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Abstract 

In recent years, the importance of PV generation data for distribution system operations has increased. However, there are still 
a lot of behind-the-meter solar installations that are not registered by the system operator and are not monitored. This “hidden” 
generation, therefore, increases the difficulty to operate securely and efficiently the distribution grid. This paper introduces a 
tool for the automatic detection of such “hidden” behind-the-meter solar generation. It is designed to discriminate the nodes 
with and without PV generation and is aimed at a high accuracy. The tool consists of a neural network coupled with an 
analytical classification algorithm, which considers an exogenous information (i.e. node consumption and temperature data). 
Open-access data about consumption and solar radiation were used to simulate the electrical grid and validate the proposed 
approach. The implemented solution was tested across all the nodes of the grid and its sensitivity has been analysed with 
regard to the level of PV penetration and period of observation. The tool is able to recognize the nodes with a new PV 
installation with an accuracy of up to 100%, depending on the exogenous conditions. 

1 Introduction 

Distributed renewable energy, and particularly 
photovoltaic (PV), showed rapid growth over the past two 
decades. For this reason, information on PV generation 
becomes one of the key aspects to perform operations such 
as voltage management, reconfiguration or state estimation 
in distribution systems. However, a large number of small 
household-owned PV plants do not necessarily have 
connection agreement with the system operator and are 
therefore not monitored. That generation is then “hidden” 
for the system operator. It incurs additional uncertainty in 
the net charge measurement and forecasting, which may 
affect the quality of the distribution grid operation. Thus, a 
relevant contribution to improve electrical grid 
management performance is to increase the system 
observability with a tool that detects nodes with PV 
production, based on net charge data. There are several 
proposed approaches for detecting PV generation in 
distribution grids, but they often require specific data that 
the system operator may not have access to, such as solar 
radiation data. 
One of the approaches, which identifies customers with 
PV generation by using data about net energy consumption 
from smart meters, is introduced in [1]. The authors 
propose a dimensionality reduction method combined with 
a classification algorithm, more effective than K-means, to 
reduce the amount of data needed to accurately identify 
solar prosumers to a single data point (by taking the 
minimum, average, and maximum consumption for the 

entire year). The classification method is based on 
agglomerative clustering and self-organizing maps (an 
artificial neural network-based clustering technique). One 
limitation of the method is that the clustering of consumers 
into two groups (with and without PV) is carried out based 
on whether the peak consumption of a consumer is below 
the average of all customers, without taking into account 
data on the historical consumption of this consumer in 
previous years. Thus, the performances and accuracy are 
strongly affected by the diversity of the considered 
consumption load profiles. 
Another algorithm proposes the automatic detection of PV 
panels by using very high-resolution color satellite 
imagery (0.3 meters per pixel) [2]. A Random Forest 
classification machine learning technique detects the 
presence of PV on an image. The need to use high-
resolution satellite images along with labeled training data 
is the main disadvantage of this algorithm. 
An approach for solar prosumer identification, which uses 
change-point to detect abnormal energy consumption 
behaviors (such as not monitored PV generation), is 
presented in [3]. Various abnormalities can cause change-
points in customer load. Therefore, the presence of the not 
monitored PV generation is further verified through a 
statistical inference known as permutation test with 
Spearman’s rank coefficient. Nevertheless, this approach is 
unable to detect PV installations until after the rolling 
window length is completed (up to 14 days lengths were 
evaluated), and additionally needed a cloud cover index. 
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Another approach is a distributed photovoltaic systems 
capacity estimator [4]. The algorithm determines whether a 
customer has a PV, by using Support Vector Machines 
(SVM). Four weather status-driven features are extracted 
for SVM, they describe the difference of net charge 
profiles between customers with and without PV - the ratio 
of total electricity consumption, concave shape index, 
concavity degree and load ramping rate. This method 
needs the PV power output of the known customers, which 
is its main drawback. 
Finally, authors in [5] present a method for detecting and 
disaggregating behind-the-meter solar generation using 
weather data, advanced metering infrastructure, substation 
monitoring and generation monitoring from selected 
nearby PV systems. Similarly, the needs of that method 
concern power from other nearby PV. 
The above methods rely on various types of data such as 
satellite imagery, solar radiation data, data from other PV 
stations or detailed weather data to be operational. The 
method proposed in this paper, on the contrary, does not 
require such data and does not contain any detailed 
modelling. It strictly relies on smart metering and 
temperature data. In doing so, the proposed approach 
avoids user privacy issues that have not been addressed 
previously and only uses aggregated consumption data at 
the feeder level, as presented below. 

