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Abstract

Reflectance Transformation Imaging (RTI) is a technique for estimating surface
local angular reflectance from a set of stereo-photometric images captured with
variable lighting directions. The digitization of this information fully fits into the
industry 4.0 approach and makes it possible to characterize the visual properties
of a surface. The proposed method, namely HD-RTI, is based on the coupling
of RTI and HDR imaging techniques. This coupling is carried out adaptively
according to the response at each angle of illumination. The proposed method is
applied to five industrial samples which have high local variations of reflectivity
because of their heterogeneity of geometric texture and/or material. Results
show that coupling HDR and RTI improves the relighting quality compared
to RTI, and makes the proposed approach particularly relevant for glossy and
heterogeneous surfaces. Moreover, HD-RTI enhances significantly the charac-
terization of the local angular reflectance, which leads to more discriminating
visual saliency maps, and more generally to an increase in robustness for visual
quality assessment tasks.

Keywords: Material Appearance, Machine vision, Quality inspection

1. Introduction

Surfaces are the location of complex and multi-physical interactions. Par-
ticularly, the interaction with its luminous environment is currently the subject
of several researches in various application fields such as cultural heritage [1, 2],
bio-medical, forensic [3] and the manufacturing industry for the purpose of au-5

tomation of inspection tasks [4, 5], or for failure analysis [6]. In the latter field,
two objectives are pursued through this kind of analysis. The first objective is
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Figure 1: RTI-based flowchart for visual quality assessment of manufactured surfaces in in-
dustry

a better understanding of how the surface was fabricated in order to better con-
trol the process and manufacturing aspects [7, 8]. The second relies on better
understanding and mastering of how surfaces are perceived, which has become10

a potent lever of value creation for many industries [9].
The interaction between a surface and its luminous environment can be

assessed through different approaches. The most exhaustive technique is the
measurement of the Bidirectional Reflectance Distribution Function (BRDF)
[10]. However, this technique requires heavy setups and is very time consuming,15

making it inadequate when it comes to many industrial applications. Simplified
approaches have thus been developed based on the selection and measurement
of the most relevant quantities regarding the surface properties and/or function-
alities to be mastered. In this paper, we focus on Reflectance Transformation
Imaging (RTI), originally developed as Polynomial Texture Mapping [11, 12]. In20

the industrial context, RTI imagery data can either be used to extract features
for decision making on conformity or used as a medium for visual assessment
through relighting. Figure 1 presents such an exploitation pipeline of RTI data
in the industry.

The following section will briefly present the RTI technique and highlight25

one of its limits: a dynamic range that is too low when acquiring highly specular
surfaces. The proposed method (augmenting RTI images with the HDR imaging
technique) is presented in section 3. The section 4 presents our experimental
protocol and results on three surface samples with distinct reflectance properties
in terms of isotropy and dynamic range. As an application case, we present a30

fourth surface to compare its saliency map computed from low dynamic and
high dynamic acquisition (Section 5). Finally, we conclude with the gain of the
proposed method.
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Figure 2: Example of RTI discrete luminance point clouds for three different pixels.

2. Reflectance Transformation Imaging

An RTI acquisition consists in acquiring a set of images of an observed35

surface, each image corresponding to a specific direction of illumination. The
camera stands at a fixed position, generally orthogonal to the inspected surface.
As a result of the acquisition process we obtain a stack of stereo-photometric
images. On this set of images, each pixel can be considered as a discrete measure
of the luminance of the corresponding point in the observed scene. Figure 240

presents three different pixels’ responses at each illumination angle. The gray
level of the pixels varies for each direction of illumination. Its value is either
within the acquisition range, underexposed (dark blue points) or overexposed
(yellow points).

From stereophotometric images, the next step is the modelling whose aim is45

to build a continuous representation from discrete acquired data. The contin-
uous model is necessary for the operation named relighting, which consists in
virtually varying the light direction [13]. Relighting is used generally for visual
assessment but can also be used for further processing such as material appear-
ance characterization [14, 15]. This can be very helpful for human operators in50

charge of control/inspection since it can help avoid handling of the objects and
enables automation of the task.

