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Abstract 
Characterizing and understanding the limitations of diffusion MRI fiber tractography is a prerequisite for methodological advances 
and innovations which will allow these techniques to accurately map the connections of the human brain. The so-called “crossing 
fiber problem” has received tremendous attention and has continuously triggered the community to develop novel approaches for 
disentangling distinctly oriented fiber populations. Perhaps an even greater challenge occurs when multiple white matter bundles 
converge within a single voxel, or throughout a single brain region, and share the same parallel orientation, before diverging and 
continuing towards their final cortical or sub-cortical terminations. These so-called “bottleneck” regions contribute to the ill-posed 
nature of the tractography process, and lead to both false positive and false negative estimated connections. Yet, as opposed to the 
extent of crossing fibers, a thorough characterization of bottleneck regions has not been performed. The aim of this study is to 
quantify the prevalence of bottleneck regions. To do this, we use diffusion tractography to segment known white matter bundles of 
the brain, and assign each bundle to voxels they pass through and to specific orientations within those voxels (i.e. fixels). We 
demonstrate that bottlenecks occur in greater than 50-70% of fixels in the white matter of the human brain. We find that all 
projection, association, and commissural fibers contribute to, and are affected by, this phenomenon, and show that even regions 
traditionally considered “single fiber voxels” often contain multiple fiber populations. Together, this study shows that a majority 
of white matter presents bottlenecks for tractography which may lead to incorrect or erroneous estimates of brain connectivity or 
quantitative tractography (i.e., tractometry), and underscores the need for a paradigm shift in the process of tractography and bundle 
segmentation for studying the fiber pathways of the human brain. 
 
Keywords: tractography, white matter, fiber pathways, bottleneck, tractometry, crossing fibers

Introduction 
Two paths diverged from a single orientation, 
And streamlines could not travel both 
Else it be a false positive, long it stood 
And looked down one as far it could 
To which cortex should it approach?  
 
Diffusion MRI fiber tractography is currently the only tool 
to map the long-range structural brain connectivity in vivo. 
However, there are a number of limitations and ambiguities 
that affect the ability of tractography to accurately map the 
connections of the brain [1]. At the voxel level, significant 
attention has been given to the “crossing fiber problem” [2-
4]. This problem typically refers to the situation when two 
or more differently oriented fiber bundles are located in the 
same imaging voxel, which causes a partial volume effect 
that can lead to ambiguous or incorrect estimates of fiber 
orientation and subsequent failure of tractography [5]. 
Crossing fibers have been shown to occur in a majority of 
the voxels in the brain [6], and for the last decade the 
crossing fiber problem has been cited as the major limitation 
that diffusion tractography faces, with a vast number of 

algorithms [7] and papers referring to this problem [1-4, 8-
24]. The identification and characterization of this problem 
led to a fundamental paradigm shift in diffusion processing, 
moving the field beyond classical diffusion tensor imaging, 
and has led to the development of a number of algorithms 
capable of resolving crossing fibers [2-4, 13, 25, 26]. 
 
A more recently described limitation of fiber tractography is 
the “bottleneck problem” [27]. In contrast to the crossing 
fiber problem, bottlenecks occur at a global level when 
multiple fiber populations converge towards a narrow 
region, temporarily aligning and sharing the same 
orientation and trajectory, before re-emerging from the 
bottleneck region [1, 14]. Current tractography algorithms 
cannot adequately choose the correct pathway upon re-
emerging, which leads to generation of a potentially large 
number of false positive pathways [28], and limits the ability 
to use tractography as a tool to explore potential connections 
and fiber pathways of the brain. While significant efforts 
have gone into solving the crossing fiber problem, the 
bottleneck problem has received far less attention. A 
thorough characterization and investigation of bottleneck 
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locations and prevalence may highlight the extent of this 
problem, and much like the crossing fiber problem, cause a 
paradigm shift in tractography in order to solve this issue.   
 
In this work, we utilize well-known and well-characterized 
white matter fiber bundles extracted using automated tools, 
to quantify how often they overlap within the same imaging 
voxels, and also how often the overlap occurs within the 
same voxel while also sharing the same dominant 
orientation. These locations represent known bottleneck 
regions for tractography, and indicate areas in the brain 
where a number of white matter pathways converge, and 
where tractography may lead to incorrect or erroneous 
estimates of brain connectivity.   
 
