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The assessment of risk for heavy-tailed distributions is a crucial question in various fields of application. An important family of risk measures is provided by the class of distortion risk (DR) measures which encompasses the Value-at-Risk and the Tail-Value-at-Risk measures. The Tail-Value-at-Risk is a coherent risk measure (which is not the case for the Value-at-Risk) but it is defined only for integrable quantile functions that is to say for heavy-tailed distributions with a tail index smaller than 1. Moreover, it is a matter of fact that the performance of the empirical estimator is strongly deteriorated when the tail index becomes close to 1.

The main contribution of this work is the introduction and the estimation of a new risk measure which is defined for all heavy-tailed distributions and which is tailequivalent to a coherent DR measure when the tail of the underlying distribution is not too heavy. Its finite sample performance is discussed on a fire claims dataset.

Introduction

Nowadays, a crucial question for many companies is to assess the risk of a given phenomenon. For a financial analyst, the phenomenon of interest can be the potential loss of a portfolio (see, e.g., Rockafellar and Uryasev [START_REF] Rockafellar | Conditional Value-at-Risk for general loss distributions[END_REF]). An accurate control of the risk associated to extreme weather events such as hurricane, heat wave, flash flood among many others is of course essential for insurance companies (see for instance Brazauskas et al. [START_REF] Brazauskas | Estimating conditional tail expectation with actuarial applications in view[END_REF] and Read and Vogel [START_REF] Read | Reliability, return periods, and risk under nonstationarity[END_REF]). From a mathematical point of view, the phenomenon of interest is represented by a real-valued random variable. For the underlying distribution, heavy-tailed models are often considered due to their ability to model extremal events. Such models will be the focus of this paper. Among the literature devoted to the measure of risk for heavy-tailed distributions, one can cite the works of Gardes et al. [START_REF] Gardes | Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation[END_REF] on L p quantiles, Bellini and Di Bernardino [START_REF] Bellini | Risk management with expectiles[END_REF] and Daouia et al. [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF] on extreme expectiles, Daouia et al. [START_REF] Daouia | Extreme M-quantiles as risk measures: From L1 to Lp optimization[END_REF] on extreme M-quantiles and Daouia et al. [START_REF] Daouia | Extremiles: a new perspective on asymmetric least squares[END_REF] on extremiles. Before presenting the motivation and the contribution of this work, we give some generalities about risk measures.

Generalities about risk measures Let X be a set of random variables defined on an atomless probability space (Ω, A, P). According to Artzner et al. [START_REF] Artzner | Coherent measures of risk[END_REF], a monetary risk measure is a mapping from X to R which is monotone, translation invariant and homogeneous. In what follows, the term "monetary" is omitted. Another desirable property for a risk measure is to be law-invariant, i.e., same value of the risk measure is given for two random variables sharing the same distribution.

As pointed out in the monograph of Rüschendorf [31, Remark 7.1.c)], for an atomless probability space, a law-invariant risk measure can be considered as a mapping on the set Q := {QX | X ∈ X } of quantiles functions defined for all β ∈ [0, 1] by QX (β) := inf {x ∈ SX | P(X ≤ x) ≥ β} with the convention inf(∅) = +∞ and where SX is the support of the random variable X. From now on, only lawinvariant risk measure : Q → R are considered. The mapping is monotone (if QX 1 (u) ≥ QX 2 (u) for all u ∈ [0, 1] then (QX 1 ) ≥ (QX 2 )), translation-invariant and homogeneous (for all m ∈ R and λ > 0, (λQX + m) = λ (QX ) + m).

An important class of risk measure is provided by the set of distortion risk (DR) measures introduced by Wang [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF]. A DR measure with distortion probability measure µ : B([0, 1]) → [0, 1], where B([0, 1]) is the Borel set on [0, 1], is the mapping [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF] QX dµ ∈ R if the integral exists. This class encompasses several popular risk measures. When µ is the Dirac measure δ β centered at β ∈ (0, 1), the DR measure is the Value-at-Risk of level β ∈ (0, 1) given for QX ∈ Q by VaR β (QX ) = QX (β). The Tail-Value-at-Risk of level β ∈ (0, 1) defined for in-

QX ∈ Q → [0,
1 β QX (u)du,
is also a DR measure obtained by taking for µ the uniform distribution on [β, 1].

One drawback of the Tail-Value-at-Risk is to be defined only for integrable quantile functions while no integrability condition is required fo the Value-at-Risk. On the other hand, as mentioned for instance by Artzner et al. [START_REF] Artzner | Coherent measures of risk[END_REF], the Value-at-Risk is not a coherent risk measure since it is not sub-additive. A measure is said to be subadditive if (QX 1 +X 2 ) ≤ (QX 1 )+ (QX 2 ). Sub-additivity is a desirable property of risk measures especially in finance where the risk of a diversified portfolio is expected to be smaller than the sum of the individual risks (see for instance Artzner [START_REF] Artzner | Application of coherent risk measures to capital requirements in insurance[END_REF]). Note that a DR measure is coherent if and only if its distortion probability measure µ is convex (i.e., x → µ([0, x]) is convex, see Acerbi [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF] and Yaari [START_REF] Yaari | The dual theory of choice under risk[END_REF]). The Tail-Valueat-Risk is thus a coherent measure.

Motivation and contribution

In this work, we focus on heavy-tailed models, i.e., we assume that for all X ∈ X , there exists γX > 0 such that for all t > 0, the associated quantile function QX satisfies

lim u→1 QX (1 -t(1 -u)) QX (u) = t -γ X . (1) 
The parameter γX is referred to as the tail index. It controls the heaviness of the tail distribution of X: larger the tail index, heavier the tail. Overviews on heavy-tail distributions can be found in the monographs of Beirlant et al. [START_REF] Beirlant | Statistics of Extremes: Theory and Applications[END_REF] and de Haan and Ferreira [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]. Measuring the risk for heavy-tailed distributions can be a difficult task. Indeed, for a given convex distortion probability measure µ, it is common to observe that the corresponding DR measure is defined only when the tail index γX is smaller than some positive value. Moreover, as pointed out by El Methni and Stupfler [17, Section 3.1], the variability of the empirical estimator of the DR measure drastically increases as γX gets large. This is due to the fact that a large variability in the tail is observed when the tail index increases. As a consequence, coherent DR measures (such as the Tail-Value-at-Risk) are not well adapted to measure the risk in applications where large tail indices can be encountered (e.g., in finance, see for instance Moscadelli [START_REF] Moscadelli | The modelling of operational risk: experience with the analysis of the data collected by the Basel committee[END_REF] and Neslehova et al. [START_REF] Neslehova | Infinite mean models and the LDA for operational risk[END_REF]).

