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PageRank computation for Higher-Order
Networks

Célestin Coquidé, Julie Queiros, and François Queyroi

Université de Nantes, LS2N, UMR CNRS 6004
44306 Nantes, France

Abstract. Higher-order networks are efficient representations of sequen-
tial data. Unlike the classic first-order network approach, they capture
indirect dependencies between items composing the input sequences by
the use of memory-nodes. We focus in this study on the variable-order
network model introduced in [12,10]. Authors suggested that random-
walk-based mining tools can be directly applied to these networks. We
discuss the case of the PageRank measure. We show the existence of
a bias due to the distribution of the number of representations of the
items. We propose an adaptation of the PageRank model in order to
correct it. Application on real-world data shows important differences in
the achieved rankings.

Keywords: Higher-order Networks, Sequential data, Random walks,
PageRank

1 Introduction

Network representation of real-world sequential data is an effective way to model
complexity of interactions between items constituting them (flow of vessels be-
tween ports, city traffic, transfers between airports, etc.). A classic network
model to represent sequential data is the pairwise interactions aggregation, ex-
tracted from the input data. This leads to a first-order Markov model of the
sequences which can be represented by a first-order network (denoted 1ston).
However, the input sequences might reveal higher-order dependencies between
items (see Fig. 1). Recent works [12,11] suggest that the 1ston representation
is not sufficient since it doesn’t capture indirect dependencies in the underlying
system. Indeed, if such dependencies exist, a random walk performed on 1ston
may result in poor approximations of the flow of movements observed in the
system.

Higher-order network (Hon) models are an alternative to the first-order
Markov model approach. In Hon, a node (or memory-node) encodes a subse-
quence of varying length of items rather than a single item. Most of the studied
Hon are fixed-order networks (Fonk) where the probability to reach the next
item depends on the k last visited ones [11,9]. Other studies consider variable-
order models leading to variable-order network (Von) models [12,10]. Random
walks performed on Hon lead to better simulations of input sequences. One can
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Fig. 1: Example of inputs and variable-order networks representing dependencies
between items Ω = {x, y, a, b, c}. We can identify 2nd or 3rd order dependencies
in (b). For instance, when visiting x then a then c, the flow tends to return to a.
The Von(S) network in (c) only includes relevant dependencies. Subsequence
ac is not a relevant extension of the sequence c since knowing we visited a before
c does not impact the prediction of the next visited item. Memory-nodes are
displayed as grey rectangles. The set V(c) = {xac, yac, bc, c} are representations
of item c.

therefore expect the results of random-walk-based network analysis tools such as
PageRank (PR) [3] to be more relevant. In the context of Von, [12] argue that
such algorithms could be directly applied on variable-order network as they are
still defined as weighted graphs. Nevertheless, authors have not investigated a
possible bias in the resulting algorithm output due to the presence of memory-
nodes.

In this study, we investigate the existence and nature of such bias when using
the PR centrality measure. We start by listing related works and discussing the
ambiguity of the term higher-order which is used for different purposes in the
literature (Section 2). We then describe Von’s construction [10] (Section 3). In
Section 4, we introduce the standard PR model and its direct application to
Von. We show that the teleportation mechanism used for computing PR values
introduced a bias when applying it to Von networks. We introduce a correction
as a bias-free PR model adapted for Von. In order to assess the effect of the bias
(and of our correction) in practice, we compare the various PR models on real-
world sequential datasets (described in Section 5). In section 6, we show that a
direct application of PageRank on Von networks leads to an overestimation of
the centrality of highly represented items. We also discuss the effect on ranking
and its stability with a change of the damping factor parameter α. Finally, future
works perspective are given in Section 7.

2 Related Works

In the network science and data mining literature, the terms higher-order or
high-order may relate to different concepts. For instance, in network clustering
analysis, the term higher-order used in [13] refers to network motifs such as
triangles and cycles. Authors designed a clustering algorithm preserving such
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motifs. In our study the term higher-order refers as a network representation
of a sequential data aiming to infer the indirect dependencies occurring in the
sequences. In [14], such dependencies were also considered, however, they are
not been inferred from sequential data.

Rosvall et al. [9] introduced a fixed-order network of order 2 (Fon2) and
generalizations of PR and clustering algorithm to this new model. As an order of
2 is limited for many real world applications, Scholtes [11] introduces a method
to infer the order leading to the most accurate fixed-order network. As PR
computation may prove cumbersome on fixed-order networks, a Hon PR model
called Multilinear PageRank was introduced in [7]. This model is based on a
spacey surfer whose next step doesn’t depend on the previous one but on the
most frequently visited ones. We focus in this study on variable-order networks
(Von) [12,10]. In this context, the PR computation of the items differs from the
fixed-order model.

