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Abstract

The assessment of risk for heavy-tailed distributions is a crucial question in

various fields of application. An important family of risk measures is provided by

the class of distortion risk (DR) measures which encompasses the Value-at-Risk

and the Tail-Value-at-Risk measures. The Tail-Value-at-Risk is a coherent risk

measure (which is not the case for the Value-at-Risk) but it is defined only for

integrable quantile functions that is to say for heavy-tailed distributions with a tail

index smaller than 1. Moreover, it is a matter of fact that the performance of the

empirical estimator is strongly deteriorated when the tail index becomes close to 1.

The main contribution of this work is the introduction and the estimation of a new

risk measure which is defined for all heavy-tailed distributions and which is tail-

equivalent to a coherent DR measure when the tail of the underlying distribution

is not too heavy. Its finite sample performance is discussed on a fire claims dataset.

Keywords: Risk measure; heavy-tailed distribution; extreme value theory; finite

sample.

1 Introduction

Nowadays, a crucial question for many companies is to assess the risk of a given

phenomenon. For a financial analyst, the phenomenon of interest can be the poten-

tial loss of a portfolio (see, e.g., Rockafellar and Uryasev [30]). An accurate control

of the risk associated to extreme weather events such as hurricane, heat wave, flash

1



flood among many others is of course essential for insurance companies (see for

instance Brazauskas et al. [8] and Read and Vogel [28]). From a mathematical

point of view, the phenomenon of interest is represented by a real-valued random

variable. For the underlying distribution, heavy-tailed models are often considered

due to their ability to model extremal events. Such models will be the focus of this

paper. Among the literature devoted to the measure of risk for heavy-tailed distri-

butions, one can cite the works of Gardes et al. [21] on Lp quantiles, Bellini and

Di Bernardino [6] and Daouia et al. [10] on extreme expectiles, Daouia et al. [11]

on extreme M-quantiles and Daouia et al. [9] on extremiles. Before presenting the

motivation and the contribution of this work, we give some generalities about risk

measures.

Generalities about risk measures Let X be a set of random variables de-

fined on an atomless probability space (Ω,A,P). According to Artzner et al. [3], a

monetary risk measure is a mapping from X to R which is monotone, translation

invariant and homogeneous. In what follows, the term “monetary” is omitted. An-

other desirable property for a risk measure is to be law-invariant, i.e., same value of

the risk measure is given for two random variables sharing the same distribution.

As pointed out in the monograph of Rüschendorf [31, Remark 7.1.c)], for an atom-

less probability space, a law-invariant risk measure can be considered as a mapping

on the set Q := {QX | X ∈ X} of quantiles functions defined for all β ∈ [0, 1]

by QX(β) := inf {x ∈ SX | P(X ≤ x) ≥ β} with the convention inf(∅) = +∞ and

where SX is the support of the random variable X. From now on, only law-

invariant risk measure % : Q → R are considered. The mapping % is monotone (if

QX1(u) ≥ QX2(u) for all u ∈ [0, 1] then %(QX1) ≥ %(QX2)), translation-invariant

and homogeneous (for all m ∈ R and λ > 0, %(λQX +m) = λ%(QX) +m).

An important class of risk measure is provided by the set of distortion risk (DR)

measures introduced by Wang [32]. A DR measure with distortion probability mea-

sure µ : B([0, 1]) → [0, 1], where B([0, 1]) is the Borel set on [0, 1], is the mapping

QX ∈ Q 7→
∫
[0,1]

QXdµ ∈ R if the integral exists. This class encompasses several

popular risk measures. When µ is the Dirac measure δβ centered at β ∈ (0, 1),

the DR measure is the Value-at-Risk of level β ∈ (0, 1) given for QX ∈ Q by

VaRβ(QX) = QX(β). The Tail-Value-at-Risk of level β ∈ (0, 1) defined for in-
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stance in Kaas et al. [24, Definition 5.6.6] for all integrable quantile function QX by

TVaRβ(QX) :=
1

1− β

∫ 1

β

QX(u)du,

is also a DR measure obtained by taking for µ the uniform distribution on [β, 1].

One drawback of the Tail-Value-at-Risk is to be defined only for integrable quantile

functions while no integrability condition is required fo the Value-at-Risk. On the

other hand, as mentioned for instance by Artzner et al. [3], the Value-at-Risk is not

a coherent risk measure since it is not sub-additive. A measure % is said to be sub-

additive if %(QX1+X2) ≤ %(QX1)+%(QX2). Sub-additivity is a desirable property of

risk measures especially in finance where the risk of a diversified portfolio is expected

to be smaller than the sum of the individual risks (see for instance Artzner [2]). Note

that a DR measure is coherent if and only if its distortion probability measure µ is

convex (i.e., x 7→ µ([0, x]) is convex, see Acerbi [1] and Yaari [34]). The Tail-Value-

at-Risk is thus a coherent measure.

Motivation and contribution In this work, we focus on heavy-tailed models,

i.e., we assume that for all X ∈ X , there exists γX > 0 such that for all t > 0, the

associated quantile function QX satisfies

lim
u→1

QX(1− t(1− u))

QX(u)
= t−γX . (1)

The parameter γX is referred to as the tail index. It controls the heaviness of

the tail distribution of X: larger the tail index, heavier the tail. Overviews on

heavy-tail distributions can be found in the monographs of Beirlant et al. [4] and

de Haan and Ferreira [22]. Measuring the risk for heavy-tailed distributions can

be a difficult task. Indeed, for a given convex distortion probability measure µ,

it is common to observe that the corresponding DR measure is defined only when

the tail index γX is smaller than some positive value. Moreover, as pointed out by

El Methni and Stupfler [17, Section 3.1], the variability of the empirical estimator

of the DR measure drastically increases as γX gets large. This is due to the fact

that a large variability in the tail is observed when the tail index increases. As a

consequence, coherent DR measures (such as the Tail-Value-at-Risk) are not well

adapted to measure the risk in applications where large tail indices can be encoun-

tered (e.g., in finance, see for instance Moscadelli [26] and Neslehova et al. [27]).

3



Of course, for very heavy-tailed distributions, the simplest idea is to measure the

risk with the Value-at-Risk. This is clearly not a fully satisfactory solution since

the Value-at-Risk is not sub-additive. Ideally, we would like to find a coherent

risk measure taking finite values on the class of heavy-tailed distributions but, as

mentioned by Delbaen [14], ‘there is not immediate solution for this problem’, and,

to our knowledge, there is indeed no solution yet.

The objective of this paper is to take a step towards the solution by introducing

and estimating a new risk measure that realizes a good compromise between a

coherent DR measure and a finite risk measure on the class of heavy-tailed distri-

butions. More specifically, for a given convex distortion probability measure µ, the

risk measure proposed in this paper is an infimum over a class of DR measures,

this class being chosen in such a way that the obtained risk measure is finite for

all heavy-tailed distributions and tail-equivalent to the DR measure with distortion

probability measure µ, provided that the tail index is smaller than a pre-specified

positive value. In this situation, the new measure is also shown to be sub-additive

in the tail of the distribution.

