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Charge-neutral graphene under perpendicular magnetic field was predicted to har-
bor a rich variety of many-body ground states with distinct topological and symmetry
breaking orders. We directly image the atomic-scale electronic wavefunction of three
distinct broken-symmetry phases in graphene using scanning tunneling spectroscopy.
We explore the phase diagram by controllably tuning the magnetic field and the screen-
ing of the Coulomb interaction by close proximity to a low or high dielectric constant
substrate. In the unscreened case, we unveil a Kekulé bond order. Under dielectric
screening, a sublattice-unpolarized ground state emerges at low magnetic fields, and
transits to a charge-density-wave order with partial sublattice polarization at higher
magnetic fields. In both cases we further observed the coexistence of additional, sec-
ondary lattice-scale orders. This screening-induced tunability of broken-symmetry
orders may prove valuable to uncover correlated phases of matter in other quantum
materials.

Narrow electronic energy bands are exceptional play-
grounds to explore many-body quantum phases of mat-
ter [1]. The vanishingly small kinetic energy in these
narrow bands leaves electrons subjected to interaction
effects alone, resulting in the emergence of a wealth of
correlated, topological and broken-symmetry phases [2–
6]. Nearly perfect flat-bands naturally develop in two-
dimensional electron systems under a perpendicular mag-
netic field, B, as macroscopically-degenerate Landau lev-
els in which interactions prevail. There, the main con-
sequence of Coulomb interaction is to generate incom-
pressible –gapped– phases at half integer filling of Lan-
dau levels, by favoring a spin-polarized ground state, a
phenomenon called quantum Hall ferromagnetism [7].

In graphene, the additional valley degeneracy en-
riches the quantum Hall ferromagnetism with broken-
symmetry states at every quarter filling [8, 9]. A cen-
tral challenge in graphene is to unveil the nature of the
ground state of the gapped zeroth Landau level (zLL)
at charge neutrality. Theory predicts a rich phase dia-
gram of broken-symmetry states with different topolog-
ical properties [10–14]. While all are SU(4) ferromag-
nets, their exact spin and valley polarization (Fig. 1C)
depends on a delicate balance between Zeeman energy
and valley-anisotropy terms emerging from the lattice-
scale interactions. Furthermore, the zLL wavefunctions
feature a simple structure in which each valley degree of
freedom is locked to one of the graphene’s sublattices.
This property isolates four possible broken-symmetry
ground states that exhibit distinct sublattice or spin or-
ders: a valley-polarized charge-density wave (CDW), a
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valley-polarized Kekulé bond (KB) order, a canted anti-
ferromagnet (CAF) and a spin-polarized ferromagnet (F)
(see Figs. 3A-C). Among them, the F order is a quantum
Hall topological insulator harboring conducting helical
edge states, while the rest are insulators with gapped
edge states [15].

Experimentally, the main insights to distinguish dif-
ferent broken-symmetry ground states come from indi-
rect transport measurements. High-mobility graphene
devices typically show an unequivocal insulating behav-
ior at charge neutrality upon increasing perpendicular
magnetic field [9, 16–19]. On the other hand, a strong
in-plane magnetic field that boosts the Zeeman effect and
the ensuing spin-polarization can induce a transition to
the helical phase with F order [20]. A recent alterna-
tive strategy utilized a high dielectric constant substrate
to screen the long-range part of the Coulomb interac-
tion [21]. This, in turn, enables the helical phase to
emerge at moderate perpendicular magnetic fields, which
eventually transits to a weak insulator upon increasing
the magnetic field further. Such an apparent tunability
of the broken-symmetry states between the helical and
seemingly different insulating phases therefore suggests
that a broad part of the phase diagram can be explored.

Here, we unambiguously identify three broken-
symmetry states in the zLL of graphene by directly vi-
sualizing their lattice-scale order with scanning tunnel-
ing microscopy (STM) and spectroscopy. To access the
different broken-symmetry states, we employed two dif-
ferent dielectric materials as substrate, both equipped
with a back-gate electrode: the standard silicon oxide
(SiO2) and the quantum paraelectric strontium titanate
oxide (SrTiO3) with a remarkably high static dielec-
tric constant of the order of εSTO ≈ 104 at low tem-
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FIG. 1. Landau level tunneling spectroscopy in graphene. (A) Non-interacting density of states (DOS) of graphene
under perpendicular magnetic field. Each Landau level (LLN , N is the Landau level index) is spin (↑, ↓) and valley (K,K′)
degenerate and emerges as a peak separated from others by cyclotron gaps. (B) Due to exchange interaction, the half-filled LL0
at charge neutrality splits into two peaks LL0± , thus opening an interaction-induced gap ∆E0. The resulting broken-symmetry
state features a SU(4)-polarization with a valley-polarization n and a spin-polarization s evolving in the SU(4) Bloch sphere
constructed on the spin and valley subspaces, whose individual Bloch spheres are schematized in (C). (D) Schematics of the
graphene samples. The two different substrates used are either SiO2 (unscreened configuration) or the high-k dielectric SrTiO3
(screened configuration). In both cases graphene is biased with the voltage Vb through an ohmic contact (in yellow) and its
charge carrier density is tuned by the voltage Vg applied to a back-gate electrode. The tunneling current It is measured from
the metallic tip. The tunneling spectroscopy is performed under perpendicular magnetic field B. The white disks on the sample
illustrate the gaussian electronic wavefunction of LL0 that extends on the scale of the magnetic length lB . The left inset shows
the graphene/hBN/substrate heterostructure, where dBN is the hBN thickness. The right inset shows a 5× 5 nm2 STM image
of the graphene honeycomb lattice measured on sample STO07 at 4 K and 0 T.

peratures (see SM). We fabricated samples consisting of
monolayer graphene resting atop a thin hexagonal boron
nitride (hBN) flake, deposited on the chosen substrate.
To enable screening of the long-range Coulomb interac-
tion [21], we selected hBN flakes (see SM) with thick-
ness less than or of the order of the magnetic length
lB =

√
~/eB (where ~ is the reduced Planck constant

and e is the electron charge) at low magnetic field, that
is, the inter-electron distance in the zLL. Figure 1D dis-
plays a schematic of the sample structure, with a metallic
contact on the graphene layer, which serves to bias the
sample for tunneling measurements. All measurements
were performed at a temperature of 4.2 K.

The Coulomb interaction strength can be readily as-
sessed by tunneling spectroscopy [22] of the exchange gap
that opens at half filling of the zLL (see Figs. 1A and
B). Figure 2B displays a representative local tunneling

conductance spectrum, dIt/dVb versus Vb, measured on
sample STO07 under a perpendicular magnetic field of
14 T. In this measurement, the Fermi level is adjusted
at charge neutrality, that is, at half filling of the zLL,
by applying a back-gate voltage Vg = 13 V. While all
Landau levels with index |N | ≥ 1 appear in the tun-
neling conductance as sharp peaks separated by the cy-
clotron gap scaling as

