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On tail-risk measures for non integrable heavy-tailed
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Université de Strasbourg & CNRS, IRMA, UMR 7501,

7 rue René Descartes, 67084 Strasbourg Cedex, France

Abstract

The assessment of risk is a crucial question in various fields of application.

An important family of risk measures is provided by the class of distortion risk

measures. However, the use of these risk measures is limited by an integrability

condition on the quantile function. When heavy-tailed distributions are considered,

this condition is violated when the tail index becomes large. In this paper, we first

propose a new family of risk measures obtained by minimizing a set of distortion

risk measures over a class of probability measures. When a heavy-tailed distribution

is considered, we pick in this class a new risk measure whose main feature is to be

defined whatever the value of the tail index. The asymptotic behavior of its tail

version is investigated and a consistent estimator is proposed. The finite sample

performance is discussed on a fire claims dataset.

Keywords: Risk measure; heavy-tailed distribution; extreme value theory; finite

sample.

1 Introduction

Nowadays, a crucial question for many companies is to assess the risk of a given

phenomenon. For a financial analyst, the phenomenon of interest can be the po-

tential loss of a portfolio. An accurate control of the risk associated to extreme

weather events such as hurricane, heat wave, flash flood among many others is of

course essential for insurance companies. In a mathematical point of view, the
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phenomenon of interest is represented by a real-valued random variable. For a set

X of random variables defined on an atomless probability space (Ω,A,P), the risk

is evaluated by a mapping from X to R. To be a proper risk measure, Artzner et

al. [2] propose a set of properties that should be satisfied by this mapping.

Definition 1 Let X be a set of random variables closed under linear combinations

i.e., such that for all m ∈ R, λ > 0 and X ∈ X , λX + m ∈ X . A (monetary)

risk measure on X is a mapping ρ : X → R which is monotone (X1 ≥ X2 ⇒

ρ(X1) ≥ ρ(X2)), translation-invariant (for all m ∈ R, ρ(X +m) = ρ(X) +m) and

homogeneous (for all λ > 0, ρ(λX) = λρ(X)).

Another desirable property for a risk measure ρ is to be law-invariant i.e., such

that ρ(X1) = ρ(X2) for all X1, X2 ∈ X sharing the same distribution (in short,

X1
d
= X2). Most of the risk measures considered in the literature are law-invariant.

One notable counterexample is the Maximum Loss defined for all bounded random

variables by ML(X) = sup(−X) which is not a law invariant risk measure. Since

X is a set of random variables defined on an atomless probability space, for all

law invariant risk measures ρ : X → R, there exists a function % : Q := {QX |

X ∈ X} → R such that ρ(X) = %(QX), see Lemma 1. Of course, the function

% is monotone, translation-invariant and homogeneous. In this paper, only law-

invariant risk measures are considered and we make the choice to work with the

mapping % instead of ρ.

For each field of application, the use of risk measures has been considered by many

authors. In actuarial science, one can cite Brazauskas et al. [5], in environmental

science, Read and Vogel [23] and in finance Rockafellar and Uryasev [25].

Among the large number of risk measures proposed in the literature, a notable one

is the Value-at-Risk of level β ∈ (0, 1) given for X ∈ X by

VaRβ(X) := inf {x ∈ SX | FX(x) ≥ β} =: QX(β),

with the convention inf(∅) = +∞, where FX(·) := P(X ≤ ·), is the cumulative dis-

tribution function and SX := {x ∈ R | ∀δ > 0, FX(x− δ) < FX(x+ δ)} the sup-

port of the random variable X. The Value-at-Risk correspond to the quantile

function QX of X evaluated in β.

As mentioned by many authors such as Artzner et al. [2], the Value-at-Risk is not a

coherent risk measure. A risk measure ρ is said to be coherent if, in addition to the
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properties listed in Definition 1, ρ is sub-additive that is to say for all X1, X2 ∈ X ,

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2). A classical coherent risk measure is the Tail-Value-

at-Risk of level β ∈ (0, 1) defined for instance in Kaas et al. [19, Definition 5.6.6] by

TVaRβ(X) :=
1

1− β

∫ 1

β

QX(u)du.

The Tail-Value-at-Risk takes into account the shape of the right-tail distribution

unlike the Value-at-Risk. When the quantile function QX is continuous and

strictly increasing, TVaRβ(X) = E (X | X > QX(β)), which is then referred to as

the Conditional Tail Expectation of level β, see for instance Kaas et al. [19, Defi-

nition 5.6.8]. To simplify, we assume throughout this paper that all the considered

quantile functions are continuous and strictly increasing. Since risky situations

are associated to large values of X, we also assume from now on and without loss

of generality that QX(0) = cX ∈ R for all X ∈ X i.e., that the left endpoint is finite.

The Value-at-Risk and the Tail-Value-at-Risk of level β belong to the set of distor-

tion measures introduced by Wang [26], see also El Methni and Stupfler [11]. For

a given probability measure µ : B([0, 1]) → [0, 1] where B([0, 1]) is the Borel set

on [0, 1], the distortion risk measure with distortion function g(x) = ν([0, x]) is the

mapping %
(D)
µ : Q → R defined for all quantile function QX ∈ Q by

%(D)
µ (QX) =

∫
[0,1]

QXdµ, (1)

if the integral exists. The Value-at-risk is obtained with µ = δβ where δa is the

Dirac measure centered on a ∈ R. When we take in (1) the probability measure υβ

defined for all A ∈ B([0, 1]) by υβ(A) = υ ((A− β)/(1− β)), where υ is the uniform

probability on [0, 1], we obtain in return the Tail-Value-at-Risk. A distortion risk

measure is coherent if and only if its distortion function g is convex, see Acerbi [1]

and Yaari [28].

To be defined, the distortion risk measure (1) requires the quantile function QX to

be integrable with respect to (w.r.t.) µ. This condition is violated for instance for

very heavy-tailed random variables. Recall that a random variable X is said to be
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heavy-tailed with tail index γX > 0 if for all t > 0,

lim
u→1

QX(1− t(1− u))

QX(u)
= t−γX . (2)

The set of all continuous and strictly increasing quantile functions satisfying (2)

with a finite left endpoint is denoted Q(HT). A standard example of quantile

function QX ∈ Q(HT) is the strict Pareto distribution with, for all u ∈ (0, 1),

QX(u) = λX(1− u)−γX +mX for some scale parameter λX > 0, position parame-

ter mX ∈ R and shape parameter γX > 0 which is nothing else but the tail index.

This tail index controls the heaviness of the tail distribution of X. A large value

of γX corresponds to a very heavy-tailed distribution and one can expect that the

condition of integrability w.r.t. µ will be violated in this case. More specifically,

introducing the constant

γ∗µ := sup

{
γ > 0

∣∣∣∣∣
∫
[0,1]

(1− u)−γdµ(u) <∞

}
, (3)

with the convention sup ∅ = 0, we show in Lemma 3 that QX is not integrable

as soon as γX > γ∗µ. For instance if µ = υ is the uniform probability measure,

γ∗υ = 1, see de Haan and Ferreira [17, Exercice 1.16]. As a consequence, the

Tail-Value-at-Risk is not defined for QX ∈ Q(HT) when γX > 1.

Since heavy-tailed distributions are often considered in application, see for instance

Glasserman et al. [16] and since large tail index can be observed in financial

series, see Moscadelli [21] and Neslehova et al. [22], there is a real need to propose

risk measures taking finite values even for non-integrable random variables. This

is the main objective of this work. As mentioned by Delbaen [8], ‘there is not

immediate solution for this problem’ if we are searching for a coherent risk

measure. A first attempt to propose a risk measure defined for large values of

the tail index can be found in Gardes et al. [15]. This risk measure is obtained

as the solution of a Lp optimization problem with p ≥ 1 and it exists as soon as

γX < 1/(p − 1). When p = 1, this measure coincides with the Value-at-Risk and

with the Tail-Value-at-Risk when p = 2.

