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Abstract 24 

  25 

                                                                -M     D m   ,     w    ’  26 

premier Paleoproterozoic gold province (~10,000 metric ton gold endowment). Structural, 27 

metamorphic, and geochronological data suggest gold mineralisation occurred during three 28 
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episodes that span much of the Eoeburnean and Eburnean orogenic cycles. Eoeburnean 29 

orogenic and rare skarn-hosted gold deposits formed between ca. 2200 and 2135 Ma during 30 

repeated episodes of volcanism, plutonism, and shortening, which thickened the 31 

Paleoproterozoic crust. Early Eburnean orogenic and placer gold deposits formed between ca. 32 

2110 and 2095 Ma during inversion, metamorphism, and subsequent oblique shortening of 33 

intra-orogenic basins filled after ca. 2135 Ma. This episode of mineral           m       34 

w              -M     D m           w                    m -Man Domain at ca. 2095 35 

Ma. Late Eburnean orogenic and less common intrusion-related gold deposits formed 36 

between ca. 2095 and 2060 Ma during strike-slip to oblique-slip tecto    ,     -            37 

    -          m               w                  w                          -M     38 

D m                                                               wm                 -39 

Mossi Domain, whereas the Early Eburnean and Late Eburnean deposits include ca. 50–70% 40 

and 20–40%, respectively. Here, we highlight the favourable confluence of accretion-41 

collision tectonics, involving juvenile crust formation as well as protracted magmatic, 42 

metamorphic, and deformation histories that resulted in di                                  43 

             m                        -Mossi Domain.  44 

 45 

 46 

Keywords: West African Craton, Paleoproterozoic, gold, Eburnean Orogeny 47 

 48 

Introduction 49 

 50 

Tectonic and associated geodynamic processes ultimately control the character, timing, and 51 

distribution of ore-forming mineral systems (Robert et al. 2005; Kerrich et al. 2005; Bierlein 52 

et al. 2006; McCuaig and Hronsky 2014). Developing an understanding of    -   m    53 
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                                        mm                       m                          54 

                  m               m                                                        55 

                       -Mossi Domain of the southern part of the West African Craton 56 

(sWAC) have studied the age and geological setting of gold mineralisation within specific 57 

deposits and camps (Wassa, Perrouty et al. 2016; Siguiri, Lebrun et al. 2017; Obuasi, 58 

Blenkinsop et al. 1994; Allibone et al. 2002a; Fougerouse et al. 2017; Oliver et al. 2020; 59 

Pampe, Salvi et al. 2016a; Sadiola, Masurel et al. 2017a; Kiaka, Fontaine et al. 2017; Mana, 60 

Augustin et al. 2017; Loulo, Lawrence et al. 2013a; Allibone et al. 2020). These studies 61 

indicate that gold deposits formed di                            m                       62 

           w   w                -M     D m                              M             63 

                ,        -    m      ,                                 -Mossi Domain 64 

were deposited and emplaced dur            m                                          65 

   w     -  w                      M          m                                            66 

                                             m              M            . 2020), including 67 

the ca. 2200–213  M                                   –     M                 68 

                            -                 ,        D                       ,              , 69 

    m  m                            -Mossi Domain through space and time has improved 70 

our ability to explain the heterogeneous distribution of gold mineralisation in order to target 71 

prospec- tive areas more effectively (Groves and Bierlein 2007).  72 

In this review, we integrate published data acquired from deposit through craton scales to 73 

propose a revi           -                                           -Mossi Domain. We then 74 

use this interpretation to place the various gold deposits in a craton-wide temporal and spatial 75 

context. Lastly, we com- pare the geological and metallogenic history of the Pal              76 

            -Mossi Domain) with that of the Neoarchean Superior (Canada) and Yilgarn 77 

(Western Australia) cratons.  78 
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                                    -Mossi Domain  79 

The southern portion of the West African Craton (Fig. 1) comprises the Pal              80 

      -M     D m                        m -Man Domain (Bonhomme 1962; Boher et 81 

al. 1992; Feybesse et al. 2006). This paper focuses  82 

                              -Mossi Domain, which in- cludes elongate belts of volcanic, 83 

volcano-sediment   ,         m                                      m                  84 

           m               w                           -                  -Mossi Domain 85 

provides the geological con- text of gold mineralisation during Paleoproterozoic orogenic 86 

activity. Geochronological data discussed in this review is provided in Electronic 87 

Supplementary Data (ESM 1).  88 

 89 

Juvenile mafic volcanism (ca. 2350–2200 Ma)  90 

                                                                  -M     D m          m      91 

                                                                                           92 

       -    m                                               -Boromo belt, Baratoux et al. 93 

2011; Nangodi belt, Sylvester and Attoh 1992; Sefwi belt, Hirdes et al. 1993; Ashanti belt, 94 

Dampare et al. 2008; Mako belt, Dioh 1986; Diallo 1994; Dia et al. 1997; Abouchami et al. 95 

1990; Labou et al. 2020). The timing of the onset of t                  m   m            96 

           ,                                  -              –     M                     97 

      -Mossi Domain, irrespective of their proximity to identified Archean crustal material, 98 

suggest the existence of mafic crust b           M                               w             99 

                       M                            m              M                      100 

                  -Navrongo belt in NW Ghana (Siegfried et al. 2009); (ii) the 2295 ± 19 to 101 

2285 ± 11 Ma xenocrystic zircons from the 2253 ± 15 Ma Kel Enguef migmatitic orthogneiss 102 

in the Ouadalan-Gorouol belt in north- ern Burkina Faso (Tshibubudze et al. 2013); (iii) the 103 
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2312 ± 17 Ma inherited zircon cores from the 2154 ± 1 Ma Dabakala tonalite (Gasquet et al. 104 

                       ’                                            M                      105 

   m              M                                                       (Augustin et al. 106 

2017). Model ages obtained from Lu-Hf analyses on magmatic zircons (Parra-Avila et al. 107 

2016; Petersson et al. 2016) and Sm-Nd whole rock analyses (Abouchami et al. 1990; Boher 108 

et al. 1992; Doumbia et al. 1998) overlap with this range of xenocrystic zircon ages. Detrital 109 

zircon grains in younger sedimentary rocks gradually inc                                  110 

M , w        m       -                                           M          m      . 2019). 111 

The minimum age of tholeiitic volcanism is indirectly constrained by the transition to 112 

intermediate-felsic volcanism and the widespread onset of diorite-granodiorite-tonalite- 113 

trondhjemite plutonism at ca. 2200 Ma (De Kock et al. 2011; Parra-Avila et al. 2017). The 114 

geodynamic context of the juvenile tholeiitic oceanic crust remains uncertain, al- though 115 

plume-related oceanic plateau (Abouchami et al. 1990; Boher et al. 1992; Augustin and 116 

Gaboury 2017), island arc (Sylvester and Attoh 1992; Baratoux et al. 2011; Labou et al. 117 

2020), back-arc basin (Vidal and Alric 1994), and mid-ocean ridge (Pouclet et al. 2006; 118 

Labou et al. 2020) settings have been proposed. 119 

 120 

Arc constructional stage, Eoeburnean shortening, and crustal thickening (ca. 2200–2135 121 

Ma)  122 

Lithostratigraphic studies of various volcano-sedimentary belts in the Baoulé-Mossi domain 123 

indicate calc-alkaline supracrustal rock successions overlie the basal tholeiitic flows, locally 124 

with unconformable contacts (Davis et al. 2015). For example, the supracrustal rock 125 

succession in the Oumé-                               ’    re comprises basal mafic to 126 

intermediate lavas and tuffs, overlain by felsic lavas, lapilli tuffs, and ignimbrites intercalated 127 

with bimodal volcaniclastic, and minor epiclastic rocks, all interpreted to have been deposited 128 
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in an evolving volcanic arc (Mortimer 1990, 1992a, 1992b, 2016). The transition from mafic 129 

to intermediate volcanism in the Oumé-Féttekro belt occurred between ~2185 and 2160 Ma 130 

