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Abstract. Two kinds of numerical approaches able to predict the dynamic response of periodic
structures and metamaterials are presented. Both of them are model reduction techniques which
can be used to obtain the response functions of the structures at a low computational cost. The
first kind of approaches employs the wave finite element (WFE) method for modeling 1D peri-
odic structures made up of complex substructures, e.g., 2D cells of arbitrary shapes. Resonant
metamaterials are particular cases of periodic structures where the substructures possess local
resonances — e.g., layered substructures involving soft layers and heavy layers/core —, which
in turn lead to band gap effects and low vibration levels. Although well-suited for modeling pe-
riodic structures in the frequency domain, the WFE method also works for periodic structures
subject to time-dependent excitations. The second kind of approaches employs finite element
(FE) procedures for modeling 2D periodic structures, and 2D nearly periodic structures involv-
ing substructures with slightly varying (random) geometrical properties. For nearly periodic
structures like plates with disordered resonant 2D cells, results show that the vibrational energy
is localized around the excitation sources.
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1 INTRODUCTION

Periodic structures are frequently encountered in engineering applications, e.g., in the aero-
nautic (fuselages, turbines) and railway industries. Also, they appear interesting to passively
control the vibration levels of mechanical systems. Metamaterials are periodic structures which
possess such interesting features, i.e., the fact that they do not convey vibrational energies on
some frequency bands (band gaps) which as such yield low vibration levels. Well-known exam-
ples of metamaterials are periodic structures made up of resonant cells where band gaps occur
in the vicinity of the resonance frequencies of the cells. There exist plenty of works in the liter-
ature about the analysis of the wave propagation in 1D or 2D periodic structures and the related
band gap effects [11, 10, 9, 12, 29, 25, 4, 28]. However, the forced response analysis of periodic
structures is much less reported. This especially means developing numerical models able to
predict the dynamic response of periodic structures of finite dimensions with various kinds of
boundary conditions, or assemblies of finite dimensions involving several periodic structures
and other non-periodic components which are systems of practical interest in engineering ap-
plications. In this case, the analysis of the band gap effects does not only rely on the wave
propagation properties, but also on the boundary and coupling conditions which induce energy
conversion between waves.

This paper aims at investigating the modeling of 1D and 2D periodic structures, of finite
dimensions, subject to various kinds of excitations and boundary conditions. Periodic structures
made up of complex cells — i.e., substructures which can be of various shapes and which are
modeled with a moderately high number of degrees of freedom (DOFs) — are especially dealt
with. Numerical results are brought which concern the dynamic response of periodic structures
and resonant metametarials.

The paper starts with an overview of the wave finite element (WFE) method and its recent
applications. The method is well suited for modeling 1D periodic structures, i.e., structures
made up of identical substructures which are connected to each other along a straight or cir-
cumferential direction. The WFE method works by considering the FE model of a substructure,
and computing the eigenvalues and eigenvectors of the related transfer matrix to determine the
waves traveling along a periodic structure. To predict the forced response of periodic structures,
the WFE method involves expanding the displacement and force vectors on the basis of the
eigenvectors (wave shapes) of the transfer matrix of a substructure. The methodology is de-
tailed in [16, 18] (see also [30, 6, 32, 15]). Among the recent extensions of the method are: the
development of model reduction strategies based on reduced wave bases to target substructures
with large-sized FE models [22]; the modeling of periodic structures with cyclic symmetry,
such as turbines [19]; the time response analysis of periodic structures via wave-based absorb-
ing boundary conditions [7].

Aside from the study of 1D periodic structures, 2D periodic structures with resonant sub-
structures are well-known examples of metamaterials to passively control the vibration levels
of mechanical systems. As mentioned earlier, the analysis of the wave propagation (e.g., Bloch
waves) in 2D periodic structures is well documented in the literature. However, contrary to
the study of 1D periodic structures, the forced response analysis of 2D periodic structures of
finite dimensions, based on wave expansion (displacement and force vectors), is prone to tough
theoretical and numerical modeling issues which make it difficult even impossible to carry out.
The issue is linked to the multi-directional behavior of the propagating waves, and the descrip-
tion of the wave reflection at boundaries that arise from these multi-directional waves. Here,
two FE-based approaches are proposed as alternative model reduction techniques. The first
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one is standard and makes use of the Craig-Bampton (CB) method and the related fixed inter-
face modes of the substructures for modeling purely periodic structures. The second approach
targets the modeling of 2D nearly periodic structures made up of resonant substructures with
slightly varying geometrical properties [20]. Plates with disordered resonant 2D cells, made
up of soft layers and heavy layers/core with random geometrical properties, are examples of
2D nearly periodic structures. Such structures possess interesting features, e.g., the fact that
the vibrational energy remains localized around the excitation points. The proposed strategy
involves computing the reduced matrices of the substructures for some particular distorted FE
meshes (a few number), and interpolating these matrices between these “interpolation points”
for modeling substructures with random FE meshes.

2 WFE METHOD FOR 1D PERIODIC STRUCTURES

2.1 Wave propagation

The WFE method originates from the transfer matrix theory and the Bloch’s theorem. Let us
first consider an infinite periodic structure under harmonic disturbance eiωt made up of identical
substructures with similar FE meshes as shown in Fig. 1. Also, let us denote by M, C and K
the conventional mass, damping and stiffness matrices of the substructures (identical for all the
substructures). From the practical point of view, these matrices can be obtained via usual FE
softwares, Matlab FE mesh generators (e.g., DistMesh [27]) or Matlab in-house FE codes. The
related dynamic equilibrium equation, for a given substructure k, is given by:

Dqk = Fk, (1)

where qk and Fk refer to the displacement vector and the force vector (respectively) of the
substructure k; D is the dynamic stiffness matrix expressed by D = −ω2M + iωC + K.

