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ABSTRACT

Context. The interior of a neutron star is expected to exhibit different states of matter. In particular, complex non-spherical con-
figurations known as ‘pasta’ phases may exist at the highest densities in the inner crust, potentially having an impact on different
neutron-star phenomena.
Aims. We study the properties of the pasta phase and the uncertainties in the pasta observables which are due to our incomplete
knowledge of the nuclear energy functional.
Methods. To this aim, we employed a compressible liquid-drop model approach with surface parameters optimised either on exper-
imental nuclear masses or theoretical calculations. To assess the model uncertainties, we performed a Bayesian analysis by largely
varying the model parameters using uniform priors, and generating posterior distributions with filters accounting for both our present
low-density nuclear physics knowledge and high-density neutron-star physics constraints.
Results. Our results show that the nuclear physics constraints, such as the neutron-matter equation of state at very low density and
the experimental mass measurements, are crucial in determining the crustal and pasta observables. Accounting for all constraints,
we demonstrate that the presence of pasta phases is robustly predicted in an important fraction of the inner crust. We estimate
the relative crustal thickness associated with pasta phases as Rpasta/Rcrust = 0.128 ± 0.047 and the relative moment of inertia as
Ipasta/Icrust = 0.480 ± 0.137.
Conclusions. Our findings indicate that the surface and curvature parameters are more influential than the bulk parameters for the
description of the pasta observables. We also show that using a surface tension that is inconsistent with the bulk functional leads
to an underestimation of both the average values and the uncertainties in the pasta properties, thus highlighting the importance of a
consistent calculation of the nuclear functional.

Key words. stars: neutron – dense matter – plasmas

1. Introduction

The interior of a cold neutron star (NS) is predicted to be
made of various phases of matter, from a solid crust to a liq-
uid core. In particular, the outer crust is thought to be made of
ions arranged in a lattice, embedded in an electron gas, while
in the inner crust the neutron-proton clusters, neutralised by
the electron gas, also coexist with a (free) neutron gas, until,
at about half the saturation density (nsat ≈ 0.15 fm−3), nuclei
dissolve into homogeneous matter, thus marking the transition
to the liquid core (Haensel et al. 2007). In a liquid-drop pic-
ture of the nucleus, the equilibrium structure of the clusters in
the crust results from the competition between the Coulomb
and surface energy of nuclei. At lower densities, in the outer
crust and in most regions of the inner crust, nuclear clusters are
sufficiently far apart from each other that their structure is not
influenced by neighbouring clusters. The effect of the surface
energy prevails and clusters are thus expected to be spherical.
However, at a higher density, nuclei become very close to each
other, and, eventually, at the bottom of the crust, matter may
arrange itself into various exotic configurations known as ‘pasta’
phases. Although so far there is no direct observational evi-
dence of pasta phases, their existence may have a sizeable impact
on different NS phenomena, such as NS cooling (Newton et al.

2013b; Horowitz et al. 2015; Lin et al. 2020), magnetic and rota-
tional evolution of pulsars (Pons et al. 2013), crust oscillations
(Gearheart et al. 2011; Sotani et al. 2012), and transport proper-
ties (see e.g., Schmitt & Shternin 2018 for a review). In addition,
Gearheart et al. (2011) also estimated the effect of non-spherical
configurations on the NS ‘mountains’, showing that the presence
of pasta phases can decrease by up to an order of magnitude the
NS maximum quadrupole ellipticity sustainable by the crust.

Since the pioneering works by Ravenhall et al. (1983),
Hashimoto et al. (1984), and Oyamatsu et al. (1984), several
studies have been conducted on the nuclear pasta, using dif-
ferent approaches, including compressible liquid-drop (CLD)
models, the (extended) Thomas-Fermi method, nuclear energy-
density functional theory, and molecular dynamics calcula-
tions (see Pethick & Ravenhall 1995; Chamel & Haensel 2008;
Watanabe & Maruyama 2012; Blaschke & Chamel 2018 for a
review and references therein). Very recently, Balliet et al.
(2021) studied the pasta properties in NSs within a CLD model
with surface parameters fitted on quantum 3D Hartree-Fock cal-
culations of nuclei in a neutron gas, and calculated the distribu-
tions of pasta observables, namely the mass and the thickness
of the pasta layer, using a Bayesian analysis. For all models
they explored, they found that more than 50% of the crust by
mass and 15% by thickness are made up of pasta, in agreement
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with the results of previous investigations (Lorenz et al. 1993;
Newton et al. 2013a). Nevertheless, the presence of these non-
spherical structures, such as cylindrical clusters (rods), slabs,
cylindrical holes (tubes) and spherical holes (bubbles) in the NS,
and the transition density among the different geometries, remain
model dependent.

In this work, we studied the properties of the pasta phases
in cold, non-accreting NSs under the so-called ‘catalysed mat-
ter hypothesis’, that is matter in its absolute ground state at
zero temperature. To this aim, we extended the CLD model
of Carreau et al. (2019a, 2020b) to account for non-spherical
pasta structures in the inner crust. This formalism is described
in Sect. 2. The use of the CLD approach allows us to address
the question of the model dependence of the results, which is
discussed in Sect. 3 considering several representative nuclear
functionals. In addition, to obtain quantitative predictions of the
uncertainties in the pasta observables, we performed a Bayesian
analysis using flat uniform priors to generate posteriors with fil-
ters accounting for both our current knowledge of low-density
nuclear physics and constraints at high density from general and
NS physics. This investigation is assessed in Sect. 4. Finally, we
present our conclusions in Sect. 5.