In this paper, a different approach is investigated. In a first step, we propose a

new risk measure obtained by minimizing a set of distortion risk measures over a
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collection P of probability measures. Next, a particular set P is proposed in order

to deal with the particular case of heavy-tailed distributions. The main features of

the obtained measure is i) to be well defined and finite whatever the value of the

tail index and ii) to coincide with a chosen distortion risk measure for small values

of the tail index. In view of point ii), our new risk measure for heavy-tailed dis-

tributions can be understood has an extended version of a given distortion measure.

The paper is organized as follows. The new risk measure is defined and commented

in Section 2. A tail version of this risk measure is also introduced in order to focus

on the tail behavior of X. Section 3 is the central part of this work where the focus

is made on heavy-tailed distributions. First, an adaptation of the risk measure

defined in Section 2 is given in Section 3.1. Next, some asymptotic properties of

its tail version are obtained in Section 3.2. Finally, Section 3.3 is devoted to the

estimation of the new risk measure. An application to an insurance dataset (fire

claims of a Norwegian insurance company) is also discussed. All the proofs are

gathered in Section 4.

2 Minimization of distortion risk measures

over a set of probability measures

As mentioned in the introduction, the first part of this paper is devoted to the

proposal of a new risk measure defined on a set Q = {QX | X ∈ X} of quantile

functions. Recall that throughout this paper, we assume that all quantile functions

in Q are continuous, strictly increasing and with a finite left endpoint (QX(0) = cX

for all X ∈ X ).

2.1 Definition of the P−inf risk measure

The new risk measure is obtained by minimizing a set of distortion risk measures

over a family P of probability distributions. We call such risk measure P−inf risk

measure. Its precise definition is given hereafter.

Definition 2 Let P be a non-empty set of probability measures on B([0, 1]) such

that for all quantile functions QX ∈ Q, there exists at least one measure ν∗ for
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which
∫
[0,1]
|QX |dν∗ <∞. The P−inf risk measure is the mapping %(· | P) : Q → R

defined for all QX ∈ Q by

%(QX | P) := inf

{∫
[0,1]

QXdν

∣∣∣∣∣ ν ∈ P
}
.

This definition deserves some discussion. First, for any QX ∈ Q and ν ∈ P, since

QX(0) = cX ∈ R, the integral
∫
[0,1]

QXdν exists and takes its value in (cX ,∞].

In Definition 2 it is claimed that the mapping %(· | P) is a proper risk measure.

Indeed, for all QX ∈ Q,

%(QX | P) ∈

[
cX ,

∫
[0,1]

QXdν
∗

]
⊂ R,

and thus %(· | P) is a real valued mapping. The monotonicity is guaranteed by

the monotonicity of the integral. Finally, it is readily seen that for all λ > 0 and

m ∈ R, %(λ ·+m | P) = λ%(· | P) +m.

It is worth noting that when P is not reduced to one element, the P−inf risk

measure is not a distortion risk measure. Obviously, when P = {µ}, the P−inf risk

measure coincides with the distortion risk measure %
(D)
µ as defined in (1).

2.2 Tail version of the P−inf risk measure

In risk management or environmental sciences, we are mostly interested in large

values of the random variable X of interest (important losses, high temperatures,

etc.). To assess the risk in the right tail of the distribution, it seems reasonable to

impose that for any X ∈ X , the P−inf risk measure %(QX | P) does not depend

on the values of QX(u) for u ∈ [0, β) with a level β close to 1. To do so, a natural

idea is to replace all the probability measures in P by measures supported on the

interval [β, 1]. This can be achieved by the transformation defined hereafter.

Definition 3 For β ∈ (0, 1), the tail-transformation of level β is the mapping Tβ

defined for all probability measure ν by Tβ(ν) = νβ where for all A ∈ B([β, 1]) we

have νβ(A) = ν((A − β)/(1 − β)). For a given set P of probability measures, we

denote by Pβ its image by the mapping Tβ.
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It is readily seen that for all QX ∈ Q,

∫
[0,1]

QXdνβ =

∫
[0,1]

QX,βdν,

where QX,β(·) = QX((1−β) ·+β). It follows from the above that the tail version of

level β of the P−inf risk measure is the mapping %β(· | P) defined for all QX ∈ Q by

%β(QX | P) := %(QX | Pβ) = %(QX,β | P).

Let us emphasize that Tβ is not the only transformation that can be used to de-

fine the tail version of the P−inf risk measure. Another possibility is to consider

the transformation which associates to every probability measure ν its conditional

version ν(· | [β, 1]) := ν(· ∩ [β, 1])/ν([β, 1]). When ν is the standard uniform distri-

bution, the two transformations coincide.

We conclude this section by remarking that the Tail-Value-at-Risk of level β

is the tail version of the distortion risk measure defined for all QX ∈ Q by

%(QX | {υ}) = %
(D)
υ (QX) = E(X), where υ is the standard uniform distribution.

3 A risk measure for heavy-tailed distribu-

tions

We assume that the variable of interest X is heavy-tailed distributed. We thus

consider quantile functions in the set Q(HT) of all continuous and strictly increasing

quantile functions satisfying (2) with a finite left endpoint.

In this section, we are searching for a set P of probability measures in order to

obtain a P−inf risk measure (see Definition 2) satisfying %(QX | P) < ∞ for all

QX ∈ Q(HT) and, for a reference probability measure µ, %(QX | P) = %
(D)
µ (QX)

for all QX ∈ Q0,µ ⊂ Q(HT). For such a set P, the P−inf risk measure can be seen

as an extension from Q0,µ to the set Q(HT) of the distortion risk measure %
(D)
µ .

A natural choice for the reference probability measure is the standard uniform

distribution. More generally, we can take a probability measure µ such that the

function x 7→ µ([0, x]) is convex. For such a probability measure, the distortion risk

measure %
(D)
µ is coherent, see the introduction for more details.
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3.1 Definition

A proposition for a set of probability measures as requested in the introduction of

Section 3 is given hereafter.

Definition 4 Let µ be a reference probability measure. For κ ∈ [1,∞] and γ0 ∈

(0, γ∗µ), the set Pµ(κ, γ0) is the set of probability measures containing the reference

probability measure µ and all probability measures ν such that

∫
[0,1]

(1− u)−γdν(u) ≥
∫
[0,1]

(1− u)−γdµ(u) for all γ ∈ (0, γ0], (4)

and (∫
[0,1]

(1− u)−γdν(u)

)γ0/γ
≤ κ

∫
[0,1]

(1− u)−γ0dµ(u) for all γ > 0. (5)

Let us say a few words about this set of probability measures. First, according to

the definition of the constant γ∗µ given in (3), conditions (4) and (5) make sense

since for all γ ∈ (0, γ0], ∫
[0,1]

(1− u)−γdµ(u) <∞.

The tuning parameter κ in (5) controls the size of the set Pµ(κ, γ0). The larger set

is obtained when κ = +∞, i.e., when (5) is always satisfied. Note that if κ < 1, it

is easy to check that Pµ(κ, γ0) = {µ}.

With this set of probability measures, we obtained the Pµ(κ, γ0)−inf risk measure

as defined in Definition 2. Its properties are given in the next result.

Proposition 1 Let µ be a reference probability measure such that γ∗µ > 0. For all

κ ∈ [1,∞] and γ0 ∈ (0, γ∗µ) such that
∫
[0,1]

(1 − u)−γ0dµ(u) > 0, the risk measure

% (QX | Pµ(κ, γ0)) is finite for all QX ∈ Q(HT). Moreover,

%(QX | Pµ(κ, γ0)) =

∫
[0,1]

QXdµ = %(D)
µ (QX),

for all QX ∈ Q0,µ where Q0,µ is the set of strict Pareto distributions with a tail

index γX ∈ (0, γ0].