√
|N |B (see SM), the zLL splits

into two peaks revealing the Coulomb gap of the ν = 0
broken-symmetry state, ∆E0, akin to earlier experiments
in GaAs [23]. For accurate measurements of the gap,
which reaches its maximum value at half-filling [7], we
measured the back-gate dependence of the tunneling con-
ductance as shown in Fig. 2A. The Landau level peaks
in this color map form a staircase pattern, indicating the
successive pinning of the Fermi level within each highly-
degenerate Landau level [24, 25]. Analysis of individual
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FIG. 2. Quantum Hall ferromagnetic gap at charge neutrality. (A) Local tunneling conductance gate map measured
on graphene sample STO07 (SrTiO3 substrate) at B = 14 T. The staircase pattern shows the successive pinning of the Fermi
level EF inside Landau levels. (B) Tunneling spectrum measured on the same sample at B = 14 T and Vg = 13 V, which
corresponds to charge neutrality as indicated by the black arrow in (A). With EF at half filling, the zLL splits into two peaks
LL0± that defines the gap ∆E0 of the broken-symmetry state. (C) Zoom of the white rectangle in (A) showing the splitting
of the LL0. (D) Spectra extracted from (C) at the back-gate voltages indicated on the right of each curve. (E) Evolution
of ∆E0 as a function of magnetic field for the four studied samples. For sample AC04 (SiO2 substrate) the gap is fitted by
the Coulomb energy 1/2

√
π/2EC ∝

√
B shown as a dashed blue line. For the three samples with SrTiO3 substrates, ∆E0 is

decreased compared to sample AC04 due to the substrate screening of the Coulomb interaction. The red, orange and yellow
dashed lines correspond to the substrate-screened Coulomb energy ẼC, computed with the respective hBN thickness of the
samples.

spectra around charge neutrality thus enables us to eval-
uate ∆E0, defined as the maximum separation between
split peaks (see the red arrow in Figs. 2C and D).

Inspecting a systematic set of back-gate dependencies
of the tunneling spectra for different magnetic field val-
ues, measured at various locations on the graphene sur-
face, and on four different samples including SiO2 and
SrTiO3 substrates (see SM), provides a robust determi-
nation of the B-dependence of the energy gap. Figure 2E
displays the resulting values of ∆E0 as a function of mag-
netic field.

We first focus on the unscreened case of sample AC04
(SiO2 substrate) with the blue data points. A clear√
B dependence highlighted by the blue dashed line is

observed starting at fields as low as 0.6 T and up to
14 T. This dependence reflects the growth of the Coulomb
energy with B that scales as EC = e2/4πε0εrlB ∝√
B, where ε0 and εr are the vacuum permittivity and

the relative permittivity surrounding the graphene. As
the top graphene surface is exposed to vacuum, εr =
(εBN + 1)/2 ' 2.3, where εBN ' 3.6 is the hBN rela-
tive permittivity. Theoretically, ∆E0 is expected to be
1/2
√
π/2EC [7]. We plot this quantity in Fig. 2E (blue

dashed curve) by adjusting εr to 2.6, which is consis-
tent with the expected value for the relative permittiv-
ity. Such a quantitative agreement with theory demon-
strates the significance of our spectroscopy to assess the
interaction-induced gap.

Remarkably, turning to the screened case with the
SrTiO3 substrate yields gap values conspicuously smaller
than those obtained on the sample on SiO2 (see red, or-
ange and yellow data points in Fig. 2E). This reduction
demonstrates, therefore, a clear screening of the Coulomb
interaction by the high-dielectric constant of the sub-
strate. Electrostatic considerations that account for
the thin hBN bottom layer lead to a substrate-screened
Coulomb energy scale ẼC = EC × S(B) that is mitigated
by a screening factor S(B) ≈ 1− εSTO−εr

εSTO+εr
lB√

l2
B

+4d2
BN

, where
dBN is the hBN thickness [21]. Consequently, electrons
in the graphene plane are subjected to an unusual B-
dependent screening that depends on the ratio lB/dBN
and is most efficient at low magnetic fields. In Fig. 2E
the red, orange and yellow dashed curves show ẼC cal-
culated with the hBN thickness of the respective sam-
ples. Although the use of ẼC is strictly valid only for
hBN-encapsulated graphene, we obtain a decent agree-
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FIG. 3. Tunable broken-symmetry states of charge-neutral graphene. (A-C) Lattice-scale order drawings of the four
possible broken-symmetry states in charge-neutral graphene under perpendicular magnetic field. (A) shows the Kekulé bond
(KB) order, (B) the charge-density wave (CDW) with sublattice polarization and (C) the spin-polarized ferromagnetic (F)
and canted anti-ferromagnetic (CAF) ground states. (D-F) 2.6 × 2.6 nm2 STM images taken in constant height mode. (D)
STM image on sample AC04 (unscreened graphene) at B = 14 T and Vb = 25 mV, which unveils a Kekulé bond order. (E)
At B = 14 T (weakly-screened graphene, lB = 7 nm < dBN = 12 nm) and Vb = 40 mV, the sample AC23 exhibits a sublattice
charge-density wave, whereas (F) at B = 4 T (screened graphene, lB = 13 nm ∼ dBN = 12 nm) and Vb = 20 mV, we find a
valley-unpolarized phase consistent with the spin-polarized helical phase. For each image we superposed a corresponding lattice
drawing emphasizing the bond order, the sublattice polarization and the honeycomb lattice, respectively. The black horizontal
arrow indicates the strength of substrate screening.

ment with our data, despite some scattering for sample
STO07.

We now turn to the central result of this work, bench-
marking the lattice-scale orders of the charge-neutral
broken-symmetry state, upon tuning the screening of the
Coulomb interaction. Figure 3 shows three STM im-
ages taken at the energy of a split zLL peak, on the
SiO2 sample AC04 at B = 14 T (Fig. 3D), and on
the SrTiO3 sample AC23 at B = 14 T (Fig. 3E) and
4 T (Fig. 3F). These panels thus cover three regimes
for Coulomb interaction that we qualify as unscreened,
moderately screened and screened, respectively. For the
unscreened case in Fig. 3D, we observe a Kekulé distor-
tion bond-order pattern of the electronic wavefunction,
indicating that spin-singlet pairs of electrons are local-
ized on one bond out of three per carbon atom of the
graphene honeycomb lattice. This order is found to be
stable down to B = 3 T (Fig. 4E). With the SrTiO3
substrates at high magnetic field, that is, under moder-
ate screening, another lattice-scale order develops with
a stark valley-polarization: the CDW ground-state with
the spin-singlet pairs now mostly localized on a single

sublattice (Fig. 3E). This CDW order is found to be in-
dependent of the presence of a Moiré superlattice formed
with the hBN layer (see SM). Finally, at low magnetic
field (4T in Fig. 3F), this CDW order disappears, re-
vealing a valley-unpolarized graphene honeycomb lattice,
which points to a spin order.

Going further into the analysis of these ground states,
we show below that additional fine structures emerge at
the lattice scale, enriching the predicted phase diagram.
The KB order features an unexpected, faint charge-
density wave that has the periodicity of the Kekulé unit
cell. This coexisting order is readily seen in Fig. 4A : a
nicely formed Kekulé pattern exhibits an enhanced local
wavefunction amplitude inside one hexagon of the honey-
comb that repeats periodically on the Kekulé triangular
lattice, as indicated by the blue circles and dashed lines
in Fig. 4B. Figure 4C provides an overall representation
of the latter superimposed on the honeycomb and Kekulé
lattices. This new charge-density wave that we label as
K-CDW, is different from the CDW broken-symmetry
state since it displays a triangular lattice with a param-
eter

√
3 times larger than the graphene lattice parame-
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FIG. 4. Kekulé bond order in unscreened charge-neutral graphene. (A) 5 × 5 nm2 STM image on sample AC04, at
B = 14 T and Vb = 25 mV. The KB lattice, where both electrons of the broken-symmetry state are localized on one C-C bond
out of three, is shown in overlay with the stronger bonds highlighted in thick white. This structure is detailed in (C) where
the basis vectors of the KB order lattice are indicated in red. A zoom of (A) is displayed in (B), where we observe a secondary,
long-range charge-density-wave order featuring a triangular lattice (drawn in blue) with a parameter matching the one of the
Kekulé lattice (