2. Theoretical framework

2.1. Model of the pasta phases

Following the seminal work by Baym et al. (1971), the equi-
librium configuration of inhomogeneous catalysed matter (we
assume zero temperature throughout the paper) present in the
inner crust of NSs is variationally obtained within a CLD
approach, along the same lines as in Douchin & Haensel (2001),
and Carreau et al. (2019a, 2020b). We consider a periodic lattice
configuration consisting of Wigner-Seitz cells of volume VWS
containing a clustered structure (‘pasta’) composed of Z protons
of mass mp and A − Z neutrons of mass mn (A being the cluster
total mass number), immersed in a uniform gas of neutrons and
electrons with respective densities ng and ne. If inhomogeneities
appear as clusters (holes) of volume V , the density distribution in
the Wigner-Seitz cell is ni (ng) if l < rN, and ng (ni) otherwise, rN
being the linear dimension of the pasta structure and l the linear
coordinate of the Wigner-Seitz cell. The denser clustered phase
is characterised by a density ni = A/V (ni = A/(VWS − V) in
the case of holes) and a proton fraction yp = Z/A = np/ni. The
volume fraction occupied by the cluster (of density ni) or hole
(of density ng), u = V/VWS, thus reads

u =

{
(nB − ng)/(ni − ng) for clusters, and
(ni − nB)/(ni − ng) for holes. (1)

The energy density of the cell is minimised with the con-
straint of a given total baryonic density nB = nn + np, np
(nn) being the proton (neutron) density, respectively. Moreover,
charge neutrality holds, thus ne = np. The corresponding ther-
modynamic potential per unit volume is written as

Ω = nnmnc2 + npmpc2 + εB(ni, 1 − 2yp) f (u)
+ εB(ng, 1)(1 − f (u)) + εCoul + εsurf+curv

+ εe − µ
tot
B nB, (2)

where εB(n, δ) is the energy density of uniform nuclear matter
at baryonic density n and isospin asymmetry δ = (nn − np)/n,
εe is the energy density of a pure uniform electron gas at den-
sity ne = np, µtot

B is the baryonic chemical potential (including

the rest mass), and εsurf+curv and εCoul are the finite-size correc-
tions accounting for the interface tension between the cluster and
the neutron gas and the electrostatic energy density, respectively.
Finally, the function f (u) is given by

f (u) =

{
u for clusters, and

1 − u for holes. (3)

As was recognised in early works (see e.g., Ravenhall et al.
1983; Hashimoto et al. 1984), one of the advantages of the
decomposition of Eq. (2) in terms of bulk and interface is that
the geometry of the pasta structures only affects the finite-size
corrections, and the latter can be expressed analytically as a
function of the dimensionality of the structure (d = 1 for slabs,
d = 2 for cylinders, d = 3 for spheres). We write the interface
energy density as in Maruyama et al. (2005) and Newton et al.
(2013a):

εsurf+curv =
ud
rN

(
σs +

(d − 1)σc

rN

)
, (4)

where the surface tension σs and curvature tension σc are inde-
pendent of the dimensionality. For the latter quantities, we used
the expressions originally proposed by Ravenhall et al. (1983)
on the basis of Thomas-Fermi calculations at extreme isospin
asymmetries, also subsequently employed in different works on
NS crust and supernova modelling within the CLD approxima-
tion (Lattimer & Swesty 1991; Lorenz et al. 1993; Newton et al.
2013a; Carreau et al. 2019a, 2020b; Balliet et al. 2021), namely,

σs = σ0
2p+1 + bs

y−p
p + bs + (1 − yp)−p

, (5)

σc = 5.5σs
σ0,c

σ0
(β − yp), (6)

where the parameters (σ0, σ0,c, bs, β, p) must be optimised on
theoretical calculations or experimental data. The Coulomb
energy density reads as follows:

εCoul = 2π
(
eypnirN

)2
uηd, (7)

with e being the elementary charge, and

η1 =
1
3

[
u − 2

(
1 −

1
2u

)]
, (8)

η2 =
1
4

[u − ln u − 1] , (9)

η3 =
1
5

[
u + 2

(
1 −

3
2

u1/3
)]
. (10)

A nuclear model consists in a choice for the energy func-
tional εB(n, δ), complemented by a set of values for the surface
parameters (σ0, σ0,c, bs, β, p). This point is detailed in the next
sub-section. Once the nuclear model is specified, the pasta struc-
ture and composition at a given baryonic density nB is deter-
mined by a two-step process. First, a geometry d and a shape
s (clusters or holes) is considered, and the thermodynamical
potential of Eq. (2) is minimised with respect to the variational
parameters (ni, I = 1 − 2yp, A, np, ng). This allows us to identify
the baryonic chemical potential µ = µtot

B −mnc2 with the chemical
potential of the neutron gas,

µ =
dεB(ng, 1)

dng
, (11)

and gives the optimal value of Ω = Ωopt(d, s) for each geometry.
Then, the equilibrium configuration is defined as the one cor-
responding to the values of d and s that produce the minimum
value of Ωopt.
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Table 1. Bulk parameters used in the Taylor expansion to reproduce the low-density behaviour of symmetric matter and pure neutron matter of
different models.

nsat Esat Esym Lsym Ksat Ksym Qsat Qsym Zsat Zsym
(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

BSk24 0.1578 −16.05 30.00 46.4 245.5 −37.6 −274.5 710.9 1184.2 −4031.3
SLy4 0.1595 −15.97 32.01 46.0 230.0 −120.0 −363.0 521.0 1587.0 −3197.0
RATP 0.1598 −16.05 29.26 32.4 240.0 −191.0 −350.0 440.0 1452.0 −2477.0
NRAPR 0.1606 −15.85 32.78 59.7 226.0 −123.0 −363.0 312.0 1611.0 −1838.0
DD-ME2 0.1520 −16.14 32.31 51.3 251.0 −87.0 479.0 777.0 4448.0 −7048.0
DD-MEδ 0.1520 −16.12 32.35 52.8 219.0 −118.0 −748.0 846.0 3950.0 −3545.0
NL3 0.1480 −16.24 37.35 118.3 271.0 101.0 198.0 182.0 9302.0 −3961.0
PKDD 0.1495 −16.27 31.19 79.5 261.0 −50.0 −119.0 −28.0 4213.0 −1315.0
TM1 0.1450 −16.26 36.94 111.0 281.0 34.0 −285.0 −67.0 2014.0 −1546.0

Notes. Parameters listed in the tables, {nsat, Eq, Lq,Kq,Qq,Zq, q = sat,sym}, are used to reproduce the effective models BSk24 from Goriely et al.
(2013), SLy4 from Chabanat et al. (1997), RATP from Rayet et al. (1982), NRAPR from Steiner et al. (2005), DD-ME2 from Lalazissis et al.
(2005), DD-MEδ from Roca-Maza et al. (2011), NL3 from Lalazissis et al. (1997), PKDD from Long et al. (2004), and TM1 from Shen et al.
(1998).