The Pµ(κ, γ0)−inf risk measure is thus an extension of the distortion risk mea-

sure (1) from Q0,µ to the set Q(HT). The size of the set Q0,µ is controlled by the
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parameter γ0. One may be tempted to chose a value close to γ∗µ in order to have a

large set Q0,µ for which the Pµ(κ, γ0)−inf risk measure coincides with the distortion

risk measure. But, as pointed out by El Methni and Stupfler [10], the finite-sample

performance of an estimator of the distortion risk measure %
(D)
µ (QX) is badly af-

fected by large values of γX . This is due to the fact that a large variability in the

tail is observed when the tail index goes to γ∗µ. As suggested by Gardes et al. [15],

one can take γ0 in order to ensure the existence of the second moment w.r.t. µ of

a strict Pareto distribution with tail index γ0 that is to say

γ0 = sup

{
γ > 0

∣∣∣∣∣
∫
[0,1]

(1− u)−2γdµ(u) <∞

}
, (6)

This choice will be adopted in the real data study.

In general, the explicit expression of the Pµ(κ, γ0)−inf risk measure cannot be

obtained. However, for a strict Pareto distribution QX with tail index γX > 0, we

can show (see Lemma 4) that under the conditions of Proposition 1,

% (QX | Pµ(κ, γ0)) =

(∫
[0,1]

(1− u)−(γX∧γ0)dµ(u)

)(γX∨γ0)/γ0

,

where a∨b (resp. a∧b) is the maximum (resp. minimum) value of the set {a, b}. Let

us emphasize that the value of the Pµ(κ, γ0)−inf risk measure does not depend on κ.

Tail version − We now use the definition given in Section 2.2 to introduce the

tail version of the Pµ(κ, γ0)−inf risk measure. It is given by

%β(QX | Pµ(κ, γ0)) = %(QX,β | Pµ(κ, γ0)).

Since for all β ∈ (0, 1), QX,β ∈ Q(HT ) if and only if QX ∈ Q(HT ) and QX,β ∈ Q0,µ

if and only if QX ∈ Q0,µ, we have, under the conditions of Proposition 1, that

%β (QX | Pµ(κ, γ0)) is finite for all QX ∈ Q(HT) and for all QX ∈ Q0,µ,

%β (QX | Pµ(κ, γ0)) =

∫
[0,1]

QXdµβ = %(D)
µβ (QX).
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The tail version of the Pµ(κ, γ0)−inf risk measure is thus an extension of the tail

version of the tail distortion risk measure (1). Some interesting asymptotic prop-

erties as the level β goes to 1 are given in the next Section.

3.2 Asymptotic properties of the tail version

In a first step, we provide an asymptotic equivalent of the tail version of the

Pµ(κ, γ0)−inf risk measure when the tail level β → 1. This result will be very

useful to propose an estimator of this tail version when the level β = βn goes to 1

as the sample size n increases, see Section 3.3. The following condition on the

reference probability measure and on the parameter γ0 are required.

(H.1) The reference probability measure µ is such that γ∗µ > 0 and the function

γ ∈ (0, γ∗µ) 7→
∫
[0,1]

(1− u)−γdµ(u)

is continuous. Moreover, the parameter γ0 ∈ (0, γ∗µ) is such that

∫
[0,1]

(1− u)−γ0dµ(u) > 0.

For the reference probability measure µ = υ, the uniform distribution on [0, 1],

condition (H.1) holds since γ∗ν = 1 and
∫
[0,1]

(1− u)−γdυ(u) = 1/(1− γ).

Proposition 2 Let QX ∈ Q(HT) with tail index γX > 0. If µ and γ0 satisfy

condition (H.1) then for all κ ∈ [1,∞),

lim
β→1

%β (QX | Pµ(κ, γ0))

QX(β)
=

[∫
[0,1]

(1− u)−(γX∧γ0)dµ(u)

](γX∨γ0)/γ0
.

Roughly speaking, the above equivalence is due to the fact that for a quantile

function QX ∈ Q(HT) with tail index γX > 0, one has for all u ∈ (0, 1) that

QX,β(u)/QX(β) → (1 − u)−γX as β → 1. The infimum is then obtained by using

Lemma 4.

It is worth noting that the asymptotic equivalent of the tail version does not depend

on κ. In fact, only the rate of convergence is influenced by the choice of κ; the larger

the value of κ is, the slower the convergence is. The rate of convergence is also badly

influenced by a large value of γX . More specifically, we can show that for all ε > 0,
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there exits β(ε) ∈ (0, 1) such that for all β ≥ β(ε) and QX ∈ Q(HT),∣∣∣∣∣∣%β (QX |Pµ(κ, γ0) )

QX(β)
−

[∫
[0,1]

(1− u)−(γX∧γ0)dµ(u)

](γX∨γ0)/γ0 ∣∣∣∣∣∣ ≤ 2εg(κ, γX),

where g(κ, γX) increases as κ and/or γX increases. The expression of g(κ, γX) is

given in the proof of Proposition 2.

Some asymptotic properties of the tail version of the Pµ(κ, γ0)−inf risk measure

are given hereafter.

Proposition 3 Assume that condition (H.1) holds for µ and γ0.

i) For all quantile functions QX ∈ Q(HT) with tail index γX ∈ (0, γ0], one has

for all κ ∈ [1,∞),

%β (QX | Pµ(κ, γ0)) ∼
∫
[0,1]

QXdµβ as β → 1.

ii) Let X1 and X2 be two random variables such that QX1 and QX2 belong to the

set Q(HT) with respective tail index γ1 and γ2. If 0 < γ1 ≤ γ2 ≤ γ0 and if

lim
x→∞

P(X1 > x,X2 > x)

P(X2 > x)
= 0, (7)

then for all κ ∈ [1,∞) and ε > 0, there exists τ0 ∈ (0, 1) such that for all

β > 1− τ0,

%β (QX1+X2 | Pµ(κ, γ0))

≤
[
%β (QX1 | Pµ(κ, γ0)) + %β (QX2 | Pµ(κ, γ0))

]
(1 + ε).

Point i) of Proposition 3 entails that, for β large enough, the tail risk measure

%β(· | Pµ(κ, γ0)) can be seen as an extended version of the tail distortion risk mea-

sure %
(D)
µβ from the set of heavy-tailed quantile functions with tail index lower than

γ0 to the whole set Q(HT) of heavy-tailed distributions.

The result in part ii) of Proposition 3 can be interpreted as an asymptotic sub-

additivity property of the tail version of the Pµ(κ, γ0)−inf risk measure. Condi-

tion (7) ensures that when X1 and X2 are heavy-tailed, the sum X1 + X2 is also

heavy-tailed with tail index γ1 ∨ γ2.
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3.3 Statistical inference

In practice, the distribution of the random variable of interest X is unknown. The

available information is contained in a realization of a sample X1, . . . , Xn of n

independent replications of X. In this section, it is assumed that QX , the quan-

tile function of X, belongs to the set Q(HT) of continuous and strictly increasing

heavy-tailed quantile functions with a finite left-endpoint. The tail index of X is

denoted γX .

Let µ be a reference probability measure. The aim of this section is to propose an es-

timator of %βn(QX | Pµ(κ, γ0)) that is to say of the tail version of the Pµ(κ, γ0)−inf

risk measure of level βn where βn is a sequence converging to 1 as the sample size

increases. Two situations for the rate of convergence of βn to 1 are considered

hereafter.

Intermediate case − We first assume that βn is an intermediate sequence

i.e., βn → 1 and n(1 − βn) → 0. A direct approach would be to replace

in %βn(QX | Pµ(κ, γ0)) the quantile function QX by its empirical counterpart

Q̂n,X(·) = Xdn·e:n where d·e is the ceiling function and X1:n ≤ . . . ≤ Xn:n are

the observations arranged in ascending order. This leads to the estimator

%βn

(
Q̂n,X |Pµ(κ, γ0)

)
= inf


n∑

i=dnβne

Xi:nνβn

(]
i− 1

n
,
i

n

])∣∣∣∣∣∣ ν ∈ Pµ(κ, γ0)

 .