(Kouamélan 1996), which is consistent with ages reported for similar rock sequences 131 

elsewhere in the sWAC (e.g. northwestern Ghana, De Kock et al. 2009; Block et al. 2016; 132 

southwestern Ghana, Agyei-Duodu et al. 2009; Hirdes et al. 2007; McFarlane 2018; eastern 133 

Senegal, Dia et al. 1997; Hirdes and Davis 2002; Dioh et al. 2006; Gueye et al. 2007). 134 

Limited geochronology suggests the onset of diorite-granodiorite-tonalite-trondhjemite 135 

plutonism occurred as early as ~2250 Ma but became widespread across the sWAC after 136 

~2200 Ma, with peak in magma flux between ~2160 and 2150 Ma (Agyei-Duodu et al. 2009; 137 

De Kock et al. 2011; Tshibubudze et al. 2015; Petersson et al. 2016; Parra-Avila et al. 2017, 138 

2018, 2019). However, the age and chemistry of extensive granitoid terranes between the 139 

greenstone belts and sedimentary basins remain largely unknown. These calc-alkaline 140 

plutonic rocks are not TTGs as per the definition of Moyen and Martin (2012), but were 141 

generated by partial melting of a mafic source (Ganne et al. 2011). They intrude both the 142 

large granitoid domains and adjacent belts of volcano-sedimentary rocks throughout the 143 

Baoulé-Mossi domain. 144 

The onset of deformation in the Baoulé-Mossi domain followed the switch from basic 145 

volcanism, regional extension and/or oceanic rifting of uncertain origin to a demonstrably 146 

active convergent margin setting with associated intermediate to felsic volcanism. Structural 147 

evidence associated with this early deformation, such as layer-parallel foliation and thrusts, 148 

was recognized across the Goren (Hein 2010), Bouroum-Yalago (Vanin et al. 2004), 149 

Bélahouro (McCuaig et al. 2016), Ouadalan-Gorouol (Tshibubuze et al. 2015), and Fada 150 

N’    m   Naba et al. 2004; Vegas et al. 2008; Fontaine et al. 2017) belts in Burkina Faso, 151 

and the Bolé-Bulenga Domain in NW Ghana (Block et al. 2016). Although variability in the 152 

strain regime has been documented across distinct volcano-sedimentary belts and granitoid 153 
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domains, this early deformation is correlated with crustal thickening (clockwise P-T-t paths), 154 

high-grade metamorphism (amphibolite- to granulite-facies), and subsequent partial melting 155 

of the crust (Ganne et al. 2014; Block et al. 2015). The style of this early deformation reflects 156 

the dominance of horizontal bulk crustal shortening over more local accommodation 157 

mechanisms such as ascending magmas into the crust, and/or doming of partially molten 158 

crust (Baratoux et al. 2011; Block et al. 2016). The maximum age for the onset of 159 

deformation remains poorly constrained but occurred sometime after ~2200 Ma. The 160 

minimum age for crustal thickening and partial melting was interpreted from leucosome-161 

hosted monazite grains dated at 2137 ± 8 Ma in NW Ghana (Block et al. 2016). Peak 162 

metamorphism in the Mana region in western Burkina Faso has been similarly dated at 2135 163 

± 11 Ma and correlated with metamorphic zircon overgrowths on magmatic zircons from the 164 

2176 ± 8 Ma Siou granodiorite (U-Pb on zircon, Augustin et al. 2017). These results are also 165 

consistent with HP-LT blueschist-facies series metamorphism (P>10 kbar, T<450°C) of 166 

supracrustal rocks in the Tenkodogo      N’  urma domain in eastern Burkina Faso (Ganne 167 

et al. 2011). These early tectono-metamorphic events have been historically referred to as 168 

“        ” (Hein et al. 2010 in Burkina Faso)    “          ” (De Kock et al. 2011 in 169 

northwest Ghana). The Eoeburnean orogeny culminated with the collision between 170 

independent crustal blocks in modern-day northwest Ghana and southwest Burkina Faso at 171 

ca. 2135 Ma (Baratoux et al., 2011; Block et al., 2016). This collision was broadly coeval 172 

with the short-lived period of reworking of Archean crust between ca. 2140-2130 Ma 173 

documented in the Kibi belt and Suhum basin in southeastern Ghana (Leube et al., 1990; 174 

Taylor et al., 1992; Petersson et al., 2016, 2018). Some authors associate this phase of early 175 

convergence with N-S-directed bulk crustal shortening based on the rarely observed 176 

orientations of ENE-striking fabrics and structures in the field (Tshibubudze et al. 2015; 177 

Block et al. 2016). These same authors interpreted the later switch to WNW-ESE to NW-SE-178 
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directed bulk crustal shortening at ~2120 Ma to reflect a change in boundary conditions 179 

applied to the lithosphere, such as a change in the vergence of subduction and/or direction of 180 

plate convergence at the onset of the “        ” orogeny. Alternatively, the 181 

Paleoproterozoic tectonic evolution of the sWAC may reflect incremental/progressive NW-182 

SE-directed bulk crustal shortening (Milési et al. 1991; 1992; Eisenlohr and Hirdes 1992; 183 

Feybesse et al. 2006; Grenhölm et al. 2019), with these apparent structural components 184 

reflecting (i) heterogeneous strain distribution and/or (ii) the domainal development of 185 

structural fabrics and/or (iii) the rotation of early fabrics and structures during overprinting 186 

deformation.  187 

 188 

Deep water                                 -Mossi Domain (ca. 2135–2105 Ma)  189 

Thick sedimentary rock series dominated by flysch sequences were deposited in major 190 

basins, some of which were > 200 km across, between ~2135 and 2105 Ma. The deposition 191 

of voluminous flysch sequences (e.g. Kumasi in Ghana, Sunyani-Como           ’      , 192 

Bagoé in Mali, Siguiri in Guinea, Dialé-Daléma in Senegal, Fig. 2a), derived from the 193 

erosion of continental crust constrains the minimum age of uplift following the 194 

aforementioned period(s) of metamorphism and deformation in the Baoulé-Mossi domain. 195 

Major shear zones that commonly bound these basins probably initiated as extensional faults 196 

during this period. These fundamental structures persist throughout the following history of 197 

the craton outlined below, being reactivated several times, including during gold 198 

mineralization. Available geochronology data suggest diachronous development of these 199 

sedimentary basins, with an apparent younging in maximum depositional ages from SE to 200 

NW across the Baoulé-Mossi domain (Fig. 2a). This apparent diachroneity appears further 201 

supported by the general migration of a magmatic and tectono-metamorphic fronts across the 202 

sWAC from southeast to northwest with a ~5 to 15 myr “     ”,                      Hirdes 203 
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et al. (1996, 2002) and recently by Parra-Avila et al. (2017). The following description of the 204 

basin lithologies and their ages is largely a synthesis of data presented in Davis et al. (2015) 205 

and Grenhölm et al. (2019), which include comprehensive reviews of the ages of detrital 206 

zircon grains from clastic and volcano-sedimentary series in the Baoulé-Mossi domain. 207 

Flysch-type sedimentary sequences that include sandstones, siltstones, and argillites with 208 

minor volcaniclastic rocks, chemical sedimentary rocks and volcanic rocks, were deposited in 209 

large scale basins across the Baoulé-Mossi domain (Milési et al. 1989; Feybesse et al. 2006), 210 

and together with the older volcano-sedimentary belts define the first-order architecture of the 211 

craton. These thick deep-water rock sequences have a similar overall stratigraphy at the scale 212 

of the sWAC. In NW Ghana, the Maluwe series was deposited between ~2135 and 2125 Ma 213 