2.2. Energy functional

The energy density εB of homogeneous nuclear matter is poorly
known out of the saturation point nsat ≈ 0.15 fm−3 of symmet-
ric nn = np matter, and a large number of models have been
proposed in the literature based on effective Hamiltonians or
Lagrangians. Margueron et al. (2018) showed that those differ-
ent models can be accurately reproduced using a Taylor expan-
sion in x = (n − nsat)/3nsat up to order 4 around the saturation
point (n = nsat, δ = 0), varying the parameters of the expan-
sion, which correspond to the so-called equation-of-state empir-
ical parameters:

εB(n, δ) ≈ n
4∑

m=0

1
m!

(
dmesat

dxm

∣∣∣∣∣
x=0

+
dmesym

dxm

∣∣∣∣∣∣
x=0

δ2
)

xm. (12)

In Eq. (12), esat = εB(n, 0)/n is the energy per baryon of
symmetric matter, and esym = (εB(n, 1) − εB(n, 0))/n is the
symmetry energy per baryon, defined here as the difference
between the energy of pure neutron matter and that of sym-
metric matter. To speed up the series convergence, a δ5/3 term
from the fermionic zero-point energy is added, as well as an
exponential correction ensuring the correct limiting behaviour
at zero density (see Eq. (17) in Carreau et al. 2019a). Follow-
ing the common notation in the literature, we denote Esat(sym) =
esat(sym)(n = nsat), while the successive derivatives of eq, with
q = sat,sym, are called Lq,Kq,Qq,Zq. The bulk parameters
{Eq, Lq,Kq,Qq,Zq, q = sat,sym} are complemented with the
saturation density parameter, nsat, two parameters related to
the isoscalar effective mass and effective mass splitting, which
are denoted as Kq, and the b parameter governing the func-
tional behaviour close to the zero-density limit (see Sect. 2.2
in Carreau et al. 2019a for details). The complete parameter set
thus has 13 parameters and will be noted in a compact form as
Xbulk ≡ {nsat, b, (Eq, Lq,Kq,Qq,Zq,Kq, q = sat,sym)}. Different
nuclear models will then correspond to different sets of Xbulk
parameters.

Concerning the parameters (σ0, σ0,c, bs, β, p) entering the
surface functional, Eq. (4), Carreau et al. (2019a) showed that, in
order to have a realistic and consistent treatment of the compo-
sition of the crust, it is important that these parameters are fixed
consistently with the functional employed for the bulk part of the
nuclear energy εB. Indeed, the bulk energy is model dependent,

but in the case of a spherical geometry the total (bulk plus sur-
face plus Coulomb) energy is constrained by the requirement of
reproducing the experimentally measured nuclear masses, which
creates an obvious correlation between the bulk and surface
parameters that should be accounted for.

In the vacuum, the nuclear mass corresponding to a spheri-
cal fully ionised atom of charge Z and mass number A can be
deduced from Eqs. (2), (4), and (7) as:

M(A,Z)c2 = mpc2Z + mnc2(A − Z)

+
A
n0
εB(n0, I) + 4πr2

N

(
σs +

2σc

rN

)
+

3
5

e2Z2

rN
, (13)

where I = 1− 2Z/A, the nuclear radius is rN = (4πn0/3)−1/3A1/3,
and the bulk density n0 is given by the equilibrium density
of nuclear matter at isospin asymmetry I, defined by ∂εB/
∂n|I,n0 = 0.

For each choice of the parameter set Xbulk, we determine
the associated surface parameters by a χ2-fit of Eq. (13) to the
experimental Atomic Mass Evaluation (AME) 2016 (Wang et al.
2017).

As an example, in Table 1 we give the bulk parameters that
reproduce the density behaviour of symmetric nuclear matter and
pure neutron matter of a chosen set of popular nuclear models
that are analysed in the next section. The associated optimal sur-
face parameters are given in Table 2. The (σ0, bs, σ0,c, β) param-
eters were obtained from the fit of the experimentally measured
nuclear masses (Wang et al. 2017), while the p parameter was
optimised to provide a good reproduction of the crust–core tran-
sition density of the different functionals, whenever available, or
fixed to p = 3 otherwise (see Table 3 and Carreau et al. 2019a,
2020b for a discussion).

3. Comparison of different nuclear functionals

Using the formalism described in Sect. 2, we computed the prop-
erties of the pasta layer predicted at the bottom of the inner
crust. To explore the model dependence of the results, we exam-
ined the equilibrium configurations obtained with different pop-
ular nuclear models, corresponding to the different parameter
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Table 2. Optminised surface and curvature parameters for different
functionals, for which the bulk parameters are fixed as in Table 1.

σ0 bs σ0,c β p
(MeV fm−2) (MeV fm−1)

BSk24 1.05021 30.32168 0.12147 0.66495 3.00
SLy4 0.98911 19.02416 0.15141 0.75548 3.00
RATP 1.05161 35.22683 0.12488 0.67745 3.00
NRAPR 0.91932 14.68853 0.16594 0.83634 3.00
DD-ME2 1.09358 5.47648 0.11969 0.53966 2.42
DD-MEδ 1.08385 11.38970 0.11810 0.55559 2.73
NL3 1.12493 4.52517 0.12297 0.46301 2.79
PKDD 1.17354 27.70134 0.08008 0.25816 3.00
TM1 1.13817 9.31146 0.11377 0.39118 3.00

sets listed in Tables 1 and 2, as illustrative examples. Results
are shown in Fig. 1, where the different colours correspond to
the density regions where different geometries (spheres, rods,
slabs, tubes, and possibly bubbles) dominate. The upper edge of
each column gives the transition point from the inhomogeneous
crust to the homogeneous core, defined as the point where the
thermodynamical potential, Eq. (2), corresponding to the opti-
mal geometry, equals the thermodynamical potential of homo-
geneous nuclear matter in beta equilibrium. The sequence of the
different geometries appears to be model independent, although
not all the considered models predict bubble configurations, and
it is consistent with previous results (see Pethick & Ravenhall
1995 for a review).