To build a continuous model, it’s common to use data fitting by approxi-
mation [16] or interpolation [17]. Therefore, It is essential to have an efficient
approximation model allowing for the purposes of relighting. In this context,55

recent works on the Discrete Modal Decomposition have shown good perfor-
mance [18] in comparison to the Polynomial Texture Mappings (PTM) [19] and
the Hemi-Spherical Harmonics (HSH) [20] approaches. Interpolation-based ap-
proaches such the one based on Radial Basis Functions (RBFs) belong to a
different category since the modelling is local, but whose performance is still60

good especially for relighting purposes [21, 22].
Moreover, some geometric [2] and photometric indicators [23] can be derived

from this information in order to better understand the link of local topography
on visual appearance. These indicators answer to different application needs
[24, 25], as illustrated in the flowchart presented in Figure 1. An RTI application65

in industry consists, for instance, in highlighting the salient pixels/areas in order
to facilitate the quality assessment [26] (see Section 5).
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2.1. Pixel-level and image-level dynamic limitation

The camera in an RTI setup is used as a photosensor capturing and sampling
the surface luminance at each point of the scene. One important characteristic70

of a camera is its dynamic range, which is actually the ratio between the largest
and the smallest signal values. Recent sensor’s dynamic range is about 1/105

(approximately 60 dB). In comparison, human vision sensitivity is around 1/109

(90 dB). In the case of a conventional RTI acquisition, this dynamic limitation is
particularly detrimental. Indeed, the light amount reflected by a surface varies75

greatly with the illumination angle (incidence and azimuth).
Figure 3 presents images obtained for two surfaces (paper and metal mate-

rials) at three different illumination angles (illustrated by the spherical repre-
sentation at the bottom right corner of each image).

(a) Paper: rS = 0% (b) Paper: rS = 0% (c) Paper: rS = 0%

(d) Metal: rS = 94% (e) Metal: rS = 0% (f) Metal: rS = 51%

Figure 3: RTI images of a paper (a-c) and a metallic (d-f) industrial surface samples (12.4
MPix monochromatic camera - Exposure Time (Et) = 60ms)

The percentage of non-measured pixels, in the presented image acquisition,80

is named rS . Blue pixels refer to underexposed pixels while red ones are overex-
posed. The first row, corresponding to the paper, have small rS values as it is
a Lambertian surface. On the contrary, the metal images present larger rS . It
corresponds to non-measured part of the signal. Moreover, in many industrial
applications such as visual inspection, the critical points are often associated85

with high local variations of reflectance implying large rS values. These non-
measured pixels make it impossible to robustly discriminate the anomalies and
evaluate their criticality in terms of perception. The work presented in this
article aims to answer this issue by proposing an adaptive coupling of HDR and
RTI imaging techniques [27].90
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The limited dynamic range of the sensor results, for RTI acquisitions, in two
issues. The first one is specific to RTI and concerns the pixel-level dynamic.
Indeed, varying the directions of illumination during the RTI acquisition causes
for each pixel quick and high amplitude variations: low elevation angles often
generate extremely low luminance values, while lighting directions associated95

to specular lobe generate very high luminance values. The maps presented in
Figure 4 illustrate this pixel-level dynamic limitation.

(a) Paper sample (b) Metallic brushed finished surface

Figure 4: RTI pixel level dynamic limitation: Percentages of non-measured points in RTI
acquisitions with 149 homogeneous angular positions

Each point represents the percentage of RTI acquisition angles for which the
luminance could not be estimated (undersaturated and oversaturated value). It
is observed that even if the material is globally diffuse, certain points have not100

been measured for up to 30% of the RTI acquisition positions (Figure 4a). This
is due, in this case, to the topography of the surface, which has a heterogeneous
material density. For the brushed metallic sample (Figure 4b), it is observed
that up to 70% of RTI acquisition directions produce saturated values for certain
pixels. This configuration is frequent for glossy surfaces, and/or if the surface105

presents an oriented texture (anisotropic). Indeed, for such configuration the
amount of light reflected when the direction of illumination is orthogonal to the
direction of texturing is often very high, and inversely.

The second issue concerns the image-level dynamic as within the same RTI
acquisition image the difference in the response between two pixels can be very110

high. This may vary with the angle of incidence of the light, but this quantity is
directly related to the intrinsic reflectance of the inspected surfaces. In the case
of surfaces with local specularities or for composite surfaces, the dynamics of the
reflectance response can largely exceed the range of the dynamic of the sensor,
which leads to a significant loss of information (sensor saturation), as illustrated115

in Figure 5, which represents, for each RTI acquisition angle, the percentage of
non-measured points in the obtained reflectance image. It is observed that the
adjustment of the exposure time, which is manually tuned by the operator for
a conventional RTI acquisition, does not make it possible to capture images
correctly exposed for all the acquisition directions. This is particularly the120
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case for the brushed surface, where a large percentage of saturated values is
obtained for the directions of illumination which are close to being orthogonal
to the direction of the surface texture.