Of course, for very heavy-tailed distributions, the simplest idea is to measure the risk with the Value-at-Risk. This is clearly not a fully satisfactory solution since

the Value-at-Risk is not sub-additive. Ideally, we would like to find a coherent risk measure taking finite values on the class of heavy-tailed distributions but, as mentioned by Delbaen [START_REF] Delbaen | Risk measures for non-integrable random variables[END_REF], 'there is not immediate solution for this problem', and, to our knowledge, there is indeed no solution yet.

The objective of this paper is to take a step towards the solution by introducing and estimating a new risk measure that realizes a good compromise between a coherent DR measure and a finite risk measure on the class of heavy-tailed distributions. More specifically, for a given convex distortion probability measure µ, the risk measure proposed in this paper is an infimum over a class of DR measures, this class being chosen in such a way that the obtained risk measure is finite for all heavy-tailed distributions and tail-equivalent to the DR measure with distortion probability measure µ, provided that the tail index is smaller than a pre-specified positive value. In this situation, the new measure is also shown to be sub-additive in the tail of the distribution.

Moreover, when we focus on the tail of the distribution, the proposed risk measure can be easily estimated by taking advantage of its tail-equivalent. In a real dataset study, it is shown that, when the tail index becomes large, this estimator is less sensitive to the sample fluctuations than the empirical counterpart of the DR measure.

The paper is organized as follows. The new risk measure is introduced and commented in Section 2. Its asymptotic properties are established in Section 3 and its estimation is considered in Section 4. An application to an insurance dataset (fire claims of a Norwegian insurance company) is also discussed in Section 5. All the proofs are gathered in Section 6.

A new risk measure for heavy-tailed distributions

As already mentioned, this paper focus on heavy-tailed distributions. We denote by Q (HT ) the set of heavy-tailed quantile functions QX , i.e, satisfying [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF], which are continuous, strictly increasing and with a finite left endpoint (QX (0) = cX ∈ R).

For all probability measures ν defined on B([0, 1]), we denote by ν β with β ∈ [0, 1), the push-forward measure under the transformation T β : [0, 1] → [β, 1] defined by

T β (x) = (1 -β)x + β.
The new risk measure depends on a probability measure µ, called the reference probability measure. From now on, we assume that µ is convex and that

γ * µ := sup γ > 0 [0,1] (1 -u) -γ dµ(u) < ∞ > 0.
It is shown in Lemma 2 that when γX < γ * µ the quantile function

QX ∈ Q (HT ) is integrable with respect to µ β while if γX > γ * µ , [0,1] |QX |dµ β = ∞.
For instance, when µ is the uniform distribution, γ * µ = 1 (see, e.g., de Haan and Ferreira [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]Exercice 1.16]). When µ = δ b with b ∈ [0, 1) then γ * µ = +∞. We propose to measure the risk of a quantile function QX ∈ Q (HT ) by

β (QX | Pµ(κ, γ0)) := inf [0,1] QX dν β ν ∈ Pµ(κ, γ0) , (2) 
where, for some κ ∈ [1, ∞) and γ0 ∈ (0, γ * µ ), the set Pµ(κ, γ0) is the class of probability measures containing the reference probability measure µ and all probability measures ν such that

[0,1] (1 -u) -γ dν(u) ≥ [0,1]
(1 -u) -γ dµ(u) for all γ ∈ (0, γ0],

and

[0,1]
(1 -u) -γ dν(u)

γ 0 /γ ≤ κ [0,1]
(1 -u) -γ 0 dµ(u) for all γ > 0.

Comments on the definition of the risk measure 1) First note that for all ν ∈ Pµ(κ, γ0), ) is the conditional quantile of X given that X > QX (β). As a consequence, the risk measure β (• | Pµ(κ, γ0)) gives emphasis to the right tail of the distribution when its level β is close to 1

[0,1] QX dν β = [0,1] Q X,β dν, where Q X,β (•) := QX ((1 -β) • +β) ∈ Q (HT
2) For all κ ∈ [1, ∞) and γ0 ∈ (0, γ * µ ), the Dirac measure δ b(µ,γ 0 ) with b(µ, γ0) := 1 -

[0,1]
(1 -u) -γ 0 dµ(u)

-1/γ 0 , belongs to the class Pµ(κ, γ0) (see Lemma 3). This entails in particular that the risk measure ( 2) is bounded for all QX ∈ Q (HT ) . Indeed, since

QX (0) = cX , it is readily seen that β (QX | Pµ(κ, γ0)) ≥ cX . Moreover, since 0 < γ0 < γ * µ , one has b(µ, γ0) ∈ [0, 1) and thus Q X,β (b(µ, γ0)) < ∞ leading to β (QX | Pµ(κ, γ0)) ≤ [0,1] Q X,β dδ b(µ,γ 0 ) = Q X,β (b(µ, γ0)) < ∞.
3) The mapping β (• | Pµ(κ, γ0)) is a proper risk measure. The monotonicity is guaranteed by the monotonicity of the integral and for all λ > 0 and m ∈ R,

β (λ • +m | Pµ(κ, γ0)) = λ β (• | Pµ(κ, γ0)) + m.
4) The choice of the set Pµ(κ, γ0) can be motivated by looking at the class of strict Pareto distributions. If QX is a strict Pareto quantile function, i.e., if there exist γX > 0, λX > 0 and mX ∈ R such that QX (u) = λX (1 -u) -γ X + mX , for all u ∈ [0, 1], then, when γX ≤ γ0, condition (3) is equivalent to say that

[0,1] QX dµ ≤ [0,1]
QX dν for all ν ∈ Pµ(κ, γ0).

As a consequence, when γX ≤ γ0, the new measure β (QX | Pµ(κ, γ0)) is equal to the DR measure with distortion probability measure µ β . More precisely, the explicit expression of the risk measure (2) for strict Pareto distributions is given in the next result.