√
3 times the graphene lattice parameter). (D, E) 3× 3 nm2 images showing asymmetric Kekulé patterns. (D)

At B = 14 T and Vb = 2 mV the three Kekulé strong bonds are partially merged, while in (E) at B = 3 T and Vb = 30 mV
they are completely merged and form a circle-like overall pattern. (F, G) 3 × 3 nm2 images at B = 14 T, at Vb = 25 meV
acquired at the same position a few minutes apart, showing the transition between two degenerate Kekulé configurations from
the red Kekulé lattice in (F) to the white one in (G). Both lattices in overlay are at the same position. All images are taken
in constant height mode.

ter. The tripled unit cell of the K-CDW is reminiscent
of CDW phases observed to compete with the Kekulé or-
der in extended Hubbard-models at B = 0 [26–29], but
have not been reported or predicted at finite B. We also
observed other situations in which this K-CDW induces
a pronounced asymmetry of the Kekulé pattern, with a
more or less merging of the Kekulé strong bonds (see
SM). This is illustrated by the evolution from the mostly
symmetric Kekulé lattice shown in Fig. 4A to the pro-
nounced asymmetric Kekulé lattices shown in Figs. 4D
and E. If on some images the strong bonds are still vis-
ible (see Fig. 4D), they can also merge with each other,
forming a circle-like pattern seen in Fig. 4E. Note that
both the KB order and the underlying K-CDW disappear
when the bias voltage is away from the zLL peaks (see
SM), which rules out a tip-induced artifact as the origin
of the observed KB order.

Interestingly, both the KB order and K-CDW vary
with time. For instance, Figs. 4F and G show a spon-
taneous transition from one of the three possible degen-
erate Kekulé lattices to another, while imaging contin-
uously the very same location. Similar changes for the
K-CDW are shown in SM.

In screened graphene, likewise, close inspection of the
CDW broken-symmetry state reveals striking fine struc-
tures. In the following we assume that the electron dou-
blets of the CDW are localized on the sublattice A (in

blue), while the sublattice B is empty (in red) as repre-
sented in the inset of Fig. 5A. We start by deciphering
Figs. 5B and C, taken at the exact same location, and
comparing the occupied and empty orbitals of the exact
same atoms. In both images the CDW appears as dark
spots featuring a triangular symmetry and correspond-
ing to the atoms of a single sublattice (the sublattice
B in Fig. 5B and the sublattice A in Fig. 5C), whereas
atoms of the other sublattice are not visible. Extracting
electrons from the occupied states into the STM tip at
negative sample bias leads to a very low tunneling cur-
rent on the empty atoms of the sublattice B (dark spots
in Fig. 5B). Similarly, injecting electrons from the STM
tip into the empty states at positive sample bias leads to
a very low current on the already doubly occupied atoms
of the sublattice A (dark spots in Fig. 5C).

In addition, inspecting Fig. 5C, we see that atoms of
sublattice B (red spots in the inset) are located in the
middle of a triangular lattice formed by bright lines join-
ing the doubly-occupied atoms of the sublattice A, which
correspond to high density of empty states. One can also
notice in Fig. 5C that the triangular cells that contain
atoms B are brighter than the other empty cells, which
is consistent with the enhancement of the local density of
empty states by the B atoms. We illustrate this unusual
sublattice inversion with the lattice drawings in Figs. 5G
and H, where the density of occupied and emptied states
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FIG. 5. Charge-density-wave order in moderately screened charge-neutral graphene. (A) Simulated Landau
spectrum indicating the bias voltage positions of the subsequent 1.5 × 1.5 nm2 constant-height STM images, all acquired at
B = 14 T and at the same location on sample AC23. Inset: Convention for the CDW lattice, the blue sublattice A is doubly
occupied whereas the red sublattice B is empty. (B) Image at Vb = −20 mV with the CDW lattice in overlay: the sublattice
B (empty) appears as dark spots at negative bias and intra-sublattice bonds are visible as bright lines between them. (C)
Similarly, at the positive bias of Vb = +40 mV, the sublattice A (doubly occupied) appears as dark spots and intra-sublattice
bonds are visible as bright lines between them. Note that the colorscale in (B) is inverted with respect to that in (C), since the
tunneling current is negative due to the negative bias. (D) At Vb = 100 mV, the CDW is no longer visible and the honeycomb
lattice appears instead. (E) CDW with full sublattice polarization, as predicted in Ref. [14], compared to a CDW with partial
sublattice polarization in (F). The symmetry-allowed triangular bond order is suppressed in (E), and coexists with the CDW
in (F), where a triangular lattice emerges due to a symmetry allowed sublattice hopping-asymmetry. In (F) the difference in
size for the A and B atoms represents the partial sublattice polarization. (G,H) Sketch showing the CDW sublattice inversion
between negative bias in (G) and positive bias in (H). (I) Structure of the intra-sublattice bonds.

are color coded blue and red, respectively. Figure 5I sum-
marizes this remarkable inverted pattern by superposing
the empty (red) and occupied (blue) states on the same
carbon hexagon.

This additional triangular order that accompanies the
CDW in Fig. 5 was not expected in the theory of charge-
neutral graphene [14]. Such a sublattice bond asymme-
try, t2,A 6= t2,B (t2,A and t2,B are the second-nearest-
neighbor bond expectation values of sublattices A and B,
respectively), is generically permitted in the CDW phase
as it gaps out the zLL with the same matrix structure as
a sublattice charge imbalance [30] (see SM). It becomes
visible when the sublattice degree of freedom is partially
polarized (see Figs. 5E and F). We conjecture that this
partial sublattice polarization could originate from Lan-
dau level mixing, since the sublattice index is decoupled
from valley index in higher Landau levels [31–33].

The observation of these three ground states has pro-
found implications for the understanding of transport
properties at charge neutrality. For the unscreened case,
corresponding to virtually all transport experiments, the
KB order is in contradiction with the transition scenario
from the conjectured CAF phase to the helical F phase

tuned by the Zeeman field [14, 20], as well as with re-
cent magnon transmission experiments [34–37] that im-
ply magnetism. Note that a KB order has also been ob-
served in graphene multilayers [38]. Nonetheless, a recent
prediction [33] suggests that both KB order and CAF
phases could co-exist, thus accounting for the experimen-
tal dissonance. Our observation of a sub-dominant K-
CDW order adds yet a new flavor to the phase diagram,
which was not anticipated thus far and deserves further
theoretical attention. Similarly, the nature of edge exci-
tations may be more complex than initially thought [39].
A definitive conclusion on the existence of an underlying
magnetism in this ground state and its possible spin tex-
ture at the lattice scale (Fig. 3C) would require further
spin-filtered scanning tunneling experiments, beyond the
scope of this work.

Furthermore, our observation of coexisting orders im-
plies that the nature of bulk excitations in this insulat-
ing phase must be revisited [40]. The time-varying na-
ture of the KB order and K-CDW, indicating some de-
pinning mechanisms and the presence of domain walls,
may indeed give a relevant contribution to charge trans-
port, in parallel to skyrmion excitations. A Kosterlitz-
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Thouless phase transition driven by topological Kekulé
vortex zero-modes [41] has been indeed predicted [42]
and discussed experimentally [18, 19].