For a given energy functional, it is well known that the pre-
cise value of the transition density from the spherical to the
non-spherical phases depends on the details of the many-body
model used to treat the clustered structure. A comparison with
results in the literature is reported in Table 3. The most sophisti-
cated calculation presently available is the one by Pearson et al.
(2020) with full fourth-order extended Thomas-Fermi calcula-
tions within the BSk24 functional. In that paper, the authors
obtained a core-crust transition density very close to the one dis-
played in Fig. 1 for BSk24 and a slightly higher value for the
transition density to the rod shape (see Table 3). We consider
this comparison as a very good agreement, especially consider-
ing that beyond-mean-field contributions such as pairing, which
were fully neglected here, have recently been shown to affect the
composition of the crust (Pearson et al. 2020; Shelley & Pastore
2020).

In the case of the SLy4 functional, Martin & Urban (2015)
employed a slightly less sophisticated second-order extended
Thomas-Fermi approach, and they observed a transition to the
cylindrical shape at a higher density than the value obtained with
our approach for SLy4. However, the thermodynamical poten-
tials corresponding to d = 3 and d = 2 in Martin & Urban (2015)
are almost indistinguishable starting from n = 0.05 fm−3, in good
agreement with our results. The crust-core transition point is also
in excellent agreement with our findings. At variance with this
result, Viñas et al. (2017) and Douchin & Haensel (2001), who
also employed the SLy4 functional, reported no deviation from
the spherical shape within a zeroth-order Thomas-Fermi calcu-
lation and a CLD approach, respectively. Moreover, they also
obtain a lower density for the crust-core transition. Finally, we
can also compare our results concerning the relativistic function-
als NL3, DD-ME2, and DD-MEδ with the extensive Thomas-
Fermi calculations of Grill et al. (2012); in our approach, we
obtain a lower transition density between spheres and cylinders,

Table 3. Transition density from spheres to cylinders (np) and from crust
to core (nCC) for different functionals.

np/nCC (10−2 fm−3 )

Model This Pearson M&U D&H Viñas Grill
work et al. et al. et al.

BSk24 4.84/8.20 5.0/8.1
SLy4 5.07/8.11 6.1/8.1 –/7.6 –/7.6
NL3 4.95/5.48 –/5.48
DD-ME2 5.83/7.36 6.11/7.35
DD-MEδ 5.63/7.69 6.26/7.66

Notes. For comparison, results from Pearson et al. (2020),
Martin & Urban (2015) (M&U), Douchin & Haensel (2001) (D&H),
Viñas et al. (2017), and Grill et al. (2012) are given. The ‘–’ sign
indicates that no transition to pasta is found.
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Fig. 1. Sequence of equilibrium pasta phases and corresponding tran-
sition densities among the geometries for different nuclear functionals
(see text for details).

and we do find non-spherical configurations for the NL3 func-
tional, unlike Grill et al. (2012).

Even if the comparison of our work with previous results can
be globally considered as satisfactory, Table 3 shows that some
differences exist between the inner-crust composition of different
many-body methods used to compute the energy of clusterised
matter, for a fixed equation of state (or, equivalently, a fixed set
of bulk parameters). This highlights the importance of finite-size
contributions to the nuclear energy, which are essential in deter-
mining the optimal composition and are not uniquely linked to
the bulk matter properties. Only the bulk parameters of our meta-
model are adjusted to reproduce a given functional, while we
employ a different fitting protocol for the surface (plus curva-
ture) energy. The effects of the surface contribution are studied
in greater detail in Sect. 4.2.

A complementary piece of information on the inner-crust
composition in the presence of non-spherical geometries is given
by Fig. 2, which reports the total proton fraction in the cell, YWS

p ,
as a function of the baryonic density for the different geome-
tries, for a selected set of functionals, as illustrative examples.
We can see that some of the functionals exhibit the characteristic
parabolic shape already reported by Pearson et al. (2020) for the
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Fig. 2. Proton fraction in the Wigner-Seitz
cell as a function of the baryonic density in
the neutron-star crust for different geome-
tries of the clustered structures using dif-
ferent popular nuclear models (see text for
details).

BSk24 model, and the absolute value of the proton fraction is
also in reasonable agreement with the findings of Pearson et al.
(2020). However, we can also observe that the trend of the pro-
ton fraction, the effect of the geometry, and the numerical value
throughout the inner crust are very strongly model dependent.

To summarise the previous discussion, from Figs. 1 and 2
we can conclude that the uncertainty in the predictions due to
the choice of the nuclear functional is much more important
than the uncertainty due to the many-body method adopted to
describe the inhomogeneities. We limited our analysis to a small
set of popular models, that span a quite wide range of the empir-
ical parameters, to provide illustrative examples. However, these
nine models might not fully encompass the current uncertain-
ties in the nuclear equation of state. For this reason, in the next
section we assess the model dependence of the crust composi-
tion in a more quantitative way by largely exploring the parame-
ter space of the nuclear functionals compatible with the present
theoretical and experimental constraints.