Unfortunately, the explicit expression of this estimator is unknown. To overcome

this drawback, we take advantage of the asymptotic equivalence obtained in Propo-

sition 2 to propose the estimator

%̂n,βn(QX | µ, γ0) := Xdnβne:n

(∫
[0,1]

(1− u)−(γ̂n,X∧γ0)dµ(u)

)(γ̂n,X∨γ0)/γ0

, (8)

where γ̂n,X is any estimator of γX that converges in probability to γX . Convergence

in probability (
P→) of (8) is established in the next result.

Proposition 4 Assume that µ and γ0 satisfy condition (H.1). If βn → 1 and

n(1− βn)→∞ then for all κ ∈ [1,∞) and for an estimator γ̂n,X that converges in

probability to γX ,
%̂n,βn(QX | µ, γ0)

%βn (QX |Pµ(κ, γ0) )

P→ 1.
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Let us mention that the consistency holds for all γ0 ∈ (0, γ∗µ), whatever the value

of the tail index γX . When γ0 =∞, estimator (8) is written

%̂n,βn(QX | µ,∞) = Xdnβne:n

∫
[0,1]

(1− u)−γ̂n,Xdµ(u).

The ratio of this estimator with the tail distortion tail-risk measure %
(D)
µβn

converges

in probability to 1 when γX < γ∗µ. In the particular case where µ = υ is the

uniform probability measure, this statistic has been studied as an estimator of the

Tail-Value-at-Risk of level βn in Gardes et al. [15, Section 4.2]. Its asymptotically

normality has been established under the condition γX < 1/2.

A natural estimator of the tail index γX is the Hill estimator, see Hill [18], defined

for a sequence kn ∈ {1, . . . , n} by

γ̂
(H)
n,X(kn) :=

1

kn

kn∑
i=1

log
Xn−i+1:n

Xn:n
.

The convergence in probability of the Hill estimator is established for instance in

de Haan and Ferrreira [17, Theorem 3.2.2] under the condition that kn → ∞ and

n/kn →∞.

If we denote by %̂
(H)

n,βn
(QX | µ, γ0) the estimator (8) obtained by using the Hill esti-

mator γ̂
(H)
n,X(kn) with an intermediate sequence kn, a direct consequence of Propo-

sition 4 is that

%̂
(H)

n,βn
(QX | µ, γ0)

%βn (QX |Pµ(κ, γ0) )

P→ 1.

To determinate the rate of convergence in Proposition 4 or to establish the asymp-

totic normality of (8), we need in particular to establish the rate of convergence in

Proposition 2 which is a difficult task. This question is not addressed in this paper.

Extreme case − The consistency in Proposition 4 has been obtained for the

situation where the level βn of the tail-risk measure is an intermediate sequence.

For an extreme level βn satisfying n(1 − βn) → b ≥ 0, the quantile Q(βn) cannot

be estimated by the order statistic Xdnβne:n since Xdnβne:n/QX(βn) does not con-

verge in probability to 1 in this case. As a consequence, estimator (8) is not more

consistent. We thus need to extrapolate the estimate at an intermediate level αn to

13



the extreme level βn. The extrapolation procedure is based on the approximation

%βn (QX |Pµ(κ, γ0) )

%αn (QX |Pµ(κ, γ0) )
≈
(

1− αn
1− βn

)γX
.

This approximation is a direct consequence of the regularly varying property of the

quantile function QX . A similar idea was used by Weissman [27] for the estima-

tion of extreme quantiles. Consequently, for an extreme level βn, we propose the

extrapolated estimator

%̂
(W)

n,βn
(QX | µ, γ0, αn) := %̂n,αn(QX | µ, γ0)

(
1− αn
1− βn

)γ̂n,X
, (9)

where γ̂n,X is a consistent estimator of γX and αn is an intermediate sequence.

Before establishing the consistency of (9), let us mention that the regularly varying

property (2) means that QX(u) = (1 − u)−γX `X((1 − u)−1) where `X is a slowly

varying function at infinity i.e., for all t > 0,

lim
x→∞

`X(tx)

`X(x)
= 1. (10)

It is well known, see for instance Bingham et al. [4, Theorem 1.3.1], that a slowly

varying function can be represented for all x > 1 as,

`X(x) = cX(x) exp

(∫ x

1

∆X(t)

t
dt

)
, (11)

where cX(x) → c ≥ 0 as x → ∞ and ∆X(t) → 0 as t → ∞. The function ∆X

controls the rate of convergence in (10). The consistency of (9) is established in the

next result.

Proposition 5 Let QX ∈ Q(HT ). Assume that µ and γ0 satisfy condition (H.1)

and that |∆X | is asymptotically decreasing. Let αn and βn be sequences converging

to 1 and such that n(1− αn)→∞, n(1− βn)→ b ≥ 0 and

lim
n→∞

ln

(
1− αn
1− βn

) ∣∣∣∣∆X

(
1

1− αn

)∣∣∣∣ = 0.

If the estimator γ̂n,X satisfies the condition

ln

(
1− αn
1− βn

)
(γ̂n,X − γX)

P→ 0, (12)
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then for all κ ∈ [1,∞),

%̂
(W)

n,βn
(QX | µ, γ0, αn)

%βn (QX |Pµ(κ, γ0) )

P→ 1.

This result holds for all γ0 ∈ (0, γ∗µ) and γX > 0. If we take γ0 = ∞ in (9), we

obtain the estimator,

%̂
(W)

n,βn
(QX | µ,∞, αn) =

(
1− αn
1− βn

)γ̂n,X
Xdnαne:n

∫
[0,1]

(1− u)−γ̂n,Xdµ(u),

which is a consistent estimator of the tail distortion risk measure %
(D)
µβn

(QX) as soon

as γX < γ∗µ. For µ = υ, this estimator is called the indirect extrapolated estimator

of the Tail-Value-at-Risk in Gardes et al. [15]. It is equivalent in probability to the

Tail-Value-at-Risk when γX < 1 and asymptotically Gaussian when γX < 1/2.

Let us now take a look at the particular case where the Hill estimator is used for the

estimation of the tail index. We denote by %̂
(W,H)

n,βn
(QX | µ, γ0, αn) the extrapolated

estimator (9) computed with the Hill estimator γ̂
(H)
n,X(kn) with kn = dn(1 − αn)e.

The following result is a consequence of Proposition 5. It is obtained under a

restriction on the representation (11) of the slowly varying function.

(H.2) In representation (11), the sign of the function ∆X is asymptotically constant

and |∆X | is asymptotically decreasing and regularly varying with index ρ ≤ 0.

Moreover, the function cX is constant.

Note that when (11) holds with a constant function cX , the slowly varying function

is said to be normalised. As mentioned by Bingham et al. [4, Page 15], “we lose

nothing by restricting attention to the case of constant c-function in (11)”. The

parameter ρ, called the second-order parameter, tunes the rate of convergence in (2).

We are now in position to state our last result.

Corollary 1 Let QX ∈ Q(HT ). Assume that µ and γ0 satisfy conditions (H.1) and

that ∆X satisfies condition (H.2). If αn and βn are sequences converging to 1 and

such that n(1− αn)→∞, n(1− βn)→ b ≥ 0,

[n(1− αn)]−1/2 ln

(
1− αn
1− βn

)
→ 0 and [n(1− αn)]1/2∆X

(
1

1− αn

)
→ λ ∈ R,
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as n→∞, then for all κ ∈ [1,∞),

%̂
(W,H)

n,βn
(QX | µ, γ0, αn)

%βn(QX | Pµ(κ, γ0))

P→ 1.

The proof of Proposition 1 mainly consists to check that under condition (H.2),

the classical second-order condition holds. This condition, given for instance in de

Haan and Ferreira [17, Definition 2.3.1] can be written

lim
u→1

1

∆X((1− u)−1)

(
QX(1− t(1− u))

QX(u)
− t−γX

)
= t−γX

∫ t−1

1

vρ−1dv. (13)

This condition specifies the rate of converge in (2). Under (13), the Hill estimator

is asymptotically gaussian with rate of convergence k
−1/2
n , see de Haan and Fer-

reira [17, Theorem 3.2.5].