Proposition 1 For all κ ∈ [1, ∞) and γ0 ∈ (0, γ * µ ), if QX is a strict Pareto quantile function, then, if γX ≤ γ0, β (QX | Pµ(κ, γ0)) = [0,1] QX dµ β and, if γX > γ0, β (QX | Pµ(κ, γ0)) = [0,1] Q X,β dδ b(µ,γ 0 ) = QX (β + (1 -β)b(µ, γ0)) .
For the set of strict Pareto quantile functions, which is included in Q (HT ) , the new measure given in (2) achieves the objective announced in the introduction: it coincides with the DR measure with distortion probability measure µ provided that γX ≤ γ0. When γX > γ0, the new measure switch continuously to the Value-at-Risk 

-(1 -β)(1 -γ0) 1/γ 0 otherwise.
Let us emphasis that Proposition 1 remains true if condition (4) in the definition of the set of probability measures Pµ(κ, γ0) is replaced by the less restrictive condition

[0,1] (1 -u) -γ dµ(u) < ∞ for all γ > 0.
In particular, the value of the risk measure for strict Pareto distributions does not depend on κ. However, condition (4) will be necessary in the next section to prove that Proposition 1 is asymptotically true (as β → 1) for the set Q (HT ) of heavy-tailed quantile functions. Finally, note that Proposition 1 can be rewritten

β (QX | Pµ(κ, γ0)) = [0,1] QX dν * X , where ν * X = µ if γX ≤ γ0 and ν * X = δ b(µ,γ 0 ) if γX > γ0.
The new risk measure (2) is thus not a DR measure since the probability measure depends on the underlying distribution.

5) The size of the set of strict Pareto distributions for which the tail risk measure ( 2) is equal to the DR measure is controlled by the parameter γ0. A large set is obtain when γ0 is close to γ * µ , but, as already pointed out, the performance of the empirical counterpart of a DR measure is badly affected by values of γX close to γ * µ . A choice of a reasonable value of γ0 is proposed in the real data study.

Asymptotic properties of the risk measure

This section is devoted to the asymptotic properties (as the level β goes to 1) of the new risk measure presented above. The first result is an asymptotic version of Proposition 1 when β → 1. It will be very useful to propose an estimator of the risk measure when the level β = βn goes to 1 as the sample size n increases, see Section 4. The following condition on the reference probability measure is required.

(H.1) The reference probability measure µ is such that the function

γ ∈ (0, γ * µ ) → [0,1] (1 -u) -γ dµ(u), is continuous.
Note that if µ is the uniform distribution on [0, 1], condition (H.1) holds since for

all γ ∈ (0, 1), [0,1] (1 -u) -γ dµ(u) = 1/(1 -γ). Proposition 2 Let QX ∈ Q (HT) with tail index γX > 0. If µ satisfies condi- tion (H.1) then for all κ ∈ [1, ∞) and γ0 ∈ (0, γ * µ ), lim β→1 β (QX | Pµ(κ, γ0)) QX (β) = [0,1] (1 -u) -(γ X ∧γ 0 ) dµ(u) (γ X ∨γ 0 )/γ 0 . ( 5 
)
Moreover, as β → 1,

β (QX | Pµ(κ, γ0)) ∼    [0,1] QX dµ β if γX ≤ γ0, QX (β + (1 -β)b(µ, γ0)) if γX > γ0. (6) 
Roughly speaking, these equivalences are a consequence of Proposition 1 together with the fact that for a quantile function QX ∈ Q (HT) with tail index γX > 0, one has for all u ∈ (0, 1) that

Q X,β (u)/QX (β) → (1 -u) -γ X as β → 1.
It is worth noting that the asymptotic equivalents do not depend on κ. In fact, only the rate of convergence is influenced by the choice of κ; the larger the value of κ, the slower the convergence. The rate of convergence is also badly influenced by a large value of γX . More specifically, we can show that for all ε > 0, there exits

β(ε) ∈ (0, 1) such that for all β ≥ β(ε) and QX ∈ Q (HT) , β (QX |Pµ(κ, γ0) ) QX (β) - [0,1] (1 -u) -(γ X ∧γ 0 ) dµ(u) (γ X ∨γ 0 )/γ 0 ≤ 2εg(κ, γX ),
where g(κ, γX ) increases as κ and/or γX increases. The expression of g(κ, γX ) is given in the proof of Proposition 2.

In the next result, we show that the risk measure

β (• | Pµ(κ, γ0)) is tail-sub- additive.
Proposition 3 Assume that condition (H.1) holds for µ. Let X1 and X2 be two random variables such that QX 1 and QX 2 belong to the set Q (HT) with respective tail index γ1 and γ2. If 0 < γ1 ≤ γ2 ≤ γ0 and if

lim x→∞ P(X1 > x, X2 > x) P(X2 > x) = 0, (7) 
then for all κ ∈ [1, ∞) and ε > 0, there exists τ0 ∈ (0, 1) such that for all β > 1-τ0,

β (QX 1 +X 2 | Pµ(κ, γ0)) ≤ β (QX 1 | Pµ(κ, γ0)) + β (QX 2 | Pµ(κ, γ0)) (1 + ε).
Condition ( 7) is a so-called asymptotic dependence condition. It ensures that when X1 and X2 are heavy-tailed, the sum X1 + X2 is also heavy-tailed with tail index γ1 ∨ γ2 (see e.g., Davis and Resnick [13, Lemma 2.1]).

As a conclusion, Propositions 2 and 3 ensure that the new risk measure achieves the objectif we have laid out in the introduction. The new risk measure (2) can thus be seen as a good alternative between a coherent DR measure but subject to an integrability condition and the Value-at-Risk which is not a coherent risk measure (but defined everywhere).

Estimation

In practice, the distribution of the random variable of interest X is unknown. The available information is contained in a realization of a sample X1, • • • , Xn of n independent replications of X. Throughout this section, the quantile function QX is taken in the set Q (HT) .

To implement the risk measure introduced above, we are looking for an estimator (1 -u) -( γ n,X ∧γ 0 ) dµ(u)

( γ n,X ∨γ 0 )/γ 0 , (8) 
where γn,X is any estimator of γX that converges in probability to γX (in short γn,X P → γX ). Consistency of ( 8) is established in the next result.