In the screened case, we observed the CDW persisting
from B = 14T down to B = 7T (see SM) and disappear-
ing at B = 4 T in favour of a valley-unpolarized phase at
lower magnetic field. This phase transition is consistent
with the spin-polarized helical phase observed in trans-
port measurements [21], which is replaced by a weakly in-
sulating phase at high fields, corresponding to the CDW
phase unveiled in this work. The scenario explaining the
change of ground state due to substrate screening was ac-
counted for by a modification of renormalization effects
of the valley-anisotropy energies by the (screened) long-
range Coulomb interaction. Although it is difficult to
assess this renormalization experimentally, the substrate
screening of the Coulomb interaction evidenced by our
spectroscopy of the zLL gap indicates that such a mech-
anism is likely to be at play. As the screening exhibits an
unusual, inversely proportional B-dependence, our find-
ings, supported by the transport experiments, therefore
confirm a modification of the valley-anisotropy energies
upon varying the magnetic field in this specific substrate-
screened configuration.

Ultimately, at much higher fields such that lB � dBN ,
one should expect in graphene samples on SrTiO3 an-
other transition from the CDW to the KB phase. In
this situation the substrate screening vanishes and the
Coulomb energy scale asymptotically reaches its bare
value.

In conclusion, our work deciphers the phase diagram
of a many-body interacting system: quantum Hall fer-
romagnetism of charge-neutral graphene. We showed
how to tune between different broken-symmetry states,
clearly demonstrating the profound impact that the
screening of the long-range Coulomb interaction can
have. Furthermore, the unexpected occurrence of coex-

isting secondary orders as well as their time-varying na-
ture underlines the complexity of the true phase diagram
and incites further investigation.

Note: Another very recent work
(https://arxiv.org/abs/2109.11555) that appeared
during the writing of our manuscript also reports the
observation of the Kekulé phase in the unscreened
configuration.
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[29] Capponi, S. & Läuchli, A. M. Phase diagram of interact-
ing spinless fermions on the honeycomb lattice: A com-
prehensive exact diagonalization study. Phys. Rev. B 92,
085146 (2015).

[30] Alba, E., Fernandez-Gonzalvo, X., Mur-Petit, J., Pachos,
J. K. & Garcia-Ripoll, J. J. Seeing Topological Order in
Time-of-Flight Measurements. Physical Review Letters
107, 235301 (2011).

[31] Peterson, M. R. & Nayak, C. Effects of Landau Level
Mixing on the Fractional Quantum Hall Effect in Mono-
layer Graphene. Phys. Rev. Lett. 113, 086401 (2014).

[32] Feshami, B. & Fertig, H. A. Hartree-Fock study of the
ν = 0 quantum Hall state of monolayer graphene with
short-range interactions. Physical Review B 94 (2016).

[33] Das, A., Kaul, R. K. & Murthy, G. Coexistence of Canted
Antiferromagnetism and Bond-order in ν = 0 Graphene.

arXiv:2109.07515 (2021).
[34] Takei, S., Yacobi, A., Halperin, B. I. & Tserkovnyak, Y.

Spin Superfluidity in the ν = 0 Quantum Hall State of
Graphene. Phys. Rev. Lett. 116, 216801 (2016).

[35] Wei, D. S. et al. Electrical generation and detection of
spin waves in a quantum Hall ferromagnet. Science 362,
229–233 (2018).

[36] Stepanov, P. et al. Long-distance spin transport through
a graphene quantum Hall antiferromagnet. Nature
Physics 14, 907–911 (2018).

[37] Assouline, A. et al. Unveiling excitonic proper-
ties of magnons in a quantum Hall ferromagnet.
arXiv:2102.02068 (2021).

[38] Li, S.-Y., Zhang, Y., Yin, L.-J. & He, L. Scanning tun-
neling microscope study of quantum Hall isospin ferro-
magnetic states in the zero Landau level in a graphene
monolayer. Phys. Rev. B 100, 085437 (2019).

[39] Knothe, A. & Jolicoeur, T. Edge structure of graphene
monolayers in the ν = 0 quantum Hall state. Phys. Rev.
B 92, 165110 (2015).

[40] Atteia, J., Lian, Y. & Goerbig, M. O. Skyrmion zoo in
graphene at charge neutrality in a strong magnetic field.
Phys. Rev. B 103, 035403 (2021).

[41] Hou, C.-Y., Chamon, C. & Mudry, C. Electron Fraction-
alization in Two-Dimensional Graphenelike Structures.
Phys. Rev. Lett. 98, 186809 (2007).

[42] Nomura, K., Ryu, S. & Lee, D.-H. Field-Induced
Kosterlitz-Thouless Transition in the N = 0 Landau
Level of Graphene. Phys. Rev. Lett. 103, 216801 (2009).

[43] Wang, L. et al. One-Dimensional Electrical Contact to a
Two-Dimensional Material. Science 342, 614–617 (2013).

[44] Li, X.-X. et al. Gate-controlled reversible rectifying be-
haviour in tunnel contacted atomically-thin MoS2 tran-
sistor. Nature Communications 8, 970 (2017).

[45] Choi, Y. et al. Electronic correlations in twisted bilayer
graphene near the magic angle. Nature Physics 15, 1174–
1180 (2019).

[46] Grupp, D. E. & Goldman, A. M. Giant Piezoelectric
Effect in Strontium Titanate at Cryogenic Temperatures.
Science 276, 392–394 (1997).

[47] Honig, M. et al. Local electrostatic imaging of striped
domain order in LaAlO3/SrTiO3. Nature Materials 12,
1112–1118 (2013).

[48] Sakudo, T. & Unoki, H. Dielectric Properties of SrTiO3
at Low Temperatures. Phys. Rev. Lett. 26, 851–853
(1971).

[49] Hemberger, J., Lunkenheimer, P., Viana, R., Böhmer, R.
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Supplementary Materials

I. SAMPLE FABRICATION

Graphene/hBN heterostructures were assembled from exfoliated flakes with the van der Waals pick-up technique
using a polypropylene carbonate (PPC) polymer [43]. Stacks were deposited using the methods described in Ref.
[44] (for sample STO07) or in Ref. [45] (for samples AC04, AC23 and AC24), on either highly doped Si wafers with a
285 nm thick SiO2 layer or on, 500 µm thick, SrTiO3 [100] substrates that were cleaned with hydrofluoric acid buffer
solution before deposition of the graphene/hBN heterostructures (a Ti/Au bilayer was deposited later on the other
side of the SrTiO3 substrate to enable back-gate effect). Electron-beam lithography using a PMMA resist was used
to pattern a guiding markerfield on the whole 5 × 5 mm2 substrate to drive the STM tip toward the device. Cr/Au
electrodes contacting the graphene flake were also patterned by electron-beam lithography and metalized by e-gun
evaporation. Samples were thermally annealed at 350 ◦C in vacuum under an halogen lamp to remove resist residues
and clean graphene, before being mounted into the STM where they were heated in situ during the cooling to 4.2 K.

II. MEASUREMENTS

Experiments were performed with a home-made hybrid scanning tunneling microscope (STM) and atomic force
microscope (AFM) operating at a temperature of 4.2 K in magnetic fields up to 14 T. The AFM mode is used to
guide the tip toward the graphene device. The sensor consists of a hand-cut PtIr tip glued on the free prong of a
tuning fork, the other prong being glued on a Macor substrate. Once mounted inside the STM, the tip is roughly
aligned over the sample at room temperature and then guided toward the graphene device in AFM mode at low
temperature using the guiding markerfield on the sample. Scanning tunneling spectroscopy (STS) was performed
using a lock-in amplifier technique with a modulation frequency of 263 Hz and rms modulation voltage between
1− 5 mV depending on the spectral range of interest.