Nomenclature 
Here, we aim to clarify nomenclature that will be used in this 
study to describe our methodology and results. First, a 
bundle, or fiber bundle, is a group of streamlines that is 
created from a diffusion MRI dataset and is intended to 
represent a specific white matter pathway of the brain. 
Bundles contain streamlines with start and end points 

generally belonging to the same brain territories, 
respectively. In this study, we create bundles using two 
common white matter atlases and tractography dissection 
techniques that are informed by prior anatomical knowledge 
and contain pathways for which there is extensive evidence 
of their existence. Thus, in this study we are analyzing only 
anatomically plausible bundles. 
 
Next, a voxel represents orientational information in three-
dimensional space. In MRI, the size of voxels is on the order 
of millimeters, whereas axons of the brain have diameters on 
the scale of micrometers, and a single voxel can contain 
hundreds of thousands of axons. The directionality of axons 
within a voxel can be summarized by the fiber orientation 
distribution (FOD). The FOD is a continuous function over 
a sphere and can be visualized as a 3D directional histogram 
where peaks, or local maxima, are assumed to point parallel 
to the direction of axons. The FOD can be segmented into 
discrete elements based on peaks, or lobes, that are 
considered to be representative of a specific orientation of a 
set of axons within each voxel. These fiber elements are 
referred to as fixels [29], and are parameterized by the mean 

Figure 1. Nomenclature. Two bundles, the UF and IFOF, are used to highlight classifications of voxels (A-D), and fixels within the voxels. Voxels in 
A and B are examples of single-orientation voxel and single-bundle voxels and also single-bundle fixel. Because the UF and IFOF diverge in Voxel 
C, this is an example of a multi-orientation voxel and multi-bundle voxel, with one fixel classified as a single-bundle fixel and the other a multi-
bundle fixel.  Voxel D highlights the fanning of the IFOF, which results in a multi-orientation voxel and single-bundle voxel, and both fixels are 
single-bundle fixels. Finally, both the IFOF and UF pass through voxel E following the same orientation, thus voxel E is a single-orientation voxel 
but multi-bundle voxel, and also a multi-bundle fixel. This fixel, and thus also this voxel, represents a bottleneck for tractography. 
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orientation of fibers within the lobe of the FOD. Thus, there 
can be multiple fixels in a single voxel, with the advantage 
that we can now assign a specific property or index to each 
fixel, or orientation, within a voxel.  
 
For this study, it is necessary to clarify or define six 
classifications, written out in Table 1 and displayed as a 
cartoon in Figure 1. If a FOD has only a single peak, or local 
maxima, we classify it as a single-orientation (fiber) voxel, 
and if it has greater than one peak we call this a multi-
orientation voxel [6]. In contrast to simply counting peaks, 
we also count the number of bundles passing through the 
same voxel, then characterizing as a single-bundle voxel 
and multi-bundle voxel. Similarly, we count the number of 
bundles associated with each fixel and, characterize the fixel 
as a single-bundle fixel, or multi-bundle fixel. As described 
above, a fixel is usually used to describe a single fiber bundle 
element. However, we hypothesize that a single fixel may be 
associated with several bundles, thus creating bottlenecks for 
tractography. A bottleneck ‘region’ then is a cluster of 
coherent multi-bundle fixels.  

Methods 
Data 
We utilized data from 25 healthy subjects in the Human 
Connectome Project (HCP) S1200 release [30]. The HCP 
protocol (custom 3T Siemens Skyra) included T1-weighted 
images acquired using a 3D MPRAGE sequence (TE = 2.1 
ms, TR = 2400 ms, flip angle = 8 deg, FOV = 224×224mm, 
acquisition, voxel size = 0.7mm isotropic). Diffusion images 
were acquired using a single-shot EPI sequence, and 
consisted of three b-values (b = 1000, 2000, and 3000 s/mm2), 
with 90 directions (and 6 b=0 s/mm2) per shell (TE = 89.5 ms, 
TR = 5520 ms, slice thickness = 1.25 mm, flip angle = 78 
degrees, FOV = 210*180, voxel size = 1.25mm isotropic). 
Data pre-processing included correction for susceptibility 
distortions, subject motion, and eddy current correction. 
 
Processing 
All processing was performed with the MRTrix3 software 
package [31]. Multi-shell, multi-tissue constrained spherical 
deconvolution (dwi2fod) was used to estimate the white 
matter FOD for each subject using a group averaged white 
matter response function computed using the “dhollander” 
algorithm [32].  Next, we generated a study-specific unbiased 
FOD template (population_template) for population-based 
analysis.  
 