Proposition 4 Assume that the reference probability measure µ satisfies condition (H.1). If βn → 1 and n(1 -βn) → ∞ then for all κ ∈ [1, ∞), γ0 ∈ (0, γ * µ ) and for any estimator γn,X

P → γX , n,βn (QX | µ, γ0) βn (QX |Pµ(κ, γ0) ) P → 1.
As expected, the consistency holds for all γX > 0. Let us pay particular attention to the interesting situation where the reference probability measure µ is the uniform distribution. In this case, estimator ( 8) is given by

n,βn (QX | µ, γ0) =    X nβn :n /[1 -γn,X ] if γX ∈ (0, γ0], X nβn :n /[1 -γ0] γ n,X if γX > γ0.
When To determinate the rate of convergence in Proposition 4 or to establish the asymptotic normality of (8), we need in particular to establish the rate of convergence in Proposition 2 which is a difficult task. This question is not addressed in this paper.

Estimation in the extreme case -Of course when n(1 -βn) → b ≥ 0, there is no hope for (8) to be a consistent estimator since X nβn :n /QX (βn) does not converge in probability to 1. We thus need to extrapolate the estimate at an intermediate level αn to the extreme level βn. The extrapolation procedure is based on the approximation

βn (QX |Pµ(κ, γ0) ) αn (QX |Pµ(κ, γ0) ) ≈ 1 -αn 1 -βn γ X .
This approximation is a direct consequence of the definition (1) of heavy-tailed quantile functions. A similar idea was used by Weissman [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] for the estimation of extreme quantiles. Consequently, for an extreme level βn, we propose the extrapolated estimator

(W) n,βn (QX | µ, γ0, αn) := n,αn (QX | µ, γ0) 1 -αn 1 -βn γ n,X , (9) 
where γn,X is a consistent estimator of γX and αn is an intermediate sequence (i.e., αn → 1 and n(1 -αn) → ∞). Before establishing the consistency of ( 9), let us mention that ( 1) is equivalent to say that

QX (u) = (1 -u) -γ X X ((1 -u) -1 )
where X is a slowly varying function at infinity, i.e., for all t > 0,

lim x→∞ X (tx) X (x) = 1. (10) 
It is well known (see for instance Bingham et al. [7, Theorem 1.3.1]) that a slowly varying function can be represented for all x > 1 as,

X (x) = cX (x) exp x 1 ∆X (t) t dt , (11) 
where cX (x) → c ≥ 0 as x → ∞ and ∆X (t) → 0 as t → ∞. The function ∆X controls the rate of convergence in [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF]. The consistency of ( 9) is established in the next result.

Proposition 5 Assume that the reference probability measure µ satisfies condition (H.1) and that |∆X | is asymptotically decreasing. Let αn and βn be sequences converging to 1 and such that n

(1 -αn) → ∞, n(1 -βn) → b ≥ 0 and lim n→∞ ln 1 -αn 1 -βn ∆X 1 1 -αn = 0. ( 12 
)
If the estimator γn,X satisfies the condition

ln 1 -αn 1 -βn ( γn,X -γX ) P → 0, (13) 
then for all κ ∈ [1, ∞) and γ0 ∈ (0, γ * µ ), Note that conditions ( 12) and ( 13) are required to ensure that the Weissman estimator

X nαn :n 1 -αn 1 -βn γ n,X
, is a relative consistent estimator of the extreme quantile QX (βn).

When the reference probability measure µ is the uniform distribution, the extrapolated estimator (9) coincides, when γX ≤ γ0, to the so-called indirect extrapolated estimator of the Tail-Value-at-Risk proposed in Gardes et al. [START_REF] Gardes | Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation[END_REF].

The latter is equivalent in probability to the Tail-Value-at-Risk when γX < 1 and asymptotically Gaussian when γX < 1/2. Again, ( 9) is expected to be more stable than the indirect extrapolated estimator of Gardes et al. [START_REF] Gardes | Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation[END_REF] when the tail index

γX < 1 is close to 1.
Let us finally take a look to the particular case where the Hill estimator is used for the estimation of the tail index. It can be shown (see Lemma 5) that under additional technical conditions, the Hill estimator γ (H) n,X (kn) with kn = n(1 -αn) satisfies ( 13) and thus can be used in [START_REF] Daouia | Extremiles: a new perspective on asymmetric least squares[END_REF] as an estimator of the tail index leading to a relative consistent estimator

(W,H) n,βn (QX | µ, γ0, αn) of βn (QX | Pµ(κ, γ0)).

Real data study

We illustrate the estimation procedure on a fire insurance dataset studied by Beirlant et al. [START_REF] Beirlant | Practical Analysis of Extreme Values[END_REF].

This dataset provides the sizes of 9181 fire insurance claims for a Norwegian insurance company for the period 1972 to 1992. These claim sizes are corrected for inflation using the Norwegian CPI and are expressed in thousands Norwegian Krone (NKR). The dataset is available for instance in the R package CASdatasets that can be downloaded at the address http://dutangc.perso.math.cnrs.fr/RRepository/pub/.

For the period 1985 to 1992, the annual numbers of claim sizes are similar. We thus focus on this period for this study. For each year j ∈ {1985, • • • , 1992}, we denote by x

(j) 1 , • • • , x (j) 
n j the observed nj fire losses. As in Gardes and Girard [START_REF] Gardes | On the estimation of the variability in the distribution tail[END_REF], it is assumed that these observations are realizations of a sample X

(j) 1 , • • • , X (j) n j
of nj independent copies of a heavy-tailed random variable X (j) .

Our goal is to compare the annual risks of the fire losses over the considered period. More specifically, for each year j, we estimate the risk measure

β (Q X (j) | Pµ(κ, γ0
)) when µ is the uniform probability measure. For the level β, we take the value 1-1/ñ where ñ = 637.5 is the median of the set {n1985, • • • , n1992}.

