebychev grid to compute the second order derivative
in x in the wave equation, we provided several numerical simulations showing the
efficiency of the method, at least for small nonlinearities and small initial data. Of
course, further investigations are required to provide a numerical analysis of the al-
gorithm. It would be also interesting to see whether the method can be extended to
the wave equation in dimension two or three. This will be done elsewhere.
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Appendix

Proof of Lemma 1

The estimate for h ≡ 0 follows from classical semigroup theory,
(
S(t)

)
t ∈R being a

unitary group on H0. Assume now that h , 0 and that (z0, z1,g) = (0,0,0). Since
| |(z, z̃) | |H and | |z | |H1

x
+ | | z̃ | |L2

x
are equivalent norms onH , it is sufficient to prove

| |z | |C ([0,T ],H1
x ) + | |zt | |C ([0,T ],L2

x ) ≤ C | |h| |H1
t
.

(Here, C denotes some constant that may vary from line to line.) It is well-known
that

| |z | |C ([0,T ],L2
x ) + | |zt | |C ([0,T ],H−1

x ) ≤ C
(
| |z0 | |L2

x
+ | |z1 | |H−1

x
+ | |h| |L2

t

)
(81)

where z denotes the solution by transposition of (39)-(41) with (z0, z1,g) = (0,0,0).
Introduce w := zt . Then w solves the system

wt t − wxx = 0, (t, x) ∈ (0,T ) × (0,1)
w(t,0) = 0, w(t,1) = h′(t), t ∈ (0,T )
(w(0, .),wt (0, .)) = (z1, z0

xx ) = (0,0).

Since h ∈ H1
t , we infer from (81) that

| |w | |C ([0,T ],L2
x ) + | |wt | |C ([0,T ],H−1

x ) ≤ C | |h| |H1
t
, (82)

so that the estimate for | |zt | |C ([0,T ],L2
x ) is established. For | |z | |C ([0,T ],H1

x ) , it is suffi-
cient to notice that zxx = zt t = wt and to combine

| |zxx | |C ([0,T ],H−1
x ) ≤ C | |h| |H1

t

with the elliptic estimate

| |z(t, .) | |H1
x
≤ C

(
| |zxx (t, .) | |H−1

x
+ |z(t,0) | + |z(t,1) |

)
≤ C( | |zxx (t, .) | |H−1

x
+ |h(t) |).
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Proof of Lemma 2

For (z, z̃) ∈ C([0,T],H ), let

| | |(z, z̃) | | | = max
t ∈[0,T ]

| |(z(t), z̃(t)) | |H = max
t ∈[0,T ]

(
| |zx (t) | |2

L2
x

+ | | z̃(t) | |2
L2
x

) 1
2 .

We shall apply the contraction mapping principle in the ball B(0,R) ⊂ C([0,T],H ),
where R > 0 will be chosen later on. Note that

| |z | |L∞x (0,1) ≤ ||zx | |L2
x

if z ∈ H1
x with z(0) = 0. Assume that z0 ∈ H1

0 (0,1), and that

| |(z0, z1) | |H + C1 | |h| |H1
t

=: δ ≤ δ0. (83)
R < δ0. (84)

Note that, for (z, z̃) ∈ B(0,R),

| |z(t) | |L∞x (0,1) ≤ ||zx (t) | |L2
x
≤ || |(z, z̃) | | | < δ0 ∀t ∈ [0,T].

Pick two pairs (z1, z̃1) and (z2, z̃2) in B(0,R). Then by Lemma 1

| | |Γ(z1, z̃1) − Γ(z2, z̃2) | | | = | | |
∫ t

0
S(t − s)(0, f (z1(s)) − f (z2(s)))ds | | |

≤ | | f (z1) − f (z2) | |L1 (0,T ,L2
x )

≤ η | |z1 − z2 | |L1 (0,T ,L2
x )

≤ Tη | | |(z1 − z2, z̃1 − z̃2) | | |. (85)

Note that Γ contracts in B(0,R), for T = 2 and η as in (4). On the other hand, for
any (z, z̃) ∈ B(0,R), we have by Lemma 1 and (85)

| | |Γ(z, z̃) | | | ≤ | | |S(t)(z0, z1) + W (h) | | | + | | |
∫ t

0
S(t − s)(0, f (z(s)))ds | | |

≤ δ + 2η | | |(z, z̃)) | | |. (86)

Thus Γ(B(0,R)) ⊂ B(0,R) if
δ + 2ηR ≤ R.

Pick
R =

δ

1 − 2η
·

with
0 < δ < δ1 = (1 − 2η)δ0 < δ0.

Then Γ has a unique fixed point (z, z̃) in B(0,R) by the contraction mapping princi-
ple. Clearly, z̃ = zt and (48) holds with C2 = (1 − 2η)−1
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