(a) Paper sample (b) Metallic brushed finished surface

Figure 5: RTI image-level dynamic limitation: Percentages of non-measured points for all
illumination directions

These two limitations can also alter the quality of the RTI derived fea-
ture maps (see flowchart presented in Figure 1). For instance, RTI stereo-125

photometric acquisitions allow to estimate the normal field of the surface, and
thus to determine the slopes and curvatures [23]. As example, two slope maps
obtained from RTI acquisitions on the same surface at different exposure times
(Et) are presented in Figure 6. It is observed that the arbitrary tuning of Et

has a significant influence on the estimation of the normal field, which could130

possibly be detrimental for subsequent analyses.

(a) Dx, Et = 125ms (b) Dx, Et = 500ms

Figure 6: RTI-derived Dx slopes maps obtained from acquisitions of a metallic sample cap-
tured at different exposure times (Et)
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3. Proposed method for High Dynamic RTI acquisitions

The proposed method aims at addressing these two dynamic limitations.
Moreover, our implementation of High Dynamic RTI (HD-RTI) is fully auto-
matic and adaptive: the number of required shots for each illumination direction135

as well as their corresponding exposure times are automatically set according
to the response of the observed surface. The general flowchart of the proposed
HD-RTI methodology is presented in Figure 7. Furthermore the implemented
method along with its algorithm are detailed below.

High Dynamic 
Reflectance  images
at each RTI illumination 

angle 

Pixel-wise Modelling
from HD-RTI raw data 

Relighting
Dynamic appearance 

reconstruction 

Feature maps
HD-Reflectance based, 
geometrical, statistical 

HD-RTI-assisted visual 
quality assessment  &
acceptability decision

HD-RTI-assisted visual 
quality inspection 

HD-RTI Merging
from the acquired HDR 

images

Figure 7: General flowchart of the implementation of HD-RTI

The proposed method was built on the approach of Martinez et al. [28] by140

adapting it to RTI acquisitions and automating the parameters tuning. The
principle is to automatically adjust the number of shots (at each direction of
illumination), as well as the Et values according to the surface response at
each acquisition angle. A normalization operation is then performed in order to
obtain consistent information for all acquisition illumination directions, which145

is essential for the RTI analysis and modelling process. The main steps of the
proposed method are the estimation of the Camera Response Function (CRF),
the selection of the shots and the image reconstruction. They are presented
below and detailed in Algorithm 1.

3.1. Estimation of the CRF150

The method requires first to estimate the CRF [30, 31]. The estimation
of the CRF does not have to be renewed for each HD-RTI acquisition. It is
indeed possible to reuse a known CRF as long as the same camera is used. To
initialize the calculation, a number of reference pixels is chosen, usually from
100 to 5000 distributed homogeneously over the image. This choice is in practice
a compromise between the computing time and the noise level of the estimated
CRF which tends to increase when the number of reference pixels is too low.
Several images are then acquired with different Et to access the entire luminous
response of the surface. Finally, the CRF is approximated by the minimization
of the objective function O expressed in equation 1. The obtained CRF for our
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Algorithm 1 HD-RTI Algorithm

Require: Input Variables
(θ, φ) ∈ Rn: angular positions
CRF ∈ R255: response function of the camera prev. estimated
(Tnoi, Tsat) ∈]0; 255]: user defined thresholds; ensure Tnoi < SAT
Einit ∈ N: first Et for each angular position (defined by the user)
Eref ∈ N: reference Et of reference (defined by the user)
for i = 1 to n do

Move light to θ(i) φ(i)
Evec ← Empty Vector; Pvec ← Empty Vector %Variable Initialisation
Pinit ← Take a photo with Et Einit

Pinit/255 push in Pvec %Normalisation
Einit/Eref push in Evec

%Treatment of the satured pixels
Pshorter ← Pinit ; Eshorter ← Einit

while Pshorter have pixels > SAT do

Eshorter ← CRF−1(Tnoi)
CRF−1(Tsat)

∗ Eshorter %Computation of the shorter Et

Pshorter ← Take a photo with Et = Eshorter

Pshorter/255 push in Pvec %Normalisation
Eshorter/Eref push in Evec

end while

%Treatment of the noised pixels
Plonger ← Pinit; Elonger ← Einit

while Plonger have pixels < Tnoi or Elonger = Emin do

Elonger ← CRF−1(Tsat)
CRF−1(Tnoi)

∗ Elonger %Computation of the longer Et

Plonger ← Take a photo with Et = Elonger

Plonger/255 push in Pvec %normalisation
Elonger/Eref push in Evec

end while

Lvec ← CRF−1(Pvec) %Linearisation

Wvec ← (exp−16∗(Pvec−0.5)2 − exp−4)
1−exp−4 %Computation of the weight of the pixels

(Robertson[29]))
HDR← sum(1/Eref ∗ (Lvec ∗Wvec))/sum(Wvec) %Merging

%Treatment of the pixels always noised/saturated
if Weight of some pixels ' 0 then
HDR(Pixels) where Pvec(Pixels) > 0.5 and sum(Wvec(Pixels)) = 0←
Lvec(Pixels)(Min)/min(Evec(Min))
HDR(Pixels) where Pvec(Pixels) < 0.5 and sum(Wvec(Pixels)) = 0←
Lvec(Pixels)(Max)/min(Evec(Max))

end if
return HDR

end for
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RTI setup is presented in Figure 8a.