3 Variable-order network representation

We detail in this section the method to build variable-order networks (Von)
from input sequential data, as well as some important definitions and notations.
We note S = {s1, s2, . . . , sl} the set of l sequences representing the input data.
Each si = σ1

i σ
2
i σ

3
i . . . consists of a sequence of items (ports, airports, or any

locations). The set of all items is denoted Ω. The order of a sequence s denoted
|s| corresponds to its length. For two sequences s1 and s2, the sequence s = s1s2
is a concatenation of (s1, s2) and we say that s1 is a prefix of s and that s2 is
a suffix of s. For a sequence s, we call c(s) the number of occurrences of s in
the dataset S. The probability of finding item σ next to sequence s is estimated
using relative frequencies

p(σ|s) =
c(sσ)∑

σ′∈Ω c(sσ
′)

(1)

where p(σ|s) is read ”probability to find σ having as context s”. We define
ps = {p(σ|s), σ ∈ Ω} as the distribution of items following s.

Extraction of relevant extensions. Memory-nodes are added according to relevant
extensions found in S. The method we used was introduced in [10]. We say s′

is an extension of s if |s′| > |s| and if s is a suffix of s′. The extension s′ of s is
said to be relevant [10] if

DKL(ps′ ||ps) >
|s′|

log2(1 + c(s′))
(2)

where DKL denotes the Kullback-Leibler divergence. Figure 1b shows the distri-
butions p for the relevant extensions found in a toy example. The threshold used
(right side of Eq. 2) makes it harder for longer and sparsely observed extensions
to be found relevant. The process used for relevant extensions extraction starts
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from the first-order sub-sequences. The condition in Eq. 2 is recursively applied
to extension of already detected extensions. An upper-bound of DKL is used to
stop the recursion. The construction of Von is therefore parameter-free.

Network construction. Von is constructed in a way that a memory-less random
walk performed on it is a good approximation of the input sequential data S.
This network is noted Von = (V, E , w), where V is the set of nodes. These
nodes represent all relevant extensions s and all their prefixes (see Fig. 1c).
This ensures that any node v representing a relevant extension of an item σ is
reachable during a random walk. We note V(σ) the set of nodes representing
item σ ∈ Ω and Nrep(σ) = |V(σ)| the number of such representations.

For each pair (s, σ), where s is a relevant extension and σ an item such that
p(σ|s) > 0, a directed link s → s∗σ is added to the network. The node s∗σ
represents the longest suffix of sσ such that s∗σ ∈ V. The weight of this link is
p(σ|s).

4 Application of PageRank to variable-order networks

In this section, we first introduce the PageRank (PR) measure and its direct
application on Von. We discuss the effect of the distribution of Nrep on PR
probabilities distribution. In order to isolate this effect, we introduced a biased
1stonPR model. A bias-free model called Unbiased Von PR model is then in-
troduced.

Standard PageRank model (1stonPR). The PR measure is an efficient eigenvec-
tor centrality measure in the context of directed networks. It was implemented
in Google’s search engine by its inventors Brin and Page [3]. PR definition of
node’s importance can be interpreted as follows: the more a node is pointed by
important nodes, the more it is important. PR is equivalent to the steady state
of a random surfer (RS) following a memory-less Markov process. The RS can
follow links of the network with probability α or teleport uniformly towards a
node of the network with probability 1 − α (it will also teleport from any sink
node). These teleportations ensure that RS cannot be stuck in a sub-region of
the network and that the steady state probability distribution is unique. The
PR probability associated to the node i is denoted P (i). As item i ∈ Ω is rep-
resented by a single node i in 1ston, the PR probability associated to item i
(Π1(i)) is equal to P (i). One can sort items by the decreasing order of their PR
probabilities. We note K1 their ranks associated to Π1 values.

Variable-order network PageRank (VonPR). In the case of Vons, the memory-
less Markov process actually simulates the variable-order model as memory is
indeed encoded into the nodes. Therefore, [12] suggests that standard PR directly
applied to Von will better reflect dependencies between items in the system than
Π1. Since more than one node represent items in Von, [12] defined the PageRank



PageRank computation for Higher-Order Networks 5

of an item as the probability for the RS to reach at least one of its representations
(see Eq. 3).