From both the population FOD template and subject-specific 
FODs, we extracted peaks (sh2peaks) and fixels (fod2fixel), 
with a threshold of 0.1 times the maximum peak amplitude to 

remove spurious peaks. We then counted the number of 
peaks (i.e., lobes of the FOD) and defined those voxels which 
have only a single peak to be a single-orientation voxel, and 
those with greater than one peak to be multi-orientation 
voxels.  
 
Bundle segmentation 
We utilized two common, automated, pipelines for white 
matter bundle extraction, Recobundles [33] and TractSeg [34, 
35]. These are both informed by prior anatomical knowledge 
in order to generate bundles representative of well-
characterized, and well-validated, white matter pathways of 
the brain. All analysis is performed separately for both 
techniques to show that results generalize across slight 
deviations in the number and definitions of white matter 
pathways, and the techniques used to extract them.  
 
Recobundles is based on an atlas of 78 bundles [36], although 
12 bundles are cranial nerves outside of the cerebrum and 
brainstem. Whole brain tractography was performed using 
anatomically constrained probabilistic tractography with the 
iFOD2 propagation algorithm (tckgen), to generate 25 million 
streamlines, which were filtered based on the diffusion signal 
using the SIFT algorithm [37] (tcksift) to 2 million streamlines. 
Bundle recognition was performed following streamline linear 
registration to the HCP842 [36] bundle template (dipy_slr) and 
bundle recognition using default parameters of the 
RecoBundles algorithm [33].   
 
TractSeg [35] is a tool based on convolutional neural networks 
that is trained to create tract orientation maps and 
segmentations of end regions, which can be used to perform 
probabilistic bundle-specific tractography [34]. We 
implemented the processing pipeline provided at 
(https://github.com/MIC-DKFZ/TractSeg) with the MRTrix-
derived FODs as input, in order to generate 72 bundles per 
subject. 
 
Assigning bundles to voxels and fixels 
Figure 2 visualizes the procedure used to assign bundles to 
voxels and bundles to fixels. For each bundle (Figure 2, A; 
N=78 RecoBundles; N=72 TractSeg), a tract density map was 
created (tckmap) by counting the number of streamlines 
coursing through each voxel (Figure 2, B). Density maps 
were thresholded at 5% of the maximum streamline density 
per bundle in order to create binary segmentations indicating 
the voxel-wise profile of each bundle. Next, a fixel density map 
(Figure 2, C) was created (tck2fixel) by counting the number 
of streamlines that are most closely aligned to each fixel. 
Again, fixel-density maps were thresholded at 5% of the 
maximum density in order to create binary segmentations 
indicating the fixel-wise profile of each bundle. Now, the 
number of known bundles per voxel, as well as number of 
known bundles per fixel, can be counted. A single fixel that is 
associated with multiple bundles represent a potential 
bottleneck. Voxel-based and fixel-based analysis is 
performed both at the level of the individual in subject-space, 
and also at the population-level in template-space.  

Figure 2. Assigning bundles to voxels and fixels. Each segmented white matter bundle (A) was assigned to each voxel (B) based on thresholding 
of the density map, as well as assigned to each fixel (C) within a voxel based on matching orientations of streamlines. This allowed us to query 
both the number of known bundles per voxel, and number of known bundles per fixel. White matter bundles were derived from TractSeg (N=72 
bundles) and Recobundles (N=78 bundles). 
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Results 
Bottleneck Prevalence 
Investigating fixels throughout the white matter, we first ask 
what is the prevalence of multi-bundle fixels? Figure 3 
shows maps of the number of bundles assigned to each fixel, 
visualized in coronal, sagittal, and axial views, for both 
TractSeg bundles (top) and Recobundles (bottom). Most 
noticeably, most fixels in the white matter, in all 

orientations, are associated with multiple bundles. In fact, 
many regions have groups of oriented fixels associated with 
7+ unique bundles. Figure 4 quantifies the number of 
bundles assigned to each individual fixel. The results 
confirm the qualitative observation that most fixels contain 
multiple bundles converging in a given orientation, with 
greater than 50% of fixels in Recobundles and greater than 
70% of fixels in TractSeg containing greater than a single 

Figure 3. There is a high prevalence of bundles assigned to each fixel in the brain. Results are shown as vectors, colored by the number of 
associated bundles, and averaged across the population. TractSeg results are shown on top, Recobundles on bottom. Fixels with more than one 
bundle traversing through them represent bottleneck regions for tractography. 
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fiber population. In general, TractSeg bundles show a higher 
prevalence of multi-bundle fixels (i.e., bottlenecks) than 
Recobundles. In summary, a majority of fixels in the brain 
that contain known fiber bundles act as bottleneck regions 
for tractography. 
 