Moreover, when we focus on the tail of the distribution, the proposed risk measure

can be easily estimated by taking advantage of its tail-equivalent. In a real dataset

study, it is shown that, when the tail index becomes large, this estimator is less

sensitive to the sample fluctuations than the empirical counterpart of the DR mea-

sure.

The paper is organized as follows. The new risk measure is introduced and com-

mented in Section 2. Its asymptotic properties are established in Section 3 and its

estimation is considered in Section 4. An application to an insurance dataset (fire

claims of a Norwegian insurance company) is also discussed in Section 5. All the

proofs are gathered in Section 6.

2 A new risk measure for heavy-tailed distri-

butions

As already mentioned, this paper focus on heavy-tailed distributions. We denote by

Q(HT ) the set of heavy-tailed quantile functions QX , i.e, satisfying (1), which are

continuous, strictly increasing and with a finite left endpoint (QX(0) = cX ∈ R).
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For all probability measures ν defined on B([0, 1]), we denote by νβ with β ∈ [0, 1),

the push-forward measure under the transformation Tβ : [0, 1] → [β, 1] defined by

Tβ(x) = (1− β)x+ β. The new risk measure depends on a probability measure µ,

called the reference probability measure. From now on, we assume that µ is convex

and that

γ∗µ := sup

{
γ > 0

∣∣∣∣∣
∫
[0,1]

(1− u)−γdµ(u) <∞

}
> 0.

It is shown in Lemma 2 that when γX < γ∗µ the quantile function QX ∈ Q(HT ) is

integrable with respect to µβ while if γX > γ∗µ,

∫
[0,1]

|QX |dµβ =∞.

For instance, when µ is the uniform distribution, γ∗µ = 1 (see, e.g., de Haan and

Ferreira [22, Exercice 1.16]). When µ = δb with b ∈ [0, 1) then γ∗µ = +∞.

We propose to measure the risk of a quantile function QX ∈ Q(HT ) by

%β(QX | Pµ(κ, γ0)) := inf

{∫
[0,1]

QXdνβ

∣∣∣∣∣ ν ∈ Pµ(κ, γ0)

}
, (2)

where, for some κ ∈ [1,∞) and γ0 ∈ (0, γ∗µ), the set Pµ(κ, γ0) is the class of proba-

bility measures containing the reference probability measure µ and all probability

measures ν such that

∫
[0,1]

(1− u)−γdν(u) ≥
∫
[0,1]

(1− u)−γdµ(u) for all γ ∈ (0, γ0], (3)

and (∫
[0,1]

(1− u)−γdν(u)

)γ0/γ
≤ κ

∫
[0,1]

(1− u)−γ0dµ(u) for all γ > 0. (4)

Comments on the definition of the risk measure

1) First note that for all ν ∈ Pµ(κ, γ0),

∫
[0,1]

QXdνβ =

∫
[0,1]

QX,βdν,

where QX,β(·) := QX((1− β) ·+β) ∈ Q(HT ) is the conditional quantile of X given

that X > QX(β). As a consequence, the risk measure %β(· | Pµ(κ, γ0)) gives

emphasis to the right tail of the distribution when its level β is close to 1
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2) For all κ ∈ [1,∞) and γ0 ∈ (0, γ∗µ), the Dirac measure δb(µ,γ0) with

b(µ, γ0) := 1−

(∫
[0,1]

(1− u)−γ0dµ(u)

)−1/γ0

,

belongs to the class Pµ(κ, γ0) (see Lemma 3). This entails in particular that the

risk measure (2) is bounded for all QX ∈ Q(HT ). Indeed, since QX(0) = cX , it is

readily seen that %β(QX | Pµ(κ, γ0)) ≥ cX . Moreover, since 0 < γ0 < γ∗µ, one has

b(µ, γ0) ∈ [0, 1) and thus QX,β (b(µ, γ0)) <∞ leading to

%β(QX | Pµ(κ, γ0)) ≤
∫
[0,1]

QX,βdδb(µ,γ0) = QX,β (b(µ, γ0)) <∞.

3) The mapping %β(· | Pµ(κ, γ0)) is a proper risk measure. The monotonicity is

guaranteed by the monotonicity of the integral and for all λ > 0 and m ∈ R,

%β(λ ·+m | Pµ(κ, γ0)) = λ%β(· | Pµ(κ, γ0)) +m.

4) The choice of the set Pµ(κ, γ0) can be motivated by looking at the class

of strict Pareto distributions. If QX is a strict Pareto quantile function, i.e., if

there exist γX > 0, λX > 0 and mX ∈ R such that QX(u) = λX(1− u)−γX +mX ,

for all u ∈ [0, 1], then, when γX ≤ γ0, condition (3) is equivalent to say that

∫
[0,1]

QXdµ ≤
∫
[0,1]

QXdν for all ν ∈ Pµ(κ, γ0).

As a consequence, when γX ≤ γ0, the new measure %β (QX | Pµ(κ, γ0)) is equal

to the DR measure with distortion probability measure µβ . More precisely, the

explicit expression of the risk measure (2) for strict Pareto distributions is given in

the next result.

Proposition 1 For all κ ∈ [1,∞) and γ0 ∈ (0, γ∗µ), if QX is a strict Pareto quantile

function, then, if γX ≤ γ0,

%β (QX | Pµ(κ, γ0)) =

∫
[0,1]

QXdµβ

and, if γX > γ0,

%β (QX | Pµ(κ, γ0)) =

∫
[0,1]

QX,βdδb(µ,γ0) = QX (β + (1− β)b(µ, γ0)) .
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For the set of strict Pareto quantile functions, which is included in Q(HT ), the

new measure given in (2) achieves the objective announced in the introduction: it

coincides with the DR measure with distortion probability measure µ provided that

γX ≤ γ0. When γX > γ0, the new measure switch continuously to the Value-at-Risk

of level β + (1 − β)b(µ, γ0). Let us emphasis again that the transition is designed

in such a way that %β (· | Pµ(κ, γ0)) is a proper risk measure on the set of strict

Pareto distributions. In particular, when µ is the uniform distribution on [0, 1], the

risk measure %β(· | Pµ(κ, γ0)) coincides, on the class of strict Pareto distributions,

with the Tail-Value-at-Risk of level β if γX ≤ γ0 and with the Value-at-Risk of level

1− (1− β)(1− γ0)1/γ0 otherwise.

Let us emphasis that Proposition 1 remains true if condition (4) in the definition of

the set of probability measures Pµ(κ, γ0) is replaced by the less restrictive condition

∫
[0,1]

(1− u)−γdµ(u) <∞ for all γ > 0.

In particular, the value of the risk measure for strict Pareto distributions does

not depend on κ. However, condition (4) will be necessary in the next section to

prove that Proposition 1 is asymptotically true (as β → 1) for the set Q(HT ) of

heavy-tailed quantile functions. Finally, note that Proposition 1 can be rewritten

%β(QX | Pµ(κ, γ0)) =

∫
[0,1]

QXdν
∗
X ,

where ν∗X = µ if γX ≤ γ0 and ν∗X = δb(µ,γ0) if γX > γ0. The new risk measure (2)

is thus not a DR measure since the probability measure depends on the underlying

distribution.