Figure 1: Periodic structure of infinite length, and FE mesh of a substructure.

The FE mesh of the substructure involves left (L) and right (R) boundaries (see Fig. 1) which
are here assumed to be described with a same number n of DOFs. From Eq. (1), the following
transfer matrix relation between the right and left boundaries can be proposed:[

qkR
Fk
R

]
= S

[
qkL
−Fk

L

]
, (2)
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where S is the so-called transfer matrix (size of 2n× 2n), expressed by:

S =

[
−(D∗LR)−1D∗LL −(D∗LR)−1

D∗RL −D∗RR(D
∗
LR)
−1D∗LL −D∗RR(D

∗
LR)
−1

]
. (3)

Here, D∗ represents the condensed dynamic stiffness matrix, i.e., on the left and right bound-
aries of the substructure [18]. Let us consider two consecutive substructures k and k + 1
which are rigidly connected at a common interface. In this case, the coupling conditions write
qkR = qk+1

L and Fk
R = −Fk+1

L , and Eq. (2) gives:[
qk+1
L

−Fk+1
L

]
= S

[
qkL
−Fk

L

]
and also

[
qk+1
R

Fk+1
R

]
= S

[
qkR
Fk
R

]
, (4)

which relates the displacement and force vectors between two consecutive substructures k and
k + 1.

It can be proven that the transfer matrix S is symplectic [23], which means that its eigen-
values and eigenvectors come in pairs (µj,φj) and (µ?j = 1/µj,φ

?
j) with |µj| < 1. Numerical

issues about the computation of the eigensolutions of S are discussed in [22, 32, 36]. According
to the Bloch’s theorem [34], the eigenvalues of S have the meaning of wave parameters which
are given by µj = e−iβjd for the waves traveling to the right direction (βj: wave number for
a wave j; d: substructure length) and µ?j = eiβjd for the waves traveling to the left direction.
Also, the eigenvectors φj and φ?

j have the meaning of wave shapes for the waves traveling to
the right and left directions, respectively. These are vectors of size 2n× 1, expressed by:

φj =

[
φqj

φFj

]
, φ?

j =

[
φ?

qj

φ?
Fj

]
, (5)

where φqj and φ?
qj (resp. φFj and φ?

Fj) are n× 1 displacement (resp. force) component vectors
for the right-going and left-going waves. In matrix form, these vectors give:

Φq = [φq1 · · ·φqn] , Φ?
q = [φ?

q1 · · ·φ?
qn] , ΦF = [φF1 · · ·φFn] , Φ?

F = [φ?
F1 · · ·φ?

Fn]. (6)

2.2 Forced response

The analysis of the harmonic response of periodic structures of finite length — i.e., with
a finite number N of substructures — can be easily performed with the WFE method. The
advantage, against the conventional FE method, is in the modeling of a whole periodic structure
via a small matrix system of size 2n× 2n that is linked to the number of DOFs on the left and
right boundaries of a substructure. In comparison, the FE method would involve assembling the
condensed dynamic stiffness matrices of all the substructures, yielding a bigger matrix system
of size (N + 1)n × (N + 1)n whose computation is likely to take much more time. The main
idea behind the WFE modeling is to expand the displacement and force vectors, on a particular
interface (k) connecting two substructures k − 1 and k, on the wave shapes φqj and φ?

qj , and
φFj and φ?

Fj , of a periodic structure [16, 18]:

q
(k)
L = q

(k)
R = Φqµ

k−1Q + Φ?
qµ

N−k+1Q? k = 1, . . . , N + 1, (7)

−F
(k)
L = F

(k)
R = ΦFµ

k−1Q + Φ?
Fµ

N−k+1Q? k = 1, . . . , N + 1. (8)
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Here, q
(k)
L and F

(k)
L represent the displacement and force vectors at the left boundary of the

substructure k for k = 1, . . . , N ; q
(k)
R and F

(k)
R represent the displacement and force vectors at

the right boundary of the substructure k−1 for k = 2, . . . , N+1; Q is the wave amplitude vector
for the right-going waves at the substructure interface (1) (left end of the periodic structure);
Q? is the wave amplitude vector for the left-going waves at the substructure interface (N + 1)
(right end of the periodic structure). Finally, µ = diag{µj}nj=1 is the diagonal matrix of the
wave parameters µj for the right-going waves, with the property that ‖µ‖2 < 1 [16].

Consider for the sake of clarity a finite periodic structure as shown in Fig. 2 whose left end is
excited by some forces (vector F0), and whose right end is constrained by prescribed displace-
ment vector q?0. In this case, by considering Eqs. (7) and (8), the boundary conditions write
−F0 = ΦFQ+Φ?

Fµ
NQ? and q?0 = Φqµ

NQ+Φ?
qQ

? which, after some simple manipulations,
yield the following wave-based matrix equation (size 2n× 2n):[

In (ΦF)
−1Φ?

Fµ
N

(Φ?
q)
−1Φqµ

N In

] [
Q
Q?