Bottleneck Locations 
Next, we ask where do the most important bottleneck regions 
occur? These are regions in which groups of fixels with 
similar orientation exhibit a convergence of the largest 
number of pathways. Highlighted bottleneck regions, e.g., 7 
or more bundles, are visualized in Figures 5-8. In all 
Figures, the fixels are color-coded by the number of fibers 

traversing through each orientation, and exemplar bundles 
converging in each region are displayed.  
 
The first displayed region with the highest number of 
bottlenecks (Figure 5) is located in the deep white matter of 
the occipital lobe oriented in the anterior-posterior direction, 
covering a wide dorsal-ventral expanse and including the 
stratum sagittale. A large number of individual WM 
pathways, each with unique starting and/or ending 
connections, converge through this region with the same 
orientation, including the posterior part of the inferior 
fronto-occipital fasciculus (IFOF), inferior longitudinal 
fasciculus (ILF), middle longitudinal fasciculus (MdLF), 

Figure 5. Bottleneck region in the anterior-posterior oriented white matter of the occipital lobe (arrows) contains a large number of white 
matter bundles with unique starting and ending connections. Colormap ranges from 0 to 7+ bundles. Pathways (derived from TractSeg) from 
left to right, top to bottom: CC7, ST_par, OR, ST_OCC, POPT, MdLF, T_PAR, IFO (for full names see acronyms at end of document).  
 

Figure 4. Number of bundles assigned to fixels in the brain. Most fixels had greater than one bundle traversing through their designated 
orientation. Note that fixels which were assigned to 0 bundles are not shown. Y-axis is shown as a fraction of fixels. Error bars represent variation 
across the studied population.  
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parieto-thalamic and occipito-thalamic (optic radiations, 
OR) connections, parieto-striatal and parieto-occipital 
pontine tract (POPT), and several subdivisions or 
segmentations of the striato-cortical connections, and 
splenium of the corpus callosum. Thus, while most pathways 
terminate throughout the occipital lobe, these fibers can 
project to sub-cortical nuclei, temporal or frontal lobes, or to 
the contralateral hemisphere as commissural fibers.  
 
Figure 6 further highlights the bottleneck problem in this 
region, and illustrates how different tracts may share a 
similar location AND orientation, yet have unique start and 
end points. We filtered the previously described bundles 
using a single region of interest (a 2x2x2 voxel cube i.e., a 
2.5mm isotropic region), and show just the streamlines from 
each bundle that traverse this area (top row). While the full 
extent of each pathway does not traverse this region, a large 
and coherent subset of each bundle does, all oriented in the 
anterior-posterior direction. To simplify the illustration, a 
representative streamline is shown for each filtered bundle 
(bottom row), exemplifying the bottleneck problem: there is 
a large combinatorial number of possible pathways that 
traverse through this voxel following this single well-
defined orientation.  
 
The second main bottleneck region is the convergence of 
superior-inferior oriented fibers converging and traversing 

throughout the brainstem, from the mid-brain to the medulla 
(Figure 7). This includes a number of ascending and 
descending fibers projection pathways, corticopontine fibers 
arising from the cortex, and cerebellar tracts. Again, fibers 
traversing through this region all share the same dominant 
orientation, yet end throughout the extent of the cortex, sub-
cortex, spinal cord, and cerebellum.  
 
The third region with highest number of bottlenecks occurs 
in the superior-inferior oriented fibers of the posterior limb 
of the internal capsule (Figure 8). This region contains 
pathways such as the corticospinal tract, frontal and parietal 
pontine fasciculi, striato-postcentral and striato-precentral 
bundles, superior thalamic radiations toward the parietal, 
precentral, and postcentral cortices. While most of these 
fibers project from the mid-brain and nuclei, projections 
cover the expanse of the parietal and frontal cortices, with 
many projecting onward dorsally towards the superior 
frontal gyrus.  
 