5) The size of the set of strict Pareto distributions for which the tail risk

measure (2) is equal to the DR measure is controlled by the parameter γ0. A large

set is obtain when γ0 is close to γ∗µ, but, as already pointed out, the performance

of the empirical counterpart of a DR measure is badly affected by values of γX

close to γ∗µ. A choice of a reasonable value of γ0 is proposed in the real data study.

7



3 Asymptotic properties of the risk measure

This section is devoted to the asymptotic properties (as the level β goes to 1) of

the new risk measure presented above. The first result is an asymptotic version of

Proposition 1 when β → 1. It will be very useful to propose an estimator of the

risk measure when the level β = βn goes to 1 as the sample size n increases, see

Section 4. The following condition on the reference probability measure is required.

(H.1) The reference probability measure µ is such that the function

γ ∈ (0, γ∗µ) 7→
∫
[0,1]

(1− u)−γdµ(u),

is continuous.

Note that if µ is the uniform distribution on [0, 1], condition (H.1) holds since for

all γ ∈ (0, 1),
∫
[0,1]

(1− u)−γdµ(u) = 1/(1− γ).

Proposition 2 Let QX ∈ Q(HT) with tail index γX > 0. If µ satisfies condi-

tion (H.1) then for all κ ∈ [1,∞) and γ0 ∈ (0, γ∗µ),

lim
β→1

%β (QX | Pµ(κ, γ0))

QX(β)
=

[∫
[0,1]

(1− u)−(γX∧γ0)dµ(u)

](γX∨γ0)/γ0
. (5)

Moreover, as β → 1,

%β (QX | Pµ(κ, γ0)) ∼


∫
[0,1]

QXdµβ if γX ≤ γ0,

QX (β + (1− β)b(µ, γ0)) if γX > γ0.
(6)

Roughly speaking, these equivalences are a consequence of Proposition 1 together

with the fact that for a quantile function QX ∈ Q(HT) with tail index γX > 0, one

has for all u ∈ (0, 1) that QX,β(u)/QX(β)→ (1− u)−γX as β → 1.

It is worth noting that the asymptotic equivalents do not depend on κ. In fact,

only the rate of convergence is influenced by the choice of κ; the larger the value

of κ, the slower the convergence. The rate of convergence is also badly influenced

by a large value of γX . More specifically, we can show that for all ε > 0, there exits

β(ε) ∈ (0, 1) such that for all β ≥ β(ε) and QX ∈ Q(HT),∣∣∣∣∣∣%β (QX |Pµ(κ, γ0) )

QX(β)
−

[∫
[0,1]

(1− u)−(γX∧γ0)dµ(u)

](γX∨γ0)/γ0 ∣∣∣∣∣∣ ≤ 2εg(κ, γX),
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where g(κ, γX) increases as κ and/or γX increases. The expression of g(κ, γX) is

given in the proof of Proposition 2.

In the next result, we show that the risk measure %β(· | Pµ(κ, γ0)) is tail-sub-

additive.

Proposition 3 Assume that condition (H.1) holds for µ. Let X1 and X2 be two

random variables such that QX1 and QX2 belong to the set Q(HT) with respective

tail index γ1 and γ2. If 0 < γ1 ≤ γ2 ≤ γ0 and if

lim
x→∞

P(X1 > x,X2 > x)

P(X2 > x)
= 0, (7)

then for all κ ∈ [1,∞) and ε > 0, there exists τ0 ∈ (0, 1) such that for all β > 1−τ0,

%β (QX1+X2 | Pµ(κ, γ0))

≤
[
%β (QX1 | Pµ(κ, γ0)) + %β (QX2 | Pµ(κ, γ0))

]
(1 + ε).

Condition (7) is a so-called asymptotic dependence condition. It ensures that

when X1 and X2 are heavy-tailed, the sum X1 + X2 is also heavy-tailed with tail

index γ1 ∨ γ2 (see e.g., Davis and Resnick [13, Lemma 2.1]).

As a conclusion, Propositions 2 and 3 ensure that the new risk measure

achieves the objectif we have laid out in the introduction. The new risk mea-

sure (2) can thus be seen as a good alternative between a coherent DR measure

but subject to an integrability condition and the Value-at-Risk which is not a

coherent risk measure (but defined everywhere).

4 Estimation

In practice, the distribution of the random variable of interest X is unknown. The

available information is contained in a realization of a sample X1, · · · , Xn of n

independent replications of X. Throughout this section, the quantile function QX

is taken in the set Q(HT).

To implement the risk measure introduced above, we are looking for an estimator
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of %βn(QX | Pµ(κ, γ0)) where βn is a sequence converging to 1 as the sample size

increases and µ is a given reference probability measure. Two situations for the

rate of convergence of βn to 1 are considered:

i) the intermediate case where βn → 1 and n(1− βn)→∞ as n→∞,

ii) the extreme case where n(1− βn)→ b ∈ (0,∞) as n→∞.

In the first scenario, the quantile QX(βn) can be consistently estimated by its

empirical counterpart Q̂n,X(βn) = Xdnβne:n where d·e is the ceiling function and

X1:n ≤ · · · ≤ Xn:n are the observations arranged in ascending order (see for instance

de Haan and Ferreira [22, Theorem 2.4.1]). As a consequence, we will show hereafter

that a consistent estimator of %βn(QX | Pµ(κ, γ0)) can be obtained directly from

the equivalence (5) in Proposition 2.

The second scenario is more challenging since QX(βn) cannot be estimated by an

order statistic. We thus have to extrapolate the intermediate estimator proposed

in the first scenario to an extreme level.

Estimation in the intermediate case We take advantage of the asymptotic

equivalence (5) obtained in Proposition 2 to propose the following estimator

%̂n,βn(QX | µ, γ0) := Xdnβne:n

(∫
[0,1]

(1− u)−(γ̂n,X∧γ0)dµ(u)

)(γ̂n,X∨γ0)/γ0

, (8)

where γ̂n,X is any estimator of γX that converges in probability to γX (in short

γ̂n,X
P→ γX). Consistency of (8) is established in the next result.

Proposition 4 Assume that the reference probability measure µ satisfies condi-

tion (H.1). If βn → 1 and n(1− βn)→∞ then for all κ ∈ [1,∞), γ0 ∈ (0, γ∗µ) and

for any estimator γ̂n,X
P→ γX ,

%̂n,βn(QX | µ, γ0)

%βn (QX |Pµ(κ, γ0) )

P→ 1.

As expected, the consistency holds for all γX > 0. Let us pay particular attention

to the interesting situation where the reference probability measure µ is the uniform
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distribution. In this case, estimator (8) is given by

%̂n,βn(QX | µ, γ0) =

 Xdnβne:n/[1− γ̂n,X ] if γX ∈ (0, γ0],

Xdnβne:n/[1− γ0]γ̂n,X if γX > γ0.