Differential conductance, dIt/dVb, gate maps were obtained by measuring tunneling spectra as the back-gate
voltage Vg is swept at fixed tip position. For samples on SiO2, we measured directly the dIt/dVb tunneling spectra
as the back-gate voltage Vg was swept continuously. For samples on SrTiO3, due to the strong piezoelectric effect of
the substrate [46, 47], we maintained the back-gate voltage constant during each sample bias sweep to avoid changes
of the tunneling conductance caused by expansion or shrinkage of the substrate, leading to diverging or vanishing
tunneling current respectively. The dIt/dVb gate map measurements on SrTiO3 were also systematically carried out
by maintaining the same back-gate voltage sweep limits in order to compensate for the dielectric hysteresis of the
substrate and to maintain the position of the charge-neutrality point at the same back-gate voltage.

Imaging of charge-neutral graphene ground states were done in STM constant-height mode. Starting from tunneling
contact at (Vb = 300 mV, It = 1 nA) with the Z-regulation on, we switch off the regulation and lower the bias voltage
to energies corresponding to the LL0± peaks, which drastically decreases the tunneling current. We then manually
approach the tip toward graphene until we restore a tunneling current of a few nA. STM scans with atomic resolution
are subsequently realized to image the honeycomb lattice or its eventual polarization into one of the four possible
ground states.
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III. SAMPLES SUMMARY

We studied two different types of samples (see Fig. 1D of the main text) : first graphene on hBN/SiO2 substrate,
the usual substrate used in transport measurements, and secondly graphene on hBN/SrTiO3 substrate with a thin
hBN layer of thickness dBN (see Table I). Optical images of the samples are shown in Fig. S1 and their geometrical
parameters are listed in Table I. Both types of samples are equipped with a back-gate electrode.

AC04
Gr/hBN/SiO2

STO07
Gr/hBN/SrTiO3

AC24
Gr/hBN/SrTiO3

AC23
Gr/hBN/SrTiO3

FIG. S1. Graphene samples. Optical pictures of the studied samples listed in Table I. The dashed blue lines outline the
hBN flakes, while the white dashed lines outline the graphene flakes. For every image, the scale bar is 10 µm.

Sample AC04 STO07 AC23 AC24
Substrate Si++/SiO2 SrTiO3 SrTiO3 SrTiO3

Substrate/oxide thickness 285 nm 500 µm 500 µm 500 µm
hBN thickness (dBN) 14 nm 8 nm 12 nm 10 nm

TABLE I. Geometrical parameters of the four measured samples.

IV. ESTIMATION OF THE DIELECTRIC CONSTANT OF SrTiO3 IN MAGNETIC FIELD

We show in this section how we can estimate the SrTiO3 dielectric constant, εSTO, from tunneling conductance
gate maps. εSTO is linked to the global dielectric constant of the back gate, εr, which can be obtained by modeling
the back-gate capacitance Cg as the sum of the series capacitances of SrTiO3 and hBN assuming plane capacitors :

1
Cg

= 1
CSTO

+ 1
CBN

⇒ dSTO + dBN

εr
= dSTO

εSTO
+ dBN

εBN
(1)

Since dBN ∼ 10 nm� dSTO = 500 µm, we write the gate insulator dielectric constant as :

εr = εSTO

(
1 + dBN

dSTO

εSTO

εBN

)−1
(2)
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Numerically, εBN ' 3.6 and εSTO ∼ 104 at low temperature [48], so that dBNεSTO/dSTOεBN ∼ 0.1. We can assume
that εr ' εSTO : the back-gate insulator capacitance is thus mainly determined by the dielectric constant of SrTiO3.
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FIG. S2. Estimation of the dielectric constant of SrTiO3 and rescaling of the gate map. (A) Line cut at Vb = 0 V,
averaged on a range of ±20 mV, of the dIt/dVb gate map at B = 14 T in Fig. 2A of the main text, which gives back-gate
voltages corresponding to filling factors ν of filled LLs. (B) Estimation from the filling factors obtained in (A) of the charge
carrier density n (blue dots), polynomial fit (blue curve) and computed values of εr ' εSTO as a function of gate voltage. The
fit also yields V CNP ' 13.5 V. (C) Rescaling of the gate map as a function of ν.

In order to estimate εr as a function of the back-gate voltage, we consider the tunneling conductance gate map at
B = 14 T from Fig. 2A of the main text (sample STO07) from which we can extract some values of the back-gate
voltage at specific filling factors ν. Furthermore, note that the electron-hole asymmetry visible in this gate map stems
from the non-linear behavior of εSTO with the gate voltage [21, 49–51]. Since the successive plateaus that form in
the gate map correspond to the filling of LLs, the variation of gate voltage to pass through an entire plateau yields a
variation in terms of filling factor of ∆ν = ±4. We plot in Fig. S2A the line cut of the gate map at zero bias, averaged
on a range of ±20 meV around this value. We clearly observe the different non-zero conductance plateaus forming
when EF is pinned inside one LL, with gaps in-between. We next consider that the gate voltages at the middle of
the gaps correspond to completely filled and empty LLs, hence the gate voltage values corresponding to the different
values of the filling factor ν = −10,−6,−2, 2. Those values are converted into charge carrier density values n in Fig.
S2B using :

ν = nφ0/B (3)

with φ0 = h/e the flux quantum. A polynomial of degree 5 is used to fit these points and to interpolate the evolution
of the charge carrier density in the range of gate voltage of the gate map. From this fit, charge neutrality at n = 0
is achieved at V CNP = 13.5 V. We use the field-effect relation en = Cg(Vg − V CNP) with the gate capacitance
Cg = ε0εr/dSTO to obtain the equation linking the back-gate insulator relative dielectric constant εr to the carrier
density n and the gate voltage Vg :

εr = dSTO

ε0

en

Vg − V CNP (4)

The red curve in Fig. S2B shows the resulting εr, which decreases with increasing gate voltage and ranges between
12 500 and 3 500. A similar εr(Vg) profile but with slightly weaker values is obtained for sample AC23 (3 000 < εr <
11 500). Finally, using the fit of the filling factor ν, we can rescale the gate map as a function of ν which is shown
in Fig. S2C. In particular, note that in the rescaled map the interaction-induced gap is maximal at charge neutrality
ν = 0, as expected considering that the exchange interaction is maximal at half-filling of the zeroth Landau level.
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V. LANDAU LEVELS OF DIRAC FERMIONS

We show in Fig. S3A a tunneling conductance dIt/dVb spectrum taken on sample STO07 (SrTiO3) at B = 14 T
(same than Fig. 2B of the main text), where graphene was brought to charge neutrality with a gate voltage Vg = 13V
using the dIt/dVb gate maps from Fig. 2A. Additionally, Fig. S3B displays a spatially-averaged dIt/dVb spectrum on
a 100× 100 nm2 area around the same position as Fig. S3A, where we clearly see well-resolved Landau levels in the
local density of states (LDOS) up to N = ±6 as well as both peaks of the LL0 broken-symmetry state, with a gap of
∆Eν=0 ' 36 meV. We fit in Fig. S3C the positions EN of the Landau levels as a function of (|N |B)1/2 (E0 ≈ 0.7 meV
is taken at the middle of the LL0 peaks). We obtain an excellent agreement with the theoretical dispersion relation
for graphene :

EN = ED + sign(N)vF
√

2~e|N |B (5)

confirming the massless behavior of charge carriers in graphene. The fit yields a Fermi velocity of vF = (1.403 ±
0.005) × 106 m.s−1. This value is much greater than the expected theoretical one of 1.0 × 106 m.s−1, which we
attribute to the enhancement of electron-electron interactions at charge neutrality [24, 25, 52].
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FIG. S3. Relativistic Landau levels in graphene in sample STO07 on SrTiO3 (A) Individual tunneling differential
conductance dIt/dVb spectrum at B = 14 T and Vg = 13 V showing well-defined Landau level peaks. The zeroth Landau level
is split into two peaks LL0

±. (B) Spatially-averaged dIt/dVb spectrum under the same conditions on a 100 × 100 nm2 area.
(C) Fit using Equation (5) of the positions of Landau levels EN as a function of (|N |B)1/2 with N the Landau level index. An
excellent agreement is obtained and the fit yields a Fermi velocity vF = (1.403± 0.005)× 106 m.s−1.