Single-bundle and multi-bundle voxels 
Rather than assessing fixels, we can also ask what is the 
prevalence of single-bundle and multi-bundle voxels, and 
where do known bundles overlap? Thus, this overlap can 
contain both bundles oriented in the same direction, and 
different directions within a voxel. Figure 9 quantifies the 
number of bundles per voxel for both Recobundles and 

Figure 6. Illustration of the bottleneck in the anterior-posterior oriented white matter of the occipital lobe. Fiber bundles from Figure 5 (same 
color scheme) were filtered to select only streamlines (top) traversing a small 2x2x2 voxel region of interest (arrow). A single representative 
streamline from each sub-bundle is also shown (bottom). This example emphasizes that streamlines belonging to many fiber bundles may traverse 
through the same small region, in the same orientation.  
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TractSeg bundles, and visualizes bundle overlap in the 
template space. It is clear that a majority of voxels in the 
white matter contain multiple, overlapping bundles. In fact, 
a number of voxels in the brain again contain as many as 7 
or more unique overlapping bundles, with overlap of these 
bundles frequently occurring in regions that parallel the 
bottleneck regions - the centrum semiovale and posterior 
corona radiata, and also the posterior limb and retrolenticular 
limb of the internal capsule. Thus, most white matter voxels 
(>65-75%) contain overlap of multiple bundles.  
 
Single-orientation and multi-orientation voxels 
Finally, we ask what is the prevalence of single-orientation 
and multi-orientation voxels (i.e., the prevalence of the 
“crossing fiber problem”), and where do single- and multi-
orientation voxels occur? Figure 10 quantifies and 
visualizes the prevalence of multi-orientation voxels in both 
an individual subject and across the population. In 
agreement with previous literature, our results show that a 
majority of voxels in the white matter (>60%) contain multi-
orientation voxels. These voxels are prevalent throughout 
the entire white matter, with more complex (for example >2 
peaks) crossings in the centrum semiovale and cerebellum. 
Voxels with only a single peak are prevalent in the corpus 
callosum and internal capsule, as well as near the crowns of 
various gyri.  
 

One particularly interesting finding is that many of the 
identified bottlenecks above are often associated with single-
orientation voxels – the internal capsule, mid-brain, and less 
frequently in the deep white matter of the occipital lobe.  

Discussion 

In this study, we investigated the prevalence and locations of 
bottleneck regions in the brain, which present obstacles in 
our ability to build anatomically correct maps of the human 
brain using diffusion tractography.  
  
We find that not only do a majority of voxels contain 
multiple bundles, but also that a majority of individual FOD 
peaks within a voxel (i.e., fixels) are associated with multiple 
bundles. As much as 50-70% of fixels in the brain contain 
multiple fiber bundles traversing through them. This is based 
on the use of “well-known” bundles, representing only a 
lower-bound that can only go up as we understand and map 
all existing bundles in the brain. The convergence of bundles 
into a nearly parallel funnel, and subsequent convergence, 
may lead to a combinatorial number of possible pathways 
that tractography algorithms may choose to take, leading to 
the generation of possibly anatomically non-existent 
pathways. While this may not present a problem for bundle-
specific tractography with the use of manually placed priors 
[38], bundle templates [39, 40], or machine learning [35, 41, 

Figure 7. Bottleneck region in the superior-inferior oriented white matter of the brain-stem (arrow) contains a large number of white matter 
bundles with unique starting and ending connections. Hot-cold colormap ranges from 0 to 7 bundles. Pathways (derived from Recobundles) from 
top to bottom, left to right: CST, FPT, LL, MLL, CTT, OPT, TPT, SCP (for full names see acronyms at end of document).  
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42], mapping the entirety of the human connectome 
ultimately strives to map all of the unique bundles of the 
brain. The identified bottleneck regions clearly present 
obstacles to this mapping when the true connections are not 
known a priori. From a whole-brain connectome, 
streamlines which pass through these fixels without explicit 

knowledge of their existence should be suspected to be false 
positive connections generated by the process. Over and 
above problems created in connectomics studies, this also 
highlights the problems of proposing the existence of a new 
or unique pathway from diffusion MRI alone, even if the 
pathway is reproducible across scans and subjects. We posit 

Figure 8. Bottleneck region in the superior-inferior oriented white matter of the internal capsule (arrow) contains a large number of white 
matter bundles with unique starting and ending connections. Hot-cold colormap ranges from 0 to 7 bundles. Pathways (derived from TractSeg) 
from left to right, top to bottom: T_PREM, T_PAR, STR, ST_PREF, ST_POST, POPT, FPT, CST (for full names see acronyms at end of document).  
 