When the sample size nj is lower than ñ, the level β can be considered as extreme since nj(1 -β) = nj/ñ < 1. This is the case for the years 1985, 1990, 1991 and 1992. For each year j, we thus chose to use the extrapolated estimator

(W,H) n j ,β (Q X (j) | µ, γ0, αn j ). Its expression is given by 1 -αn j 1 -β γ (H) j X (j) nαn j :n j 1 1 -γ (H) j ∧ γ0 ( γ (H) j ∨γ 0 )/γ 0 , (14) 
where αn j = 1 -ln 2 (nj)/(2nj) and γ

(H) j := γ (H)
n j ,X (j) (kn,j) is the Hill estimator computed with kn j = nj(1 -αn j ) order statistics. For the parameter γ0, we take the value 1/2. This choice is motivated by the fact that the second moment of a heavy-tailed distribution exits as soon as the tail index is lower than 1/2. The risk measure ( 14) is then asymptotically equivalent (as β → 1) to the Tail-Value-at-Risk only in this situation. This limitation was suggested by Gardes et al. [START_REF] Gardes | Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation[END_REF] in order to obtain a stable estimation of the Tail-Value-at-Risk. In Figure 1, we represent for each year j the value of the Hill estimator γ (H) j together with its asymptotic confidence interval of level 0.95 given by γ

(H) j 1 -k -1/2 n u0.975 ; γ (H) j 1 -k -1/2 n u0.025 , ( 15 
)
where uα is the quantile of order α of a standard normal distribution. This asymptotic confidence interval is constructed on the base of the asymptotic normality of the Hill estimator (see de Haan and Ferreira [22, Theorem 3.2.5]). It appears that for the years 1985, 1986 and 1988, the critical value γ * µ = 1 is contained in the asymptotic confidence interval [START_REF] Denneberg | Premium calculation: why standard deviation should be replaced by absolute deviation[END_REF]. Consequently, since the quantile function QX is not integrable when γX > 1, we can reasonably have some doubt about the existence of the Tail-Value-at-Risk for these years. In the left panel of Figure 2, the values of the extrapolated tail risk measure estimator ( 14) are depicted for each year j. The interval of variation of the estimator when the tail index estimator varies in the confidence interval ( 15) is also represented. The lower (resp. upper) bound of this interval of variation is thus the estimator [START_REF] Delbaen | Risk measures for non-integrable random variables[END_REF] where the Hill estimator is replaced by the lower (resp. upper) bound of the confidence interval [START_REF] Denneberg | Premium calculation: why standard deviation should be replaced by absolute deviation[END_REF]. Same thing is done in the right panel with the indirect extrapolated estimator of the Tail-Value-at-Risk introduced in Gardes et al. [START_REF] Gardes | Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation[END_REF] and given by

1 -αn j 1 -β γ (H) j X (j) n j αn j :n j 1 -γ (H) j . ( 16 
)
Figure 2: Left panel: for each year j ∈ {1985, • • • , 1992}, value of the estimator [START_REF] Delbaen | Risk measures for non-integrable random variables[END_REF] together with its interval of variation when the Hill estimator varies in the confidence interval [START_REF] Denneberg | Premium calculation: why standard deviation should be replaced by absolute deviation[END_REF]. Right panel: idem with the Tail-Value-at-Risk estimator [START_REF] El Methni | Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions[END_REF]. This estimator is not valid when the tail index is larger than 1. As a consequence, for the years 1985, 1986 and 1988, the upper bound of the interval of variation is infinite since for these years, the right bound of the confidence interval [START_REF] Denneberg | Premium calculation: why standard deviation should be replaced by absolute deviation[END_REF] is larger than 1. As expected, the estimator ( 14) is less sensitive to the variations of the tail index estimator. For the period 1989 to 1992, the estimators ( 14) and [START_REF] El Methni | Extreme versions of Wang risk measures and their estimation for heavy-tailed distributions[END_REF] are similar since for these years, the tail index is not too large. At the opposite, for the years 1985, 1986 and 1988, the range of variation of the indirect extrapolated estimator ( 16) is important which is not surprising since the estimation of the tail index is close to 1.

Conclusion

The main contribution of this work is the introduction and the estimation of a new risk measure dedicated to heavy-tailed distributions. Contrary to the Tail-Value-at-Risk, it presents the advantage to be defined whatever the value of the tail index. It is preferred to use the new risk measure instead of the classical Value-at-Risk since, for reasonable values of the tail index, it is shown to be equivalent to a coherent DR measure. From a finite sample point of view, when the tail index is large, the proposed estimator is less sensitive to sample fluctuations than the empirical counterpart of a coherent DR measure. For these reasons, the risk measure proposed in this paper seems to be a good alternative to the use of Value-at-Risk for very heavy-tailed distributions.

Proofs

In this section, we use the following standard notation in extreme value theory: UX is the function defined for all x ≥ 1 by UX (x) = QX (1 -1/x). When QX ∈ Q (HT ) , the function UX is regularly varying with index γX that is to say that for all t > 0,

lim x→∞ UX (tx) UX (x) = t γ X .
In particular, we have the following result (proved for instance in de Haan and Ferreira [22, Proposition B.1.10]) which will be used several times in this section.

Lemma 1 For u ∈ (0, 1) and β ∈ (0, 1), let

RX (u, β) := UX ((1 -β) -1 (1 -u) -1 ) UX ((1 -β) -1 ) -(1 -u) -γ X . (17) 
For all ε > 0 and δ > 0, there exists τ0 = τ0(ε, δ) ∈ (0, 1) such that for all QX ∈ Q (HT) and β > 1 -τ0 one has |RX (u, β)| ≤ ε(1 -u) -(γ X +δ) .

Preliminary results

We first show that QX ∈ Q (HT) is integrable with respect to µ if its tail index γX is lower than γ * µ .

Lemma 2 For all quantile functions QX ∈ Q (HT) with tail index γX > 0 one has

   [0,1] |QX |dµ β < ∞ if γX ∈ (0, γ * µ ), [0,1] |QX |dµ β = ∞ if γX > γ * µ .
Proof -Without loss of generality, we assume that QX (u) ≥ 0 for all u ∈ [0, 1]

(add cX if it is not the case). We thus have Q X,β (u) ≥ 0 for all u ∈ [0, 1]. It thus suffices to work with the integral

[0,1] QX dµ β = [0,1] Q X,β dµ.
First assume that γX ∈ (0, γ * µ ). For all x ≥ 1, we have

[0,1] QX dµ β = QX (β) [0,1] UX ((1 -β) -1 (1 -u) -1 ) UX ((1 -β) -1 ) dµ(u).
Hence,

[0,1] QX dµ β ≤ QX (β) [0,1] (1 -u) -γ X dµ(u) + [0,1] |RX (u, β)|dµ(u) ,
where RX (u, β) is defined in Lemma 1, equation [START_REF] El Methni | Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions[END_REF]. Taking δ = (γ * µ -γ)/2 > 0 in Lemma 1, for all ε > 0, there exists τ0 ∈ (0, 1) such that for β > 1 -τ0,