]
=

[
−(ΦF)

−1F0

(Φ?
q)
−1q?0

]
. (9)

Solving the wave-based matrix equation (9) yields the wave amplitude vectors Q and Q?. The
determination of the displacement and force vectors, at any substructure interface (k), fol-
lows from Eqs. (7) and (8). If needed, the displacements at the internal nodes (I) of the
substructures can be retrieved by considering the full dynamic stiffness matrix, i.e., qI =

−(DII)
−1(DILq

(k)
L + DIRq

(k+1)
R ) for a substructure enclosed between two interfaces (k) and

(k + 1).

Figure 2: Finite periodic structure with prescribed forces F0 (left end) and prescribed displacements q?
0 (right end).

The main numerical tasks involved in the WFE method may be summed up as follows:

(i) Computation of the condensed dynamic stiffness matrix D∗ of a substructure;

(ii) Computation of the eigensolutions of the transfer matrix S;

(iii) Computation of the matrix system (9).

Task (iii) is not computationally cumbersome given that the matrix system (9) has a small size,
as explained earlier. As for the computation of the condensed dynamic stiffness matrix D∗ (task
(i)), this can be easily performed via the CB method [18]. For periodic structures involving sub-
structures whose number of boundary DOFs is not excessive (e.g., smaller than 300), task (ii) is
not cumbersome too. Things are more complicated for substructures with large-sized FE mod-
els, and in this case, it is advised to only compute a few low-order waves (rather than all the
waves) using appropriate eigensolvers like the Lanczos algorithm [22].

The WFE method can be advantageously applied to structural assemblies made up of differ-
ent periodic structures and other non-periodic structural components, i.e., mechanical systems
which are of practical interest in engineering. The reader is referred to [23, 24, 17, 30]. The
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WFE modeling of those structural assemblies involves considering coupling conditions between
periodic structures (two or more), across a rigid interface c or a non-periodic structural compo-
nent c (coupling element), which in wave-based form are written as:

Qc? = CcQc + Fc, (10)

where Qc and Qc? represent the wave amplitudes vectors for the outgoing waves and incoming
waves, respectively, for the periodic structures connected at interface c or coupling element c;
Cc is the so-called scattering matrix (reflection and transmission coefficients); Fc is a vector rep-
resenting the excitation sources imposed at the interface or inside the coupling element. Hence,
a global wave-based matrix equation which takes into account coupling conditions between sev-
eral periodic structures, and classical boundary conditions (prescribed forces or displacements),
can be proposed whose size is not big, i.e., linked to the numbers of boundary DOFs of the
substructures used for modeling the periodic structures.

2.3 Some recent and ongoing works

1D periodic structures are often considered as straight structures, made up of simple or more
complicated substructures, vibrating under harmonic disturbance. The purpose here is to show
that the WFE method can handle more sophisticated engineering problems. Two examples of
recent WFE strategies are proposed. The purpose is to give the main ideas and outlines of these
strategies rather than fully detailing all the theoretical developments (see [19, 7]).

2.3.1 Periodic structures with cyclic symmetry

The first kind of problems concerns the analysis of multi-stage bladed disks, which is well
known in the aeronautic industry. The proposed approach involves computing the dynamic
flexibility modes of a given periodic structure (cyclic symmetry) via the WFE method, and
modeling assemblies made up of several periodic structures via dynamic substructuring [19].

Figure 3: (left) Periodic structure with one of its substructures subject to one unit force on the boundary. (right)
Two connected periodic structures with arbitrary forces applied to the coupling interface.

A dynamic flexibility mode of a periodic structure (N substructures) represents the displace-
ment vector that results form applying one unit force to a given DOF of the boundary, the others
being free (see Fig. 3). For instance, assume that the unit force (force vector FB) is applied to
a boundary DOF i of a substructure enclosed between two substructure interfaces (N) and (1).

6
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The resulting dynamic flexibility mode is given by:

χ
(N)
i =


(I(n+nI|B)/3 ⊗R)q(1)

(I(n+nI|B)/3 ⊗R2)q(2)

...
(I(n+nI|B)/3 ⊗RN)q(N)

 , (11)

where q(k) (k = 1, . . . , N − 1) represents the displacement vector of a substructure enclosed
between two substructure interfaces (k) and (k + 1) and expressed in the local cartesian coor-
dinate system of the substructure; R is the 3 × 3 rotation matrix for the angle −2π/N , with
RN = I3; n is the number of interface DOFs (between the substructures), and nI|B is the num-
ber of internal DOFs which belong to the boundary. Recall that the unit force is applied to the
boundary of a substructure enclosed between interfaces (N) and (1). The displacement vector
of this substructure is denoted by q(N) and is given by:

q(N) =

[
[In 0]

Xst|B − X̃el|BD̃
−1
el−elD̃

T
st−el

]
HT

[
Φqµ

N−1 Φ?
q

Φq Φ?
qµ

N−1

] [
Q
Q?

]
+

[
0

X̃el|BD̃
−1
el−elX̃

T
elLIB

]
FB. (12)

Here, Xst and X̃el are, respectively, the matrices of static modes and fixed interface modes
of the substructure (CB method), D̃el−el represents the dynamic stiffness matrix of the sub-
structure “projected” on X̃el, andH is a transformation matrix which relates the unit vectors in
cylindrical coordinates (i.e., ~er, ~eθ and ~ez) to those in cartesian coordinates (i.e., ~ex, ~ey and ~ez)
at the interface nodes of the substructure. Also, for a non-excited substructure, one has:

q(k) =

[
[In 0]

Xst|B − X̃el|BD̃
−1
el−elD̃

T
st−el

]
HT

[
Φqµ

k−1 Φ?
qµ

N−k

Φqµ
k Φ?

qµ
N−k−1

] [
Q
Q?