4. Bayesian analysis

We now come to the quantitative determination of the uncer-
tainty on the pasta observables, due to the incomplete knowl-
edge of the nuclear energy functional. To this aim, we performed
a Bayesian analysis by largely varying the model parameters
X = {Xbulk, p} using flat non-informative priors, and generating
posterior distribution with filters that impose both our present
low-density (LD) nuclear physics knowledge and high-density
(HD) constraints coming from general and NS physics:

ppost(X) = N wLD(X)wHD(X) e−χ
2(X)/2 pprior(X), (14)

where N is the normalisation. A first filter wLD on the bulk
parameters is given by the uncertainty band of the chiral N3LO
effective field theory (EFT) calculation for symmetric matter and
pure neutron matter by Drischler et al. (2016), which is inter-
preted as a 90% confidence interval. Moreover, the quality of
reproduction of the experimental nuclear masses Mexp is defined
from the error estimator χ2(X, σ0, σ0,c, bs, β):

χ2 =
1

Ndof

∑
n

(
M(An,Zn) − Mexp(An,Zn)

)2

σ2
n

, (15)

where Ndof is the number of degrees of freedom, the sum runs
over the AME2016 nuclear mass table from Wang et al. (2017),
M is calculated from Eq. (13) for each model described by a
combined set {X, σ0, σ0,c, bs, β}, and σn corresponds to the sys-
tematic theoretical error. As for the p parameter, unless specified
otherwise (see Sect. 4.2), its value was allowed to vary in the
range from 2 to 4.

A further constraint is given by the condition that the min-
imisation of the thermodynamic potential Eq. (2) leads to physi-
cally meaningful results for the crust, namely positive values for
the optimal gas and cluster densities. Finally, the high-density
behaviour of the equation of state is also controlled through the
wHD filter in Eq. (14) by imposing (i) stability; (ii) causality;
(iii) a positive symmetry energy at all densities; and (iv) the
resulting equation of state to support Mmax > 1.97 M�, where
Mmax is the maximum NS mass at equilibrium determined from
the solution of the Tolmann-Oppenheimer-Volkoff (TOV) equa-
tions (Haensel et al. 2007), M� being the solar mass. The result-
ing posterior equations of state were shown by Carreau et al.
(2019b) and Carreau (2020) to be fully compatible with the
recent measurement of the tidal polarisability parameter Λ in the
gravitational-wave event GW170817 (Abbott et al. 2018) (see
Carreau et al. 2019b for details and their Fig. 1).

Out of the 108 models generated to numerically sample the
prior parameter distribution, 7008 models are retained by the
applied filters1 to compute marginalised posteriors for the dif-
ferent observables Y whose average value is given by

〈Y〉 =

N∏
k=1

∫ Xmax
k

Xmin
k

dXkY(X)ppost(X), (16)

where ppost(X) is the posterior distribution, Y(X) is the value of
the Y variable as obtained with the X parameter set, Xmin(max)

k
is the minimum (maximum) value in the prior distribution of

1 In order to have comparable statistics, when the low-density EFT
constraint is applied from 0.1 fm−3 instead of 0.02 fm−3, 2× 106 models
are generated, of which 7714 are retained. Moreover, in the Bayesian
analysis, to speed up the computation, the composition of the dif-
ferent phases are fixed to those found for the spheres. We checked
that this assumption does not change the sphere-pasta transition point
considerably.

A114, page 5 of 11



A&A 654, A114 (2021)

parameter Xk taken from Table 2.2 in Carreau (2020) (see also
Margueron et al. 2018 for details)2 and of p from 2 to 4, and
N = 14 is the number of parameters defining the nuclear model.
The marginalised posteriors of given observables can then also
be confronted with additional constraints, not originally included
in the filters, to check the validity of the assumptions and the
flexibility of the prior. An example of such comparison with
both recent astrophysical and nuclear-physics data is given in
Fig. 3. In the top panel, we show the marginalised posterior for
the gravitational mass of the NS as a function of the radius.
The shaded green areas correspond to the 68% (1σ), 95% (2σ),
and 99% (3σ) (from dark to light green) confidence intervals,
while the blue areas represent the constraint inferred from the
gravitational-wave event GW170817 by the LIGO/Virgo collab-
oration (Abbott et al. 2018), and the pink areas show the recent
results from NICER (Miller et al. 2019, 2021), all at the 2σ level.
For comparison, in the same figure we also show the mass-radius
relation obtained with the nine models analysed in Sect. 3. We
can see that our posterior distribution is in agreement with the
recent observations coming from NICER (Miller et al. 2019),
NICER combined with XMM-Newton (Miller et al. 2021), and
those inferred from GW170817 (Abbott et al. 2018). On the
other hand, some of the popular models displayed lie outside
the posterior distribution, meaning that they would be filtered
out by our low- and/or high-density constraints. In the bot-
tom panels of Fig. 3, we plot the marginalised posterior dis-
tributions for the symmetry energy parameters Esym and Lsym.
Very recently, Reed et al. (2021) inferred the values of Esym =
(38.1±4.7) MeV and Lsym = (106±37) MeV from measurements
of the neutron-skin thickness in 208Pb performed by the PREX
collaboration (shown as shaded rectangles in the figure). These
findings point towards rather high values of these coefficients,
overestimating the present limits deduced from both theoreti-
cal and experimental measurements (see e.g., Baldo & Burgio
2016; Burgio & Fantina 2018 for a discussion, and references
therein). Indeed, our posterior distributions suggest Esym =
(30.8 ± 1.3) MeV and Lsym = (47.3 ± 9.2) MeV, meaning that
the average values we obtain are considerably lower than those
reported in Reed et al. (2021). However, the estimation of these
parameters made in the latter work is not model independent,
and it is based on a correlation extracted by employing a limited
number of models that might not span all the possible functional
dependences. In our study, the low-density constraint imposed
by EFT calculations would disfavour such high values of the
symmetry energy parameters, and models that predict high Esym
and Lsym are filtered out in our posterior distribution. This is
in full agreement with Reed et al. (2021), where the tension
between the extracted values of Lsym and the ab initio calcula-
tions was already highlighted (see Fig. 1 of Reed et al. 2021).
We can also observe that the NL3 and TM1 models that have,
among the models considered in Sect. 3, the closest Esym and
Lsym values to those reported in Reed et al. (2021), lie outside
our posterior distribution and appear in disagreement with the
recent astrophysical constraints from GW170817 (see top panel
of Fig. 3).