O =

N∑
i=1

P∑
j=1

{(Zij [g(Zij)− lnEi − ln∆tj ]}2 + λ

Zmax−1∑
z=Zmin+1

[w(z)g′′(z)]2 (1)

Where


g(Zij) corresponds to the CRF to be determined
Zij is the value of the pixel i with the exposure time j
Ei is the irradiance of the pixel i
w is a weighting function

(a) Estimation of the Camera Response Function
(CRF) of our acquisition sensor (AVT MANTA G
507B)

(b) Cumulative histogram of an LDR image

Figure 8: Schema of a CRF and a cumulative histogram

3.2. Number of shots and associated Et

We propose a method that automatically adapts for each light direction, in
an RTI acquisition, the number of shots as well as their associated Et values.
The method is based on the Adaptive Exposure Estimation (AEE) technique
[28], adapted to the case of RTI acquisitions. Three pre-set parameters are used:
noise (Tnoi), saturation level (Tsat) and a threshold (Sp) which corresponds to
the percentage of saturated pixels considered acceptable. At each illumination
direction, a first image is acquired with an arbitrary Et (user choice). Then
recursively, other images are acquired with a longer and/or shorter Et, respec-
tively Es and El, automatically determined using eq. 2. Finally, the cumulative
histogram of the image (Figure 8b) allows to determine whether it has a selected
proportion of underexposed or overexposed pixels. If a threshold is exceeded,
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other shot(s) are carried out with longer and/or shorter Et.
Es = Et ∗

CRF−1(Tnoi)

CRF−1(Tsat)

El = Et ∗
CRF−1(Tsat)

CRF−1(Tnoi)

(2)

The algorithm stops when the ratio of correctly exposed (unsaturated) pixels
in the cumulative histogram of the image is satisfactory, otherwise all available
Et are used. It is also possible to define (by the user) a maximum or minimum
number of images to acquire if necessary. The parameters Tnoi and Tsat influence
the SNR (Signal-To-Noise ratio, estimated pixel-wise equation 3): the closer the
Tnoi and Tsat levels are, the higher the mean SNR of the resulting HDR data.
However, more shots increases both acquisition time and data volume.

SNRxy = 20× log10
(
Ēxy

σxy

)
(3)

For each pixel (xy) of the acquired image, Ēxy and σxy correspond to the mean
and the standard deviation of the obtained HDR values respectively.

3.3. HD-RTI images reconstruction155

This step consists in merging the LDR frames acquired to generate HDR
stereo-images for each acquisition direction. It is then also possible to extract
(for each pixel) the set of high dynamic luminance values and post-process these
data to meet the needs of the visual quality inspection (modelling, relighting, de-
scription of the local visual properties). The reconstruction for each acquisition160

direction of the HDR reflectance information requires three main steps Si=1...3,
which are the linearization, weighting and LDR data merging [29, 30, 32].

(S1 - Linearisation). This operation consists in correcting the non-linearity of
the camera. The response of the camera generally has a linear response only
in the middle of the CRF (see Figure 8a) while at its borders it exhibits a
logarithmic / exponential behaviour. The linearization is carried out from the
inverse of the CRF , as described in equation 4.

Plin = CRF−1(P ) (4)

Where P is the pixel value.

(S2 - Weighting). - In this step, a function enabling to weight the pixels of
an LDR image acquisition according to their values, i.e., their distance to the165

fixed noise (Tnoi) and saturation (Tsat) thresholds, is saught. This weighting
is intended to attenuate potential artefacts that may cause blooming or noise
on the reconstructed HDR image. The most often used weight functions are
Box, Robertson, Hat or Deb97 (Debevec 1997 ) [30]. The weight functions are
illustrated in the Figure 9.170
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Figure 9: Weight functions

(S3 - Merging). - This operation is carried out independently for each light
direction and consists in merging the LDR images acquired with different Et,
taking into account the Tnoi and Tsat fixed by the user, the selected weight
function and the CRF. For each pixel, the HDR luminance value is obtained by
averaging the values extracted from each LDR image weighted by the CRF and175

the weight function. The high dynamic luminance values obtained at each pixel
from the RTI acquisition directions must be consistent with each other, and not
associated with a relative image level reflectance value as for conventional HDR
imaging. To answer this issue, a reference exposure time Eref

t is empirically
chosen allowing then to calculate all HDR luminance relative to this reference, by180

implementing for each LDR acquisition frame i the relative ratio RE = Ei
t/E

ref
t .