(De Kock et al. 2009, 2011). In SW Ghana, the Kumasi and Sunyani-Comoé series were 214 

deposited between ~2135 and 2110 Ma (Davis et al. 1994; Oberthür et al. 1998; Hirdes et al. 215 

2007; Vidal et al. 2009; Agyei-Duodu et al. 2009; Adadey et al. 2009; Grenhölm et al. 2019).  216 

In contrast, the Bagoé series in Mali (Liégois et al. 1991; Wane et al. 2018), the Siguiri series 217 

in Guinea (Lebrun et al. 2016), and Kofi-Dialé-Daléma series in the Kédougou-Kénieba inlier 218 

(Hein et al. 2015; Lambert-Smith et al. 2016; Masurel et al. 2017c; Allibone et al. 2019) were 219 

deposited between ~2110 and 2095, ~2115 and 2095 Ma, and ~2120 and 2095 Ma, 220 

respectively. The restricted presence of impure carbonate rocks in the Siguiri, Kofi, and 221 

Dialé-Daléma series (Milési et al. 1989; Ledru et al. 1991; Lebrun et al. 2016; Lambert-Smith 222 

et al. 2016) together with the similar maximum and minimum depositional ages suggest that 223 

these carbonate formations belong to the same regional-scale sedimentary basin and may 224 

reflect a hinterland-foreland setting relationship between eastern and western sWAC as first 225 

proposed by Grenhölm et al. (2019).  226 

N                                                             w                     m          227 

          -Mossi Domain. Some authors favour a syn-orogenic foreland basin setting 228 



10 

 

(Feybesse et al. 2006; Block et al. 2016), whereas others fa- vour back-a           -          229 

                            -              m                                              230 

     m                                                                                231 

        m      . 2019). The onset of basin formation in t                 -Mossi Domain 232 

broadly coincided with the cessation of the Eoeburnean orog- eny at ca. 2140 Ma. However, 233 

this temporal relationship does not support or preclude any of the alternative tectonic settings 234 

for basin formation.  235 

 236 

Shallow water                                                      -Mossi Domain (ca. 237 

2130–2120 Ma)  238 

Coarser grained clastic rock sequences than those present in the aforementioned large-scale 239 

basins were locally deposited in northwest Ghana between ca. 2130 and 2120 M          m 240 

et al. 2019). These rocks, referred to as the Bui (Kiessling et al. 1997) and Chako (Block et 241 

al. 2016) series, largely consist of sandstones and conglomerates, and have been interpreted 242 

as having been deposited predominantly in shallow water                               m    243 

                                                            w          -             m    244 

               w                                                        -Mossi Domain. The 245 

Chako se- ries was deposited on older Eoeburnean-aged rocks, whereas Zitsmann et al. 246 

(1997) indicated that the Bui series overlies the Maluwe deep water series with a conformable 247 

to paraconformable contact (Fig. 2a). The Bui and Chako series are interpreted as molasse, 248 

which was deposited in local depocentres following the collision between Eoeburnean- aged 249 

terranes of northwest Ghana and southwest Burkina Faso and the block of Archean material 250 

now confined to the lower crust of southeast Ghana and Togo at ca. 2135 Ma (De Kock et al. 251 

2011; Block et al. 2016).  252 

 253 
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 254 

Deformation and metamorphism of the deep water sedimentary series during the onset of 255 

the Eburnean orogeny (ca. 2110–2095 Ma)  256 

D    w         m                                                   -Mossi Domain were 257 

deformed and metamorphosed under lower to upper greenschist-facies conditions between ca. 258 

2110 and 2095 Ma, during the early stages of the Eburnean orogeny (Perrouty et al. 2012; 259 

Lebrun et al. 2016; Oliver et al. 2020; Allibone et al. 2020). Deformed rocks of the Kumasi 260 

series were intruded by calc-alkaline biotite-gran- ites between ca. 2110 and 2105 Ma, and 261 

these intrusive rocks were affected by Eburnean deformation and metamorphism indicating 262 

both occurred after ca. 2110–2105 Ma (Hirdes et al. 1992, 1993; Hirdes and Nunoo 1994  263 

                                                               D    m                     264 

                      -               w          - ed by calc-alkaline diorite and quartz-265 

feldspar-porphyry at ca. 2105 Ma (Hein et al. 2015; Masurel et al. 2017                     266 

                                       M  w         m       m                      w    267 

        m                                            m                                  268 

M            . 2020).  269 

Multistage shortening and deformation of these sedi- mentary series between ca. 2110 and 270 

2095 Ma resulted in the development of 1-–10-km-scale isoclinal folds, associ- ated axial-271 

planar cleavage, major intra-basin reverse shear zones, and reactivation of the basin margin 272 

faults as major reverse shear zones (Hirdes et al. 1992; Allibone et al. 2002a, 2002b; Oliver et 273 

al. 2020). Limited mapping indi- cates that the deep water series now comprise kilometre- 274 

scale isoclinally folded slices imbricated along intra-basin faults that likely evolved from 275 

major isoclinal folds as shortening progressed. No intact, complete stratigraphic section has 276 

been recognised to date, precluding constraints on the original thickness of any deep water 277 

series. These folds and the major intra-basin and basin margin fa                       278 
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          , w                N -    NN -                                                 279 

           m                 -Mossi Domain, obvious in geological maps of the craton 280 

(Fig. 1). Syn-metamorphic quartz-car- bonate veining occurred throughout the history of 281 

basin inversion (Fougerouse et al. 2017; Oliver et al. 2020).  282 

                     m,   m   ,            -  m     -                                      283 

      -Mossi Domain (Fig. 1) may have coincided with an inferred ocean      -              284 

   w                m     -                                    –              ’          285 

         M , w                             w         w          w    m                w  286 

      M                                              ,        ,     ,     D    -D   m         287 

            w                      -M     D m                                         -288 

M                     m -M     m                 M                                      289 

                               M riaud et al. 2020). Field structural relationships imply 290 

docking of the Archean and Paleoproterozoic domains was associated with region-wide 291 

dextral reactivation of major shear zones such as the Sassandra fault, Banifing shear zone, 292 

and Seikorole shear zon          , w                                                -  293 

                     D    m                  w                        w                      -294 

Mossi Domain may therefore have been a prelude to docking of the Paleoproterozoic and 295 

Archean domains.  296 

 297 

                                                           -Mossi Domain (ca. 2110–2095 298 

Ma)  299 

      w w                      m              w                                           300 

                 -Mossi Domain between ca. 2110 and 2095 Ma (Fig. 2a). Sedimentary 301 

rocks of these series largely comprise con- glomerates and cross-stratified to planar-bedded 302 

sand- stones, with subordinate siltstones and rhyolitic volcanic rocks also occurring locally in 303 
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some series. Conglomerates are typically polym                                 ,            304 

                  ,     ,     m   - m             ,                               M             305 

                   M      1994; Parra-Avila et al. 2015; Lebrun et al. 2016). The Tarkwa 306 

(Sestini 1973; Pigois e           ,       -          m                                      , 307 

                                                 -                                        w     308 

    m                                       D                         m      . 2019).     309 

    w                     w                w                      M   mm              310 

                           D                             N                               311 

              . 1998; Adadey et al. 2009; Perrouty et al. 2012). Deposition of the Tarkwa 312 

series was coeval with intrusion of ca. 2100 Ma gabbro sills into the clastic sedimentary rocks 313 