[0,1] QX dµ β < QX (β) [0,1] (1 -u) -γ X dµ(u) + ε [0,1] (1 -u) -(γ X +δ) dµ(u) .
We conclude the first part of the proof by remarking that

[0,1] (1 -u) -(γ X +δ) dµ < ∞, since γX + δ < γ * µ . Now assume that γX > γ * µ . We start with [0,1] QX dµ β = [0,1] UX ((1 -β) -1 (1 -u) -1 ) UX ((1 -β) -1 ) dµ(u).
Using Potter's bounds (see for instance de Haan and Ferreira [22, eq. (B.1.19)]) for δ < γX -γ * µ , there exists β0 such that for all β > β0 and u ∈ (0, 1),

1 2 (1 -u) -(γ X -δ) ≤ UX ((1 -β) -1 (1 -u) -1 ) UX ((1 -β) -1
) .

Hence,

[0,1] QX dµ β ≥ 1 2 [0,1] (1 -u) -(γ X -δ) dµ(u),
which is infinite since γX -δ > γ * µ .

Lemma 3 For all κ ∈ [1, ∞) and γ0 ∈ (0, γ * µ ), the Dirac measure δ b(µ,γ 0 ) belongs to the set Pµ(κ, γ0).

Proof -When γ ≤ γ0, an application of the Jensen's inequality leads to 1 -

[0,1] (1 -u) -γ dµ(u) -1/γ ≤ b(µ, γ0).
As a consequence, for all γ ∈ (0, γ0],

[0,1] (1 -u) -γ dµ(u) ≤ (1 -b(µ, γ0)) -γ = [0,1] (1 -u) -γ dδ b(µ,γ 0 ) (u),
and condition (3) holds. Moreover, for all γ > 0, 4) is thus satisfied with κ = 1 and thus for all κ ∈ [1, ∞) ensuring that δ b(µ,γ 0 ) ∈ Pµ(κ, γ0).

[0,1] (1 -u) -γ dδ b(µ,γ 0 ) (u) = [0,1] (1 -u) -γ 0 dµ(u) γ/γ 0 . Condition (
In the next result, an asymptotic equivalent, as β → 1, of the DR measure

[0,1]
QX dµ β , is given.

Lemma 4 For all probability measure µ such that γ * µ > 0 and all quantile functions QX ∈ Q (HT) with tail index γX ∈ (0, γ

* µ ) lim β→1 [0,1] QX (u) QX (β) dµ β (u) = [0,1] (1 -u) -γ X dµ(u). Proof -We have [0,1] QX (u) QX (β) dµ β (u) = [0,1] Q X,β (u) QX (β) dµ(u) = [0,1] UX ((1 -β) -1 (1 -u) -1 ) UX ((1 -β) -1 ) dµ(u) = [0,1] (1 -u) -γ X dµ(u) + [0,1] |RX (u, β)|dµ(u),
where RX (u, β) is defined in equation [START_REF] El Methni | Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions[END_REF]. From Lemma 1 with δ > 0 such that γX + δ < γ * µ , for all ε > 0, there exists τ0 ∈ (0, 1) such that for all QX ∈ Q (HT) and 

β > 1 -τ0, [0,1] |RX (u, β)|dµ(u) ≤ ε [0,1] (1 -u) -(γ X +δ) dµ(u). Since [0,1] (1 -u) -(γ X +δ) dµ(u) < ∞
(1 -αn) → ∞, n(1 -βn) → b ≥ 0, [n(1 -αn)] -1/2 ln 1 -αn 1 -βn → 0 and [n(1 -αn)] 1/2 ∆X 1 1 -αn → λ ∈ R, as n → ∞, then ln 1 -αn 1 -βn γ (H) n,X -γX P → 0.
Proof -Our goal is to prove that

(n(1 -αn)) 1/2 γ (H) n,X -γX d → N (0, γ 2 X ). (18) 
To prove (18), we use de Haan and Ferreira [22, Theorem 3.2.5] in which the asymptotic normality of the Hill estimator is established. We thus have to check that under the assumptions of Lemma 5, the conditions of de Haan and Ferreira [22, Theorem 3.2.5] are satisfied. After a comparison between the set of conditions, we notice that we only have to check that the second order condition lim

u→1 1 ∆X ((1 -u) -1 ) QX (1 -t(1 -u)) QX (u) -t -γ X = t -γ X t -1 1 v ρ-1 dv.
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holds or equivalently that for all t > 1,

lim x→∞ X (tx)/ X (x) -1 ∆X (x) = t 1 u ρ-1 du = t ρ -1 ρ .
Under the conditions of the lemma,

X (tx) X (x) = exp tx x ∆X (u) u du = exp ∆X (x) t 1 ∆X (ux) ∆X (x) 1 u du .
Since 

1 u du = t 1 u ρ-1 du,
and the conclusion follows since ∆X (x) → 0 as x → ∞ and (exp(u) -1)/u → 1 as u → 0. (1 -u) -γ X dν β (u) ν ∈ Pµ(κ, γ0) + mX

Proofs of main results

Proof

= λX (1 -β) -γ X inf [0,1]
(1 -u) -γ X dν(u) ν ∈ Pµ(κ, γ0) + mX Since γX ∈ (0, γ0], from (3) we know that for all ν ∈ Pµ(κ, γ0), (1 -u) -γ X dν(u) ≥ (1 -u) -γ X dµ(u). (1 -u) -γ X dµ(u) + mX = (1 -u) -γ X -δ dν (1 -u) -γ X -δ dµ(u) κ (1 -u) -γ X -δ dµ(u)

(γ X +δ)/γ 0 < ∞,
and if γX > γ, assertion (A) entails that for all β ∈ Bε with β ≥ β3,

[0,1]
(1 -u) -γ X -δ dν (β)

X,ε (u) ≤ κ [0,1]
(1 -u) -γ X -δ dµ(u)