The rate of convergence of βn to 1 is slightly restricted by the condition [n(1 −

αn)]−1/2 ln ((1− αn)/(1− βn)) → 0. Note that when n(1 − βn) → c > 0, this

condition is always satisfied.

Real data study −We close this section, by a short illustration of the estima-

tion procedure on a fire insurance dataset studied by Beirlant et al. [3]. This dataset

provides the sizes of 9181 fire insurance claims for a Norwegian insurance company

for the period 1972 to 1992. These claim sizes are corrected for inflation using

the Norwegian CPI and are expressed in thousands Norwegian Krones (NKR). The

dataset is available for instance in the R package CASdatasets that can be down-

loaded at the address http://dutangc.perso.math.cnrs.fr/RRepository/pub/.

For the period 1985 to 1992, the annual numbers of claim sizes are similar. We

thus focus on this period in the application. For each year j ∈ {1985, . . . , 1992}, we

denote by x
(j)
1 , . . . , x

(j)
nj the observed nj fire losses. As in Gardes and Girard [14],

it is assumed that these observations are realizations of a sample X
(j)
1 , . . . , X

(j)
nj of

nj independent copies of an heavy-tailed random variable X(j).

Our goal is to compare the annual risks of the fire losses over the considered period.

More specifically, for each year j, we estimate the tail version of the Pµ(κ, γ0)−inf

risk measure %β (QX(j) | Pυ(κ, γ0)) where υ is the uniform probability measure. Re-

call that when γX ≤ γ0, this tail-risk measure coincides with the Tail-Value-at-Risk.

The level β is taken as 1− 1/ñ where ñ = 637.5 thousands NKR is the median of

{n1985, . . . , n1992}. When the sample size is lower than ñ, the level β can be consid-
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ered as extreme. This is the case for the years 1985, 1990, 1991 and 1992. For each

year j, we thus chose to use the extrapolated estimator %̂
(W,H)

n,β (QX(j) | υ, γ0, αn).

Its expression is given by

(
1− αn
1− βn

)γ̂(H)

n,X(j)
(kn)

X
(j)

dnαne:n

 1

1− γ̂(H)

n,X(j)(kn)wedgeγ0

(γ̂
(H)

n,X(j)
(kn)∨γ0)/γ0

.

(14)

The Hill estimator is computed with kn = dn(1− αn)e order statistics where αn =

1− (ln(n))2/(2n). The parameter γ0 is taken as in (6) i.e., γ0 = 1/2. In Figure 1,

we represent for each year j the value of the Hill estimator γ̂
(H)

n,X(j)(kn) together

with its asymptotic confidence interval of level 0.95 given by

[
γ̂
(H)

n,X(j)(kn)
(

1− k−1/2
n u0.975

)
; γ̂

(H)

n,X(j)(kn)
(

1− k−1/2
n u0.025

)]
, (15)

where uα is the quantile of order α of a standard normal distribution. This asymp-

totic confidence interval is constructed on the base of the asymptotic normality of

the Hill estimator, see de Haan and Ferreira [17, Theorem 3.2.5]. It appears that

for the years 1985, 1986 and 1988, the critical value γ∗υ = 1 is contained in the

asymptotic confidence interval (15). Consequently, we can reasonably have some

doubt about the existence of the Tail-Value-at-Risk for these years. In the left

panel of Figure 2, the values of the extrapolated tail risk measure estimator (14)

are depicted for each year j. The interval of variation of the estimator when the tail

index estimator varies in the confidence interval (15) is also represented. The lower

(resp. upper) bound of this interval of variation is thus the estimator (14) where

the Hill estimator is replaced by the lower (resp. upper) bound of the confidence

interval (15). Same thing is done in the right panel with the indirect extrapolated

estimator of the Tail-Value-at-Risk

(
1− αn
1− βn

)γ̂(H)

n,X(j)
(kn) X

(j)

dnαne:n

1− γ̂(H)

n,X(j)(kn)
. (16)

Recall that this estimator is valid when the tail index is smaller than 1. As a

consequence, for the years 1985, 1986 and 1988, the upper bound of the interval of

variation is infinite since for these years, the right bound of the confidence inter-

val (15) is larger than 1.

As expected, the estimator (14) is less sensitive to the variations of the tail index
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estimator. For the period 1989 to 1992, the estimators (14) and (16) are similar

since for these years, the tail index is not too large. At the opposite, for the years

1985, 1986 and 1988, the indirect extrapolated estimator (16) is very large which

is not surprising since the estimation of the tail index is close to 1.

Conclusion

The main contribution of this work is the proposition of a new tail risk measure of

level β, denoted %β(· | Pµ(κ, γ0)), which is dedicated to heavy-tailed distributions.

The main advantage of this new proposal is to be defined whatever the value of the

tail index. When the tail index is sufficiently small, our new measure is equivalent

to a classical distortion risk measure. In a finite sample point of view, the proposed

estimator has a better behavior when the tail index is large than an estimator of

the distortion risk measure (when it exists). Our new tail risk measure seems to be

a good alternative to the well known distortion risk measure for very heavy-tailed

distributions.

4 Proofs

4.1 Preliminary results

The aim of our first lemma is to show that a law invariant risk measure can be also

be defined as a mapping from a set of quantile measures.

Lemma 1 Let X be a set of random variables. A risk measure ρ : X → R is law

invariant if and only if there exists a function % : Q → R with Q := {QX | X ∈ X}

such that ρ(X) = %(QX) for all X ∈ X .

Proof − Since the probability space (Ω,F ,P) is atomless, one can find a random

variable U : (Ω,F ,P) → ([0, 1],B([0, 1])) uniformly distributed. For all random

variables X defined on (Ω,F ,P), it is easy to check that X
d
= QX(U). Since ρ is

law invariant, ρ(X) = ρ(QX(U)) for all X ∈ X and thus the functional % is defined

for all QX ∈ Q by %(QX) = ρ(QX(U)). The converse is straightforward.

In the next result, an asymptotic equivalent, as β → 1, of the tail distortion risk

measure of level β is given.
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Lemma 2 For all probability measure µ such that γ∗µ > 0 and all quantile functions

QX ∈ Q(HT) with tail index γX ∈ (0, γ∗µ)

lim
β→1

∫
[0,1]

QX(u)

QX(β)
dµβ(u) =

∫
[0,1]

(1− u)−γXdµ(u).

Proof − Let us introduce the function UX defined for all x ≥ 1 by UX(x) =

QX(1− 1/x). The function UX is regularly varying with index γX . We have

∫
[0,1]

QX(u)

QX(β)
dµβ(u) =

∫
[0,1]

QX,β(u)

QX(β)
dµ(u)

=

∫
[0,1]

UX((1− β)−1(1− u)−1)

UX((1− β)−1)
dµ(u)

=

∫
[0,1]

(1− u)−γXdµ(u) +

∫
[0,1]

|RX(u, β)|dµ(u),

where

RX(u, β) :=
UX((1− β)−1(1− u)−1)

UX((1− β)−1)
− (1− u)−γX . (17)

Using the result given in de Haan and Ferreira [17, Proposition B.1.10], we know

that for all ε > 0 and δ > 0, there exists τ0 = τ0(ε, δ) ∈ (0, 1) such that for all

QX ∈ Q(HT) and β > 1− τ0,

|RX(u, β)| ≤ ε(1− u)−(γX+δ). (18)

Note that τ0 does not depend on u ∈ [0, 1]. Hence, taking δ > 0 such that γX + δ <

γ∗µ, one has
∫
[0,1]

(1− u)−(γX+δ)dµ(u) <∞ and for all ε > 0,

∫
[0,1]

|RX(u, β)|dµ(u) ≤ ε
∫
[0,1]

(1− u)−(γX+δ)dµ(u),

leading to the desired result.

Next, we show that QX ∈ Q(HT) is integrable w.r.t. µ if its tail index γX is lower

than the constant γ∗µ defined in (3).