The only condition to be respected in order to compare the HDR data with
others is to use the same Eref

t during their acquisitions. Indeed, the HDR data

will be equivalent to scene with an exposure time of Eref
t without the limitation

of the sensor.185

4. Evaluation and results

4.1. RTI setup

The acquisitions were carried out with a custom device (Figure 10a) al-
lowing the implementation of the HD-RTI method. The image sensor is a
monochromatic 2/3 active pixel-type CMOS sensor, with a resolution of 12.4190

MPix (4112 × 3008). The camera is equipped with a precision micro-imaging
modular lens system with a motorized magnification and focus. This vision sys-
tem makes it possible to adapt the field of view and to quickly focus on the area
of interest. Regarding the light source, we use a white uniform light (high power
LED) equipped with a lens to limit the solid angle of the light to 15 degrees. In195

order to carry out RTI acquisitions, the light source is mounted on a motorized
hoop of radius 35 cm capable of positioning the source in any position in the
hemisphere of the same radius around the object by varying (φ and θ) angles.
All the parameters of the HD-RTI acquisition process can be controlled with a
user interface (Figure 10b), which also allows the visualization of acquired data200

and post-processed features mappings.
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(a) Acquisition device (b) User Interface

Figure 10: Custom acquisition system for HD-RTI

The method is applied on 4 samples with distinct properties in terms of
isotropy and reflectance (Figure 11). The first surface sample (Surf-1 ) is an
industrial matte paper sample. Its roughness is isotropic. Surf-2 is a gray
fluoropolymer calibration patch with a high diffuse reflectance that reflect 40%205

of the light. It exhibits highly Lambertian behavior and can be used for light
calibration in photography. Surf-3 is a brushed metal sample (hot rolling).
Surf-4 is a microblasted on rough planed silver sample. The acquisitions on
these four samples were carried out with a field of view of 6.89× 5.11mm (pixel
size of approx. 1.7 µm2, with 192 lighting angles distributed homogeneously (see210

Figure 5), at 20 different areas for each one.

(a) Surf-1 : Paper (b) Surf-2 : Polymer

(c) Surf-3 : Metal (d) Surf-4 : Silver

Figure 11: Images of Surf-[1-4] composing the dataset
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4.2. Overall assessment of the HD-RTI method

The first overall evaluation of the method on the four surface samples, pre-
sented above, consists in comparing RTI (noted LDR raw) and HD-RTI obtained
data on Surf-[1-4]. As expected, the more a surface has a high response am-
plitude, the larger the number of images required is (table 1) at each lighting215

direction. We also observe that the standard deviation of Lambertian-kind sur-
faces is lower. This shows that the system is self-adaptive both as a function of
the type of surface observed and of its response amplitude at the different acqui-
sition angles. The comparative analysis of dynamic ratios (table 2) also shows

Surf-1 Surf-2 Surf-3 Surf-4
Total number of light directions. 192 192 192 192
Number of shots (LDR) µ (σ) 386 (0) 347.2 (26.6) 397.8 (3.6) 486 (6.3)
Max. nb of images by direction µ (σ) 2 (0) 2.2 (0.4) 3 (0) 3 (0)
Min. nb of images by direction µ (σ) 2 (0) 1.2 (0.4) 2 (0) 2 (0)
Number of images by direction µ (σ) 2 (0) 1.8 (0.4) 2.1 (0.2) 2.5 (0.5)

Table 1: Mean (µ) and standard deviation (σ) of HD-RTI acquisitions indicators on surface
samples Surf-[1-4]

Pixel-levels 

dynamic ratio
102 (39) 58 (15) 113 (38) 61 (8) 255 (6) 1336 (456) 109 (33) 454 (184)

Image-levels 

dynamic ratio
115 (27) 55 (10) 125 (24) 57 (4) 255 (0) 1130 (216) 99 (27) 395 (127)

Pixel-levels 

dynamic ratio
6 (2) 6 (2) 8 (2) 9 (2) 12 (6) 142 (80) 7 (2) 28 (14)

Image-levels 

dynamic ratio
67 (39) 32 (11) 76 (24) 49 (8) 255 (0) 744 (183) 45 (12) 199 (66)