(γ X +δ)/γ 0 < ∞.
Let us prove assertion (A). Since the function

γ ∈ (0, γ * µ ) → [0,1]
(1 -u) -γ dµ(u) is increasing, continuous and converges to ∞ as γ → γ * µ , for all χ > 0, there exists γ(χ) ∈ (0, γ * µ ) such that for all γ > γ(χ), (1 -u) -γ dµ(u) there exists β4 ∈ (0, 1) such that for all β ∈ Bε, β > β4,

[0,1] Q X,β (u) QX (β) dµ(u) ≥ 1 2 [0,1]
(1 -u) -γ X (χ(ε),µ) dµ(u),

where γ X (χ(ε), µ) = γX -[γ * µ -γ(χ(ε))]/2. Hence, if γX ≥ [γ(χ(ε)) + γ * µ ]/2 then γ X (χ(ε), µ) > γ(χ(ε)) and thus,

[0,1] Q X,β (u) QX (β) dµ(u) ≥ χ(ε) 2 .
Moreover, for δ1 > 0, there exists β5 ∈ (0, 1) such that for all β ∈ Bε with β > β5

Since UX is a regularly varying function, (1-αn) -1 ∆X (t) t dt .

Since αn and βn converge to 1 as n → ∞, (1-αn) -1 ∆X (t) t dt ≤ ∆X 1 1 -αn ln 1 -αn 1 -βn → 0, and the proof is complete.

  of level β + (1 -β)b(µ, γ0). Let us emphasis again that the transition is designed in such a way that β (• | Pµ(κ, γ0)) is a proper risk measure on the set of strict Pareto distributions. In particular, when µ is the uniform distribution on [0, 1], the risk measure β (• | Pµ(κ, γ0)) coincides, on the class of strict Pareto distributions, with the Tail-Value-at-Risk of level β if γX ≤ γ0 and with the Value-at-Risk of level 1

  of βn (QX | Pµ(κ, γ0)) where βn is a sequence converging to 1 as the sample size increases and µ is a given reference probability measure. Two situations for the rate of convergence of βn to 1 are considered: i) the intermediate case where βn → 1 and n(1-βn) → ∞ as n → ∞, ii) the extreme case where n(1 -βn) → b ∈ (0, ∞) as n → ∞.In the first scenario, the quantile QX (βn) can be consistently estimated by its empirical counterpart Qn,X (βn) = X nβn :n where • is the ceiling function and X1:n ≤ • • • ≤ Xn:n are the observations arranged in ascending order (see for instance de Haan and Ferreira [22, Theorem 2.4.1]). As a consequence, we will show hereafter that a consistent estimator of βn (QX | Pµ(κ, γ0)) can be obtained directly from the equivalence (5) in Proposition 2. The second scenario is more challenging since QX (βn) cannot be estimated by an order statistic. We thus have to extrapolate the intermediate estimator proposed in the first scenario to an extreme level. Estimation in the intermediate case We take advantage of the asymptotic equivalence (5) obtained in Proposition 2 to propose the following estimator n,βn (QX | µ, γ0) := X nβn :n [0,1]

  γX ≤ γ0, the new estimator coincides with the estimator of the Tail-Valueat-Risk of level βn studied in Gardes et al.[START_REF] Gardes | Beyond tail median and conditional tail expectation: extreme risk estimation using tail Lp-optimisation[END_REF] Section 4.2] where its asymptotic normality has been established under the condition γX < 1/2. It is worth pointing out that when γX < 1 is close to 1, the tail index estimator γn,X is also expected to be close to 1 (or even larger!). As a consequence, a small variation in the value of γn,X leads to an important change in the value of the Tail-Value-at-Risk estimator X nβn :n /[1 -γn,X ]. This is no longer the case for the new estimator since when γX > γ0, it switches to a more stable estimator of the Value-at-Risk oflevel βn + (1 -βn)[1 -(1 -γ0) 1/γ 0 ]. This point is illustrated in Section 5 where a choice of γ0 is proposed.A natural estimator of the tail index γX is the Hill estimator, see Hill[START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], defined for a sequence kn ∈ {1, • • • , n} by γ The convergence in probability of the Hill estimator is established for instance in de Haan and Ferreira [22, Theorem 3.2.2] under the condition that kn → ∞ and n/kn → ∞. As a consequence, the estimator (H) n,βn (QX | µ, γ0) obtained by using γ (H) n,X (kn) with kn = n 1 -βn as a tail index estimator is a relative consistent estimator of the risk measure βn (QX |Pµ(κ, γ0) ).

  (QX | µ, γ0, αn) βn (QX |Pµ(κ, γ0) ) P → 1.

Figure 1 :

 1 Figure 1: For each year j ∈ {1985, • • • , 1992}, the point o represents the value of the Hill estimator and the vertical full line its confidence interval of level 0.95. The horizontal line is the critical value γ * µ = 1.

of Proposition 1 -

 1 For a strict Pareto quantile function given for u ∈ [0, 1] by QX (u) = λX (1 -u) -γ X + mX , one has β (QX | Pµ(κ, γ0)) = λX inf [0,1]

  Hence, since µ ∈ Pµ(κ, γ0), one has for all strict Pareto quantile function QX with γX ∈ (0, γ0] thatβ (QX | Pµ(κ, γ0)) = λX (1 -β) -γ X [0,1]

[0, 1 ]

 1 QX dµβ . Indeed, if 0 < γX ≤ γ, since γX + δ < γ * µ ,

[0, 1 ]( 1 -

 11 u) -γ dµ(u) ≥ χ.Now, for some δ1 > 0, let χ(ε) = ε + χ

UX V - 1 nProof of Proposition 5 - 1 .→ 1 , 1 -

 15111 -nβn +1:n UX (1 -βn) -1 P → 1 showing the first convergence. The proof of the second convergence in probability is straightforward since γn,X P → γX and since under (H.1) the function Ψµ,γ 0 is continuous. Using the function Ψµ,γ 0 introduced in the proof of Proposition 4, we have(W) n,βn (QX | µ, γ0, αn) := X nαn :n 1 -αn 1 -βn γ n,XΨµ,γ 0 ( γn,X ) .According to the asymptotic equivalence obtained in Proposition 2, it thus suffices to show that X nαn :n QX (βn)Since X nαn :n /Q(αn)P see the proof of Proposition 4, it is equivalent to prove that αn) -1 ) X ((1 -βn) -1 ) exp ( γn,X -γX ) ln 1 the representation (11) of a slowly varying function,X ((1 -αn) -1 ) X ((1 -βn) -1 ) = cX ((1 -αn) -1 ) cX ((1 -βn) -1 ) exp -(1-βn) -1

lim n→∞ cX (( 1 -

 1 αn) -1 ) cX ((1 -βn) -1 ) = 1.Moreover, since |∆X | is asymptotically decreasing,(1-βn) -1

  the desired result is proved.The last result deals with the Hill estimator of the tail index. It is obtained under classical restrictions on the representation[START_REF] Daouia | Extreme M-quantiles as risk measures: From L1 to Lp optimization[END_REF] of the slowly varying function X .