When γX ≤ γ0, the new estimator coincides with the estimator of the Tail-Value-

at-Risk of level βn studied in Gardes et al. [21, Section 4.2] where its asymptotic

normality has been established under the condition γX < 1/2. It is worth pointing

out that when γX < 1 is close to 1, the tail index estimator γ̂n,X is also expected

to be close to 1 (or even larger!). As a consequence, a small variation in the

value of γ̂n,X leads to an important change in the value of the Tail-Value-at-Risk

estimator Xdnβne:n/[1 − γ̂n,X ]. This is no longer the case for the new estimator

since when γX > γ0, it switches to a more stable estimator of the Value-at-Risk of

level βn + (1− βn)[1− (1− γ0)1/γ0 ]. This point is illustrated in Section 5 where a

choice of γ0 is proposed.

A natural estimator of the tail index γX is the Hill estimator, see Hill [23], defined

for a sequence kn ∈ {1, · · · , n} by

γ̂
(H)
n,X(kn) :=

1

kn

kn∑
i=1

log
Xn−i+1:n

Xn:n
.

The convergence in probability of the Hill estimator is established for instance

in de Haan and Ferreira [22, Theorem 3.2.2] under the condition that kn → ∞

and n/kn → ∞. As a consequence, the estimator %̂
(H)

n,βn
(QX | µ, γ0) obtained

by using γ̂
(H)
n,X(kn) with kn = nd1 − βne as a tail index estimator is a relative

consistent estimator of the risk measure %βn (QX |Pµ(κ, γ0) ).

To determinate the rate of convergence in Proposition 4 or to establish the asymp-

totic normality of (8), we need in particular to establish the rate of convergence in

Proposition 2 which is a difficult task. This question is not addressed in this paper.

Estimation in the extreme case − Of course when n(1 − βn) → b ≥ 0,

there is no hope for (8) to be a consistent estimator since Xdnβne:n/QX(βn) does

not converge in probability to 1. We thus need to extrapolate the estimate at an

intermediate level αn to the extreme level βn. The extrapolation procedure is based
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on the approximation

%βn (QX |Pµ(κ, γ0) )

%αn (QX |Pµ(κ, γ0) )
≈
(

1− αn
1− βn

)γX
.

This approximation is a direct consequence of the definition (1) of heavy-tailed

quantile functions. A similar idea was used by Weissman [33] for the estimation of

extreme quantiles. Consequently, for an extreme level βn, we propose the extrapo-

lated estimator

%̂
(W)

n,βn
(QX | µ, γ0, αn) := %̂n,αn(QX | µ, γ0)

(
1− αn
1− βn

)γ̂n,X
, (9)

where γ̂n,X is a consistent estimator of γX and αn is an intermediate sequence

(i.e., αn → 1 and n(1 − αn) → ∞). Before establishing the consistency of (9), let

us mention that (1) is equivalent to say that QX(u) = (1 − u)−γX `X((1 − u)−1)

where `X is a slowly varying function at infinity, i.e., for all t > 0,

lim
x→∞

`X(tx)

`X(x)
= 1. (10)

It is well known (see for instance Bingham et al. [7, Theorem 1.3.1]) that a slowly

varying function can be represented for all x > 1 as,

`X(x) = cX(x) exp

(∫ x

1

∆X(t)

t
dt

)
, (11)

where cX(x) → c ≥ 0 as x → ∞ and ∆X(t) → 0 as t → ∞. The function ∆X

controls the rate of convergence in (10). The consistency of (9) is established in the

next result.

Proposition 5 Assume that the reference probability measure µ satisfies condi-

tion (H.1) and that |∆X | is asymptotically decreasing. Let αn and βn be sequences

converging to 1 and such that n(1− αn)→∞, n(1− βn)→ b ≥ 0 and

lim
n→∞

ln

(
1− αn
1− βn

) ∣∣∣∣∆X

(
1

1− αn

)∣∣∣∣ = 0. (12)

If the estimator γ̂n,X satisfies the condition

ln

(
1− αn
1− βn

)
(γ̂n,X − γX)

P→ 0, (13)
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then for all κ ∈ [1,∞) and γ0 ∈ (0, γ∗µ),

%̂
(W)

n,βn
(QX | µ, γ0, αn)

%βn (QX |Pµ(κ, γ0) )

P→ 1.

Note that conditions (12) and (13) are required to ensure that the Weissman esti-

mator

Xdnαne:n

(
1− αn
1− βn

)γ̂n,X
,

is a relative consistent estimator of the extreme quantile QX(βn).

When the reference probability measure µ is the uniform distribution, the

extrapolated estimator (9) coincides, when γX ≤ γ0, to the so-called indirect

extrapolated estimator of the Tail-Value-at-Risk proposed in Gardes et al. [21].

The latter is equivalent in probability to the Tail-Value-at-Risk when γX < 1 and

asymptotically Gaussian when γX < 1/2. Again, (9) is expected to be more stable

than the indirect extrapolated estimator of Gardes et al. [21] when the tail index

γX < 1 is close to 1.

Let us finally take a look to the particular case where the Hill estimator is used

for the estimation of the tail index. It can be shown (see Lemma 5) that under

additional technical conditions, the Hill estimator γ̂
(H)
n,X(kn) with kn = dn(1− αn)e

satisfies (13) and thus can be used in (9) as an estimator of the tail index leading

to a relative consistent estimator %̂
(W,H)

n,βn
(QX | µ, γ0, αn) of %βn(QX | Pµ(κ, γ0)).

5 Real data study

We illustrate the estimation procedure on a fire insurance dataset studied by

Beirlant et al. [5]. This dataset provides the sizes of 9181 fire insurance

claims for a Norwegian insurance company for the period 1972 to 1992. These

claim sizes are corrected for inflation using the Norwegian CPI and are ex-

pressed in thousands Norwegian Krone (NKR). The dataset is available for in-

stance in the R package CASdatasets that can be downloaded at the address

http://dutangc.perso.math.cnrs.fr/RRepository/pub/.

For the period 1985 to 1992, the annual numbers of claim sizes are similar. We

13



thus focus on this period for this study. For each year j ∈ {1985, · · · , 1992}, we

denote by x
(j)
1 , · · · , x(j)nj the observed nj fire losses. As in Gardes and Girard [20],

it is assumed that these observations are realizations of a sample X
(j)
1 , · · · , X(j)

nj

of nj independent copies of a heavy-tailed random variable X(j).

Our goal is to compare the annual risks of the fire losses over the consid-

ered period. More specifically, for each year j, we estimate the risk measure

%β (QX(j) | Pµ(κ, γ0)) when µ is the uniform probability measure. For the level β,

we take the value 1−1/ñ where ñ = 637.5 is the median of the set {n1985, · · · , n1992}.