]
for k 6= N.

(13)
In Eqs. (12) and (13), Q = Q(1) and Q? = Q?(N) are wave amplitude vectors, expressed
at substructure boundaries (1) and (N) (see Fig. 3) and obtained via WFE procedure. The
matrix of flexibility modes which results from applying successive unit forces to the bound-
ary DOFs of the substructure enclosed between interfaces (N) and (1) is given by X(N) =

[χ
(N)
1 χ

(N)
2 · · ·χ(N)

nB ] where nB is the number of boundary DOFs of a substructure. The whole
matrix of flexibility modes which results from applying successive unit forces to the boundary
DOFs of the whole periodic structure follows as X = [X(1)X(2) · · ·X(N)], where:

X(k) = (InT/3 ⊗Rk)P(k)X(N)(InB/3 ⊗Rk)T , (14)

where P(k) is a permutation matrix, and nT = N(n + nI|B). The modeling of several periodic
structures with cyclic symmetry follows from domain decomposition procedure. For instance,
for two structures (displacement vectors q1 and q2) subject to force vectors FB1 and FB2 on their
boundaries, this yields:  I 0 −X1LTB1

0 I X2LTB2
L1 −L2 0

q1

q2

λ

 =

X1FB1

X2FB2

0

 , (15)
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where X1 and X2 are the matrices of flexibility modes of the structures, and L1, L2, LB1, LB2
are localization matrices. Also, λ represents a vector of Lagrange multipliers to enforce the
displacement continuity conditions (i.e., L1q1 − L2q2 = 0) for some nodes of the boundaries
of the structures. Solving Eq. (15) yields:

λ = −(L1X1LTB1 + L2X2LTB2)−1(L1X1FB1 − L2X2FB2). (16)

The displacement vectors of the structures follow as q1 = X1(FB1+LTB1λ) and q2 = X2(FB2−
LTB2λ).

Some results are proposed hereafter which concern two coupled bladed disks 1 and 2 (two
stages) with N1 = 36 and N2 = 60 substructures (respectively), excited by non-symmetric
forces. Here, the harmonic response function (transverse displacement) at some node at the tip
of one blade of structure 1 is assessed up to 10, 000 Hz (see Fig. 4), which is high enough to
include local resonance effects for each blade. Those results show that the proposed approach
perfectly agrees with the conventional FE method.

Figure 4: (left) Two periodic structures and FE meshes of the related substructures (Γ− and Γ+ are coupling
interfaces with previous and subsequent substructures). (right) Response functions, conventional FE (black solid
line) and WFE (pink dotted line).

2.3.2 Time response of periodic structures via wave-based absorbing boundary condi-
tions

The second kind of problems concerns the modeling of infinite periodic structures (or pe-
riodic structures which are supposed to be long enough) subject to localized time-dependent
loadings. Potential applications could be, for instance, structures like pipelines or tanks subject
to shocks. A periodic structure with a finite number N of substructures and subject to time
dependent forces (vector F(t)) is shown in Fig. 5. The semi-infinite behavior at the left and
right ends — i.e., the fact that no wave is coming from infinity — is described by means of
absorbing boundary conditions expressed in the time domain [7]. Although easy to understand
in the frequency domain, the determination of absorbing conditions for time response analysis
is not a straightforward task and, for this reason, this study hasn’t been conducted extensively
so far.

The proposed approach can be summarized as follows. Let us start with the impedance
matrices (frequency domain) at the left (L) and right (R) ends of a periodic structure (N sub-
structures), which can be simply obtained via the WFE method as follows:

ZL = −Φ?
F(Φ

?
q)
−1 , ZR = ΦF(Φq)

−1. (17)

8
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Figure 5: Schematic of a periodic structure withN substructures subject to time-dependent forces and semi-infinite
boundary conditions.

Then, decompose the impedance matrices ZL and ZR via rational approximations:

ZL =

Q∑
k=1

2
iω<{RL(2k)} − <{pL(2k)RL(2k)}
−ω2 − 2iω<{pL(2k)}+ |pL(2k)|2

+
P∑

k=2Q+1

RLk

iω − pLk
+ KL,

ZR =

Q∑
k=1

2
iω<{RR(2k)} − <{pR(2k)RR(2k)}
−ω2 − 2iω<{pR(2k)}+ |pR(2k)|2

+
P∑

k=2Q+1

RRk

iω − pRk
+ KR, (18)

where (pLk, pRk) and (RLk,RRk) denote poles and matrices of residues (k = 1, . . . , P ), re-
spectively. Usually, some of these terms appear in conjugate pairs, say, for k = 1, . . . , Q. In
the frequency domain, the absorbing boundary conditions are expressed by FL = ZLqL and
FR = ZRqR where qL (resp. qR) and FL (resp. FR) are the displacement vector and force vector
at the left (resp. right) end of the structure, respectively. By considering vectors of supplemen-
tary variables XLk and XRk together with Eq. (18), it can be shown that the absorbing conditions
can be rewritten as follows:

FL =

Q∑
k=1

2
(
iω<{RL(2k)} − <{pL(2k)RL(2k)}

)
XLk +

P∑
k=2Q+1

RLk(iω)XL(k−Q) + KLqL,

FR =

Q∑
k=1

2
(
iω<{RR(2k)} − <{pR(2k)RR(2k)}

)
XRk +

P∑
k=2Q+1

RRk(iω)XR(k−Q) + KRqR, (19)

where: (
−ω2 − 2iω<{pL(2k)}+ |pL(2k)|2

)
XLk = qL for k = 1, . . . , Q,(

−ω2 − 2iω<{pR(2k)}+ |pR(2k)|2
)

XRk = qR for k = 1, . . . , Q,

(−ω2 − iωpLk)XL(k−Q) = qL for k = (2Q+ 1), . . . , P,

(−ω2 − iωpRk)XR(k−Q) = qR for k = (2Q+ 1), . . . , P. (20)

The interesting feature of Eq. (19) is that the force vectors are described in terms of polynomials
of iω, of order 1. In comparison, Eq. (18) is more complicated with rational terms of iω. As for
Eq. (20) — i.e., the relations between the displacement vectors and the vectors of supplementary
variables — it also involves polynomials of iω (up to order 2). By separating the terms of
identical powers of iω in Eqs. (19) and (20), and by invoking the classical time-frequency
transforms q(ω) → q(t), iωq → q̇, −ω2q → q̈ and X(ω) → X(t), iωX → Ẋ, −ω2X → Ẍ

9
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(where dot and double-dot notations mean single and double time derivatives, respectively), two
classical second-order differential equations can be obtained:

ML

[
q̈L

ẌL

]
+CL

[
q̇L

ẊL

]
+KL

[
qL

XL

]
=

[
FL

0

]
, MR

[
q̈R

ẌR

]
+CR

[
q̇R

ẊR

]
+KR

[
qR

XR

]
=

[
FR

0

]
,

(21)
where XL and XR are vectors built from all the vectors of supplementary variables XLk and XRk.
Eq. (21) can be simply integrated into a FE model of a periodic structure (N substructures).
Thus, the FE model of a periodic structure with absorbing boundary conditions can be written
in the time domain as follows:

Mtotÿ + Ctotẏ + Ktoty = Ftot, (22)

where

y = y(t) =


qI(t)
qL(t)
qR(t)
XL(t)
XR(t)

 , Ftot = Ftot(t) =


FI(t)

0
0
0
0

 , (23)

where qI and FI represent the displacement vector and force vector (time loadings) for the
internal DOFs (between the left and right ends). Eq. (22) is a classical second-order differential
equation which can be solved in a standard way via time integration numerical schemes (e.g.,
Newmark scheme). For instance, the time response of an infinite periodic structure, with 2D
substructures, subject at its center to a shock (transverse Ricker wavelet force pulse) is analyzed.
Here, a periodic structure consisting of only 20 substructures (squares with holes, meshed with
2D plane stress triangular elements) is considered. Absorbing boundary conditions are invoked
at the left and right ends of the periodic structure, as discussed earlier. For comparison purposes,
a FE model of a much longer periodic structure with free ends and 200 substructures, aiming at
modeling an infinite structure, is simulated. Results are shown in Fig. 6 for the time history and
the displacement field at t = 0.01 s, which fully validate the proposed approach.

Figure 6: Time response of the periodic structure: (left) time history at the right end (reference FE: red line;
proposed approach: blue crosses); (right) deformed shape.

2.4 Some results about locally resonant metamaterials

The analysis and design of locally resonant metamaterials is a research topic of growing
interest, which is mostly due to their ability to create band gaps and strongly attenuate the
vibration levels of structures [31, 1, 35, 8, 33]. Band gaps refer to frequency bands in which
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one or several waves do not propagate, and which are here induced by the local resonances of
the substructures (cells).

Among the resonant metamaterials are those made up of multi-layered continuous substruc-
tures combining soft and heavy materials (e.g., soft and stiff/heavy layers/core) which behave
like a single or multi-DOF mass-spring system. For instance, a periodic structure with periodic
inclusions of viscoelastic layers (spring and damping effects) and heavy parts (mass effect) is
shown in Fig. 7. The goal of the present study is to analyze the band gap effect in such periodic
structures. Also, it aims at investigating whether periodic structures with viscoelastic proper-
ties can be used to create band gaps with larger bandwidths (compared to when purely elatic
properties are considered), to make them useful for a wider range of engineering applications.

Figure 7: Periodic structure with N = 10 squared substructures with two viscoelastic layers (rubber), a heavy
layer and a heavy core (tungsten).

Following the WFE procedure, the wave properties of the periodic structure and the related
forced response can be obtained straightforwardly. Attention must be paid, however, to the
FE modeling of the viscoelastic layers and the fact that their stiffness matrices depend on the
frequency (see [21] for further details):

Kvel
v (ω) = Kv∞ +

nv∑
i=1

Kvi

(
ω2τ 2i

1 + ω2τ 2i
+ i

ωτi
1 + ω2τ 2i

)
, (24)

where τi are relaxation times with τi = 10−i s for i = 1, 2, . . . , nv. The stiffness matrix of
a whole substructure involves assembling several FE viscoelastic layers (v) together with FE
elastic layers (e), i.e.:

K(ω) = K1 + K2(ω), (25)

where

K1 =
Nel∑
e=1

(1 + iηele )(Lele )TKel
e Lele +

Nvel∑
v=1

(Lvelv )TKv∞Lvelv , (26)

and

K2(ω) =
Nvel∑
v=1

nv∑
i=1

(Lvelv )TKviLvelv

(
ω2τ 2i

1 + ω2τ 2i
+ i

ωτi
1 + ω2τ 2i

)
, (27)

where Lele and Lvelv are localization (Boolean) matrices, and ηele denotes the loss factors of the
elastic parts. As it turns out, the dynamic stiffness matrix of the substructure is expressed by
D = −ω2M+K1 +K2(ω). Numerical issues about the condensation of the dynamic stiffness
matrix on the left and right boundaries of the substructure (see Sec. 2.1) are discussed in [21].
Results about the dispersion curves of the bending wave are shown in Fig. 8, e.g., when nv = 5
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(number of terms in the series in Eq. (24)) and Kvi = 0.05×Kv∞ (i = 1, . . . , 5). The structure
of interest is shown in Fig. 7. Here, squared substructures with two viscoelastic layers (rubber,
Nvel = 2) and elastic parts including an external layer in aluminum, a central layer and a core
in tungsten (Nel = 3), are considered. Here, each substructure is meshed using 20× 20 eight-
node plane stress quad elements. For comparison purposes, a purely equivalent elastic structure,
when Kvel

v = Kv∞(1 + 5× 0.05), is also considered.
Band gaps occur when the real parts of the wavenumbers are equal to 0 or π/d (d being the

substructure length). The dispersion curves displayed in Fig. 8 represent plots of the functions
ω 7→ <{βd} and ω 7→ ={βd} where β is the wavenumber for the bending wave. Associated
to the band gap behavior — when <{βd} = 0 or <{βd} = π — are local increases of the
magnitude of the imaginary part of the wavenumber, which means that the wave is becoming
evanescent. The band gap effect in resonant metamaterials mostly relies on the presence of
substructure local modes. For instance, the fixed interface mode shapes of a purely equivalent
elastic substructure are shown in Fig. 8, which could help understand the physical behavior
of the structure in the vicinity of band gaps. As expected, band gap phenomena yield strong
reduction of the vibration levels of the structure. Here, a structure with N = 10 substructures
with prescribed transverse harmonic displacement at the right end is considered. For instance,
two locally resonant band gaps appear at 742 Hz and 984 Hz which are close to each other. In
the purely elastic case, the vibration levels show two local minima around these frequencies
which appear to be well separated to each other. The interesting feature in the viscoelastic case
is that these frequency bands with minimum vibration levels tend to merge to produce a wide
frequency band (i.e., between 700 Hz and 1100 Hz) where, overall, the vibration levels remain
low. This opens interesting prospects for the passive vibration control of structures.

Figure 8: Periodic structure with N = 10 substructures. (top) Dispersion curves (elastic: blue line, viscoelastic:
green line); (middle) Quadratic velocity at the left end; (bottom) fixed interface modes of the substructures.

Additional results about 1D periodic structures and resonant or non-resonant (Bragg) band
gaps can be found in [30] (aircraft structures) and [2] (rotating phononic crystal ring).
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3 2D PERIODIC STRUCTURES

3.1 Wave approaches and the modeling of structures of finite dimensions

The dynamic analysis of 2D periodic structures like metamaterial plates with resonant sub-
structures constitutes a research topic of growing interest which mostly rely, with the era of 3D
printing, on the ability to design and manufacture such structures at a low cost. A schematic of
a 2D periodic structure made up of resonant layered substructures (soft layer and heavy core)
is shown in Fig. 9. From the FE point of view, there exist plenty of works analyzing the propa-
gation of Bloch waves in infinite 2D periodic structures and the related band gap effects. These
approaches can be classified in two ways:

1. Those where a Bloch solution u(x,β, t) = ũ(x,β)ei(ωt−β
Tx) (β = [βx βy 0]

T : wavenum-
ber vector with βx = β cos(θ) and βy = β sin(θ); x = [x y z]T : position vector; ũ(x,β):
periodic function) is considered in the dynamic equilibrium equation of a cell (see for
instance [9, 4]). The resulting dynamic equation of the cell together with the periodicity
conditions for ũ(x,β) are then converted into a FE model (Galerkin method), yielding
a generalized eigenproblem of the form A(βx, βy)q̃ = ω2B(βx, βy)q̃ for the eigenvalue
ω2 and the eigenvector q̃. The computation of the so-called band diagrams then involves
plotting the pulsation ω for some pre-determined values of βx and βy following the first
irreducible Brillouin zone.

2. Those where a FE model of a substructure is considered and where pseudo-periodic con-
ditions are applied to its boundary. For substructures with rectangular boundaries (e.g.,
of lengths Lx and Ly), the pseudo-periodic conditions write qR = e−iβxLxqL between the
left (L) and right (R) edges, qT = e−iβyLyqB between the bottom (B) and top (T) edges,
qRB = e−iβxLxqLB between the left-bottom and right-bottom corners, qLT = e−iβyLyqLB

between the left-bottom and left-top corners, and qRT = e−i(βxLx+βyLy)qLB between the
left-bottom and right-top corners (see for instance [14, 25]). By considering the FE model
of a substructure together with these pseudo-periodic conditions, a generalized eigenprob-
lem of the form A(βx, βy)q̃ = ω2B(βx, βy)q̃ can be proposed (again) for computing the
band diagrams of the structure.