The theoretical ab initio chiral EFT calculation and the
experimental AME2016 mass measurements constitute two
powerful and complementary constraints allowing us to predict
pasta observables with controlled uncertainties. The theoretical

2 At variance with Table 2.2 in Carreau (2020), which reports the min-
imum (maximum) value of the b parameter as 1 (10), here we vary the
b parameter in the [1, 6] range. We checked that the latter range is suffi-
cient to satisfactorily explore the equation-of-state space.
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Fig. 3. Top panel: marginalised posterior distribution for the neutron-
star gravitational mass as a function of radius for the models includ-
ing both the low- and high-density filters. The shaded areas correspond
to the 1σ, 2σ, and 3σ (from dark to light green) confidence intervals,
while lines show the mass-radius relation for different selected models.
The pink (blue) shaded areas represent the constraint from Miller et al.
(2019, 2021) (Abbott et al. 2018) at 2σ. Bottom panels: marginalised
posterior distributions for the symmetry energy at saturation, Esym (left
panel), and its slope, Lsym (right panel). The shaded rectangles show the
values of Esym and Lsym from Reed et al. (2021) (see text for details).

filter only acts on the bulk parameters, and it is particularly
effective in constraining the parameters in the symmetry sector
Xsym. Conversely, the mass filter is not very effective in select-
ing the bulk parameters, because a stronger binding from the
bulk term can be compensated by an increased importance of
the surface terms via the correlation imposed by Eq. (13). How-
ever, the mass filter is crucial in fixing the surface properties of
inhomogeneous matter and, consequently, the crustal properties
of NSs. These two aspects are analysed separately in the next
sub-sections.

4.1. The influence of the bulk functional

The chiral EFT constraint was applied in numerous pre-
vious studies of static properties of NSs (Carreau et al.
2019b; Lim et al. 2019; Tews et al. 2019; Essick et al. 2020;
Brown et al. 2020). In these studies, the accent is typically put on
the high-density equation of state, which is the dominant ingredi-
ent of the different astrophysical observables that are integrated
over the whole NS volume, such as the tidal polarisability or the
NS mass and radius. The compatibility of the functionals with
the ab initio predictions in the very low-density region below
n ≈ 0.05 fm−3 has a negligible influence for these global NS
observables, and as such it was often overlooked.

However, as long as crustal observables are concerned, this
very low-density region is crucial. This can be seen in Fig. 4,
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Fig. 4. Posterior distributions of crust-
core (top panels) and sphere-pasta (lower
panels) transition density (left panels) and
pressure (right panels), obtained considering
different density intervals for the application
of the chiral EFT constraint. Arrows corre-
spond to the predictions of some selected
models: BSk24 (black), RATP (red), DD-
ME2 (green), and TM1 (yellow) (see text for
details).

where we represent the posterior distributions of the density
and pressure at the crust-core transition, (nCC, PCC) (top pan-
els), and the density and pressure at the transition from spher-
ical nuclei to non-spherical pasta structures, (np, Pp) (lower
panels). For comparison, we also indicate the predictions corre-
sponding to some selected models with arrows: BSk24 (black-
filled arrow), RATP (red-filled arrow), DD-ME2 (green-filled
arrow), and TM1 (yellow-filled arrow). Two different density
intervals are considered for the application of the chiral EFT
filter, namely [0.1, 0.2] fm−3 and [0.02, 0.2] fm−3. We can see
that the consideration of the very low-density part of the equa-
tion of state has a notable effect on the determination of the
transition points. In particular, a significant number of mod-
els that correspond to reasonable properties of nuclear matter
close to saturation, and therefore fulfill the chiral EFT condition
for n ≥ 0.1 fm−3, are seen to produce very low values for the
crust-core and the sphere-pasta transition point. This implies a
very thin crust for the NS and a small or negligible contribu-
tion of the pasta phases, as shown in Fig. 5, which displays the
prediction for the relative crustal thickness associated with the
non-spherical pasta structures, Rpasta/Rcrust (top panel), the asso-
ciated mass, mpasta/mcrust (middle panel), and the fraction of the
moment of inertia, Ipasta/Icrust (lower panel). The two choices for
the low-density constraints and the arrows indicating the pre-
dictions of some selected models (BSk24, RATP, DD-ME2, and
TM1) are the same as those adopted in Fig. 4. These observables
are computed from the numerical solution of the TOV equa-
tions, the crust radius (mass) being calculated as the difference
between the total NS radius (mass) and that of the core (we con-
sidered NSs with a total mass equal to the maximum mass pre-
dicted by each computed model). As can be seen in Figs. 4 and 5,
when the chiral EFT constraint is applied from n ≥ 0.02 fm−3,
almost all models corresponding to a very small (or even null)
pasta contribution are filtered out of the posterior distribution.

Knowing that the precision and reliability of the ab initio calcu-
lations improve with decreasing density, we can conclude that
our present theoretical understanding of nuclear matter implies
that pasta phases should exist in the inner crust of NSs.

To investigate this point further, in the top panel of Fig. 6 we
plot the energy per baryon distribution of the different models
for several baryon densities, for symmetric (δ = 0) and pure neu-
tron matter (δ = 1). The corresponding uncertainty bands of the
chiral EFT constraint from Drischler et al. (2016) are also given
(delimited by black dash-dotted lines). Models for which EFT
constraints are applied from n ≥ 0.02 fm−3 (n ≥ 0.1 fm−3 but pre-
dicting a crust-core transition lower than 0.05 fm−3, see Fig. 4),
are displayed in coral (light blue) on the left (right) part of the
density axis. We can clearly see that models that are not compat-
ible with the EFT constraints in the range 0.02 ≤ n < 0.1 fm−3