Pixel-levels 

dynamic ratio
255 (0) 301 (81) 255 (0) 740 (869) 255 (0) 23823 (7682) 255 (0) 5018 (1165)

Image-levels 

dynamic ratio
156 (74) 78 (14) 199 (65) 69 (11) 255 (0) 1705 (438) 167 (63) 844 (313)

Min μ (σ)
Surf-4Surf-3Surf-1 Surf-2

LDR raw HD-RTILDR raw HD-RTILDR raw HD-RTI LDR raw HD-RTI

HD-RTILDR raw HD-RTILDR raw HD-RTI LDR raw

Surf-3Surf-1 Surf-2

LDR rawHD-RTI

Mean μ (σ)
Surf-3 Surf-4Surf-1 Surf-2

LDR raw HD-RTI HD-RTILDR raw HD-RTI LDR raw HD-RTI LDR raw

Max μ (σ)
Surf-4

Table 2: RTI vs HD-RTI dynamic ratio indicators on Surf-[1-4]

higher values for HD-RTI. It confirms that the information was only partially220

measured with the conventional RTI method. Moreover, it is also observed that
the mean ratios are increasing in the case of the HD-RTI acquisitions. It cor-
responds to the expected reflectance behaviour of the studied surfaces, whereas
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this up-trending evolution is not clear in the RTI data. Lastly, the large val-
ues of pixel-level ratio recorded also confirms the necessity and relevance of the225

proposed approach for enhanced RTI. These results are corroborated by the
distribution of the image-level and pixel-level dynamic ratios. The distributions
obtained for Polymer are presented in Figure 12 (similar results are obtained
for the three other samples).

(a) RTI (b) HD-RTI

Figure 12: Polymer pixel-level dynamic ratio distribution

4.3. Pixel-wise assessment230

HD-RTI technique provides therefore measured data significantly different
from conventional RTI data. Pixel wise evaluation aims to highlight how these
changes can be detrimental for the characterization of the reflectance informa-
tion, the perception of the surface texture and more generally the entire RTI
subsequent analyses. As the dynamics of the HD-RTI data obtained are of-235

ten larger than in the case of conventional image, a tone mapping operation
is necessary for their visualization. However, this processing step is irrelevant
when the analysis is not limited to the visualization. Indeed, the non-linearities
induced by the tone mapping process can generate analysis biases. An example
of certain HD-RTI obtained images is presented in Figure 13 for Surf-[1-4]. The240

comparison with the RTI data shows that the HD-RTI technique allows one to
measure the angular reflectance response whatever its amplitude, which leads
to a finer and more robust assessment of the angular reflectance. The results
obtained on Surf-3 (Metal) and Surf-4 (Silver) show that the method is par-
ticularly appropriate for glossy surfaces. Indeed, these surfaces often do not245

make it possible to define an appropriate exposure time for all the angles of an
RTI acquisition, and inevitably lead to a large number of non-measured (over
or underexposed) points. These results are confirmed by the comparison of the
3D reflectance maps presented in Figure 14.
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(a) Surf-1 - LDR raw RTI
acquisition;(θ = 232◦, φ = 8◦)

(b) Surf-1 - HD-RTI tone
mapped;(θ = 232◦, φ = 8◦)

(c) Surf-2 - LDR raw RTI
acquisition;(θ = 97◦, φ = 5◦)

(d) Surf-2 - HD-RTI tone
mapped;(θ = 97◦, φ = 5◦)

(e) Surf-3 - LDR raw RTI
acquisition;(θ = 106◦, φ = 35◦)

(f) Surf-3 - HD-RTI tone
mapped;(θ = 106◦, φ = 35◦)

(g) Surf-4 - LDR raw RTI
acquisition;(θ = 17◦, φ = 20◦)

(h) Surf-4 - HD-RTI tone
mapped;(θ = 17◦, φ = 20◦)

Figure 13: Comparison of the LDR raw acquisition and the tone map of the HDR data for
the light direction (θ, φ), on Surf-[1-4]
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(a) Surf-1 - LDR raw reflectance
surface (θ = 106◦, φ = 35◦)

(b) Surf-1 - HD-RTI reflectance
surface (θ = 106◦, φ = 35◦)

(c) Surf-2 - LDR raw reflectance
surface (θ = 134◦, φ = 41◦)

(d) Surf-2 -HD-RTI reflectance
surfaces (θ = 134◦, φ = 41◦)

(e) Surf-3 - LDR raw reflectance
surface (θ = 192◦, φ = 56◦)

(f) Surf-3 - HD-RTI reflectance
surface (θ = 192◦, φ = 56◦)

(g) Surf-4 - LDR raw reflectance
surface (θ = 17◦, φ = 20◦)