Figure 9. Many voxels in the white matter contain multiple known bundles. Prevalence of voxels with 1 to 7+ bundles is quantified for 
Recobundles (A) and visualized in template space (B), and also quantified for TractSeg bundles (C) and visualized overlaid in template space (D). 
Note that many voxels contain 0 bundles (i.e, are not associated with known bundles in our atlas) and are thus not quantified.  
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that orthogonal information in the form of blunt dissection, 
tracers in animals, and alternative contrasts is necessary for 
inferences which demand highly specific tractography. 
 
This bottleneck problem has further implications on 
quantitative tractography, or tractometry, where the along-
tract profile of measures along multiple tracts allows a 
comprehensive characterization of white matter. Most 
methods map voxel-wise values along the tract (such as FA) 
[43], which we know are affected by crossing fibers, while 
recent studies map fixel-wise values (such as apparent fiber 
density), along the tract [44, 45]. Yet, we show here that 
these measures are still not yet truly specific to one bundle. 
Finally, studies that use global methods of filtering or 
quantification [37, 46] can map an average streamline-
specific estimate of diffusion or relaxometry along the tract 
[47], however, these will still be affected by partial volume 
at different points along the streamline profile.  
 
We additionally confirm findings from previous studies 
which indicate that most voxels have multiple peaks in their 
FOD. Previous studies have estimated anywhere from 60-
90% of the brain contains “crossing fibers” [19, 21], 
estimates which vary with signal to noise ratio, diffusion 
sensitivity, and image resolution [6, 9]. Our estimated 
fraction is at the low-end of literature values, but we utilize 
multi-shell deconvolution as opposed to previous work, 
which may result in more regularized reconstruction and less 
spurious peaks. Regardless, this suggests that most voxels 
have more than one bundle traversing its location. Over and 
above this, we find that most peaks within a voxel have more 
than one bundle traversing in its direction. Thus, even 
solving the crossing fiber problem does not solve the 
bottleneck problem that may cause a large number of 
ambiguous, false positive pathways. Here, we propose that 
characterizing and describing the prevalence of this problem 
should lead to the development of methods which may 

alleviate or overcome these obstacles, much like that done 
for the crossing fiber problem. It is likely that advances in 
anatomical knowledge in combination with innovation in 
streamline generation and innovation in streamline filtering, 
will be needed to mitigate this problem.  
 
Bottleneck locations 
We have described the highest bottleneck regions in this 
study. Specifically, we highlighted the deep white matter of 
the occipital lobe, the brainstem, and the internal capsule. 
These regions included a number of association, projection, 
and commissural fibers, all with unique trajectories and 
fundamentally different structural connections. While these 
were the most visually apparent ‘hot spots’, it is clear that a 
majority of fixels in the brain are associated with multiple 
white matter fiber pathways. From a tractography 
perspective, these regions may cause ambiguous 
connectivity estimates, yet, anatomically, these locations 
may have significant functional relevance, representing the 
intersection or merging of the many anatomo-functional 
highways of the brain.    
 
Importantly, these bottlenecks are almost certainly an 
underestimation of the true prevalence and extent of this 
problem. We choose segmentation techniques which 
reconstruct only known anatomical pathways of the brain 
(72 and 78 bundles, respectively) for which there is broad 
agreement on their existence. Several other segmentation 
techniques exist which suggest the existence of a much 
greater number of unique pathways in the brain, however we 
have chosen to perform a conservative estimation, in 
addition to a conservative thresholding of density and/or 
streamlines to highlight the prevalence of this problem. 
Thus, these numbers are derived from a conservative 
estimate of the complexity of the brain, and represent the 
bare minimum of the number of convergent bundles. 
However, the absolute quantification itself may be biased 

Figure 10. There is a high prevalence of multi-orientation voxels throughout the brain. Prevalence of voxels with one peak, two peaks, and three 
peaks is quantified for a single subject (A) and visualized overlaid on an anatomical image (B) and also averaged across the population (C) and 
visualized overlaid across the population template (D). Note that the number of peaks is discrete on a single subject but continuous when averaged 
across all subjects.  
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towards the pathways from the chosen techniques and the 
atlases these are based upon. Additionally, while the bundles 
defined by these techniques have proven reliability, they are 
not themselves immune to the problems posed by 
bottlenecks. It is possible that improvements in tracking will 
refine the definitions of the bundles, as well as identify new 
pathways; while this may change estimates of the number of 
bundles in a given fixel, it won’t eliminate the basic feature 
of the coincidence of bundles in common pathway segments. 
 