When the sample size nj is lower than ñ, the level β can be considered as ex-

treme since nj(1 − β) = nj/ñ < 1. This is the case for the years 1985, 1990,

1991 and 1992. For each year j, we thus chose to use the extrapolated estimator

%̂
(W,H)

nj ,β
(QX(j) | µ, γ0, αnj ). Its expression is given by

(
1− αnj
1− β

)γ̂(H)
j

X
(j)

dnαnj e:nj

(
1

1− γ̂(H)
j ∧ γ0

)(γ̂
(H)
j ∨γ0)/γ0

, (14)

where αnj = 1 − ln2(nj)/(2nj) and γ̂
(H)
j := γ̂

(H)

nj ,X
(j)(kn,j) is the Hill estimator

computed with knj = dnj(1−αnj )e order statistics. For the parameter γ0, we take

the value 1/2. This choice is motivated by the fact that the second moment of a

heavy-tailed distribution exits as soon as the tail index is lower than 1/2. The risk

measure (14) is then asymptotically equivalent (as β → 1) to the Tail-Value-at-Risk

only in this situation. This limitation was suggested by Gardes et al. [21] in order

to obtain a stable estimation of the Tail-Value-at-Risk. In Figure 1, we represent

for each year j the value of the Hill estimator γ̂
(H)
j together with its asymptotic

confidence interval of level 0.95 given by

[
γ̂
(H)
j

(
1− k−1/2

n u0.975

)
; γ̂

(H)
j

(
1− k−1/2

n u0.025

)]
, (15)

where uα is the quantile of order α of a standard normal distribution. This asymp-

totic confidence interval is constructed on the base of the asymptotic normality of

the Hill estimator (see de Haan and Ferreira [22, Theorem 3.2.5]).

14



Figure 1: For each year j ∈ {1985, · · · , 1992}, the point o represents the value of the Hill
estimator and the vertical full line its confidence interval of level 0.95. The horizontal
line is the critical value γ∗µ = 1.
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It appears that for the years 1985, 1986 and 1988, the critical value γ∗µ = 1 is con-

tained in the asymptotic confidence interval (15). Consequently, since the quantile

function QX is not integrable when γX > 1, we can reasonably have some doubt

about the existence of the Tail-Value-at-Risk for these years. In the left panel of

Figure 2, the values of the extrapolated tail risk measure estimator (14) are de-

picted for each year j. The interval of variation of the estimator when the tail

index estimator varies in the confidence interval (15) is also represented. The lower

(resp. upper) bound of this interval of variation is thus the estimator (14) where

the Hill estimator is replaced by the lower (resp. upper) bound of the confidence

interval (15). Same thing is done in the right panel with the indirect extrapolated

estimator of the Tail-Value-at-Risk introduced in Gardes et al. [21] and given by

(
1− αnj
1− β

)γ̂(H)
j X

(j)

dnjαnj e:nj

1− γ̂(H)
j

. (16)
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Figure 2: Left panel: for each year j ∈ {1985, · · · , 1992}, value of the estimator (14)
together with its interval of variation when the Hill estimator varies in the confidence
interval (15). Right panel: idem with the Tail-Value-at-Risk estimator (16).

o o

o

o

o

o o

o

1985 1986 1987 1988 1989 1990 1991 1992

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

year

T
a

il−
ri

s
k
 m

e
a

s
u

re

o

o

o

o

o

o
o

o

1985 1986 1987 1988 1989 1990 1991 1992

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

year

T
a

il−
ri

s
k
 m

e
a

s
u

re

This estimator is not valid when the tail index is larger than 1. As a consequence,

for the years 1985, 1986 and 1988, the upper bound of the interval of variation

is infinite since for these years, the right bound of the confidence interval (15) is

larger than 1. As expected, the estimator (14) is less sensitive to the variations of

the tail index estimator. For the period 1989 to 1992, the estimators (14) and (16)

are similar since for these years, the tail index is not too large. At the opposite, for

the years 1985, 1986 and 1988, the range of variation of the indirect extrapolated

estimator (16) is important which is not surprising since the estimation of the tail

index is close to 1.

Conclusion

The main contribution of this work is the introduction and the estimation of a new

risk measure dedicated to heavy-tailed distributions. Contrary to the Tail-Value-at-

Risk, it presents the advantage to be defined whatever the value of the tail index. It

is preferred to use the new risk measure instead of the classical Value-at-Risk since,

for reasonable values of the tail index, it is shown to be equivalent to a coherent

DR measure. From a finite sample point of view, when the tail index is large,
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the proposed estimator is less sensitive to sample fluctuations than the empirical

counterpart of a coherent DR measure. For these reasons, the risk measure proposed

in this paper seems to be a good alternative to the use of Value-at-Risk for very

heavy-tailed distributions.

6 Proofs

In this section, we use the following standard notation in extreme value theory: UX

is the function defined for all x ≥ 1 by UX(x) = QX(1− 1/x). When QX ∈ Q(HT ),

the function UX is regularly varying with index γX that is to say that for all t > 0,

lim
x→∞

UX(tx)

UX(x)
= tγX .

In particular, we have the following result (proved for instance in de Haan and

Ferreira [22, Proposition B.1.10]) which will be used several times in this section.

Lemma 1 For u ∈ (0, 1) and β ∈ (0, 1), let

RX(u, β) :=
UX((1− β)−1(1− u)−1)

UX((1− β)−1)
− (1− u)−γX . (17)

For all ε > 0 and δ > 0, there exists τ0 = τ0(ε, δ) ∈ (0, 1) such that for all

QX ∈ Q(HT) and β > 1− τ0 one has |RX(u, β)| ≤ ε(1− u)−(γX+δ).

6.1 Preliminary results

We first show that QX ∈ Q(HT) is integrable with respect to µ if its tail index γX

is lower than γ∗µ.

Lemma 2 For all quantile functions QX ∈ Q(HT) with tail index γX > 0 one has
∫
[0,1]
|QX |dµβ <∞ if γX ∈ (0, γ∗µ),∫

[0,1]
|QX |dµβ =∞ if γX > γ∗µ.

Proof − Without loss of generality, we assume that QX(u) ≥ 0 for all u ∈ [0, 1]

(add cX if it is not the case). We thus have QX,β(u) ≥ 0 for all u ∈ [0, 1]. It thus

suffices to work with the integral

∫
[0,1]

QXdµβ =

∫
[0,1]

QX,βdµ.

17



First assume that γX ∈ (0, γ∗µ). For all x ≥ 1, we have

∫
[0,1]

QXdµβ = QX(β)

∫
[0,1]

UX((1− β)−1(1− u)−1)

UX((1− β)−1)
dµ(u).

Hence,

∫
[0,1]

QXdµβ ≤ QX(β)

[∫
[0,1]

(1− u)−γXdµ(u) +

∫
[0,1]

|RX(u, β)|dµ(u)

]
,

where RX(u, β) is defined in Lemma 1, equation (17). Taking δ = (γ∗µ − γ)/2 > 0

in Lemma 1, for all ε > 0, there exists τ0 ∈ (0, 1) such that for β > 1− τ0,

∫
[0,1]

QXdµβ < QX(β)

[∫
[0,1]

(1− u)−γXdµ(u) + ε

∫
[0,1]

(1− u)−(γX+δ)dµ(u)

]
.

We conclude the first part of the proof by remarking that

∫
[0,1]

(1− u)−(γX+δ)dµ <∞,

since γX + δ < γ∗µ.

Now assume that γX > γ∗µ. We start with

∫
[0,1]

QXdµβ =

∫
[0,1]

UX((1− β)−1(1− u)−1)

UX((1− β)−1)
dµ(u).

Using Potter’s bounds (see for instance de Haan and Ferreira [22, eq. (B.1.19)]) for

δ < γX − γ∗µ, there exists β0 such that for all β > β0 and u ∈ (0, 1),

1

2
(1− u)−(γX−δ) ≤ UX((1− β)−1(1− u)−1)

UX((1− β)−1)
.