(Adadey et al. 2009; Perrouty et al. 2012; White et al. 2015). These shallow water to 314 

subaerial series have been interpreted as molasse deposited in short-lived basins be- cause 315 

their deposition ages overlap with the crystallisation ages of crosscutting syn-kinematic 316 

granites (Tunks et al. 2004; Goldfarb et al. 2017). Their internal structural char- acter implies 317 

they were deposited during increment   N -   -                                   w         318 

   m   -                               M                                 . 1998; Feybesse et 319 

al. 2006; Baratoux et al. 2011; Masurel et al. 2017c; Wane et al. 2018).  320 

 321 

                             -                               -Mossi Domains (ca. 322 

2095 Ma)  323 

    -      -                -                                 –      M                      324 

                 m -Man Domain to deformed and metamorphosed Paleoproterozoic 325 

sedimentary rocks of the Siguri Series (Lebrun et al. 2016; Eglinger et al. 2017). These 326 

relationships indicate docking of the Archean and Paleoproterozoic rocks occurred at ca. 327 

2095 ± 5–10 Ma. Docking of the two domains appears to have coincided with dextral 328 
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reactivation of t                           ,         ,                                      329 

    w                          -Mossi Domain (Fig. 1). Associated deformation may also 330 

have resulted in the oroclinal bending of the Siguri Series and Seikorole shear zone, such      331 

                                              w            -w                    m             332 

    m - Man Domain, whereas the general structural grain of rocks to the north and east 333 

typically strikes north to NNE (Fig. 1). The direction of converg        w         w  334 

  m       - m            ,                              -                               m      335 

        m -M   D m                         -Mossi Domain from either the southwest 336 

or west, in- denting the southwest margin of the Baoul -Mossi Domain.  337 

 338 

Late Eburnean strike-slip to oblique-slip tectonics and crustal reworking following arc-339 

continent collision (ca. 2095–2060 Ma)  340 

 w     m                                       -                   -             m    341 

                  -                                                        w                342 

          -M     D m       w                      M                      M   si et al. 343 

1992; Allibone et al. 2002a, 2002b; McFarlane et al. 2019b; Oliver et al. 2020). Strain during 344 

this period was largely localised along major shear zones that form geological domain 345 

boundaries with little mod- ification to the pre-existing struct                                 346 

   m   ,                   m                        N -    NN -                         347 

                    M                                                       NN -         348 

                m                 M                                                          349 

                       ,      m          w     m     m                    M  M        350 

              -                                   -              , the switch from bulk 351 

orogen- perpendicular E-W shorte                              -                    M , 352 

     m            w    m  m    m            m       (Masurel et al. 2017b, 2017c; 353 
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Allibone et al. 2020). In SW Ghana, segments of the Ashanti- Konongo-Prestea, Bibiani, and 354 

Kenyase-Yamfo shear zones were reactivated as sinistral-reverse shear zones between ca. 355 

2105 and 2085 Ma (Allibone et al. 2002a, 2002b, 2004; Feybesse et al. 2006; Oliver et al. 356 

2020).                  ’      ,                   m              N’Z -Brobo shear zone 357 

occurred after ca. 2100 Ma (Mortimer 1990; Leake 1992). Relatively minor, but 358 

economically significant, N- to NNE-striking primary strike-slip faults that refract across the 359 

earlier structural grain also developed during this period (Allibone et al. 2002a). 360 

Amphibolite-              -             w                                    m  -        361 

           -                                             w                   w                  362 

         m               -             -  m            2073 ± 4 Ma (McFarlane et al  363 

      ,                                                                                  w      364 

                 w             -Mossi Domain during this period. Granulite-facies mineral 365 

assemblages developed within ductile shear zones along the northern     m -M   D m    366 

m                  M                                                          ,      m      367 

         w      m                                         -              -                   368 

                -                         -              , M                        w       369 

                  ’      , M    m                         m     1996).  370 

       -                                                    m                         m -371 

Man Domain coincided with the emplacement of vo  m          -      -            372 

                        w                      M                M      1994; Egal et al. 373 

2002; Eglinger et al. 2017, Fig. 2b). These magmas formed (i) by extraction of juvenile melt 374 

from a depleted mantle source that had b    m     m                        ,             375 

  w             -                                                            m w           376 

       w                             m    -     m             m  N                   377 

volcanic rocks) along the nor  w    m                 m -M   D m                M  378 
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                        M                                                               379 

M            . 2020). This late episode of volcanism is referred to as the Bandamian Cycle 380 

(Hirdes et al. 199   M                                                             ,            381 

                      -M -         m                         m                        -382 

               (Allibone et al. 2020). Eruption of juvenile mafic-ultramafic volcanic rocks 383 

through crust thickened during the earlier docking of the Archean and Paleoproterozoic 384 

domains is inferred to reflect upwelling of the asthenosphere and associated extension caused 385 

by litho- spheric delamination or slab breakoff (Eglinger et al. 2017; M            . 2020).  386 

            m          -      -                   m               w     m          w    387 

                  M         m                        w             - Mossi Domain, but 388 

such rocks are absent from northern and eastern parts of the domain. These rocks intrude 389 

sedimentary  390 

                    -  m                  w                    ,          M      391 

  w     ,          M ,                    ,                              -               -392 

    -D                             ’             ,          M , D  m                , 393 

m                M       w                                                 -             394 

    ,                        ,         m                             M    , 2089 ± 12 Ma, 395 

Parra- Avila et al. 2016 ,               m ,          M ,                      ,     D    -396 

D   m         (Saraya, 2079 ± 2 Ma, Hirdes and Davis 2002) in southern Mali and Senegal 397 

respec- tively. Together, these high-K calc-alkaline and peraluminous granites form a major 398 

magmati           w                       w                          -M     D m    w    399 

    m                    m                                                   w        400 

            m -M                              -Mossi domains in Guinea and 401 

throughout the Paleoproterozoic rocks of central-southern Mali.  402 
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Peraluminous two-mica leucogranites formed by either partial melting of metasedimentary 403 

source rocks (Egal et al. 2002), and/or older calc-alkaline granites (Tapsoba et al. 2013), with 404 

both scenarios i              w                      -M     D m                        405 

                  -       -                                            w           406 

                 m                                     -         w             -Mossi 407 

Domain, well b                   w                    m -Man Domain. Extension and 408 

unroofing of deep crustal rocks in the Sefwi belt at ca. 2075 Ma (McFarlane et al. 2019a) 409 

may also have been another expression of this asthenospheric upwelling and associated 410 

lithospheric delamination.  411 

 412 

 413 

     -    -                                         -Mossi Domain  414 

Gold deposits discussed in this section are divided into Eoeburnean, Early Eburnean, and 415 

Late Eburnean groups, which formed between ca. 2200 and 2135 Ma, ca. 2110 and      M , 416 

                      M ,                                                                      417 

               -      , m   m      ,     m  m                                           -418 

Mossi Domain during each of these three periods. Goldfarb et a                    419 

  m             -    w                 wm                 -M     D m    w       420 

             . (2020) review the character, grade, and tonnage for gold deposits discussed 421 

hereafter. Gold de-                       “        ”     “     sion-       ”       m    422 

features in common with those discussed by Groves et al. (1998) and Goldfarb et al. (2001, 423 

2005), Sillitoe and Thompson (1998)m and Lang and Baker (2001), respectively.  424 

 425 

Eoeburnean gold deposits (ca. 2200–2135 Ma)  426 
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The structural        ,                            w                                 ,     427 

  m          m                     -     m   m                   m                            428 

                                           -Mossi Domain formed during the Eoeburnean 429 

                                                                         wm           430 

      - M     D m                  . 2020).  431 

At Kiaka, ~4.5 Moz of gold are hosted by amphibolite- facies biotite-kyanite-garnet-432 

amphibole-bearing schists within the Tenkodogo-     N’    m  D m                433 

Burkina Faso (Fontaine et al. 2017; Gauriau et al. 2020). The early disseminated gold event at 434 