Adding to known atlases 
While the primary aim of this study was to characterize 
bottlenecks, in which >1 bundle passes through a fixel, we 
made the interesting ancillary observation (Supplementary 
Figure 1) that many fixels within the white matter were not 
associated with any bundles defined in our utilized atlases. 
We note that these ‘zero-bundle’ fixels were not included in 
the analysis because there is a lack of information regarding 
these orientations. While many of these could be spurious 
peaks or isolated voxels in white matter, larger expanses of 
coherently oriented FODs could be regions which may 
represent underexplored white matter pathways which can 
eventually be added to our repertoire and collection of 
bundles. While some regions are easily explained, for 
example due to a lack of TractSeg bundles in the cerebellum, 
other regions occur both along and across several gyral 
blades, as well as the relatively underexplored system of U-
fibers and local association fibers. Further reasons for this 
could be the thresholding of densities and streamlines and 
parameter configurations for the bundle segmentation 
techniques. Additional atlases or bundle segmentation 
procedures may include pathways through many of these 
regions, which would solve the missing-bundle problem, but 
would likely also increase the prevalence of bottlenecks.  
  
This is a potential limitation of the current study – the choice 
of atlases (bundle segmentation procedures). We have 
purposefully chosen to only include pathways for which 
there is broad agreement on their existence, and techniques 
which have been validated and well-utilized in the field. 
There would also be the potential to define pathways and 
bottleneck regions using whole-brain connectivity, or atlases 
which are derived from clusters or reproducibility of large 
datasets [48-50], however, these are potentially confounded 
by the bottleneck problem itself (i.e., contain false positive, 
yet reproducible, pathways), and an extensive comparison of 
algorithms and segmentation methods is beyond the scope of 
the current study.  
 
“Single Fiber Populations” and microstructure 
In addition to tractography, the diffusion signal that results 
from a single fiber population (i.e., the fiber response 
function) has applications towards tissue microstructural 
modeling. The response function can be used to estimate the 
FOD and tissue microstructural properties including 
diffusivities, compartment sizes, and orientation dispersions. 
Typically, this response function is derived from studying 
regions of low complexity, specifically, regions that are 
considered single fiber populations and contain only a single 
peak in the FOD [25, 32, 51]. Here, however, we can see that 
even if a voxel or region contains a dominant orientation and 
high anisotropy, a majority of these regions are composed of 

multiple, distinct fiber pathways, that may have varying 
densities, sizes, and distributions of axons. For example, if 
we were to use the traditional definition of a ‘single fiber 
population’ (i.e., our single-orientation voxel) we would find 
that only 35% and 27% contain just a single fiber bundle 
passing through them (Supplementary Figure 2). Thus, these 
so-called single fiber regions are very often multi-bundle 
regions. Truly single-fiber and single-bundle regions are 
rare, even with our limited selection of known bundles used 
in this study, and in our case, occur in the cingulum and 
specific gyral blades (Supplementary Figure 3). While some 
works show that biological differences between fiber 
populations are negligible in the response function 
formulism [52], there is some evidence that the response 
functions do vary across pathways [18, 53, 54], which may 
lead to variation in estimates of FODs and subsequent 
microstructure.  
 
Nomenclature 
Here, we have also introduced slightly different 
nomenclature than past literature. As described above a 
single-orientation voxel has traditionally been called a 
single-fiber voxel, whereas a multi-orientation voxel has 
been called crossing-fiber voxel. Clearly, a voxel with only 
one orientation is not limited to only containing the presence 
of fibers from a single bundle, hence the new description. 
Additionally, a fixel traditionally refers to a “specific fiber 
bundle within a specific voxel” [29, 55-57], yet we have 
shown again that a fixel (which is truly a segmented lobe, or 
orientation, from the FOD), is also not limited to a single 
specific fiber bundle, and in fact, likely contains axons from 
several bundles. We are not proposing to change the use and 
discussion of these elements throughout the field, but rather 
chose clarifying nomenclature to remove ambiguity in this 
specific study.  