	(H.2) In representation (11), the function cX is constant, the sign of the function
	∆X is asymptotically constant and |∆X | is a regularly varying function of
	index ρ < 0.

When cX is a constant function, the slowly varying function is said to be normalized. As mentioned by Bingham et al.

[START_REF] Bingham | Regular Variation[END_REF] Page 15]

, "we lose nothing by restricting attention to the case of constant c-function in (

11

)". The parameter ρ < 0, called the second-order parameter, tunes the rate of convergence in

[START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF]

.

Lemma 5 Assume that the reference probability measure µ satisfies condition (H.1) and that condition (H.2) holds. If αn and βn are sequences converging to 1 and such that n

  the sign of ∆X is asymptotically constant and |∆X | is regularly varying of index ρ ≤ 0, we have from Bingham et al. [7, Theorem 1.2.1] that

				lim x→∞	∆X (ux) ∆X (x)	= u ρ ,
	uniformly on u in a compact set. Hence,
	lim x→∞	1	t	∆X (ux) ∆X (x)

It remains to prove that for all γX > γ0,

for all ν ∈ Pµ(κ, γ0). Indeed, if [START_REF] Furman | Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks[END_REF] holds, then

Let us use an indirect proof to prove [START_REF] Furman | Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks[END_REF]. Assume that there exists a probability measure ν ∈ Pµ(κ, γ0) such that

(1 -u) -γ 0 dµ(u)

By Jensen's inequality,

(1 -u) -γ 0 dν(u) <

[0,1]

(1 -u) -γ X dν(u)

(1 -u) -γ 0 dν(u) <

[0,1]

(1 -u) -γ 0 dµ(u), which is impossible for a measure ν ∈ Pµ(κ, γ0). Hence

and the proof is complete.

Proof of Proposition 2 -Let us first prove equivalence [START_REF] Beirlant | Practical Analysis of Extreme Values[END_REF]. Let QX be a quantile function in Q (HT) with tail index γX > 0. For all ε > 0 and β ∈ (0, 1), there exists a measure ν

Let us now introduce the set

where the probability measure ν * X is given by ν

If β1 := sup Bε < 1, then for all β > β1 or for all β / ∈ Bε,

and thus, for all β > β1,

Now, if sup Bε = 1, using Lemma 1, for all δ > 0 (with 0 < δ < γ * µ -γX if γX < γ * µ ), there exists β2 ∈ (0, 1) such that for all β ∈ Bε with β > β2,

From Proposition 1,

Let us now show that there exits β3 ∈ (0, 1) such that

where c(κ, γX ) is a positive constant independent of ε.

→ We start with the first term.

• If γX ≤ γ0, one can pick δ such that γX + δ < γ * µ and thus

→ Now, for the second term,

Hence, (21) cannot be true if ν

X,ε ∈ Pµ(κ, γ0) where Pµ(κ, γ0) is the set of probability measures satisfying (3) and (4). As a consequence, if γX > γ * µ , one has

for all β ∈ Bε.

• If γX ≤ γ * µ , we need first to prove the following assertion.

(A) There exist γ ∈ (0, γ * µ ) and β3 ∈ (0, 1) such that, if γX > γ, for all β ∈ Bε with β > β3, the probability measure ν

As a direct consequence of this assertion, if γX ≤ γ * µ , sup

and for all probability measure ν ∈ Pµ(κ, γ0),

Since QX (β) → ∞ as β → 1, there exists β6 ∈ (0, 1) such that QX (β) > 2. Hence,

and thus necessarily, ν

X,ε = µ. Assertion (A) is then proved.

Gathering ( 25) to [START_REF] Read | Reliability, return periods, and risk under nonstationarity[END_REF] entails that (24) holds with

(1 -u) -[(γ X +δ)∧γ 0 ] dµ(u)

[(γ X +δ)∨γ 0 ]/γ 0 .

Note that as expected, c(κ, γX ) does not depend on ε. Moreover when κ and/or γX increase, so does c(κ, γX ).

For all β ∈ Bε with β > β3, inequalities ( 21) and ( 23) and the fact that

From ( 22) and ( 29), we finally get that for all ε > 0 and for β > β3

with

Since from Lemma 4, one has for β close enough to 1,

and thus, from [START_REF] Rockafellar | Conditional Value-at-Risk for general loss distributions[END_REF],

which entails equivalence [START_REF] Beirlant | Practical Analysis of Extreme Values[END_REF].

Let us now focus on equivalence [START_REF] Bellini | Risk management with expectiles[END_REF]. From Lemma 4, we have for all quantile functions QX ∈ Q (HT) with tail index γX ∈ (0, γ0],

The first part of ( 6) is then a direct consequence of [START_REF] Beirlant | Practical Analysis of Extreme Values[END_REF]. If γX > γ0, from (5) we have

(1 -u) -γ 0 dµ(u)

From (1), we obtain

and the proof is complete.

Proof of Proposition 3 -Under (7), the sum X1 + X2 is such that QX 1 +X 2 ∈ Q (HT) with tail index γ2 ≤ γ0 (see for instance Davis and Resnick [13, Lemma 2.1]).

Hence, as β → 1, we have from Lemma 4

QX 2 dµ β .

The conclusion follows with another use of Lemma 4.

Proof of Proposition 4 -Let us first introduce the function Φµ,γ 0 : (0, ∞) → (0, ∞), defined for all γ > 0 by

We thus have n,βn (QX | µ, γ0) = X nβn :n Ψµ,γ 0 ( γn,X ).

Using the asymptotic equivalence obtained in Proposition 2, it suffices to prove that From the representation of uniform order statistics (see David [START_REF] David | Order Statistics[END_REF] and Reiss [START_REF] Reiss | Approximation Theorems of Order Statistics[END_REF]),