Figure 9: 2D periodic structure and FE mesh of a substructure (red spots highlight boundary nodes).

Although well detailed in the literature, the dynamic analysis of 2D periodic structures that
uses wave approaches appears quite restricted to infinite systems where waves are supposed to
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propagate freely, or infinite systems subject to point forces (see for instance [5]). In contrast,
the analysis of 2D periodic structures of finite dimensions — i.e., systems which are frequently
encountered in engineering applications — is not well reported. The thing is, the modeling of
2D periodic structures of finite dimensions via wave approaches appears to be a tough task (as
opposed to the 1D periodic case) mostly due to the multi-directional behavior of the propagating
waves, and the description of the boundary conditions (or coupling conditions) using these
multi-directional waves.

Fortunately, there remain several FE-based reduced models which can be used to simulate
the dynamic behavior of finite periodic structures, at a low computational cost. Indeed, by
considering the periodicity hypothesis into account, the FE models of the substructures are
identical and, therefore, they can be efficiently reduced via component mode synthesis like the
Craig Bampton (CB) method. In fact, since the substructures are identical, their component
modes are identical too which means that they only have to be computed once, i.e., regardless
of the number of substructures considered. Hence, the following transformation matrix, for all
the substructures, can be proposed [20]:

T̃ =

[
INB

0

−(KII)
−1KIB X̃

]
, (28)

where −(KII)
−1KIB and X̃ are the matrix of static modes and the matrix of fixed interface

modes (a reduced set) of the substructures, respectively; NB is the number of boundary DOFs
of the substructures. The reduced dynamic equation of a substructure s follows as:[

(−ω2 + iωa)M̃ + (iωb+ 1)K̃
] [ũsB

α̃s

]
=

[
Fs
B −KBI(KII)

−1Fs
I

X̃TFs
I

]
, (29)

where notation “u” is used to denote displacement vectors (instead of “q”); ũsB is the approxi-
mated displacement vector for the boundary nodes; α̃s is a vector of generalized coordinates;
Fs
B and Fs

I are force vectors for the boundary and internal nodes (respectively); a and b are
damping coefficients (Rayleigh damping). Also, M̃ and K̃ are the reduced mass and stiffness
matrices of the substructure (similar for all the substructures), expressed by:

M̃ = T̃TMT̃ , K̃ = T̃TKT̃. (30)

The reduced global mass and stiffness matrices of a whole 2D periodic structure — namely,
M̃per and K̃per — follow from conventional FE assembly procedures by considering the dis-
placement continuity conditions at the boundary DOFs. The global dynamic equation of the
periodic structure follows as:[

(−ω2 + iωa)M̃per + (iωb+ 1)K̃per

] [(ũB)per
α̃per

]
= F̃per, (31)

where (ũB)per is the displacement vector of the boundary/interface nodes of the substructures.
In addition, the boundary conditions of the periodic structure may be written in a general way
as:

YB(ũB)per + ZB(F̃B)per = Y0
B(ũB)

0
per + Z0

B(F̃B)
0
per, (32)

where (ũB)
0
per and (F̃B)

0
per are vectors of prescribed displacements and prescribed forces, re-

spectively, and where YB, ZB, Y0
B and Z0

B are matrices whose expressions depend on the kind
of applications considered. A second reduced mode expansion can be proposed to speed up the
computation of the matrix system (31) by expressing the displacement vector (ũB)per on some
“boundary modes” (eigenvectors) for the matrix pencil ((K̃BB)per, (M̃BB)per).
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3.2 2D nearly periodic structures

It is well known that nearly periodic structures — e.g., periodic structures with disordered
resonant substructures with slightly varying geometrical properties — possess interesting prop-
erties, e.g., the fact that the vibrational energy is localized around the excitation points [3, 13].
For instance, a schematic of a nearly periodic plate with layered substructures (soft layer and
heavy core), embedded in a floor panel, is shown in Fig. 10.

Figure 10: 2D nearly periodic plate embedded in a floor panel, and related transverse displacement field resulting
from harmonic excitations.

A strategy for modeling such nearly periodic structures has been recently proposed in [20]
and is briefly summarized here. The key idea for describing disordered substructures is to
make use of distorted FE meshes, with node positions which randomly vary around a baseline
(undistorted) mesh:

xsej = xej + εsxfx(x
e
j , y

e
j ) , ysej = yej + εsyfy(x

e
j , y

e
j ), (33)

where (xsej , y
se
j ) and (xej , y

e
j ) are the node coordinates of the distorted and undistorted meshes,

respectively; εsx and εsy are uniform random variables with support [−δ , δ] where δ is a disper-
sion parameter; fx(x, y) and fy(x, y) are two arbitrary deterministic functions of (x, y), iden-
tical for all the substructures, which are supposed to cancel out on the boundary. Examples of
distorted substructures are highlighted in Fig. 10.