Π(i) =
∑
v∈V(i)

P (v) (3)

We denote by ΠVon and KVon the PR values and ranking issued from VonPR
model.

Since we use a random surfer, the more representations item i has, the higher
is the probability to teleport to one of them. As Eq. 3 sums over representations of
item i, this translates to a bias that is solely due to the teleportation mechanism.
We can illustrate this effect with a simple example (see Fig. 2). The value of
ΠVon(c) is always greater than or equal to 0.5 in the situation illustrated in
Fig. 2b while it is always lower than or equal to 0.5 in Fig. 2a. Equality is achieved
when α = 1 (i.e. when there is no teleportation). Although order 2 dependencies
exist in 2b, it is hard to justify why item c should be “more central” in this case.

c

s1

s2 s3

s4

. . . . . .

(a) Von without round trips

c

s1

s2 s3

s4

. . . . . .

s1c

s2c s3c

s4c

(b) Von with round trips

Fig. 2: Example of Von models of trajectories where all flows go through an
item c. In (a), when leaving c, a traveler goes uniformly to any of the satellites
si. In (b), a traveler coming from si always goes back to si.

(Nrep)-biased PageRank model (Biased 1stonPR) In order to isolate the bias
due to teleportations, we assume the transition probabilities associated to repre-
sentations of item i are all equal to pi i.e. the representations of i do not encode
any different behaviour. This is equivalent to computing PR on 1ston using a
preferential teleportation vector vB depending on Nrep as expressed in Eq. 4.

vB(j) =
Nrep(j)∑
k∈Ω Nrep(k)

(4)

The item PR values associated to this model and its resulting ranking are de-
noted ΠB

1 and KB
1 respectively. In the example above, ΠB

1 computed on Fig. 2a
is equal to ΠVon computed on Fig. 2b since the order-2 dependencies do not
affect the centrality of c in this example.
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Unbiased Von PageRank model. In order to remove the bias discussed above, a
modification of the teleportation vector is also used. Although several corrections
are possible, the one chosen corresponds to the following random surfing process:
teleportation is assumed to be the beginning of a new journey. It is therefore
only possible to teleport uniformly to first-order nodes (see Eq. 5).

vU(i) =

{
1/|Ω| if |i| = 1

0 otherwise
(5)

It is easy to show that each node is reachable during the Markov process and
therefore that the RS steady state is still unique using this teleportation vector.
The item PR values associated to this model and its resulting ranking are noted
ΠU

Von and KU
Von respectively.

5 Datasets and Experimental settings

Datasets. The three datasets used correspond to spatial trajectories. They differ
however in terms of length, number of sequences, number of items, etc.. For each
dataset and each sequence, we removed any repetition of items. The code used
and the datasets are available at https://github.com/ccoquide/unbiased-

von-pr/.

– Maritime : Sequences of ports visited by shipping vessels, from April the
1st to July the 31st 2009. Data are extracted from the Lloyd’s Maritime
Intelligence Unit. A variable-order network (Von) analysis of maritime is
presented in [12].

– Airports : US flight itineraries of the RITA TransStat 2014 database [2],
during the 1st quarter of 2011. Each sequence is related to a passenger, it
describes passenger’s trip in terms of airport stops. In [11] and [9], fixed-order
network (Fon) representations of the data set are presented.

– Taxis : Taxis rides into Porto City from July the 1st of 2013 to June the 30th
of 2014. A sequence reports the succession of positions (recorded every 15 sec-
onds) during a ride. The original data set [1] was part of the ECML/PKDD
challenge of 2015. Each GPS location composing the sequences is reported
onto the nearest police station as it is suggested in [10].

Sequences and networks statistics are reported in Table 1. We can observe that
a large proportion of items have a large number of representations Nrep. The
Nrep values are far from being uniformly distributed.

Experimental settings. For a given dataset, we compute PR values according to
the different models with α = 0.85 along with the corresponding rankings (see
Section 4). Items having the same PR probabilities are ranked using the same
order. In addition to the four models described in the previous section, we also
report the following measures.

https://github.com/ccoquide/unbiased-von-pr/
https://github.com/ccoquide/unbiased-von-pr/
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Table 1: Datasets and networks information.
Dataset |S| |Ω| |V| |E| max(order) Avg. Nrep Q9(Nrep) max(Nrep)
Maritime 4K 909 18K 47K 8 20 50 674
Airports 2751K 446 443K 1292K 6 995 1K 34K
Taxis 1514K 41 4K 15K 14 99 250 382

– Nrep ranking (Krep) is the ranking of items by decreasing order of Nrep.
We quantify how Nrep-biased are other PR models by comparing them with
this benchmark.