VI. TUNNELING CONDUCTANCE GATE MAPS AND INTERACTION-INDUCED GAP IN SAMPLE
AC04

We show in Fig. S4 some examples of ∆E0 estimations at different magnetic fields B for the sample AC04
(Gr/hBN/SiO2) which were reported in Fig. 2E of the main text. ∆E0 is computed as the maximum value of the
peak-to-peak energy between LL0± extracted from the individual spectra of the gate map.



14

Sample bias (mV)

0

2

4

6

10

-25-50 0 5025

8

LL0+LL0– B (T)

-100

0

100
Sa

m
pl

e 
bi

as
 (m

V)
A

-10 0

low high

dI  /dV t b B = 14 T

Gate voltage (V)
-5 -4 -3

Gate voltage (V)

Sa
m

pl
e 

bi
as

 (m
V)

Gate voltage (V)

-10 -5 0

Sa
m

pl
e 

bi
as

 (m
V)

-10 -5 0

B = 7.5 T

-10 -5 0

-6 -4 -2

-50

0

50

Sa
m

pl
e 

bi
as

 (m
V)

-10 -5 0

B = 3 T

B = 1.5 T

B = 13 T

B = 6 T

B = 2 T

B = 1 T

B = 9.5 T

B = 5 T

B = 1.75 T

B = 0.6 T

M

-4 -2

-6 -4 -2 -5 -4 -3

-6

B C

D E F

G H I

J K L

-100

0

100

-100

0

100

-10 0 -10 0

-100

0

100

-100

0

100

-100

0

100

-50

0

50

-50

0

50

-50

0

50

-50

0

50

-50

0

50

14

13

12

11

10

9

8

7

6

5

4

3

2

1.75

1.5

1

0.7

0.6
dI

   /
dV

   (
a.

u.
)

t
b

FIG. S4. Evolution of ∆E0 with the magnetic field on hBN/SiO2, in sample AC04. (A-L) Tunneling conductance,
dIt/dVb, gate maps at different magnetic fields. (B,C) were performed at the same position, same for (H-L). (M) Some dIt/dVb
spectra around (and centered at) zero bias we used to estimate ∆E0 from dIt/dVb gate maps at different magnetic fields B.

VII. TUNNELING CONDUCTANCE GATE MAPS AND INTERACTION-INDUCED GAP IN SAMPLE
STO07

Figure S5 shows the evolution of the tunneling conductance dIt/dVb gate maps for decreasing magnetic fields from
B = 14 T to B = 1 T in sample STO07 (SrTiO3 substrate). For each magnetic field, we perform the same gate
sweep from Vg = 80 V to Vg = −20 V in order to keep the hysteresis cycle of the SrTiO3 substrate constant. The full
dIt/dVb gate map at B = 14 T is shown in panel (A), and the zoom on the yellow rectangle centered on the LL0
gap is displayed in panel (B). The next panels are zooms on the same area as (B). All those dIt/dVb gate maps were
acquired at the same position on graphene, up to the magnetic field drift.

Let us start at B = 1 T in the bottom right panel. Many peaks dispersing negatively with the gate voltage are
visible, among them we can already distinguish LL0 and LL1. With increasing magnetic fields, other resonant peaks
eventually merge with each other to form LLs, as described in Ref. [53]. For instance LL2 is formed at B = 3 T while
LL−1 becomes distinguishable at B = 5 T. We also notice at B = 1 T that there is no pinning effect of EF inside
LLs, which thus disperse continuously with the gate voltage. LLs start to pin the Fermi level at B = 3 T with the
formation of a small plateau for LL0 at Vg = 27.5 V. However note that the splitting of LL0 in panel (M) is mostly
due to the lifting of the orbital degeneracy [54], such that the apparent gap at zero bias (indicated by the green
arrow) may be different from the interaction-induced gap we are aiming for. This orbital splitting is maximum at
B = 4 T and then decreases at higher magnetic fields.

The gap ∆E0 finally opens at B = 5 T, see the yellow arrow in panel (K). Since the density of states of LL0 grows
with B, the Fermi level stays pinned inside LL0 for a wider range of gate voltage with increasing B, and as a result the
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FIG. S5. LDOS gate maps as a function of the magnetic field B on hBN/SrTiO3, in sample STO07 and at the same
position.
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gap develops on a larger LL0 plateau. At B = 8 T the gap features a maximum due to its enhancement by exchange
interactions, see the red arrow in panel (H). At B = 10 T, a second maximum appears on the right extremity of the
LL0 plateau, see the blue arrow in panel (F), while at B = 12 T we clearly distinguish two lobes marked by the white
arrows in panel (D). The left lobe corresponds to the opening of the ν = 0 gap whereas the right one is due to the
opening of the ν = 1 gap (however the ν = −1 gap is not visible).

VIII. KEKULÉ BOND ORDER IN Gr/hBN/SiO2 SAMPLES

We detail in this section the asymmetry of the Kekulé bond (KB) order, its bias dependence and stability in time.

A. Asymmetry of the KB pattern

We compute the 2D FFT of the STM image in Fig. S6A with an asymmetric KB pattern and filter it by considering
only certain peaks of the FFT, see Fig. S6B. The 2D FFT is mainly comprised of three hexagons, defined by the
yellow, red and blue encircled-peaks. We first filter the STM image by considering the yellow peaks only, which
yields the usual honeycomb lattice in (C). We now filter with the red peaks only, and obtain the image shown in
(D) which features a triangular lattice. When we superimpose the KB lattice drawing, we notice that each bright
point of the triangular lattice in (D) falls either on the strong white bonds of the Kekulé lattice or at the center of
the hexagons devoid of strong bond : the addition of both images yields the bond-density wave as shown in (E)
where we have filtered the STM image by considering this time both yellow and red peaks and mostly recovered the
original KB pattern. This also justifies why the hexagon devoid of strong bond in the KB pattern appears brighter
than the neighboring hexagons comprised of three strong bonds, similarly visible in Fig. 4A of the main text. Note
that the presence of two red peaks with halved amplitude in one direction is responsible of the slight asymmetry that
is already visible in Fig. S6E.