and yielding a crust-core transition below 0.05 fm−3 also pre-
dict lower energy per baryon in the very low-density region.
This results in a stiffer equation of state in the NS crust in the
baryon density range 0.03 . nB . 0.1 fm−3 (or, equivalently, in
the mass-energy range 0.5 × 1014 . ρB . 1.8 × 1014 g cm−3),
as can been seen by comparing, in the lower panel of Fig. 6,
the red and blue bands that represent the total pressure in the
Wigner-Seitz cell as a function of the baryon (lower axis) and
mass-energy (top axis) density in the inner crust. It is also clear
that applying the EFT constraint from n ≥ 0.02 fm−3 induces a
stricter filter and thus a narrower band for the resulting equa-
tion of state. Figures 4–6 thus show that it is essential to verify
the compatibility with the ab initio calculations down to very
low densities to obtain realistic predictions for the properties of
the NS crust. Incidentally, Shelley & Pastore (2021), who per-
formed a systematic study of the NS inner-crust composition
using several Skyrme functionals, also pointed out the impor-
tance of constraining the low-density part of the equation of
state.
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Fig. 5. Posterior distributions of the thickness (top panel), mass (middle
panel), and fractional moment of inertia (lower panel) of the pasta layer
with respect to the whole crust for a neutron star with a mass M = Mmax.
The low-density EFT constraints and the arrows corresponding to the
predictions of selected models are the same as in Fig. 4 (see text for
details).

The relative influence on the pasta observables of the differ-
ent parameters governing the bulk properties of nuclear matter
can be quantified from the Pearson linear correlation coefficients
displayed in Fig. 7 for the pasta thickness with respect to the
crustal one (top panel), and the relative fractional moment of
inertia (lower panel). We do not display the Pearson coefficients
for the mass of the pasta layers here since they are equivalent to
those of the fractional moment of inertia. In the absence of phys-
ical constraints (line labelled ‘prior’ in Fig. 7), no very strong
correlation can be observed between the bulk parameters and
the pasta observables, as expected from the even exploration of
the parameter space of our prior distribution. Some loose cor-
relation is observed with Esat and the second (Ksym) and third
(Qsym) derivatives of the symmetry energy at saturation nsat. The
prior distributions of the fourth-order parameter Zsym and of the
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Fig. 6. Top panel: bands of the energy per baryon of symmetric (δ = 0)
and pure neutron matter (δ = 1) as a function of density representing
the chiral EFT constraint from Drischler et al. (2016). The probability
distributions of models for which EFT constraints are applied from n ≥
0.02 fm−3 (n ≥ 0.1 fm−3 and predicting a crust-core transition nCC <
0.05 fm−3) are represented as a violin-like shape. Lower panel: 1σ band
of the total pressure versus baryon density nB and versus mass-energy
density ρB (in units of 1014 g cm−3) predicted by these models (see text
for details).

high-order parameters in the symmetric energy sector, Qsat and
Zsat, are also very large. However, they are less influential
because the inner crust is characterised by a very low proton
fraction (see Fig. 2), and its density is close to nsat, which implies
a small contribution of the high-order derivatives in the Taylor
expansion Eq. (12). When only the models compatible with our
present knowledge of nuclear matter are retained (lines labelled
‘LD+HD’ in Fig. 7), the correlations with the physically sig-
nificant parameters start to appear. It is interesting to observe
that the energy functional must be controlled in the whole sub-
saturation region (line labelled ‘n ≥ 0.02 fm−3’ in Fig. 7) for the
correlations to appear. In the absence of this constraint, large
compensations are possible among the different terms of the
functional, thus washing up the physical correlations. The most
relevant parameters are seen to be the energy of symmetric mat-
ter Esat and symmetry energy Esym at saturation, as well as the
slope of the symmetry energy Lsym. These parameters are already
relatively well constrained by nuclear theory and experiments,
but we can expect that their uncertainty will be further reduced
in upcoming studies, which will lead to an increased precision in
the determination of the pasta contribution to the physics of the
crust.
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Fig. 7. Pearson correlations between pasta
properties and the bulk, surface, and curvature
parameters. Two different density intervals for
the application of the chiral EFT constraint are
considered (see text for details).

4.2. The influence of the surface tension

Figure 7 also shows that a better modelling of the pasta proper-
ties would be obtained if we could better constrain the energy
functional close to saturation. However, the most striking infor-
mation of Fig. 7 is the fact that the surface parameters are more
influential than the bulk properties, as shown by the high corre-
lation coefficients. A part of the uncertainty on the surface ten-
sion can certainly be ascribed to the very simplified model of
nuclear masses that we employ, Eq. (13), based on a spherical
CLD approximation without accounting for deformation, shell,
and pairing effects. A more conceptual limitation on the determi-
nation of those coefficients is also the fact that the information
on the nuclear mass is not enough to fully pin down the surface
properties, due to the partial compensation between surface and
bulk.

We can thus conclude that the strong influence of the sur-
face parameters underlines the importance of a unified treatment
of the equation of state, which should be employed not only in
developing specific equation-of-state models, but also in the sta-
tistical studies of NS properties.

To assess the importance of a self-consistent calculation
of surface properties from the assumed bulk energy functional
in the modelling of the NS crust, we performed two calcula-
tions where the surface parameters in the Bayesian analysis are
fixed to the values obtained from two different accurate fits of
extended Thomas-Fermi calculations of a large pool of nuclei.
In the work by Carreau et al. (2020b), the full BSk24 extended
Thomas-Fermi mass table was fitted from dripline to dripline,
while Furtado & Gulminelli (2020) used the SLy4 functional and
included in the fit extended Thomas-Fermi calculations beyond
drip with global proton fractions as low as YWS

p = 0.02. The
resulting surface parameters are reported in Table 4. These fits
lead to surface energy functionals slightly different from the ones
obtained with the parameters of Table 2 because of the larger
pool of nuclei included in the optimisation. Moreover, in both
cases, the extension of the mass table to extremely neutron-rich
nuclei has allowed also an optimal determination of the p param-
eter (see Eq. (5)), which governs the extreme isospin behaviour
of the surface tension and cannot be fixed from the properties of
terrestrial nuclei.