Hence, ∫
[0,1]

QXdµβ ≥
1

2

∫
[0,1]

(1− u)−(γX−δ)dµ(u),

which is infinite since γX − δ > γ∗µ.

Lemma 3 For all κ ∈ [1,∞) and γ0 ∈ (0, γ∗µ), the Dirac measure δb(µ,γ0) belongs

to the set Pµ(κ, γ0).

18



Proof − When γ ≤ γ0, an application of the Jensen’s inequality leads to

1−

(∫
[0,1]

(1− u)−γdµ(u)

)−1/γ

≤ b(µ, γ0).

As a consequence, for all γ ∈ (0, γ0],

∫
[0,1]

(1− u)−γdµ(u) ≤ (1− b(µ, γ0))−γ =

∫
[0,1]

(1− u)−γdδb(µ,γ0)(u),

and condition (3) holds. Moreover, for all γ > 0,

∫
[0,1]

(1− u)−γdδb(µ,γ0)(u) =

(∫
[0,1]

(1− u)−γ0dµ(u)

)γ/γ0
.

Condition (4) is thus satisfied with κ = 1 and thus for all κ ∈ [1,∞) ensuring that

δb(µ,γ0) ∈ Pµ(κ, γ0).

In the next result, an asymptotic equivalent, as β → 1, of the DR measure

∫
[0,1]

QXdµβ ,

is given.

Lemma 4 For all probability measure µ such that γ∗µ > 0 and all quantile functions

QX ∈ Q(HT) with tail index γX ∈ (0, γ∗µ)

lim
β→1

∫
[0,1]

QX(u)

QX(β)
dµβ(u) =

∫
[0,1]

(1− u)−γXdµ(u).

Proof − We have

∫
[0,1]

QX(u)

QX(β)
dµβ(u) =

∫
[0,1]

QX,β(u)

QX(β)
dµ(u)

=

∫
[0,1]

UX((1− β)−1(1− u)−1)

UX((1− β)−1)
dµ(u)

=

∫
[0,1]

(1− u)−γXdµ(u) +

∫
[0,1]

|RX(u, β)|dµ(u),

where RX(u, β) is defined in equation (17). From Lemma 1 with δ > 0 such that

γX + δ < γ∗µ, for all ε > 0, there exists τ0 ∈ (0, 1) such that for all QX ∈ Q(HT) and
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β > 1− τ0,

∫
[0,1]

|RX(u, β)|dµ(u) ≤ ε
∫
[0,1]

(1− u)−(γX+δ)dµ(u).

Since
∫
[0,1]

(1− u)−(γX+δ)dµ(u) <∞ the desired result is proved.

The last result deals with the Hill estimator of the tail index. It is obtained under

classical restrictions on the representation (11) of the slowly varying function `X .

(H.2) In representation (11), the function cX is constant, the sign of the function

∆X is asymptotically constant and |∆X | is a regularly varying function of

index ρ < 0.

When cX is a constant function, the slowly varying function is said to be normal-

ized. As mentioned by Bingham et al. [7, Page 15], “we lose nothing by restricting

attention to the case of constant c-function in (11)”. The parameter ρ < 0, called

the second-order parameter, tunes the rate of convergence in (10).

Lemma 5 Assume that the reference probability measure µ satisfies condi-

tion (H.1) and that condition (H.2) holds. If αn and βn are sequences converging

to 1 and such that n(1− αn)→∞, n(1− βn)→ b ≥ 0,

[n(1− αn)]−1/2 ln

(
1− αn
1− βn

)
→ 0 and [n(1− αn)]1/2∆X

(
1

1− αn

)
→ λ ∈ R,

as n→∞, then

ln

(
1− αn
1− βn

)(
γ̂
(H)
n,X − γX

)
P→ 0.

Proof − Our goal is to prove that

(n(1− αn))1/2
(
γ̂
(H)
n,X − γX

)
d→ N (0, γ2

X). (18)

To prove (18), we use de Haan and Ferreira [22, Theorem 3.2.5] in which the

asymptotic normality of the Hill estimator is established. We thus have to check

that under the assumptions of Lemma 5, the conditions of de Haan and Ferreira [22,

Theorem 3.2.5] are satisfied. After a comparison between the set of conditions, we

notice that we only have to check that the second order condition

lim
u→1

1

∆X((1− u)−1)

(
QX(1− t(1− u))

QX(u)
− t−γX

)
= t−γX

∫ t−1

1

vρ−1dv.
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holds or equivalently that for all t > 1,

lim
x→∞

`X(tx)/`X(x)− 1

∆X(x)
=

∫ t

1

uρ−1du =
tρ − 1

ρ
.

Under the conditions of the lemma,

`X(tx)

`X(x)
= exp

(∫ tx

x

∆X(u)

u
du

)
= exp

(
∆X(x)

∫ t

1

∆X(ux)

∆X(x)

1

u
du

)
.

Since the sign of ∆X is asymptotically constant and |∆X | is regularly varying of

index ρ ≤ 0, we have from Bingham et al. [7, Theorem 1.2.1] that

lim
x→∞

∆X(ux)

∆X(x)
= uρ,

uniformly on u in a compact set. Hence,

lim
x→∞

∫ t

1

∆X(ux)

∆X(x)

1

u
du =

∫ t

1

uρ−1du,

and the conclusion follows since ∆X(x) → 0 as x → ∞ and (exp(u) − 1)/u → 1

as u→ 0.

6.2 Proofs of main results

Proof of Proposition 1 − For a strict Pareto quantile function given for u ∈ [0, 1]

by QX(u) = λX(1− u)−γX +mX , one has

%β(QX | Pµ(κ, γ0)) = λX inf

{∫
[0,1]

(1− u)−γXdνβ(u)

∣∣∣∣∣ ν ∈ Pµ(κ, γ0)

}
+mX

= λX(1− β)−γX inf

{∫
[0,1]

(1− u)−γXdν(u)

∣∣∣∣∣ ν ∈ Pµ(κ, γ0)

}
+mX

Since γX ∈ (0, γ0], from (3) we know that for all ν ∈ Pµ(κ, γ0),

∫
[0,1]

(1− u)−γXdν(u) ≥
∫
[0,1]

(1− u)−γXdµ(u).

Hence, since µ ∈ Pµ(κ, γ0), one has for all strict Pareto quantile function QX with

γX ∈ (0, γ0] that

%β(QX | Pµ(κ, γ0)) = λX(1− β)−γX
∫
[0,1]

(1− u)−γXdµ(u) +mX =

∫
[0,1]

QXdµβ .
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It remains to prove that for all γX > γ0,

∫
[0,1]

(1− u)−γXdδb(µ,γ0)(u) ≤
∫
[0,1]

(1− u)−γXdν(u), (19)

for all ν ∈ Pµ(κ, γ0). Indeed, if (19) holds, then

%β(QX | Pµ(κ, γ0)) =

∫
[0,1]

QX,βdδb(µ,γ0) = QX (β + (1− β)b(µ, γ0)) .