We show in Fig. S6F the image obtained after filtering using only the blue peaks. We observe a strongly asymmetric
triangular lattice encoding the Kekulé spatial modulation at

√
3 times the graphene lattice parameter. The asymmetry

arises from a large asymmetry between the blue peaks in the FFT, where two peaks in one direction are twice as
high as the others. This yields dissimilar weights to the bond-density wave, as shown in Fig. S6G where we have
filtered considering red and blue peaks, and explains the strong asymmetry we observe in the KB pattern, which is
fully recovered in Fig. S6H where we have filtered with the yellow, red and blue peaks. We conjecture this strong
asymmetry of the FFT originates from the existence of the K-CDW order whose contribution is visible in Fig. S6F,

0.1 0.35
tI    (nA)

brighter peaks

weaker peaks

A B C D E

F G H

FIG. S6. FFT decomposition of the asymmetric Kekulé distortion. (A) 3× 3 nm2 image at B = 14 T and Vb = 2 mV
showing an asymmetric KB pattern. (B) 2D FFT of the STM image in (A), with peaks marked by circles of different colors
: yellow for the honeycomb lattice, red and blue for the bond-density wave. (C-H) Filtered images obtained by considering
certain peaks of the FFT as indicated in the top right corner of each panel. The Kekulé lattice is drawn in white for reference.
The KB order is mostly retrieved by considering only the yellow and red peaks. The asymmetry of the KB pattern is encoded
in the blue peaks whose two of them are twice as high as the others due to the K-CDW order. Scale bar : 500 pm.
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since in symmetric KB pattern (where this long-range CDW order is not visible) there is no such asymmetry between
the blue and red peaks.

B. Bias dependence of the KB order

We show in Fig. S7 constant height STM images where we have changed the sample bias Vb as the scan was
in progress. The arrows on the right of each panel show the direction of the slow axis of the scan, and their color
corresponds to the actual sample bias which is indicated in the bottom insets. In Fig. S7A we clearly observe the
contrast inversion when switching the sample bias from LL0+ to LL0− , with the continuity of the KB pattern at
the interface. In Fig. S7B we clearly see the transition from the usual honeycomb lattice to the KB pattern when
switching the sample bias from LL1 to LL0+ .

A

I    (nA)t

Vbias
-1 1

0+0–

Vbias

B

I    (nA)t

FIG. S7. Contrast inversion and emergence of the Kekulé bond order. 3× 3 nm2 current STM images during which
we changed the bias voltage as shown in the bottom insets (the current color bars are tuned separately for each half of the
images). (A) We start (bottom) at Vb = 32 mV (LL0+ ) and switch (top) to Vb = −12 mV (LL0−) to observe the contrast
inversion of the KB lattice. (B) We start (top) at Vb = 200 mV (LL1) and switch (bottom) to Vb = 20 mV (LL0+ ) to observe
the emergence of the KB order from the honeycomb lattice. Scale bar for both images : 500 pm.

C. Moving domain walls in the K-CDW order

We show in Fig. S8 three successive images acquired in a row at the same position and at sample bias Vb = 2 mV.
The blue arrows on the left of each image indicate the direction of the slow axis of the scanning. Figure. 4D of the
main text belongs to the same set of image acquisition. The lattice in overlay describes the asymmetric KB pattern,
with the white links being the strong bonds of the KB order, whereas the asymmetry that comes from the K-CDW
order makes the hexagons with blue weak bonds brighter than the hexagons with red weak bonds. The next image
in panel (B) (duration of each image : 53 seconds) starts from the bottom, where we observe the same KB pattern.
However a jump occurs at the line indicated by the red arrows, and after that, in the top part of the image, the
asymmetry of the KB pattern is reversed : using the lattice in overlay as a guide for the eye, we see that the red
hexagons are brighter (due to the three strong white bonds almost merging together), such that the new pattern is
the mirror of the previous one. Eventually, the next image in panel (C) displays this new pattern with brighter red
hexagons on the whole area, and the next images we realized during several minutes happened to be identical. This
indicates that the K-CDW order transited and reversed the asymmetry of the KB phase. Note that the pattern of
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the strong white bonds, which defines the KB order, stays unchanged in the three images (in opposition to the KB
order transition shown in Fig. 4F and G of the main text).

A B C
Vbias = 2 mV 0.1 0.35

I    (nA)t

Successive images

FIG. S8. Moving wall in the Kekulé pattern. 3× 3 nm2 current STM images at B = 14 T, Vb = 2 meV and at the same
position. The three images were measured successively in a row (scanning time : 1 min). A jump occurs in (B) at the red
arrows and reverses the asymmetry of the Kekulé pattern. The slow axis direction of the scanning is indicated by the blue
arrows on the left of each image. Scale bar for the three images : 500 pm.

The asymmetry reversal of the KB order due to the K-CDW transition is well seen in the 2D FFT of both images
in Fig. S8A and C, see top insets. For panel (A), the K-CDW appears in the inner hexagon, where the two peaks
encircled in green are twice as bright as the other four peaks. On the contrary, for panel (C), this is now the yellow
peaks which are brighter than the other four, with the amplitude of the green peaks lowered. The change of the
direction of the two brighter peaks induces the change of the asymmetry pattern of the KB order. Interestingly, the
outermost hexagon, which corresponds to the bond-density wave, also features a change in the intensity of its peaks
: in panel (A) the blue peaks are halved in amplitude while in panel (C) this is the red peaks which are halved.
This does not yield any significant change of the KB pattern but this may mean that the bond-density wave and the
long-range charge-density wave are entangled.

Therefore, the asymmetry of the KB patterns we observed strongly depends on the time fluctuations of the K-CDW
order. Moreover, the fact that we captured the line with the jump in panel (B) could indicate a moving domain
wall, and thus the existence of domains with different polarizations of the K-CDW. Note that this only concerns this
anomalous K-CDW which coexists with the KB order, the later being unchanged in the three images (the bright
bonds pattern remains the same).

Such transitions of the K-CDW happened a few times during our measurements. In Fig. S9A we show a 10×10nm2

image of asymmetric KB pattern with the circle-like pattern formed by the merging of the strong bonds inside one
hexagon of the KB order unit cell. Imaging the same area a few minutes later in Fig. S9B unveils a domain wall
indicated by the red arrows : in the top part, the three strong bonds merge together inside another hexagon of the
KB order unit cell with respect to the bottom part (see the white dashed line which intercepts the circles in the top
part of the image and, conversely, passes between the circles in the bottom part). As previously, the KB order lattice
itself does not change.
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A B

0 max
I    (nA)tVbias = 25 mV Vbias = 25 mV

FIG. S9. Variation of the Kekulé asymmetry. 10 × 10 nm2 current STM images at B = 14 T and Vb = 25 meV. In (B)
the asymmetry pattern changes at the domain wall indicated by the red arrows. Scale bar for both images : 1 nm.

IX. INDUCED t2 ASYMMETRY IN THE CHARGE-DENSITY-WAVE STATE

We start by discussing how a second nearest-neighbour hopping asymmetry gaps the zeroth Landau level (zLL) of
graphene. We consider the spinor ψ = (ψAK , ψBK , ψAK′ , ψBK′), where ψστ is a zLL single-particle wavefunction in
sublattice σ and valley τ . In this basis, both the sublattice imbalance ∆n = nA−nB and the second nearest-neighbor
hopping asymmetry ∆t2 = t2,A − t2,B (see Fig. S10) enter the low energy Hamiltonian close to the Dirac point with
the matrix τ0 ⊗ σz in valley (τ) and sublattice space (σ). This matrix structure implies that both perturbations gap
out the K and K ′ points of graphene, with a gap given by [30] :

Eg = ∆n+ 3
2∆t2, (6)

which is of equal sign for both valleys. We can visualize the effect of ∆t2 and ∆n on the zeroth Landau level by
diagonalizing the graphene Hamiltonian in the presence of a magnetic field. The spectrum with ∆t2 6= 0 and ∆n 6= 0
are shown in Fig. S10 A and B respectively, obtained with the kwant package [55]. We can confirm numerically that
the gap is given by Eq. (6) and that when ∆n = −3

2∆t2 the gap closes, confirming that both perturbations enter the
Hamiltonian with the same matrix structure.