(h) Surf-4 -HD-RTI reflectance
surfaces (θ = 17◦, φ = 20◦)

Figure 14: Comparison of the angular reflectance values, extracted for the light direction
(θ, φ), on Surf-[1-4]
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4.4. Luminance assesment250

The consistency of the acquired luminance values is important in the case of
a visual or analytical assessment of the surface quality. To be able to compare
a surface with one another, it is necessary that the coefficient of reflectance
between the surfaces is respected. To assess whether the HD-RTI acquisitions
make it possible to acquire coherent luminance values, two fluoropolymer sur-255

faces with a reflectivity of 40% and 99% were acquired. The acquisitions are
done with the conventional RTI method at an exposure time of 11ms, respec-
tively RTI40% and RTI99%, and HD-RTI method, respectively HD-RTI40% and
HD-RTI99%, at the same angular positions (193 light positions). Then we com-
pare the ratio of RTI99%/RTI40% and HD-RTI99%/HD-RTI40%. The coefficient260

between the two surfaces should be on average equal to 99/40 = 2.475. The
results are presented in Figure 15. Due to the saturation of the RTI99 when the

(a)
RTI99%
RTI40%

(b)
HD-RTI99%
HD-RTI40%

(c)
RTI99%
RTI40%

−
99

40
(d)

HD-RTI99%
HD-RTI40%

−
99

40

Figure 15: Luminance coefficients from RTI and HD-RTI acquisitions of fuoropolymer surfaces
with a reflectance of 99% and 40% (99/40 = 2.475)

RTI40 do not saturate, the coefficients decrease, while, the HD-RTI99% do not
saturate therefore the luminance coefficient do not decrease with high elevation.
The mean of the luminance coefficients of the HD-RTI acquisitions is closer to265

the theorical value (2.475) than the RTI acquisitions. Moreover, the difference
of coefficient between the HD-RTI acquisitions and the theoretical value can be
explained by the missing values for an elevation greater than 75◦ due to setup
limitation. With HD-RTI method we can acquire the physical response of the
surfaces, be closer to the visual human perception than with classical RTI ac-270

quisition. Data closer to human perception would lead to more robust analysis
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and visual assessment.

4.5. Relighting with HD-RTI

Reconstructed HD-RTI data can be used for relighting by virtually vary-
ing the amount of the light as well as its spatial position as a function of
(fR(θ, φ,Et)). This additional degree of freedom for reconstruction allows the
lighting configuration to be fully adapted to the area one wishes to inspect or
analyse, and is especially useful for surfaces heterogeneous in color and texture,
and composite (multi-material) surfaces. To achieve this dynamic relighting,
it is first necessary to build an experimental model from the HDR acquired
discrete data at each acquisition angle. Then the model allow to continuously
reconstruct the HDR image of the surface as a function of the lighting angle
(φ, θ). The second step then consists in converting the reconstructed HDR im-
age into an LDR image associated with the chosen reconstruction time (Et).
This conversion operation is described in equation 5. The pipeline for HD-RTI
relighting is presented in Figure 16.

LDR(θ, φ,Et) =


if int(HDR(θ, φ)× Et

Eref
t

) > 255 then 255

else int(HDR(θ, φ)× Et

Eref
t

)
(5)

Figure 16: Pipeline of the appearance reconstruction from HDR data

The reconstruction results (fR(θ, φ,Et)) are presented in table 3 and Figure
17. It is observed that the proposed method leads to very accurate reconstruc-275

tions of the appearance (with reference to the acquired data), particularly for
shaded or saturated areas. The variable Et allows, in addition to the conven-
tional RTI relighting, to dynamically adapt the light exposure in relation to the
amplitude of the response in the area of interest.

15 0,8 (0,3) 0,5 (0,3) 3,1 (7,5) 3,7 (3,6)

30 1,4 (0,6) 1 (0,6) 4,4 (8,8) 5,6 (4,3)

60 3 (1,1) 2 (1,4) 6,5 (11,4) 6,4 (4,6)

125 4,9 (3,8) 3,3 (5,4) 9,5 (12,5) 7,7 (6,1)

Surf-4

μ (σ) (%)Et (ms)

Surf-1 Surf-2 Surf-3

Table 3: Mean absolute error between acquired LDR raw data (ground truth) and recon-
structed images at differents Et from HD-RTI acquisitions (in grey-levels)
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(a) Surf-1 ; LDR raw acquisition;
(θ = 353◦, φ = 60◦, Et = 15ms)

(b) Surf-1 ; HD-RTI relighted image;
(θ = 353◦, φ = 60◦, Et = 15ms)