Let us use an indirect proof to prove (19). Assume that there exists a probability

measure ν ∈ Pµ(κ, γ0) such that

(∫
[0,1]

(1− u)−γ0dµ(u)

)γX/γ0
>

∫
[0,1]

(1− u)−γXdν(u) (20)

By Jensen’s inequality,

∫
[0,1]

(1− u)−γ0dν(u) <

(∫
[0,1]

(1− u)−γXdν(u)

)γ0/γX
,

Then, if (20) holds,

∫
[0,1]

(1− u)−γ0dν(u) <

∫
[0,1]

(1− u)−γ0dµ(u),

which is impossible for a measure ν ∈ Pµ(κ, γ0). Hence

∫
[0,1]

(1− u)−γXdδb(µ,γ0)(u) =

(∫
[0,1]

(1− u)−γ0dµ(u)

)γX/γ0
≤

∫
[0,1]

(1− u)−γXdν(u),

and the proof is complete.

Proof of Proposition 2 − Let us first prove equivalence (5). Let QX be a quantile

function in Q(HT) with tail index γX > 0. For all ε > 0 and β ∈ (0, 1), there exists

a measure ν
(β)
X,ε ∈ Pµ(κ, γ0) such that

0 ≤
∫
[0,1]

QX,βdν
(β)
X,ε − %β (QX |Pµ(κ, γ0) ) ≤ ε. (21)
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Let us now introduce the set

Bε =

{
β ∈ (0, 1)

∣∣∣∣∣
∫
[0,1]

Qβdν
(β)
X,ε <

∫
[0,1]

Qβdν
∗
X

}
,

where the probability measure ν∗X is given by ν∗X = µ if γX ≤ γ0 and ν∗X = δb(µ,γ0)

if γX > γ0.

If β1 := supBε < 1, then for all β > β1 or for all β /∈ Bε,∫
[0,1]

QX,βdν
(β)
X,ε ≥

∫
[0,1]

QX,βdν
∗
X ,

and thus, for all β > β1,

0 ≤
∫
[0,1]

QX,βdν
∗
X − %β (QX |Pµ(κ, γ0) ) ≤ ε. (22)

Now, if supBε = 1, using Lemma 1, for all δ > 0 (with 0 < δ < γ∗µ−γX if γX < γ∗µ),

there exists β2 ∈ (0, 1) such that for all β ∈ Bε with β > β2,

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dν∗X(u)−

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u)

≤
∫
[0,1]

(1− u)−γXdν∗X(u)−
∫
[0,1]

(1− u)−γXdν
(β)
X,ε(u)

+ ε

[∫
[0,1]

(1− u)−γX−δdν∗X(u) +

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u)

]
.

From Proposition 1,

∫
[0,1]

(1− u)−γXdν∗X(u)−
∫
[0,1]

(1− u)−γXdν
(β)
X,ε(u) ≤ 0,

and thus

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dν∗X(u)−

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u)

≤ ε

[∫
[0,1]

(1− u)−γX−δdν∗X(u) +

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u)

]
. (23)
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Let us now show that there exits β3 ∈ (0, 1) such that

∫
[0,1]

(1− u)−γX−δdν∗X(u) + sup
β≥β3
β∈Bε

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) ≤ c(κ, γX), (24)

where c(κ, γX) is a positive constant independent of ε.

↪→ We start with the first term.

• If γX ≤ γ0, one can pick δ such that γX + δ < γ∗µ and thus

∫
[0,1]

(1− u)−γX−δdν∗X(u) =

∫
[0,1]

(1− u)−γX−δdµ(u) <∞. (25)

• Recall that if γX > γ0 we have ν∗X(u) = δb(µ,γ0). Hence,

∫
[0,1]

(1− u)−γX−δdν∗X(u) =

(∫
[0,1]

(1− u)−γ0dµ(u)

)(γX+δ)/γ0

<∞. (26)

↪→ Now, for the second term,

• if γX > γ∗µ, we know from Lemma 2 that

∫
[0,1]

QX,βdµ =∞.

Hence, (21) cannot be true if ν
(β)
X,ε = µ and thus ν

(β)
X,ε ∈ P̃µ(κ, γ0) where P̃µ(κ, γ0) is

the set of probability measures satisfying (3) and (4). As a consequence, if γX > γ∗µ,

one has

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) ≤

(
κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

, (27)

for all β ∈ Bε.

• If γX ≤ γ∗µ, we need first to prove the following assertion.

(A) There exist γ̃ ∈ (0, γ∗µ) and β3 ∈ (0, 1) such that, if γX > γ̃, for all β ∈ Bε

with β > β3, the probability measure ν
(β)
X,ε is not equal to µ.

As a direct consequence of this assertion, if γX ≤ γ∗µ,

sup
β≥β3
β∈Bε

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) <∞. (28)
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Indeed, if 0 < γX ≤ γ̃, since γX + δ < γ∗µ,

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u)

≤
∫
[0,1]

(1− u)−γX−δdµ(u)
∧(

κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

<∞,

and if γX > γ̃, assertion (A) entails that for all β ∈ Bε with β ≥ β3,

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) ≤

(
κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

<∞.

Let us prove assertion (A). Since the function

γ ∈ (0, γ∗µ) 7→
∫
[0,1]

(1− u)−γdµ(u)

is increasing, continuous and converges to ∞ as γ → γ∗µ, for all χ > 0, there exists

γ̃(χ) ∈ (0, γ∗µ) such that for all γ > γ̃(χ),

∫
[0,1]

(1− u)−γdµ(u) ≥ χ.

Now, for some δ1 > 0, let χ(ε) = ε+ χ̃ where

χ̃ = 3 max
γ∈(0,γ∗µ+δ1]

(
κ

∫
[0,1]

(1− u)−γdµ(u)

)γ/γ0
.

Using Potter’s bounds (see for instance de Haan and Ferreira [22, eq. (B.1.19)])

there exists β4 ∈ (0, 1) such that for all β ∈ Bε, β > β4,

∫
[0,1]

QX,β(u)

QX(β)
dµ(u) ≥ 1

2

∫
[0,1]

(1− u)−γX (χ(ε),µ)dµ(u),

where γX(χ(ε), µ) = γX − [γ∗µ − γ̃(χ(ε))]/2. Hence, if γX ≥ [γ̃(χ(ε)) + γ∗µ]/2 then

γX(χ(ε), µ) > γ̃(χ(ε)) and thus,

∫
[0,1]

QX,β(u)

QX(β)
dµ(u) ≥ χ(ε)

2
.

Moreover, for δ1 > 0, there exists β5 ∈ (0, 1) such that for all β ∈ Bε with β > β5
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and for all probability measure ν ∈ P̃µ(κ, γ0),

%β (QX |Pµ(κ, γ0) )

QX(β)
≤

∫
[0,1]

QX,β(u)

QX(β)
dν(u)

≤ 3

2

∫
[0,1]

(1− u)−γX−δ1dν(u) ≤ χ̃

2
.