The above argument suggests that interactions that induce a finite ∆n will generically induce a finite ∆t2 6= 0,
as they both enter with the same matrix structure. To exemplify this generic behavior we use the Hamiltonian of
graphene in the presence of nearest-neighbor interactions V1 :

H = t
∑
〈ij〉

(
c†i cj + h.c.

)
+ V1

∑
〈ij〉

ninj , (7)

where the sums are taken over nearest neighbors of the honeycomb lattice. Note in particular that the second-nearest
neighbor hopping is explicitly zero in the Hamiltonian. In the limit of infinitely large interaction, the ground state of
H at half-filling is a charge-density wave with one fully occupied and one fully empty sublattice, a state characterized
by ∆n = 1. The bond asymmetry ∆t2 is expected to be exactly zero in this limit, since all sites on one sublattice are
completely full and thus no states are available to hop to. Similarly, all sites on the other sublattice are completely
empty such that no states are available to hop from. At sufficiently large (but finite) V1/t the ground-state is a
charge-density wave with partial sublattice imbalance , as we numerically show in Fig. S11. In Fig. S11A, we show
the expectation value of ∆n in the ground-state of H for different V1 obtained by using the infinite density matrix
renormalization group (iDMRG), implemented using the tenpy package [56], as explained in Ref. [28]. For small
interactions ∆n is close to zero, and grows continuously to one as V1 is increased, signaling a second order-phase
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t2B t2AnB

FIG. S10. Effect of sublattice charge imbalance and a t2 asymmetry on the zeroth Landau level. (A) shows that
the effect of a finite charge imbalance ∆n = nA − nB is to gap the zeroth Landau Level of graphene. Panel (B) shows that a
hoping asymmetry ∆t2 = t2,A − t2,B also opens up a gap, that depends on momentum k as we move away from the K and K′
points. The parameters are chosen so that Eg is the same on both plots at the K and K′ points, according to (6). Simulations
were performed using the kwant software[55] for a 41× 41 hexagonal lattice with φ = 0.003 flux per plaquette, in units of the
flux quantum. Energies are measured in units of the nearest-neighbor hopping t. For A ∆t2 = 0 and ∆n = 0.045 , while for B
∆t2 = 0.015 and ∆n = 0.

transition (see e.g. Ref. [28] for a discussion). As shown in Fig. S11B, we observe a concomitant bond asymmetry ∆t2
that develops at intermediate values of V1, as expected based on our previous symmetry discussion. As V1 increases,
∆t2 increases until reaching a maximum, and then decreases as V1 becomes larger. It is possible to check numerically
that setting t = 0 in (7), i.e. in the limit V1/t→∞, leads to ∆t2 = 0 and ∆n = 1, as discussed above.

BA

FIG. S11. Induced ∆t2 asymmetry by interactions. Panel (A) shows that a sublattice charge imbalance develops as V1
increases. Panel (B) shows how a simultaneous asymmetric bond expectation ∆t2 6= 0, peaking at intermediate values of V1.
The simulations are carried out using a cylinder circumference of Ly = 6 sites and bond-dimension χ = 1000 with the tenpy
package [56].

The above results support that a charge-density-wave order with a partial sublattice imbalance, i.e. 0 < ∆n < 1,
is generically accompanied by a second-nearest-neighbor bond asymmetry, ∆t2 6= 0, as argued in the main text.

In the zLL of graphene the wave-functions at each valley live in different sublattices and thus a full valley polarization
implies a full sublattice polarization ∆n = 1, in which case ∆t2 = 0. When the the sublattice polarization is not
maximal then a finite ∆n and ∆t2 are expected, consistent with what is observed in experiment (see Fig. 5 in the
main text). As mentioned in the main text, this effect can originate from Landau level mixing since the sublattice
index is not locked to valley index beyond the zLL [31–33].
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X. CHARGE-DENSITY WAVE IN Gr/hBN/SrTiO3 SAMPLES

A. Influence of the Moiré superlattice

The sample AC23 displays a weak Moiré superlattice (weak in the sense that is not always visible in our images).
This arises the question of whether the CDW phase we observed was induced by the Moiré pattern, which could also
break the sublattice symmetry, or not. In such case, we should expect the CDW pattern to rely on that of the Moiré,
with the sublattice polarization depending on the position inside the Moiré superlattice (due to the periodic potential
it induces in graphene). Figure S12B displays a CDW phase observed at B = 7 T. The Moiré pattern is barely visible
but appears as bright spots, such as the ones indicated by dashed white circles. However the CDW pattern itself
is seen not to fluctuate in presence of this Moiré lattice, which as a result rules out the Moiré origin of our CDW phase.

A B C

1 13
I    (nA)tVbias = 40 mV Vbias = –20 mV Vbias = 40 mV-11 -2

I    (nA)t
0.2 2.8
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B = 9 T B = 7 T B = 4 T

D E F

0.4 3.4
I    (nA)tVbias = 30 mV Vbias = 20 mV Vbias = 20 mV0.4 2.7

I    (nA)t
0.4 2.7

I    (nA)t

B = 4 T B = 4 T B = 4 T

FIG. S12. Disappearance of the charge density wave at low magnetic field in sample AC23. (A) CDW at B = 9 T.
(B) CDW at B = 7 T. The Moiré superlattice of sample AC23 is visible but does not perturb the CDW pattern. (C,D)
Honeycomb lattice with no CDW at B = 4 T. (E) Honeycomb lattice at B = 4 T with residual traces of CDW, see the zoom
in (F) of the white rectangle. Scale bar for all figures : 500 pm.

We also performed STM measurements in the similar sample AC24 on SrTiO3. Contrary to sample AC23, we never
notice any Moiré lattice in this second sample. In the same conditions, at charge neutrality, we observed signatures
of a CDW phase, shown in Fig. S13B, which confirms our conclusion that the CDW we observe in our hBN/SrTiO3
samples is indeed an intrinsic consequence of many-body interactions at charge neutrality and not due to extrinsic
substrate-induced sublattice symmetry breaking.
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FIG. S13. Charge-density wave order in sample AC24. (A) Honeycomb lattice at B = 14 T and Vb = −350 mV observed
in constant-current mode in charge-neutral graphene. (B) CDW under the same conditions but at Vb = −18 mV. Scale bar for
both figures : 500 pm.

B. Disappearance at low magnetic field

Figures S12A and B show that the CDW persists at B = 9 T and B = 7 T. However, Figs. S12C to E at B = 4 T
does not display the CDW anymore but just the usual sublattice-unpolarized honeycomb lattice.

Finally, it is theoretically expected [14] that graphene undergoes a first-order phase transition from the CDW to the
F phase. Such a transition should induce the formation of domains in graphene with the coexistence of both phases
around the magnetic field at which the transition occurs. When taking a closer look to Fig. S12E taken at B = 4 T,
see its zoom in Fig. S12F, one can discern that some bright dots appear in some parts of the image (see the blue
circles). This residual asymmetry of the honeycomb lattice is reminiscent of a charge-density wave. It is possible that
it may constitute a signature of such domains around the transition between the CDW and F phases.