Lemma 3 For all probability measure µ such that γ∗µ > 0 and all quantile functions

QX ∈ Q(HT) with tail index γX > 0 one has
∫
[0,1]
|QX |dµ <∞ if γX ∈ (0, γ∗µ),∫

[0,1]
|QX |dµ =∞ if γX > γ∗µ.
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Proof − We start with the decomposition

∫
[0,1]

|QX |dµ =

∫
[0,β)

|QX |dµ+

∫
[β,1]

|QX |dµ.

Since QX(0) ≥ cX ∈ R, it is clear that

∫
[0,β)

|QX |dµ <∞.

Moreover, since QX(u) → ∞ as u → 1, for β large enough, QX(u) > 0 for all

u ≥ β. It thus suffices to work with the integral

∫
[β,1]

QXdµ ∈ (0,∞].

First assume that γX ∈ (0, γ∗µ). We must show that

∫
[β,1]

QXdµ <∞.

For all x ≥ 1, let UX(x) = QX(1− 1/x). We have

∫
[β,1]

QXdµ = QX(β)

∫
[β,1]

UX((1− u)−1)

UX((1− β)−1)
dµ(u)

= QX(β)

∫
[0,1]

UX((1− β)−1(1− u)−1)

UX((1− β)−1)
dµ∗β(u),

where µ∗β is the probability measure given for all A ∈ B([0, 1]) by µ∗β(A) = µ((1−

β)A+ β). Hence,

∫
[β,1]

QXdµ ≤ QX(β)

[∫
[0,1]

(1− u)−γXdµ∗β(u) +

∫
[0,1]

|RX(u, β)|dµ∗β(u)

]
,

where RX(u, β) is defined in (17). Using the result given in de Haan and Fer-

reira [17, Proposition B.1.10], we know that for all ε > 0 and δ > 0, there exists

τ0 = τ0(ε, δ) ∈ (0, 1) such that for all QX ∈ Q(HT) and β > 1− τ0, inequality (18)

holds. Taking δ = (γ∗µ − γ)/2 > 0, we then have for β > 1− τ0,

∫
[β,1]

QXdµ < QX(β)

[∫
[0,1]

(1− u)−γXdµ∗β(u) + ε

∫
[0,1]

(1− u)−(γX+δ)dµ∗β(u)

]
.
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We conclude the proof by remarking that

∫
[0,1]

(1− u)−(γX+δ)dµ∗β(u) = (1− β)−(γX+δ)

∫
[β,1]

(1− u)−(γX+δ)dµ <∞

since γX + δ < γ∗µ.

Now assume that γX > γ∗µ. It suffices to prove that there exists β ∈ (0, 1) such

that ∫
[β,1]

QXdµ = QX(β)

∫
[β,1]

UX((1− u)−1)

UX((1− β)−1)
dµ(u) =∞.

One can take β such that QX(β) > 0. Using the notation introduced in the first

part of the proof,

∫
[β,1]

UX((1− u)−1)

UX((1− β)−1)
dµ(u) =

∫
[0,1]

UX((1− β)−1(1− u)−1)

UX((1− β)−1)
dµ∗β(u).

Using Potter’s bounds (see for instance de Haan and Ferreira [17, eq. (B.1.19)]),

for δ < γX − γ∗µ, there exists β0 such that for all β > β0 and u ∈ (0, 1),

1

2
(1− u)−(γX−δ) ≤ UX((1− β)−1(1− u)−1)

UX((1− β)−1)
.

Hence,

∫
[β,1]

UX((1− u)−1)

UX((1− β)−1)
dµ(u) ≥ 1

2

∫
[0,1]

(1− u)−(γX−δ)dµ∗β(u)

= (1− β)−(γX−δ)
∫
[0,1]

(1− u)−(γX−δ)dµ(u),

which is infinite since γX − δ > γ∗µ.

Below, we give the explicit expression of the Pµ(κ, γ0)−inf risk measure for strict

Pareto distributions.

Lemma 4 Let µ be a reference probability measure such that γ∗µ > 0. For all

κ ∈ [1,∞] and γ0 ∈ (0, γ∗µ) such that
∫
[0,1]

(1 − u)−γ0dµ(u) > 0, one has for all

strict Pareto distributions with tail index γX > 0,

% (QX | Pµ(κ, γ0)) =

∫
[0,1]

(1− u)−γXdν∗X(u),
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with ν∗X = µ if γX ≤ γ0 and ν∗X = δb(µ,γ0) if γX > γ0 where

b(µ, γ0) := 1−

(∫
[0,1]

(1− u)−γ0dµ(u)

)−1/γ0

. (19)

Proof of Lemma 4 − First, let us show that for all κ ∈ [1,∞], the Dirac measure

δb(µ,γ0) belongs to the set Pµ(κ, γ0) ensuring that ν∗X ∈ Pµ(κ, γ0) for all γX > 0.

Since by assumption,
∫
[0,1]

(1 − u)−γ0dµ(u) ∈ (0,∞), the constant b(µ, γ0) belongs

to (0, 1). When γX ≤ γ0, an application of the Jensen’s inequality leads to

1−

(∫
[0,1]

(1− u)−γXdµ(u)

)−1/γX

≤ b(µ, γ0).

As a consequence, for all γX ∈ (0, γ0],

∫
[0,1]

(1− u)−γXdµ(u) ≤ (1− b(µ, γ0))−γX =

∫
[0,1]

(1− u)−γXdδb(µ,γ0)(u),

and condition (4) holds. Moreover, for all γX > 0,

∫
[0,1]

(1− u)−γXdδb(µ,γ0)(u) =

(∫
[0,1]

(1− u)−γ0dµ(u)

)γX/γ0
.

Condition (5) is thus satisfied with κ = 1 and thus for all κ ∈ [1,∞] ensuring that

δb(µ,γ0) ∈ Pµ(κ, γ0).

Let us now show that the infimum is reached with the measure ν∗X . When γX ≤ γ0,

it is easy to check that the infimum is reached with the probability measure µ. It

remains to prove that for all γX > γ0,

∫
[0,1]

(1− u)−γXdδb(µ,γ0)(u) ≤
∫
[0,1]

(1− u)−γXdν(u), (20)

for all ν ∈ Pµ(κ, γ0). Let us use an indirect proof to prove (20). Assume that there

exists a probability measure ν ∈ Pµ(κ, γ0) such that

(∫
[0,1]

(1− u)−γ0dµ(u)

)γX/γ0
>

∫
[0,1]

(1− u)−γXdν(u) (21)
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Then∫
[0,1]

(1− u)−γ0dν(u)∫
[0,1]

(1− u)−γ0dµ(u)
<

1∫
[0,1]

(1− u)−γ0dµ(u)

(∫
[0,1]

(1− u)−γXdν(u)

)γ0/γX
,

by Jensen’s inequality. Then, if (21) holds,

∫
[0,1]

(1− u)−γ0dν(u) <

∫
[0,1]

(1− u)−γ0dµ(u),

which is impossible for a measure ν ∈ Pµ(κ, γ0). Hence

∫
[0,1]

(1− u)−γXdδb(µ,γ0)(u) =

(∫
[0,1]

(1− u)−γ0dµ(u)

)γX/γ0
≤

∫
[0,1]

(1− u)−γXdν(u),

and the proof is complete.

4.2 Proofs of main results

Proof of Proposition 1 − For all strict Pareto quantile function QX ∈ Q0,µ,

%(QX | Pµ(κ, γ0)) = λX inf

{∫
[0,1]

(1− u)−γXdν(u)

∣∣∣∣∣ ν ∈ Pµ(κ, γ0)

}
+mX .

Since γX ∈ (0, γ0], from (4) we know that for all ν ∈ Pµ(κ, γ0),

∫
[0,1]

(1− u)−γXdν(u) ≥
∫
[0,1]

(1− u)−γXdµ(u).