– Visit rank (KV) is the ranking based on the probability of each item to
occur in the input sequences.

The visit rank is used as “ground truth” in [11, Eq. 9] for validation of the au-
thor’s selection of fix-order model. However, we argue that this characterization
is limited. For example, in the extreme situation where sequences are composed
of only two items and can be viewed as a list of directed arcs, KV would corre-
spond to the ranking made from node degrees. More generally, using the item
count as a centrality measure assumed an underlying symmetry in the system
i.e. every place is as much a destination as it is a departure.

6 Results

We show here that the bias effect is indeed important when looking at Π values
or the resulting rankings. Moreover, this is still true when using alternative
damping factor values.

Evolution of Π values with Nrep. We note η(Nrep) the probability that a random
surfer (RS) visits any item having at least Nrep representations such as

η(Nrep) =
∑
j∈Ω

Π(j) with Nrep(j) ≥ Nrep (6)

The impact of Nrep on PR probabilities is quantified by the relative PR boost

∆η/η
′

= (η − η′
)/η

′
where η

′
is related to the 1stonPR model. We show the

evolution of ∆η/η
′

with Nrep in Fig. 3 for each dataset. Both VonPR (ΠVon) and
Biased 1stonPR (ΠB

1 ) models are the ones with the highest relative PR boosts.
For example, in case of Maritime dataset (see Fig. 3a), the relative PR boosts,
at Nrep = Nmax

rep , equal to 60% and 65% respectively for these models (compared
to 1stonPR probabilities Π1). Moreover, we see that the PR boosts relative
to ΠVon fit well with ΠB

1 ones. The Unbiased VonPR probabilities (ΠU
Von) are

impacted very differently. For the Airports and Taxis datasets, the distributions
shape of boosts is similar to VonPR’s but with lower boost values. Although
relative PR boosts are the lowest for our model, the higher-order dependencies
it encodes still lead to differences with 1stonPR. However, the fact that PR
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probabilities are boosted for highly represented items doesn’t necessarily lead to
resulting biased PR rankings. Therefore, we investigate the changes in rankings
when using the different models.

-0.2
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∆
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/η
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Fig. 3: Relative PageRank boost ∆η/η
′

versus Nrep for three PR models, with
α = 0.85. For a given number of representations Nrep, η(Nrep) is the probability
to reach any item having at least Nrep representations. η′ is related to 1stonPR
model.

Rankings comparison. We quantified similarities between pairs of PR rankings
by using both Spearman and Kendall correlation coefficients. Table 2 displays
similarities for each dataset. We observe high similarity between VonPR (KVon)
and Biased 1stonPR (KB

1 ) rankings. On the other hand, correlation coefficients
between Unbiased VonPR rankings (KU

Von) and KB
1 are lower. We also observe

overall lower correlation coefficients with Taxis dataset which are probably due
to the lower number of items. Note that the visit rank (KV) is closer to KB

1

or KVon (for Taxis). If we were to use KV as a PR selection method, we would
likely select our biased 1stonPR model which does not include any higher order
dependencies. This highlights the fact that KV is not an efficient benchmark in
the context of Von.

The Nrep-bias also affects the Top 10s ranking which is a popular usage of PR
ranking. The Top 10s related to Maritime are displayed in Table 3. Ports with
bold name are new entries when compared to the previous ranking. Although
80% of entries are common to all Top 10s, the differences come from reordering.
Both KVon and KB

1 fit almost perfectly with the ten most represented ports
(Krep). On the other hand, KU

Von may capture items with bad Krep e.g. the port
of Surabaya (Krep = 45 and KU

Von = 9).
Since the number of items composing Taxis dataset (corresponding to sub-

areas of Porto) is small enough, the PR scores of all items are given in Fig. 4.
Both ΠVon and ΠB

1 give bad ranks to peripherals. Only 1stonPR and Unbiased
VonPR models give importance to peripheral neighborhoods. Finally, central
regions have similar rankings whatever the model used.
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Table 2: Spearman (rs) and Kendall (rτ ) coefficients between PR rankings.
K1 KB