Since QX(β)→∞ as β → 1, there exists β6 ∈ (0, 1) such that QX(β) > 2. Hence,

for all β ∈ Bε with β > β3 := β4 ∨ β5 ∨ β6, if γX > [γ̃(χ(ε)) + γ∗µ]/2 =: γ̃,

∫
[0,1]

QX,βdµ− %β (QX |Pµ(κ, γ0) ) ≥ QX(β)

[
χ(ε)

2
− χ̃

2

]
=
QX(β)ε

2
≥ ε,

and thus necessarily, ν
(β)
X,ε 6= µ. Assertion (A) is then proved.

Gathering (25) to (28) entails that (24) holds with

c(κ, γX) =

∫
[0,1]

(1− u)−γX−δdµ(u)
∧(

κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

,

if γX ≤ γ̃ and if γX > γ̃,

c(κ, γX) =

(∫
[0,1]

(1− u)−[(γX+δ)∧γ0]dµ(u)

)[(γX+δ)∨γ0]/γ0

.

Note that as expected, c(κ, γX) does not depend on ε. Moreover when κ and/or

γX increase, so does c(κ, γX).

For all β ∈ Bε with β > β3, inequalities (21) and (23) and the fact that QX(β) ≥ 2

lead to

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

%β (QX |Pµ(κ, γ0) )

QX(β)

≤
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u) +

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u)

−
%β (QX |Pµ(κ, γ0) )

QX(β)
≤ ε

(
c(κ, γX) +

1

2

)
. (29)

From (22) and (29), we finally get that for all ε > 0 and for β > β3

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

%β (QX |Pµ(κ, γ0) )

QX(β)
≤ εg(κ, γX), (30)
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with

g(κ, γX) :=

[
1
∨(

c(κ, γX) +
1

2

)]
.

Since from Lemma 4, one has for β close enough to 1,∣∣∣∣∣
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

∫
[0,1]

(1− u)−γXdµ∗X(u)

∣∣∣∣∣ < εg(κ, γX),

and thus, from (30),∣∣∣∣∣%β (QX |Pµ(κ, γ0) )

QX(β)
−
∫
[0,1]

(1− u)−γXdµ∗X(u)

∣∣∣∣∣ ≤ 2εg(κ, γX),

which entails equivalence (5).

Let us now focus on equivalence (6). From Lemma 4, we have for all quan-

tile functions QX ∈ Q(HT) with tail index γX ∈ (0, γ0],

lim
β→1

∫
[0,1]

QX(u)

QX(β)
dµβ(u) =

∫
[0,1]

(1− u)−γXdµ(u).

The first part of (6) is then a direct consequence of (5). If γX > γ0, from (5) we

have

%β(QX | Pµ(κ, γ0)) ∼ QX(β)

(∫
[0,1]

(1− u)−γ0dµ(u)

)γX/γ0
= QX(β) (1− b(µ, γ0))−γX .

From (1), we obtain

%β(QX | Pµ(κ, γ0)) ∼ QX (1− (1− b(µ, γ0))(1− β)) = QX (β + b(µ, γ0)(1− β)) ,

and the proof is complete.

Proof of Proposition 3 − Under (7), the sum X1 + X2 is such that QX1+X2 ∈

Q(HT) with tail index γ2 ≤ γ0 (see for instance Davis and Resnick [13, Lemma 2.1]).
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Hence, as β → 1, we have from Lemma 4

%β (QX1+X2 | Pµ(κ, γ0)) ∼ QX1+X2(β)

∫
[0,1]

(1− u)−γ2dµ(u)

∼
∫
[0,1]

QX1+X2dµβ ≤
∫
[0,1]

QX1dµβ +

∫
[0,1]

QX2dµβ .

The conclusion follows with another use of Lemma 4.

Proof of Proposition 4 − Let us first introduce the function Φµ,γ0 : (0,∞) →

(0,∞), defined for all γ > 0 by

Ψµ,γ0(γ) =

[∫
[0,1]

(1− u)−(γ∧γ0)dµ(u)

](γ∨γ0)/γ0
.

We thus have

%̂n,βn(QX | µ, γ0) = Xdnβne:nΨµ,γ0(γ̂n,X).

Using the asymptotic equivalence obtained in Proposition 2, it suffices to prove that

Xdnβne:n
QX(βn)

P→ 1 and Ψµ,γ0(γ̂n,X)
P→ Ψµ,γ0(γX).

Let’s start with the first convergence in probability. If V1, · · · , Vn is a sample of n

independent copies of a standard uniform random variables, it is well known that

Xdnβne:n
d
= QX

(
1− Vn−dnβne+1:n

)
= UX

(
V −1
n−dnβne+1:n

)
,

where V1:n ≤ · · · ≤ Vn:n is the sample V1, · · · , Vn arranged in ascending order.

From the representation of uniform order statistics (see David [12] and Reiss [29]),

Vn−dnβne+1:n
d
=

n−dnβne+1∑
i=1

Ei

/
n∑
i=1

Ei,

where E1, · · · , En are independent copies of a standard exponential random vari-

able. Since n(1−βn)→∞, it is readily seen that (n−dnβne+ 1)/[n(1−βn)]→ 1.

An application of the law of large numbers leads to

Vn−dnβne+1:n

1− βn
P→ 1.
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Since UX is a regularly varying function,

UX
(
V −1
n−dnβne+1:n

)/
UX

(
(1− βn)−1) P→ 1

showing the first convergence. The proof of the second convergence in probability

is straightforward since γ̂n,X
P→ γX and since under (H.1) the function Ψµ,γ0 is

continuous.

Proof of Proposition 5 − Using the function Ψµ,γ0 introduced in the proof of

Proposition 4, we have

%̂
(W)

n,βn
(QX | µ, γ0, αn) := Xdnαne:n

(
1− αn
1− βn

)γ̂n,X
Ψµ,γ0 (γ̂n,X) .

According to the asymptotic equivalence obtained in Proposition 2, it thus suffices

to show that
Xdnαne:n
QX(βn)

(
1− αn
1− βn

)γ̂n,X P→ 1.

Since Xdnαne:n/Q(αn)
P→ 1, see the proof of Proposition 4, it is equivalent to prove

that

QX(αn)

QX(βn)

(
1− αn
1− βn

)γ̂n,X
=
`X((1− αn)−1)

`X((1− βn)−1)
exp

(
(γ̂n,X − γX) ln

(
1− αn
1− βn

))
P→ 1.

Under (13),

exp

(
(γ̂n,X − γX) ln

(
1− αn
1− βn

))
P→ 1.

Now, using the representation (11) of a slowly varying function,

`X((1− αn)−1)

`X((1− βn)−1)
=
cX((1− αn)−1)

cX((1− βn)−1)
exp

(
−
∫ (1−βn)−1

(1−αn)−1

∆X(t)

t
dt

)
.

Since αn and βn converge to 1 as n→∞,

lim
n→∞

cX((1− αn)−1)

cX((1− βn)−1)
= 1.

Moreover, since |∆X | is asymptotically decreasing,∣∣∣∣∣
∫ (1−βn)−1

(1−αn)−1

∆X(t)

t
dt

∣∣∣∣∣ ≤
∣∣∣∣∆X

(
1

1− αn

)∣∣∣∣ ln(1− αn
1− βn

)
→ 0,

and the proof is complete.
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