(c) Surf-2 ; LDR raw acquisition;
(θ = 36◦, φ = 61◦, Et = 60ms)

(d) Surf-2 ; HD-RTI relighted image;
(θ = 36◦, φ = 61◦, Et = 60ms)

(e) Surf-3 ; LDR raw acquisition;
(θ = 307◦, φ = 69◦, Et = 125ms)

(f) Surf-3 ; HD-RTI relighted image;
(θ = 307◦, φ = 69◦, Et = 125ms)

(g) Surf-4 ; LDR raw acquisition;
(θ = 217◦, φ = 44◦, Et = 30ms)

(h) Surf-4 ; HD-RTI relighted image;
(θ = 217◦, φ = 44◦, Et = 30ms)

Figure 17: Comparison between (left) LDR raw acquisitions (ground truth) and (right)
Relighted images with DMD method, from HD-RTI acquisition.
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5. Application case280

5.1. Saliency map for the inspection of visual defects

As shown in the previous section, the implementation of HD-RTI method
leads to different data structure and dynamic, which improves data quality and
relighting but also impact the calculation of the RTI derived feature maps. We
focus here on the application case of the construction of an RTI-based saliency285

map [33]. Our purpose is to assist the inspection of visual defects. In this case,
we expect the saliency map to highlight the defects.

5.2. Experimental protocol

The chosen surface sample is a watch dial that has been preliminarily micro-
scratched. The scratches are carried out in a controlled way so that we know290

their locations, directions and dimensions (Figure 18). To evaluate the difference
in the results obtained, RTI and HD-RTI acquisitions were carried out on this
sample, at identical resolution as Surf-[1-4] acquisitions with 149 homogeneous
light positions.

Figure 18: Representation of the dial with normalized scratches; The red rectangle is the
area of the acquisitions

5.3. Proposed approach295

The saliency is here estimated from the HD-RTI descriptors by calculating a
Mahalanobis distance [34, 35] between each pixel and the mean descriptors val-
ues (equation 6). The Mahalanobis distance has the advantages to be unitless,
scale invariant, and taking into account the variance of the data. This makes
it particularly appropriate for this saliency estimation, based on reflectance
statistical descriptors extracted from HD-RTI acquisitions. Indeed, these ex-
perimental data are by nature noisy, the descriptors can be correlated, and the
quantities analyzed are of different units and scales.

DMahal =
√

(λ′ − µ)T Σ−1(λ′ − µ), (6)

Where the matrix λ′ = [λ′1, λ
′
2, ..., λ

′
n] is composed of the descriptors vectors of

each pixel n, Σ and µ = (µ1, µ2, ..., µi)
T are respectively the covariance matrix

and the mean descriptor vector.
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In the case of this application, the implemented descriptors are estimated from300

the luminance distributions of each pixel (coefficient of variation, kurtosis, skew-
ness, entropy and energy). The saliency maps are then assessed for the two
acquisitions as described previously.

5.4. Results

The obtained maps (Figure 19) are significantly different. A quality criterion305

of a saliency map is the differentiation between the background and the salient
elements. In this case the background of the HD-RTI saliency map is lower, and
the saliency amplitude of the anomalies (scratches and other surface defects)
is higher, which means that the HD-RTI saliency assessment is more robust
and discriminative. This is confirmed in the associated histograms, which figure310

out that the mean is lower, the standard deviation higher in the HD-RTI case.
These results therefore show the improvement in the quality of the processing
and analyses which could be carried out from RTI acquisitions by implementing
the proposed method.

(a) RTI (b) HD-RTI

(c) RTI saliency histogram (d) HD-RTI saliency histogram

Figure 19: RTI vs HD-RTI - Saliency maps and histogram
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6. Conclusion315

This paper presented a methodology for implementing High Dynamic Range
technique for RTI acquisitions. The proposed method is self-adaptive both as
a function of the type of surface observed and of its response amplitude at
the different acquisition angles. The experiments were carried out on distinct
surface samples in terms of roughness and reflectance enabling a non-oriented320

comparison of the results with RTI. The results showed that the method is
particularly appropriate for heterogeneous and glossy surfaces. Indeed, these
surfaces often do not allow to define an appropriate acquisition time for all
the RTI acquisition angles, which inevitably induces non-measured points. In
terms of relighting, the proposed method leads to more accurate reconstructions325

particularly for shaded or saturated areas. In addition to the conventional
RTI relighting, HD-RTI allows one to dynamically adapt the light exposure in
relation to the amplitude of the response in the area of interest. Finally this
study proved that the HD-RTI based saliency assessment is more robust and
discriminative, which makes it more reliable for industry applications related to330

quality inspection.
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