Kiaka occurred during sinistral- reverse displacement along the NNE-striking Markoye shear 435 

zone at 2157 ± 24 Ma (Fontaine et al. 2017), broadly coeval with region-wide lower 436 

amphibolite-facies metamorphism and intrusion of a syn-kinematic diorite at 2140 ± 7 Ma are 437 

from Markwitz et al. (2016). The geology legend is identical to that used in Fig. 1 (Fontaine 438 

et al. 2017). An early orogenic gold event within the ~8 Moz Mana gold district in western 439 

Burkina Faso oc- curred contemporaneously with intrusion of the syn-kinematic 2172 ± 6 Ma 440 

Wona-Kona and 2176 ± 8 Ma Siou plutons during E-W-directed Eoeburnean shortening and 441 

regional up- per greenschist-facies metamorphism (Augustin et al. 2017). The ~0.75 Moz 442 

Julie gold deposit in NW Ghana is focussed along E-W-striking structures that developed 443 

between ca. 2145 and 2130 Ma (Amponsah et al. 2016; Salvi et al. 2016b), broadly coeval 444 

with regional amphibolite-facies metamorphism at 2137 ± 8 Ma (Block et al. 2016). Early 445 

orogenic gold mineralisation at the ~10 Moz Wassa deposit in SW Ghana (Perrouty et al. 446 

2015) occurred after emplace- ment of the host porphyry at 2191 ± 6 Ma but before emplace- 447 

ment of the crosscutting Benso granodiorite at 2157 ± 5 Ma (Parra-Avila et al. 2015). Pyrite 448 

grains aligned and stretched within the early fabric at Wassa host gold particles (Perrouty et 449 

al. 2016) crystallised at 2164 ± 14 Ma (Le Mignot et al. 2017b). The geometry of the Wassa 450 

deposit is controlled by a kilometre-scale NE-striking upright synform (Fig. 4a, b), which 451 
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affected rocks of both the Sefwi volcanic series and the Tarkwa molasses series. The S1 452 

foliation and co-planar gold-bearing quartz veins, which host most of the gold re- source, are 453 

both folded by the Wassa synfom (Perrouty et al. 2016).  454 

Gold skarns also formed locally during the latter part of the Eoeburnean period. The ~3.8 455 

Moz Tongon gold deposit (Fig. 3) is confined to a corrid                       -        456 

                                -         N-    NN -                                            457 

                  ’      . The Tongon deposit formed between 2139 ± 21 Ma and 2128 ± 21 458 

Ma (Lawrence et al. 2017), before emplacement of the post-mineralisation Tongon 459 

granodiorite at 2139 ± 21 Ma (Lawrence et al. 2017). Despite these imprecise dates, cross- 460 

cutting relationships have been used to suggest that the ore- forming process occurred during 461 

the culmination of Eoeburnean deformation contemporaneously with peak meta- morphism in 462 

northwest Ghana and western Burkina Faso at ca. 2140 Ma (Lawrence et al. 2017).  463 

Early Eburnean gold deposits (ca. 2110–2095 Ma)  464 

Both orogenic and paleoplacer deposits formed during the Early Eburn          ,          465 

                                wm                 -M     D m                           466 

                  w   -    w                  m                      m                   467 

                          -Mossi Domain (Fig. 3). Early          m                 468 

  m                             m           -                                              469 

    M                                                         . 1994; Allibone et al. 2002a; 470 

Fougerouse et al. 2017; Oliver et al. 2020),             M         m     -       471 

              -                   w                         M      D m   ,     M      472 

    w ,        M              m ,         w                                             473 

    wm                 -Mossi Domain (Sesti         M           . 1991; Eisenlohr and 474 

Hirdes 1992; Hirdes and Nunoo 1994; Pigois et al. 2003; Tunks et al. 2004).  475 
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Gold-bearing quartz pebble conglomerates from the Banket series at Tarkwa (Main and 476 

Western Reefs, Fig. 5a) and lower grade reefs at Damang (Fig. 5b) were deposited in a 477 

fluvial/lacustrine setting in a larger foreland basin developed on Eoeburnean Ashanti belt 478 

basement (Hirdes and Nunoo 1994; White 2011). The ages of detrital zircons in the Banket 479 

series and crosscutting intrusions indica                     w                w             480 

         M   D                             N                         . 1998; Pigois et al. 481 

2003; Perrouty et al. 2012), broadly coeval with peak Eburnean deformation and plutonism 482 

within the under- lying                             m                                  483 

D                 -              m              w  w                       w    484 

                                    m                        m                         . 485 

(2020) have suggested that both orogenic gold deposits which formed during the early stages 486 

of inversion of the Kumasi series as well as older Eoeburnean gold deposits such as Wassa 487 

could have contributed gold to the Tarkwa paleoplacer deposits. This interpretation remains 488 

controversial as δ13CCO2 values of high-density CO2-rich, water-poor inclu- sions hosted in 489 

quartz pebbles from the paleoplacer deposits at Tarkwa differ considerably from the 490 

δ13CCO2 values of similar high-density CO2-rich inclusions in vein quartz from the       491 

                 m     m                           . 2015).  492 

At Obuasi and other similar deposits haloes of auriferous arsenopyrite up to 40 m wide 493 

developed around mineralised reverse shear zones and along isoclinal fold hinges (Fig. 6a, b). 494 

The ea                                      -                             m                495 

    m                         m                                M , w    m              496 

                      M                 . 1998), synchronous with region-wide green      -497 

       m   - m      m             M                 . 1998). These age constraints indicate 498 

that regional greenschist-facies metamor- phism of the Kumasi series was coeval with gold 499 

mineralisation at ca. 2095 Ma (Fougerouse et al. 2017; Oliver et al. 2020). Ongoing 500 
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shortening of the Kumasi series, or subsequent transpression in the final stages of basin inver- 501 

sion, led to the formation of other gold deposits elsewhere along both margins of the Kumasi 502 

basin (~17 Moz Prestea- Bogoso gold deposit, Appiah 1991; Allibone et al. 2002b), and shear 503 

zones within the Kumasi basin (~0.5 Moz Pampe gold deposit, Salvi et al. 2016a). Deposit-504 

scale structural rela- tionships at the ~7.1 Moz Edikan (Tourigny et al. 2018), the ~8.4 Moz 505 

Akyem (Newmont annual report 2017), the ~4.9 Moz Chirano (Allibone et al. 2004), and the 506 

~6.8 Moz Obotan-Esasse (Asanko Mining annual report 2018) gold de- posits (Fig. 3) 507 

suggest a similar timing of mineralisation to that at Obuasi.  508 

Several orogenic gold deposits in Burkina Faso and N                m             m       509 

                 m                          M   M                     w                    510 

w                  w                      m              NN -             -                511 

                                   at 2090 ± 8 Ma (Augustin et al. 2017). Fabric-mineral-vein 512 

crosscutting relationships and the age of the host rock sequence at the ~1.9 Moz Inata deposit 513 

in the Bouroum belt of northern Burkina Faso indicate that gold deposition occurred after ca. 514 

2120 Ma (McCuaig et al. 2016), whereas Re-Os dating of pyrite implies gold mineralisation 515 

occurred at 2090 ± 29 Ma (Fougerouse 2011). The ~6.5 Moz Essakane gold deposit in 516 

northern Burkina Faso formed during sinistral transpressional reactiva- tion of the Markoye 517 

shear zone during the onset of the Eburnean orogeny (Tshibubudze and Hein 2016). The 518 

second mineralising event at Kiaka occurred during retrogression from lower amphibolite-519 

facies to upper greenschist-facies conditions coeval with the reactivation of the Markoye 520 

shear between ca. 2125 and 2090 Ma, whose timing is bracketed by the emplacement of pre- 521 

and post-mineralisation granites (Castaing et al. 2003; Fontaine et al. 2017). The age of the 522 

orogenic gold overprint on the Gaoua Eoeburnean porphyry- Cu system is not known but 523 

may have occurred between ca. 2100 and 2090 Ma, during the waning stages of the Eburnean 524 

tectono-thermal event in Burkina Faso (Le Mignot et al. 2017a). The ~0.1 Moz Bepkong gold 525 
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deposit in the Wa- Lawra belt of NW Ghana is associated with structures that developed 526 

during sinistral displacement along the first-order Jirapa shear zone at ca. 2100 Ma implying 527 

it also formed during the Early Eburnean period (Amponsah et al. 2016; Block et al. 2016).  528 