Conclusion 
In this work, we investigated the prevalence of bottleneck 
regions, or where multiple white matter pathways of the 
brain converge and subsequently diverge. Our results 
indicate that most white matter contains multiple 
overlapping bundles, and individual orientations within a 
voxel are associated with multiple bundles. These findings 
have profound implications for tractography analysis which 
aims to map unknown connections across the brain, and 
strengthen the awareness of limitations or challenges facing 
these image processing techniques.  

Data Availability 

All resulting voxel-wise and fixel-wise bundle overlaps, for 
both TractSeg and Recobundles, is available upon request.  
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Appendix 

The bundles resulting from each bundle-segmentation 
pipeline are given as a list below. 
 
Recobundles: Arcuate Fasciculus left; Arcuate Fasciculus 
left; Frontal Aslant Tract left; Frontal Aslant Tract right; 
Cerebellum left; Cerebellum right; Corpus Callosum Major; 
Corpus Callosum Minor; Central Tegmental Tract left; 
Central Tegmental Tract right; Extreme Capsule left; 
Extreme Capsule right; Fronto-pontine tract left; Fronto-
pontine tract right; Inferior Fronto-occipital Fasciculus left; 
Inferior Fronto-occipital Fasciculus right; Inferior 
Longitudinal Fasciculus left; Inferior Longitudinal 
Fasciculus right; Middle Cerebellar Peduncle; Middle 
Longitudinal Fasciculus left; Middle Longitudinal 
Fasciculus right; Medial Longitudinal fasciculus left; Medial 
Longitudinal fasciculus right; Medial Lemniscus left; 
Medial Lemniscus right; Occipito Pontine Tract left; 
Occipito Pontine Tract right; Optic Radiation left; Optic 
Radiation right; Parieto Pontine Tract left; Parieto Pontine 
Tract right; Superior longitudinal fasciculus left; Superior 
longitudinal fasciculus right; Spinothalamic Tract left; 
Spinothalamic Tract right; Temporopontine Tract left; 
Temporopontine Tract right; Uncinate Fasciculus left; 
Uncinate Fasciculus right; Vermis. 
 
TractSeg: Arcuate fascicle left; Arcuate fascicle right; 
Anterior Thalamic Radiation left; Thalamic Radiation right; 
Commissure Anterior; Rostrum; Genu; Rostral body 
(Premotor); Anterior midbody (Primary Motor); Posterior 
midbody (Primary Somatosensory); Isthmus; Splenium; 
Corpus Callosum – all; Cingulum left; Cingulum right; 
Corticospinal tract left; Corticospinal tract right; Fronto-
pontine tract left; Fronto-pontine tract right; Fornix left; 
Fornix right; Inferior cerebellar peduncle left; Inferior 
cerebellar peduncle right; Inferior occipito-frontal fascicle 
left; Inferior occipito-frontal fascicle right; Inferior 
longitudinal fascicle left; Inferior longitudinal fascicle right; 
Middle cerebellar peduncle; Middle longitudinal fascicle 
left; Middle longitudinal fascicle right; Optic radiation left; 
Optic radiation right; Parieto-occipital pontine left; Parieto-
occipital pontine right; Superior cerebellar peduncle left; 
Superior cerebellar peduncle right; Superior longitudinal 
fascicle III left; Superior longitudinal fascicle III right; 
Superior longitudinal fascicle II left; Superior longitudinal 
fascicle II right; Superior longitudinal fascicle I left; 
Superior longitudinal fascicle I right;Striato-fronto-orbital 
left; Striato-fronto-orbital right; Striato-occipital left; 
Striato-occipital right; Striato-parietal left; Striato-parietal 
right; Striato-postcentral left; Striato-postcentral right; 
Striato-precentral left; Striato-precentral right; Striato-
prefrontal left; Striato-prefrontal right; Striato-premotor left; 
Striato-premotor right; Superior Thalamic Radiation left; 
Superior Thalamic Radiation right; Thalamo-occipital left; 
Thalamo-occipital right; Thalamo-parietal left; Thalamo-
parietal right; Thalamo-postcentral left; Thalamo-
postcentral right; Thalamo-precentral left; Thalamo-
precentral right; Thalamo-prefrontal left; Thalamo-

prefrontal right; Thalamo-premotor left; Thalamo-premotor 
right; Uncinate fascicle left; Uncinate fascicle right. 
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