1 KVon KU
Von

rs rτ rs rτ rs rτ rs rτ
a) Maritime

K1 - - 0.96 0.85 0.95 0.81 0.95 0.81
KB

1 - - - - 0.98 0.89 0.90 0.74
KV 0.94 0.81 0.99 0.92 0.97 0.85 0.89 0.71

b) Airports
K1 - - 0.98 0.91 0.96 0.86 0.95 0.83
KB

1 - - - - 0.99 0.91 0.91 0.79
KV 0.98 0.91 0.998 0.96 0.99 0.92 0.92 0.80

c) Taxis
K1 - - 0.62 0.48 0.44 0.34 0.77 0.61
KB

1 - - - - 0.94 0.82 0.88 0.70
KV 0.42 0.30 0.92 0.79 0.98 0.91 0.76 0.58

Table 3: Maritime’s Top 10s PageRank.
K1 KB

1 KVon KU
Von

Rank Port Krep KV Port Krep KV Port Krep KV Port Krep KV

1 Singapore 2 2 Singapore 2 2 Hong Kong 1 1 Singapore 2 2
2 Hong Kong 1 1 Hong Kong 1 1 Singapore 2 2 Busan 4 4
3 Rotterdam 5 7 Shanghai 3 3 Shanghai 3 3 Hong Kong 1 1
4 Busan 4 4 Busan 4 4 Busan 4 4 Rotterdam 5 7
5 Shanghai 3 3 Rotterdam 5 7 Rotterdam 5 7 Shanghai 3 3
6 Hamburg 8 10 Port Klang 6 6 Port Klang 6 6 Hamburg 8 10
7 Port Klang 6 6 Kaohsiung 7 5 Kaohsiung 7 5 Antwerp 10 12
8 Antwerp 10 12 Hamburg 8 10 Hamburg 8 10 Bremerhaven 12 19
9 Bremerhaven 12 19 Antwerp 10 12 Antwerp 10 12 Surabaya 45 36
10 Kaohsiung 7 5 Jebel Ali 9 11 Jebel Ali 9 11 Port Klang 6 6

(a) Π1 (b) ΠB
1 (c) ΠVon (d) ΠU

Von

0.0 0.2 0.4 0.6 0.8 1.0
Π/Πmax

Fig. 4: Distribution of PageRanks values for Porto’s neighborhood.

Dependence of the Nrep-bias with the damping factor α. Since in the literature an
alternative value of the damping factor α could be used (as in [4]), we investigated
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similarities between rankings regarding its choice. The evolution of Spearman
correlation coefficient with respect to changes in α is present in Fig. 5 for α ∈
[0.5, 0.99]. Results related to the Kendall correlation coefficient evolution are
not reported since they are similar. For α ≤ 0.85, the observations made earlier
are still valid. When teleportations are less frequent, different changes occur.
Indeed, for Maritime and Airports, KVon becomes closer to K1 than KU

Von is to
K1 (dashed lines). Overall the pairs KVon-KU

Von and K1-KB
1 get closer as α tends

to 1 due to the poor contribution of teleportations. For the taxis, we notice a
switch at α ≈ 0.9 for KB

1 (solid lines). We think this is due to the low amount of
items related to Taxis dataset. In order to understand this behaviour, we need
to further investigate other similar datasets.

(a) Maritime
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 0.5  0.7  0.9

r s
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)

α

(b) Airports
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 0.5  0.7  0.9
r s

(α
)
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(c) Taxis

Fig. 5: Evolution of the Spearman correlation coefficient rs(α) with α, for couples
of rankings. Solid lines (dashed lines) are related to correlations with Biased
1stonPR (1stonPR). Vertical black dashed line represents α = 0.85.

7 Future works

This study shows that the application of network measures to the new objects
that are Vons are not trivial. We believe the adaptation of other analysis tools
is an important challenge for the network science community. We are currently
investigating the application of clustering algorithms such as Infomap [8] to
Vons. This algorithm indeed uses PR in order to compare clustering qualities.
However, [12] also suggests that such algorithm can be directly applied to Vons
with no modifications. The PR centrality measure has other applications. A
recent method based on the Google matrix (the stochastic matrix which models
the random surfer), called reduced Google matrix, has shown its efficiency in
inferring hidden links between a set of nodes of interests [6] for example with
studying Wikipedia networks [5].Using user traces on website rather than usual
hypertext click statistics, we will also study the generalization of this tool to
Vons.
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4. Coquidé, C., Ermann, L., Lages, J., Shepelyansky, D.L.: Influence of petroleum
and gas trade on EU economies from the reduced Google matrix analysis of UN
COMTRADE data. The European Physical Journal B 92(8), 171 (Aug 2019),
https://doi.org/10.1140/epjb/e2019-100132-6
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