Orogenic gold mineralisation, comparable                  w                                    529 

      -Mossi Domain, is much rarer in the western part. Part of the gold resource at the 530 

~13.5 Moz Siguiri deposit in Guinea may have developed during the Early Eburnean period, 531 

albeit close to its en ,            w        m   m                    -                           532 

M         w                         -Mossi Domain (Lebrun et al. 2017). The maximum age 533 

for gold mineralisation in the Siguiri area is provided by the youngest detrital zircon age 534 

population from the Fatoya sedimentary host rocks, which is 2113 ± 5 Ma (Lebrun et al. 535 

2016).  536 

Other less common styles of gold mineralisation developed during Early Eburnean time. 537 

These include the early formed intrusion-related Au-(Sb, Bi, Te) mineralisation at the ~7.5 538 

Moz Morila gold deposit within the amphibolite-facies aure- ole of a tonalite-granodiorite-539 

leucogranite intrusive complex emplaced between 2098 ± 4 Ma and 2091 ± 4 Ma (McFarlane 540 

et al. 2011). The association between early mineralisation at Morila, Te-Bi minerals, and 541 

leucogranite veinlets imply mineralisation was directly associated with granite magmatism.  542 

 543 

Late Eburnean gold deposits (ca. 2095–2060 Ma)  544 

                               m      w                      M                        545 

               wm                 -M     D m                  . 2020). Gold 546 

mineralisation during the late Eburnean was broadly coeval with emplacement of voluminous 547 

hi  -                                                                        m    -      m     548 

                               -M     –     m -M   m       M            . 2020). 549 

Although many gold deposits that formed during this period are comparable with          550 
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             ,   m                                  m            m                          551 

    -                                    m    - m                             -           552 

                        -               w          m          ion in the ~17 Moz Loulo 553 

district and the ~12 Moz Sadiola district occurred between ca. 2090 and 2060 Ma coe- val 554 

with emplacement of nearby high-K granites, but after basin inversion and metamorphism of 555 

the host Kofi series (Masurel et al. 2017a; Allibone                                    ,      556 

m              w                       w        -           -        -         m            557 

                 m       w                  –     M      m                              558 

series sedimentary rocks (Schwartz and Melcher 2004; Delor et al. 2010; Lawrence et al. 559 

2013a, 2013b; Masurel et al. 2017c; Allibone et al. 2020). Stable isotope (B, C, O) data, 560 

however, imply that hydrothermal minerals within these gold deposits were largely derived 561 

from metamorphosed calcareous, Na-B-rich evaporitic, and siliciclastic sedimentary rocks 562 

within the Kofi series rather than from the skarns or associated granites (Lambert-Smith et al. 563 

2016, 2020). Only the gold prospects within the imme- diate vicinity of the dyke swarm 564 

alo               m                 m                                                        565 

the direct input of magmatic fluid during mineralisation (Lambert-Smith et al. 2020).  566 

                  ’      , the ~2.5 Moz Bonikro gold de- posit (Ouatarra 2015) includes 567 

early intrusion-related gold mineralisation (Fig. 7b) formed at 2086 ± 4 Ma (Masurel et al. 568 

2019) and later orogenic gold mineralisation formed at 2074 ± 16 Ma (Re-Os on 569 

molybdenite, Masurel et al. 2019). At Morila, the Early Eburnean intrusion-related gold (Bi, 570 

Sb, Te) mineralisation was overprinted by orogenic gold (As) mineralisation at 2074 ± 14 Ma 571 

(McFarlane et al. 2011). At both Morila and Bonikro, the later orogenic gold event ac- counts 572 

for the bulk of the gold resource.  573 

Orogenic gold mineralisation that occurred during the later part of the Eburnean orogeny (ca. 574 

2095–2060 Ma) formed along retrograde P-T-t paths, and was associated with either local 575 
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transpression, wrench, or transtensional deformation (Goldfarb et al. 2017). These relati     576 

m    ,  m   -         m             w-            m                      -              m    577 

                   -Mossi Domain, and likely cannot be correlated across the whole region. 578 

Orogenic gold deposits that formed during this period may include the later mineralising 579 

event at the Obuasi deposit (Fougerouse et al. 2017; Oliver et al. 2020), gold mineralisation at 580 

the major Ahafo deposit in western-most Ghana (Baah-Danso 2011; Masurel et al. 2021), the 581 

Siguiri deposit in Guinea (Lebrun et al. 2017), and both mineralising events at the Kalana de- 582 

posit in southern Mali (Salvi et al. 2016c).  583 

The second mineralising event at the Obuasi deposit in- cludes some particularly high-grade 584 

parts of the resource (Fig. 8a) that formed during late transpressional reactivation of segments 585 

of the Obuasi and Main Reef shear zones, both older contractional structures active during 586 

earlier basin inversion. New mineralised faults also formed at this time, including the Ashanti 587 

Fissure at the northern end of the deposit and several minor faults in various prospects south 588 

of the deposit (Allibone et al. 2002a; Fougerouse et al. 2017; Oliver et al. 2020). It remains 589 

unclear whether this gold was remobilised from rocks mineralised during the Early Eburnean 590 

phase, or introduced during late Eburnean transpressional deformation (Fougerouse et al. 591 

2016). Some mineralised lodes in other deposits along the south- east margin of the Kumasi 592 

basin, such as the ~17 Moz Bogoso-Prestea gold system (Fig. 8b), are developed in similar 593 

structural settings to the later mineralised rocks at Obuasi (Allibone et al. 2002b). Gold 594 

mineralisation in the ~10 Moz Ahafo district formed during transpressional sinistral-reverse 595 

reactivation of the Kenyase-Yamfo fault system (Baah-Danso 2011; McFarlane               596 

          m             -      m   m                         - w                   w          597 

         M   M                            m     m                M   w -m                598 

                    -  m         (Hirdes et al. 2007; Jessell et al. 2012). Gold 599 

mineralisation in the ~13.5 Moz Siguiri district in Guinea occurred during transpression and 600 
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transient transtension after region-wide compressional de- formation at ~2095 Ma (Lebrun et 601 

al. 2017). At the ~2 Moz Kalana deposit further east of the Siguiri basin, gently dip- ping 602 

auriferous quartz veins localised along thrust faults and near vertical auriferous quartz veins 603 

in extensional fractures crosscut the regional penetrative schistosity and were interpreted to 604 

have both formed dur                 - -                                                  605 

            -                       m                               -                     606 

      -Mossi Domain, but have also been described at the Obotan deposit in the Kumasi 607 

basin and the Damang deposit in the Ashanti belt (Tunks et al. 2004). The orogenic gold 608 

event that overprinted paleoplacer gold at Damang is hosted within a contractional sub-609 

horizontal fault-fracture mesh and associated quartz vein arrays (Tunks et al. 2004; White 610 

2011; White et al. 2015, Fig. 9a, b), whose associated alteration haloes include hydro- 611 

thermal xenotime dated at 2063 ± 9 Ma (Pigois et al. 2003). Late gold mineralisation at 612 