When it comes to nearly periodic structures, the modeling of substructures raises two main
issues compared to the purely periodic case. First, since the substructures are not identical, their
mass and stiffness matrices Ms and Ks have to be computed several times (as many times as
the number of substructures considered); second, the matrices of static modes and fixed inter-
face modes −(Ks

II)
−1Ks

IB and X̃s, and also the reduced mass and stiffness matrices M̃s and
K̃s (matrix multiplications with the transformation matrix, see Eq. (30)), have to be computed
several times. For structures with many substructures, this makes the CB method ineffective. To
address these issues — i.e., to avoid computing the reduced mass and stiffness matrices many
times — it is proposed to compute these matrices at some points εsx = (εx)p and εsy = (εy)p
(a small number) for some particular distorted FE meshes of the substructures, and approxi-
mate these matrices between these points via matrix interpolation for any distortion εsx and εsy.
Although easy to understand, the procedure for interpolating matrices is not straightforward,
however, and requires the reduced matrices to be expressed using coordinate systems which are
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compatible to each other [26]. For this task, the following alternative reduced matrices of fixed
interface modes, at the interpolation points, can be considered [20]:

X̂p = X̃p(Ψ
T X̃p)

−1, (34)

where
Ψ =

(
(M0

II)
1
2

)T
X̃0. (35)

Here, notations M0
II and X̃0 mean that the matrices Ms

II and X̃s are expressed at εsx = 0 and
εsy = 0. As a result, the following transformation matrix, reduced mass matrix and reduced
stiffness matrix can be proposed:

T̂p =

[
INB

0

−(KII)
−1
p (KIB)p X̂p

]
, (36)

M̂p = T̂T
p MpT̂p , K̂p = T̂T

p KpT̂p. (37)

The determination of the interpolated reduced mass and stiffness matrices — namely, M̂s and
K̂s — for any substructure s with mesh parameters (ξs, ηs) follows from classic interpola-
tion, e.g., using an interpolation scheme based on eight interpolation points (ξp, ηp) and eight
Serendipity interpolation functions Np(ξ

s, ηs), as shown in Fig. 11. Thus:

M̂s =
8∑
p=1

Np(ξ
s, ηs)M̂p , K̂s =

8∑
p=1

Np(ξ
s, ηs)K̂p, (38)

where :

ξs =
√
2
εsx
δ

, ηs =
√
2
εsy
δ
. (39)

The modeling of a whole 2D nearly periodic structure follows from classic FE assembly proce-
dure, as reported earlier.

Numerical experiments can be carried out to validate the proposed strategy. Let us consider,
for instance, a nearly periodic plate with 8 × 4 substructures embedded in a floor panel and
subject to random forces, as shown in Fig. 12 where simply supported boundary conditions
are considered. Typical distorted substructures are shown in Fig. 10 and are meshed using
20 × 20 isoparametric quadratic Mindlin elements. Concerning the distorted meshes of the
substructures, fx(xej , y

e
j ) and fy(xej , y

e
j ) are chosen as trigonometric functions, while δ = 0.01

m (mesh dispersion).
The frequency responses of the structure (quadratic velocities at the location of the excitation

points) over a frequency band of [0 , 150] Hz, obtained from the interpolation strategy and the
conventional FE modeling, are shown in Fig. 13 where good matches are observed. The eigen-
frequencies of the undistorted substructures (fixed interfaces) are shown with dotted vertical
red lines. For the purely periodic case, these frequencies correspond to band gap effects where
vibration levels are low.

Also, the transverse displacement fields of the plate/panel at 125 Hz are shown in Fig. 14
for the nearly and purely periodic cases. For the nearly periodic case, the displacement field
shows localized peaks of high magnitude in the plate, and small displacement levels in the
floor. In comparison, the periodic case involves uniform (diffuse) field in the plate, and higher
displacement levels in the floor. In this sense, the nearly periodic plate appears to be a suitable
means to passively control the vibration levels of the floor. Finally, in terms of computational
times, the interpolation strategy provides an overall time reduction of 82% compared to the FE
method.
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Figure 11: Eight point interpolation scheme based on serendipity interpolation functionsNp(ξs, ηs) (p = 1, . . . , 8).

Figure 12: Schematic of a nearly periodic plate with 8×4 substructures with a floor panel subject to random forces.

4 CONCLUSION

An overview of some wave approaches and FE-based procedures, for modeling periodic
structures and metamaterials, has been proposed. For 1D periodic structures, the WFE method
has been investigated and some recent advances in this field have been presented. For 2D peri-
odic structures, a reduced FE modeling of the substructures based on the CB method has been
proposed. The procedure has been extended to the dynamic analysis of 2D nearly periodic
structures (with substructures having randomly varying geometrical properties) via the use of
distorted FE meshes and the interpolation of the reduced matrices of the substructures between
“interpolation points” (some particular distorted meshes). Those wave approaches and FE pro-
cedures have been proven relevant for predicting the dynamic behavior of periodic structures
including metamaterials with resonant cells that could be of various shapes. The dynamic anal-
ysis of periodic structures is a research topic in constant progress. This concerns the wave

17



J.-M. Mencik and D. Duhamel

Figure 13: FRF (mean value of the quadratic velocity) of the plate with 8 × 4 substructures with the floor panel.
(black solid line) FE method, nearly periodic structure; (red dotted line) interpolation strategy, nearly periodic
structure; (blue dotted line) FE method, purely periodic structure.

Figure 14: Transverse displacement field (real part) of the plate with 8×4 substructures with the floor panel at 125
Hz, obtained with the interpolation strategy. (left) Periodic case; (right) nearly periodic case.

propagation analysis in infinite systems, but also, the study of systems of finite dimensions (one
or several, possibly coupled together). Follow-on works could include the analysis of periodic
structures with localized nonlinear effects, e.g., metamaterials with local nonlinear resonant
devices, or structures locally subject to fast loadings of high magnitudes (shocks, blast).
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