The surface tensions in Table 4 are more accurately deter-
mined than those deduced from the global reproduction of mea-
sured nuclear masses (see Table 2) and which depend on the
empirical Xbulk parameters. However, they are not consistent
with the bulk properties of functionals different from BSk24 and

Table 4. Surface and curvature parameters optimised to reproduce the
full extended Thomas-Fermi mass table obtained from the BSk24 and
SLy4 functionals.

σ0 bs σ0,c β p
(MeV fm−2) (MeV fm−1)

BSk24 0.98636 36.227 0.09008 1.1631 3.0
SLy4 0.99654 49.82 0.061768 yp+1 3.4

Notes. Values of the parameters for BSk24 are taken from Carreau et al.
(2020b), and those for SLy4 are taken from Furtado & Gulminelli
(2020).

SLy4, respectively. The resulting posterior distribution3 for the
pasta obervables is displayed in Fig. 8. We can see that the use
of a surface tension that is not consistent with the bulk func-
tional (green dashed lines and red dash-dotted lines) leads to a
small shift in the most probable values of the represented pasta-
layer properties, and an important deformation of the distribu-
tion, with a clear underestimation of the uncertainties in the pasta
observables.

5. Conclusions

We presented a study of the properties of pasta phases in cold
catalysed NSs, extending the work of Carreau et al. (2019a,
2020b). In particular, we applied a CLD model with surface
parameters adjusted either on experimental nuclear masses or
theoretical calculations. We addressed the model dependence of
the results by employing different nuclear models, which are
reproduced by fixing the bulk parameters to reproduce the low-
density behaviour of symmetric matter and pure neutron matter
of the corresponding functional. We find that the value of the
transition densities between different geometries is model depen-
dent. The sequence of the predicted geometries, namely spheres,
rods, slab, and tubes, appears to be the same for all considered
models, while the presence of bubbles before matter becomes
homogeneous in the core is only predicted by some of the con-
sidered models. Moreover, our findings show that the uncertainty
in the predictions due to the choice of the nuclear functional is

3 In this analysis, the low-density filter is applied from 0.02 fm−3; out
of the 108 computed models, 7147 (7024) are retained when the surface
parameters are fixed to the values optimised for SLy4 (BSk24).
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Fig. 8. Posterior distributions of thickness (top panel), mass (mid-
dle panel), and fractional momentum of inertia (bottom panel) of the
pasta layer with respect to the whole crust. Blue solid curves: surface
parameters optimised on the energy functional; red dash-dotted (green
dashed) curves: fixed surface parameters from Furtado & Gulminelli
(2020) (Carreau et al. 2020b). The chiral EFT filter is applied from
n = 0.02 fm−3.

more significant than that due to the many-body method adopted
to describe the inhomogeneities.

To assess the model uncertainties in the pasta observables,
we performed a Bayesian analysis by largely varying the model
parameters using uniform priors and generating posterior dis-
tributions with filters accounting for both our present low-
density nuclear physics knowledge and high-density general and
NS physics constraints. Our results show that the low-density
nuclear physics constraints are crucial in determining the crustal
and pasta observables. Here, the low-density filters, given by

Table 5. Posterior estimations of the fractional thickness Rpasta/Rcrust,
moment of inertia Ipasta/Icrust, and mass mpasta/mcrust of the pasta layer,
normalised to the corresponding crustal quantity.

n ≥ 0.02 fm−3 n ≥ 0.1 fm−3

Rpasta/Rcrust 0.128 ± 0.047 0.104 ± 0.063
Ipasta/Icrust 0.480 ± 0.137 0.411 ± 0.212
mpasta/mcrust 0.485 ± 0.138 0.415 ± 0.214

Notes. Values in the table are given for a neutron star with a mass
M = Mmax. Both low-density EFT filters and high-density filters are
applied. The chiral EFT filter is applied from either n = 0.02 fm−3 (left
column) or n = 0.1 fm−3 (right column). The uncertainties indicate 1σ
deviations.

the uncertainty band of the chiral N3LO EFT calculation for
symmetric matter and pure neutron matter by Drischler et al.
(2016) are applied from n ≥ 0.02 fm−3. Recent works have
been devoted to deriving EFT-inspired energy-density function-
als benchmarked by ab initio calculations at even lower density
(0 . n . 0.1 fm−3), and these could constitute additional con-
straints in the future (Yang et al. 2016). Our final predictions for
the different crustal properties, namely the fractional thickness
Rpasta/Rcrust, moment of inertia Ipasta/Icrust, and mass mpasta/mcrust
of the pasta layer for a NS with a mass equal to its maximum
mass, are summarised in Table 5. The left (right) column lists
the results obtained when the low-density EFT filters on the
energy of homogeneous matter are applied from n ≥ 0.02 fm−3

(n ≥ 0.1 fm−3).
The most relevant nuclear parameters for predicting the pasta

properties are the lower-order empirical parameters, namely the
energy of symmetric matter, the symmetry energy, and the slope
of the symmetry energy at saturation, as well as the surface
and curvature parameters. In particular, we find that the latter
parameters are more influential than the bulk parameters for the
description of the pasta observables. In addition, we show that
the use of a surface tension that is inconsistent with the bulk
functional leads to an underestimation of the uncertainties in the
pasta properties, thus highlighting the importance of a consistent
calculation of the nuclear functional.

This formalism can be extended at finite temperature, sim-
ilarly to the approach adopted in Fantina et al. (2020) and
Carreau et al. (2020a) for the outer and inner crusts, respectively,
to account for the so-called impurities. This question is of par-
ticular interest since the presence of a pasta layer at the bottom
of the NS crust may have sizeable impact on different NS phe-
nomena including NS cooling, and this will be addressed in a
future work. Moreover, very recently, upper limits on the NS
equatorial ellipticity were provided through gravitational-wave
data by the LIGO/Virgo collaboration (Abbott et al. 2020). The
possible impact of pasta phases on this observable, which was
already pointed out by Gearheart et al. (2011), thus deserves fur-
ther investigation.
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