Wassa, dated at 2055 ± 18 Ma (Re-Os on pyrite, Le Mignot et al. 2017b), is hosted by quartz 613 

veins that crosscut the earlier foliation which hosts auriferous pyrite (Perrouty et al. 2015).  614 

         , w     m     -                            M                 . 1998) suggest gold-615 

related hydrothermal ac- tivity had ceased by this time, whereas the younger ages ob- tained 616 

from hydrothermal minerals at the Damang and Wassa deposits indicate hydrothermal 617 

activity continued for a further 10 to 20 myr in these locations. Such differences in timing 618 

reflect the progressive waning of orogenic                         M                             619 

      -M     D m                       M         w                  -                   620 

       m                                   m   ,           ,                            -Mossi 621 

Domain had form               M , w                          m                     M  622 

                  -                                                        m                 -623 

Mossi Domain such  624 

as Orisian (ca. 2000 Ma) deformation and plutonism in parts of northeast South America.  625 



26 

 

 626 

 627 

 628 

Discussion 629 

 630 

Geodynamic context of gold mineralisation  631 

 632 

         -                          -Mossi Domain hosts sev- eral minor porphyry-Cu and 633 

VMS base metal occurrences as well as the much more widespread gold deposits described 634 

above (Fig. 3). The distribution and age of these porphyry- Cu and VMS occurrences provide 635 

additional clues as to the tectonic context of the formation of nearby gold deposits of broadly 636 

the same age. In Burkina Faso, porphyry-Cu mineralisation at Gaoua was b              w    637 

 M  m                       ,      ,        ,                                              638 

        M   Z -                              w                         M                639 

    M           . 2003) and a crosscutting quartz-dior     m                   M      w     640 

    M               M   Z -  -   -    m                                                  641 

                   M                   2004), whereas gold-rich VMS mineralisation at 642 

Poura remains undated but is inferred t          m          m       m             -      M  643 

                                   -   m                                             M  644 

    M                   ,        w                               m     m                645 

          M       D    m ra hornblende-diorite and 2172 ± 9 Ma post-mineralisation 646 

Gongondy gabbro (Brownscombe 2009). The ages and spatial distribution of the Gaoua 647 

porphyry-Cu and Perkoa-style VMS occurrences suggest western Burkina Faso was located 648 

in an arc/back-arc setting (Seedorff et al. 2005; Franklin et al. 2005) throughout much of 649 

Eoeburnean time between ca. 2180 and 2140 Ma (Figs. 10a and 11).  650 
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Eoeburnean orogenic gold mineralisations such as Kiaka (I), Julie, and Wassa (I) are 651 

interpreted to have formed during the inver                          -                        652 

                                                m                    m               653 

     w                                                   , w                                 654 

                          -Mossi Domain; (2) the higher metamorphic grade and lack of 655 

preservation of prospective upper to mid- crustal rocks in parts of northwest Ghana and 656 

eastern Burkina Faso; and (3) reworking of dehydrated, un-prospective felsic Archean 657 

material by calc-alkali                   -                                           658 

                        -    m                                                 m         659 

             -Mossi Domain at ca. 2140 Ma (De Kock et al. 2011; Petersson et al. 2016). 660 

This Archean ba  m   , w                    m         m -Man nucleus, is inferred to occur 661 

in southeast Ghana and Togo based on xenocrystic zircon cores (De Kock et al. 2011), Lu-Hf 662 

data (Petersson et al. 2016, 2018), and the presence of Archean detrital zircons in Ebu      663 

    m                                         m      . 2019).  664 

Giant paleoplacer gold deposits are generally considered to form in retro-arc foreland basins, 665 

inboard of the accretionary system where detrital gold is transported, deposited, and reworked 666 

(Solomon and Groves 1994). Gold-bearing con- glomerates were deposited within the 667 

Tarkwa basin as it was deformed within an actively accreting margin (Figs. 10b and  668 

     M           . 1991; Hirdes and Nunoo 1994; Pigois et al. 2003; White et al. 2011, Le 669 

Mignot et al. 2017b). Eoeburnean gold deposits such as those in the Ashanti belt in southwest 670 

Ghana and the Ouadalan-                      N’    m  D m                         671 

been suggested as the sources of gold in the Tarkwa paleoplacer deposit (Kl m               672 

                                                 . (2015). However, given the protracted 673 

nature of metamorphism, gold mineralisation, and associated deformation along the eastern 674 

margin of the Kumasi basin (Eisenlohr and Hirdes 1992; Foug                                  675 
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     ,                                       w      m       m                      m    676 

              ,       ,       -       m                                              677 

    w                                                                      m           w 678 

w                                                          - M     D m         w ,         679 

                            m       ,                           -      ,               . 1996; 680 

Baratoux et al. 2011) imp                m             m                                681 

      -Mossi Domain at ca. 2110 Ma (Ledru et al. 1994; Feybesse et al. 2006).  682 

The relative proportions of orogenic gold deposits formed during the early and late Eburnean 683 

phases is uncertain because of the following: (1) the age of some major deposits remains 684 

unknown (Syama); (2) the relative proportions of gold precip- itated during different events 685 

in multistage deposits is poorly defined (Obuasi); and (3) the amount of gold eroded and 686 

rewor                                                  w                             M   687 

           m                    w                        M                                 688 

                                                      w             -Mossi Domai  689 

w                         -                                                                  690 

      -M     D m     M           . 1992; Le Mignot et al. 2017b; Goldfarb et al. 2017 and 691 

references therein). Many deposits either formed (Loulo, Sadiola) or were upgraded (Obuasi) 692 

during late Eburnean tectono-thermal activity be- tween ca. 2095 and 2060 Ma, soon after the 693 

change from orogen-perpendicular shortening to prolonged, diachronous, multistage 694 

transpressional to transtentional tectonics at ca. 2090 Ma                         –    695 

     w                                                 m N -      NN -      -        696 

                                                w                                               697 

m                 - Mossi Domain resulted in major structures being unfavourably oriented 698 

for dip-slip displacement. Stress field switches such as this have been proposed as a 699 
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mechanism that promoted permeability and fluid flow, thus driving the forma- tion of larger 700 

gold deposits (Ledru et al. 1991  M           . 1992; Lebrun et al. 2017).  701 

                  m                                                                        702 

                    w                    m -M   D m                               - 703 

Mossi Domain has been cited as a                               -                              704 

                            M ,            w                                      -             705 

m                                  w                          - Mossi Domain (Eglinger et al. 706 

2017). Alternatively, late Eburnean granitic plutonism and orogenic gold mineralisation could 707 

also reflect the strike-slip reactivation of trans- lithospheric faults and lithostratigraphic 708 

boundaries during lateral escape of the crust, which induced decompression melting and  709 

      m            m                 w                        M                            m 710 

                     m                  -                                   -Mossi Domain 711 

ap- pears to span much of Eburnean orogeny from ca. 2098 Ma (Morila) through to ca. 2074 712 

Ma (Bonikro). Intrusion-related gold deposits worldwide typically formed in back-arc 713 

settings or on deformed accretionary margins (Sillitoe and Thompson 1998; Lang and Baker 714 

2001, Fig. 10c).  715 

 716 

Insights from the Guiana Shield in South America  717 

                                                                                     m  718 

                      -Mossi Domain, Vanderhaeghe et al.       , M           . (2003), Delor 719 

et al. (2001, 2003), Kioe-A-Sen et al.       ,                          ,                     720 

                                      -m                                                     , 721 

w              m      w                      -Mossi Domain. In French Guiana, an early 722 

gold event was associated with a period of crustal growth and mag- matic accretion, 723 

following the production of an older basaltic crust. A second orogenic gold event coeval with 724 
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deposition of gold paleoplacers occurred during a period of collision and crustal reworking. 725 