Hence, since µ ∈ Pµ(κ, γ0), one has for all Q ∈ Q0,µ that

%(QX | Pµ(κ, γ0)) = λX

∫
[0,1]

(1− u)−γXdµ(u) +mX =

∫
[0,1]

QXdµ.

It remains to show that %(QX | Pµ(κ, γ0)) is finite for all QX ∈ Q(HT ). To prove

this, it suffices to find a probability measure ν∗ ∈ Pµ(κ, γ0) such that

∫
[0,1]

QXdν
∗ <∞,
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for all QX ∈ Q(HT). According to Lemma 4, on can take ν∗ = δb(µ,γ0) and the

proof is complete.

Proof of Proposition 2 − Let QX be a quantile function in Q(HT) with tail index

γX > 0. For all ε > 0 and β ∈ (0, 1), there exists a measure ν
(β)
X,ε ∈ Pµ(κ, γ0) such

that

0 ≤
∫
[0,1]

QX,βdν
(β)
X,ε − %β (QX |Pµ(κ, γ0) ) ≤ ε. (22)

Let us now introduce the set

Bε =

{
β ∈ (0, 1)

∣∣∣∣∣
∫
[0,1]

Qβdν
(β)
X,ε <

∫
[0,1]

Qβdν
∗
X

}
,

where the probability measure ν∗X was introduced in Lemma 4.

If β1 := supBε < 1, then for all β > β1 or for all β /∈ Bε,∫
[0,1]

QX,βdν
(β)
X,ε ≥

∫
[0,1]

QX,βdν
∗
X ,

and thus, for all β > β1,

0 ≤
∫
[0,1]

QX,βdν
∗
X − %β (QX |Pµ(κ, γ0) ) ≤ ε. (23)

Now, if supBε = 1, using the result given in de Haan and Ferreira [17, Proposi-

tion B.1.10], for all δ > 0 (with 0 < δ < γ∗µ−γQ if γQ < γ∗µ), there exists β2 ∈ (0, 1)

such that for all β ∈ Bε with β > β2,

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dν∗X(u)−

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u)

≤
∫
[0,1]

(1− u)−γXdν∗X(u)−
∫
[0,1]

(1− u)−γXdν
(β)
X,ε(u)

+ ε

[∫
[0,1]

(1− u)−γX−δdν∗X(u) +

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u)

]
.

From Lemma 4,

∫
[0,1]

(1− u)−γXdν∗X(u)−
∫
[0,1]

(1− u)−γXdν
(β)
X,ε(u) ≤ 0,
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and thus

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dν∗X(u)−

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u)

≤ ε

[∫
[0,1]

(1− u)−γX−δdν∗X(u) +

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u)

]
. (24)

Let us now show that there exits β3 ∈ (0, 1) such that

∫
[0,1]

(1− u)−γX−δdν∗X(u) + sup
β≥β3
β∈Bε

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) ≤ c(κ, γX), (25)

where c(κ, γX) is a positive constant independent of ε.

↪→ We start with the first term.

• If γX ≤ γ0, one can pick δ such that γX + δ < γ∗µ and thus

∫
[0,1]

(1− u)−γX−δdν∗X(u) =

∫
[0,1]

(1− u)−γX−δdµ(u) <∞. (26)

• If γX > γ0, ν∗X(u) = δb(µ,γ0) where b(µ, γ0) was defined in Lemma 4. Hence,

∫
[0,1]

(1− u)−γX−δdν∗X(u) =

(∫
[0,1]

(1− u)−γ0dµ(u)

)(γX+δ)/γ0

<∞. (27)

↪→ Now, for the second term,

• if γX > γ∗µ, we know from Lemma 3 that

∫
[0,1]

QX,βdµ =∞.

Hence, (22) cannot be true if ν
(β)
X,ε = µ and thus ν

(β)
X,ε ∈ P̃µ(κ, γ0) where P̃µ(κ, γ0) is

the set of probability measures satisfying (4) and (5). As a consequence, if γX > γ∗µ,

one has

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) ≤

(
κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

, (28)

for all β ∈ Bε.

• If γX ≤ γ∗µ, we first need to prove the following assertion.

(A) There exist γ̃ ∈ (0, γ∗µ) and β3 ∈ (0, 1) such that, if γX > γ̃, for all β ∈ Bε
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with β > β3, the probability measure ν
(β)
X,ε is not equal to µ.

As a direct consequence of this assertion, if γX ≤ γ∗µ,

sup
β≥β3
β∈Bε

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) <∞. (29)

Indeed, if 0 < γX ≤ γ̃, since γX + δ < γ∗µ,

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u)

≤
∫
[0,1]

(1− u)−γX−δdµ(u)
∧(

κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

<∞,

and if γX > γ̃, assertion (A) entails that for all β ∈ Bε with β ≥ β3,

∫
[0,1]

(1− u)−γX−δdν
(β)
X,ε(u) ≤

(
κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

<∞.

Let us prove assertion (A). Since the function

γ ∈ (0, γ∗µ) 7→
∫
[0,1]

(1− u)−γdµ(u)

is increasing, continuous and converges to ∞ as γ → γ∗µ, for all χ > 0, there exists

γ̃(χ) ∈ (0, γ∗µ) such that for all γ > γ̃(χ),

∫
[0,1]

(1− u)−γdµ(u) ≥ χ.

Now, for some δ1 > 0, let χ(ε) = ε+ χ̃ where

χ̃ = 3 max
γ∈(0,γ∗µ+δ1]

(
κ

∫
[0,1]

(1− u)−γdµ(u)

)γ/γ0
.

Using Potter’s bounds (see for instance de Haan and Ferreira [17, eq. (B.1.19)]),

there exists β4 ∈ (0, 1) such that for all β ∈ Bε, β > β4,

∫
[0,1]

QX,β(u)

QX(β)
dµ(u) ≥ 1

2

∫
[0,1]

(1− u)−γX (χ(ε),µ)dµ(u),

where γX(χ(ε), µ) = γX − [γ∗µ − γ̃(χ(ε))]/2. Hence, if γX ≥ [γ̃(χ(ε)) + γ∗µ]/2 then
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γX(χ(ε), µ) > γ̃(χ(ε)) and thus,

∫
[0,1]

QX,β(u)

QX(β)
dµ(u) ≥ χ(ε)

2
.

Moreover, for δ1 > 0, there exists β5 ∈ (0, 1) such that for all β ∈ Bε with β > β5

and for all probability measure ν ∈ P̃µ(κ, γ0),

%β (QX |Pµ(κ, γ0) )

QX(β)
≤

∫
[0,1]

QX,β(u)

QX(β)
dν(u)

≤ 3

2

∫
[0,1]

(1− u)−γX−δ1dν(u) ≤ χ̃

2
.

Since QX(β)→∞ as β → 1, there exists β6 ∈ (0, 1) such that QX(β) > 2. Hence,

for all β ∈ Bε with β > β3 := β4 ∨ β5 ∨ β6, if γX > [γ̃(χ(ε)) + γ∗µ]/2 =: γ̃,

∫
[0,1]

QX,βdµ− %β (QX |Pµ(κ, γ0) ) ≥ QX(β)

[
χ(ε)

2
− χ̃

2

]
=
QX(β)ε

2
≥ ε,

and thus necessarily, ν
(β)
X,ε 6= µ. Assertion (A) is then proved.

Gathering (26) to (29) entails that (25) holds with

c(κ, γX) =

∫
[0,1]

(1− u)−γX−δdµ(u)
∧(

κ

∫
[0,1]

(1− u)−γX−δdµ(u)

)(γX+δ)/γ0

,

if γX ≤ γ̃ and if γX > γ̃,

c(κ, γX) =

(∫
[0,1]

(1− u)−[(γX+δ)∧γ0]dµ(u)

)[(γX+δ)∨γ0]/γ0

.

Note that as expected, c(κ, γX) does not depend on ε. Moreover when κ and/or

γX increase, so does c(κ, γX).