Thi               m                          -Mossi Domain.  726 

Although two or more pulses of Paleoproterozoic gold mineralisation appear to have occurred 727 

within the Guiana Shield, limited data suggests many of the discovered gold deposits formed 728 

during sinistral shearing along major crustal discontinuities, opening o      -            ,     729 

              m     m                      m                   w                      730 

M                             D                ,       M           . 2003). Precise absolute 731 

ages on the timing of gold and hydrothermal events w                                       732 

    D       M         ,                            m                                   M  733 

 M           M      1993). Hydrothermal titanite at the Karouni orogenic gold deposit in 734 

Guyana crystallised at 2084 ±14 Ma (Tedeschi et al. 2018). These dates correlate closely with 735 

the major late Eburnean period of orogenic gold mineralisation in West Africa. Younger gold 736 

mineralisation occurred after ca. 2030 Ma in the Guiana Shield (Tedeschi et al. 2018), 737 

whereas no gold min                                                  m           -Mossi to 738 

date. The geolog- ical context of this younger mineralisation within the Guiana Shield 739 

remains unclear.  740 

 741 

Comparison with the Neoarchean Yilgarn and Superior Cratons  742 

Some aspects of                       , m                 -     ,              wm           743 

      -Mossi Domain close- ly resemble those of the Neoarchean Superior (Canada) and 744 

Yilgarn (Australia) cratons (Robert et al. 2005). Orogenic cy- cle(s) in each region included a 745 

change from early mafic vol- canism to later siliciclastic and volcanoclastic sedimentation 746 

above unconformities, followed by bulk incremental deforma- tion, peak regional 747 

metamorphism, and granitic plutonism. Key geological features of the three most richly 748 
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endowed gold subprovinces in these cratons: Ashanti, Abitibi, and Kalgoorlie, and compared 749 

in Fig. 12.  750 

Waning volcanic activity in these subprovinces corresponded with an increase in clastic 751 

sedimentation. The Abitibi subprovince includes sedimentary         m        w        752 

    m                                   -Mossi Domain. The Porcupine Group consists of 753 

turbiditic rocks several kilometres thick, which were deposited in a deep water setting. The 754 

younger fault-bounded Timiskaming Group consists,        ,                   w w        755 

                m                                           ,                   m       756 

        m                                                 -M     D m            -  m  , 757 

  m   ,        ,     , D    -D   m ,        m      . 2019) and Superior Craton (Pontiac, 758 

Quetico, English River, Frieman et al. 2017) have no equivalents in the  759 

2008; Squires et al. 2010; Czarnota et al. 2010; Vielreicher et al. 2016) cratons with the 760 

Paleoproterozoic terranes of the Baoul -Mossi Domain (this study and references therein)  761 

Neoarchean Yilgarn Craton. Sedimentary rocks comparable with the deep water series in the 762 

Ashanti and Abitibi subprovinces may be represented in the Kalgoorlie subprovince by the 763 

Merougil series (Squires et al. 2010). Late orogenic coarse- clastic rock successions in the 764 

Kalgoorlie subprovince, such as Kurrawang series (Krapez et al. 2000), are more comparable 765 

in sedimentological character and scale with molasse, than deep water rock sedimentary 766 

sequences. Plutonism accompanied in- termediate to felsic volcanism and outlasted clastic 767 

sedimentation in all three subprovinces. In addition, there is a common evolu- tion from early 768 

mafic to intermediate plutons and/or TTGs, to high-K granites and/or two-mica-granites 769 

throughout the orogen- ic cycle (in the Yilgarn Craton, Zibra et al. 2020; in the West African 770 

Craton, McFarlane et al. 2019a).  771 

D                                          m                m                       w          772 

      -Mossi Domain such as local versus regional deformation and progressive versus 773 
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multiphase deformation, the three subprovinces expe- rienced a similar history of 774 

deformation to that outlined by Robert et al. (2005). Diachronous deformation has been dem- 775 

onstrated in all cratons, although this is not necessarily apparent at the belt scale (Robert et al. 776 

2005; Czarnota et al. 2010; Parra-Avila et al. 2017). The diversity of gold mineralisation 777 

styles, ore and alteration assemblages, and overprinting relationships indicate sever        778 

             w                   m  , w                                                    w   779 

                                                                                  . 2018). The 780 

diachronous nature of gold mineralisation in these cratons reflects the timing of terrane 781 

accretion in different supracrustal belts (Robert et al. 2005; Vielreicher et al. 2016).  782 

Despite these many similarities, there are also a number of important differences between 783 

these Paleoproterozoic and Neoarchean subprovinces, which reflect contrasting aspects of 784 

their geodynamic evolution and which have important implica- tions for exploration targeting 785 

(Fig. 12). Firstly, diachronous gold mineralisation in the Abitibi and Kalgoorlie subprovinces 786 

was spread over ~20 to    m  , w            m                           -M     D m    787 

                  m            ,   m                w                                        788 

   m           -Mossi Domain, a difference that highlights the secu- lar cooling of the Earth 789 

ast              w        N                                                 N -  -      790 

m                ,   w    ,            w             ’       w                      w        791 

Samapleu-Yacouba layered mafic-ultramafic complex, which intruded Archean crust. Mafic-792 

ultramafic layers within the complex consist of lower MgO websterite, pyroxenite, peridotite, 793 

and gabbro-norite and were genetically related to the Ni-Cu-(PGE) mineralisation that 794 

occurred between 2091 ± 18 and 2080 ± 13 Ma (Gouedji et al. 2014). Thirdly, the tectono-795 

stratigraphic setting of the most richly endowed parts of the three cratons differs. Major gold 796 

districts in the Superior and Yilgarn cratons such as Sunrise Dam in the Kalgoorlie 797 

subprovince and Val- ’                                                                    , 798 
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           w           wm                 -Mossi Domain occurs either within early 799 

Eburnean large-scale sedimentary basins or along fault sys- tems that coincide with their 800 

margins (Goldfarb et al. 2017; Oliver et al.              ,                   m               801 

   -      m                    w                                   m                    802 

              m       m      m                                                      -M     803 

D m     M            . 2020). Such late volcanism is absent in both the Neoarchean Yilgarn 804 

and Superior cratons, and this may reflect the intrinsic buoyancy of Archean lithospheric 805 

roots due to their high Mg and low Fe contents, which inhibited lithospheric de- lamination 806 

thus preventing the generation of widespread post- orogenic melts (Begg et al. 2009).  807 

 808 

Conclusions 809 

     m                                            -Mossi Domain formed during three 810 

pulses within a >100-myr-long period of crustal growth and differentiation. The spatial and 811 

temporal distribution of known gold deposits is consistent with accretion-collision tectonics, 812 

characterised by a complex interplay between deformation, crustal thickening, burial, 813 

metamorphism, partial melting, and exhumation. The most prolific period for ore deposition 814 

correlated with the Eburnean orogeny. Changes in the geodynamic setting, which affected the 815 

kinematics of Eburnean deformation and the char- acter of associated plutonism, coincided 816 

with increases in the flux of gold mineralisa                      -Mossi Domain between 817 

ca. 2110 and 2060 Ma.  818 

This review raises at least one fundamental question. Was the total gold budget acquired right 819 

from the earliest geodynamic stages through accretion of juvenile crust and then remobilised 820 

                 w           w                                     m     -        m  m   821 

                                   m                                m                        822 

                    -                 m -Man Domain. Future re- search s           m    823 
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       m                                               w                        m             824 

                    m   ,         w                      m -Man Domain, about which 825 

little is known and which remain largely under-explored, offer prospective targets for eco- 826 

nomically significant Archean and/or Paleoproterozoic gold ores (New Liberty, Ndablama, 827 

and Kana Hills deposits in Liberia; Baomahun and Kalmaro deposits in Sierra Leone, Foster 828 

and Piper 1993; Markwitz et al. 2016).  829 
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