For all β ∈ Bε with β > β3, inequalities (22) and (24) and the fact that QX(β) ≥ 2

lead to

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

%β (QX |Pµ(κ, γ0) )

QX(β)

≤
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u) +

∫
[0,1]

QX,β(u)

QX(β)
dν

(β)
X,ε(u)

−
%β (QX |Pµ(κ, γ0) )

QX(β)
≤ ε

(
c(κ, γX) +

1

2

)
. (30)
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From (23) and (30), we finally get that for all ε > 0 and for β > β3

0 ≤
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

%β (QX |Pµ(κ, γ0) )

QX(β)
≤ εg(κ, γX), (31)

with

g(κ, γX) :=

[
1
∨(

c(κ, γX) +
1

2

)]
.

As shown in the proof of Lemma 2 entails that for all QX ∈ Q(HT),∣∣∣∣∣
∫
[0,1]

QX,β(u)

QX(β)
dµ∗X(u)−

∫
[0,1]

(1− u)−γXdµ∗X(u)

∣∣∣∣∣ < εg(κ, γX),

and thus, from (31),∣∣∣∣∣%β (QX |Pµ(κ, γ0) )

QX(β)
−
∫
[0,1]

(1− u)−γXdµ∗X(u)

∣∣∣∣∣ ≤ 2εg(κ, γX),

which is the desired result.

Proof of Proposition 3 − From Lemma 2, we have for all quantile functions

QX ∈ Q(HT) with tail index γX ∈ (0, γ0],

lim
β→1

∫
[0,1]

QX(u)

QX(β)
dµβ(u) =

∫
[0,1]

(1− u)−γXdµ(u),

The point i) is then a direct consequence of Proposition 2.

Let us now prove the second point of the Proposition. Under (7), the sum X1 +X2

is such that QX1+X2 ∈ Q(HT) with tail index γ2 ≤ γ0, see for instance Davis and

Resnick [7, Lemma 2.1]. Hence, as β → 1, we have from Lemma 2

%β (QX1+X2 | Pµ(κ, γ0)) ∼ QX1+X2(β)

∫
[0,1]

(1− u)−γ2dµ(u)

∼
∫
[0,1]

QX1+X2dµβ ≤
∫
[0,1]

QX1dµβ +

∫
[0,1]

QX2dµβ .

The conclusion follows with another use of Lemma 2.

Proof of Proposition 4 − Let us first introduce the function Φµ,γ0 : (0,∞) →

(0,∞), defined for all γ > 0 by

Ψµ,γ0(γ) =

[∫
[0,1]

(1− u)−(γ∧γ0)dµ(u)

](γ∨γ0)/γ0
.
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We thus have

%̂n,βn(QX | µ, γ0) = Xdnβne:nΨµ,γ0(γ̂n,X).

Using the asymptotic equivalence obtained in Proposition 2, it suffices to prove that

Xdnβne:n
QX(βn)

P→ 1 and Ψµ,γ0(γ̂n,X)
P→ Ψµ,γ0(γX).

Let’s start with the first convergence in probability. If V1, . . . , Vn is a sample of n

independent copies of a standard uniform random variables, it is well known that

Xdnβne:n
d
= QX

(
1− Vn−dnβne+1:n

)
= UX

(
V −1
n−dnβne+1:n

)
,

where V1:n ≤ . . . ≤ Vn:n is the sample V1, . . . , Vn arranged in ascending order and

UX(·) = QX(1 − 1/·). From the representation of uniform order statistics, see

David [6] and Reiss [24],

Vn−dnβne+1:n
d
=

n−dnβne+1∑
i=1

Ei

/
n∑
i=1

Ei,

where E1, . . . , En are independent copies of a standard exponential random variable.

Since n(1− βn)→∞, it is readily seen that (n− dnβne+ 1)/[n(1− βn)]→ 1. An

application of the law of large numbers leads to

Vn−dnβne+1:n

1− βn
P→ 1.

Since UX is a regularly varying function,

UX
(
V −1
n−dnβne+1:n

)/
UX

(
(1− βn)−1) P→ 1

showing the first convergence. The proof of the second convergence in probability

is straightforward since γ̂n,X
P→ γX and since under (H.1) the function Ψµ,γ0 is

continuous.

Proof of Proposition 5 − Using the function Ψµ,γ0 introduced in the proof of

Proposition 4, we have

%̂
(W)

n,βn
(QX | µ, γ0, αn) := Xdnαne:n

(
1− αn
1− βn

)γ̂n,X
Ψµ,γ0 (γ̂n,X) .
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According to the asymptotic equivalence obtained in Proposition 2, it thus suffices

to show that
Xdnαne:n
QX(βn)

(
1− αn
1− βn

)γ̂n,X P→ 1.

Since Xdnαne:n/Q(αn)
P→ 1, see the proof of Proposition 4, it is equivalent to prove

that

QX(αn)

QX(βn)

(
1− αn
1− βn

)γ̂n,X
=
`X((1− αn)−1)

`X((1− βn)−1)
exp

(
(γ̂n,X − γX) ln

(
1− αn
1− βn

))
P→ 1.

Under (12),

exp

(
(γ̂n,X − γX) ln

(
1− αn
1− βn

))
P→ 1.

Now, using the representation (11) of a slowly varying function,

`X((1− αn)−1)

`X((1− βn)−1)
=
cX((1− αn)−1)

cX((1− βn)−1)
exp

(
−
∫ (1−βn)−1

(1−αn)−1

∆X(t)

t
dt

)
.

Since αn and βn converge to 1 as n→∞,

lim
n→∞

cX((1− αn)−1)

cX((1− βn)−1)
= 1.

Moreover, since |∆X | is asymptotically decreasing,∣∣∣∣∣
∫ (1−βn)−1

(1−αn)−1

∆X(t)

t
dt

∣∣∣∣∣ ≤
∣∣∣∣∆X

(
1

1− αn

)∣∣∣∣ ln(1− αn
1− βn

)
→ 0,

and the proof is complete.

Proof of Corollary 1 − Our goal is to prove that

(n(1− αn))1/2
(
γ̂
(H)
n,X − γX

)
d→ N (0, γ2

X). (32)

Corollary 1 is then a direct consequence of Proposition 5. To prove (32), we use

de Haan and Ferreira [17, Theorem 3.2.5] in which the asymptotic normality of the

Hill estimator is established. We thus have to check that under the assumptions of

Corollary 1, the conditions of de Haan and Ferreira [17, Theorem 3.2.5] are satisfied.

After a comparison between the set of conditions in Corollary 1 and the one in de

Haan and Ferreira [17, Theorem 3.2.5], we notice that we only have to check that

30



the second order condition (13) holds or equivalently that for all t > 1,

lim
x→∞

`X(tx)/`X(x)− 1

∆X(x)
=

∫ t

1

uρ−1du =
tρ − 1

ρ
.

Under the conditions of Corollary 1,

`X(tx)

`X(x)
= exp

(∫ tx

x

∆X(u)

u
du

)
= exp

(
∆X(x)

∫ t

1

∆X(ux)

∆X(x)

1

u
du

)
.

Since the sign of ∆X is asymptotically constant and |∆X | is regularly varying of

index ρ ≤ 0, we have from Bingham et al. [4, Theorem 1.2.1] that

lim
x→∞

∆X(ux)

∆X(x)
= uρ,

uniformly on u in a compact set. Hence,

lim
x→∞

∫ t

1

∆X(ux)

∆X(x)

1

u
du =

∫ t

1

uρ−1du,

and the conclusion follows since ∆X(x)→ 0 as x→∞ and (exp(u)− 1)/u→ 1 as

u→ 0.
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Figure 1: For each year j ∈ {1985, . . . , 1992}, the point o represents the value of the Hill
estimator and the vertical full line its confidence interval of level 0.95. The horizontal
line is the critical value γ∗υ = 1.
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Figure 2: Left panel: for each year j ∈ {1985, . . . , 1992}, value of the estimator (14)
together with its interval of variation when the Hill estimator varies in the confidence
interval (15). Right panel: idem with the Tail-Value-at-Risk estimator (16).
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