Machine learning techniques as neural networks (NN) 
could provide a large number of functions in the energy 
field [6], the most popular being forecasting and 
disaggregation. To the best of our knowledge, a PV 
generation detection method that combines the trade-offs 
between data limitation, simplicity of implementation and 
usable results has not been extensively covered. In this 
paper, the approach of time series forecasting based on NN 
is applied to a classification task. The proposed method 
combines a conventional Multi-Layer Perceptron (MLP) 
together with an analytical classification algorithm.  
The paper is organized as follows: Section II describes the 
data and simulation environment for the experiment and 
presents the method. The obtained results and sensitivity 
analysis of this method are given in Section III. Finaly, 
conclusions are drawn in Section IV. 

2. Methodology 

2.1 Experimental setup 
The Pandapower tool was used to simulate the electrical 
distribution grid [7]. It is a Python-based tool combining 
the “pandas” data analysis library and the “pypower” 
power-flow solver to create a grid calculation program, 
aimed at automating analysis and optimization in electrical 
energy systems. The simulated grid used in the study is the 
CIGRE-Network medium voltage distribution with 14 
nodes (Fig. 1). 
The publicly available consumption data "Smart meters in 
London” were used as hourly net consumption profiles of 
the simulated grid for two consecutive years (called year 

n-1 and year n) [8]. This database contains energy 
consumption for 5567 London households which took part 
in the “Low Carbon London” project led by British grid 
operators. The data covers period between November 2011 
and February 2014. With a large number of real consumers 
over a large period of time, (and with virtually no lost 
measurement points), this dataset is perfectly suited for 
experiments. Data for the complete 2012 and 2013 years 
were extracted. Almost 900 consumption profiles were 
aggregated into 14 groups for each node of simulated grid 
(around fifty households per node).  
The data of solar radiation (typical meteorological year, 
TMY) for London from web application NREL's PVWatts 
[9] was used to model PV generation in some nodes. To 
get the temperature, the data DarkSky API [10] was used 
for the same geographic position and datetimes as the net 
consumption. PV generation profiles, modeled using solar 
radiation data, were added to seven random nodes in year 
n and scaled according to the objectives of the 
experiments. However, the solar radiation is used only for 
modeling and not as exogenous data for the detection. 
In this paper, the value of the PV installed capacity in the 
node is expressed as a ratio to the peak load value of this 
node / max( )PV load

nomP P . There are 14 nodes for the simulation 
over two years, seven of which (arbitrary chosen) have PV 
added during the second year (Fig. 1). The goal is to 
develop an approach that can correctly detect the PV 
connection to these seven nodes of a distribution grid 
during a considered period (e.g. during the last year, 
month, or any other duration). 

 
Fig. 1. Medium voltage distribution network with PV 

(in red) installed in seven random nodes [7]. 

2.2. Method 
The developed tool consists of a NN coupled with an 
analytical classification algorithm that operates separately 
for each node. Thus, it is not necessary to take into account 
the grid topology. However, Pandapower needs a topology 
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to run a simulation and get the consumption-n profiles for 
each node. The operating principle of the method is shown 
in Fig. 2. The data in the first red rectangle (at the bottom) 
represents the year n-1 (“training set”) and the data in the 
second (at the top) represents the year n, for which the 
recently installed PV shall be detected.  

 
Fig. 2. Principle of operation of the method. 

Grid topology and real consumption data for n-1 year are 
first integrated into the Pandapower simulator. The 
simulator then generates hourly energy consumption per 
node. Besides, the corresponding temperature, time, and 
date data are added for each point of power consumption. 
Trained with those data for the year n-1, the NN produces 
the expected consumption for a given day and temperature 
of the year n at an hourly resolution, assuming that no new 
PV has been added. This forecast is called baseline, which 
is then fed to the classification algorithm. 
The net energy consumption measured by the meters 
(which measure the difference between load and PV 
generation) for the considered period of the year n is also 
supplied to the classification algorithm and is called 
measurement. Similar to the data for the NN training, those 
measurements were generated with the Pandapower tool, 
by taking into account the consumption of households and 
solar radiation. 
Finally, the analytical classification method compares the 
baseline and measurement at the same hours throughout the 
day and then during only the sunshine in order to detect 
PV. After sensitivity studies, five features were selected for 
NN that show the strongest effect on consumption. The 
selected features were converted by hot encoding into 31 
neurons of the first NN layer (Fig. 3). 

One hot encoding is a process by which categorical 
variables are converted into a form of bits, i.e., if a data 
point belongs to the category then corresponding 
component is 1, otherwise it is 0. In considered NN: 

• 24 neurons indicate the hour of the day for what the 
simulation will be performed, hi, where i = 1. ... 24; 

• Four others indicate the season, Sh (winter), Sp 
(spring), Se (summer), Sa (autumn); 

• The last three are temperature (T°), weekend (W) 
and holiday (F). 

 

 
Fig. 3. The neural network and its features. 

The NN architecture with two hidden layers, of 20 and 15 
neurons each, has shown the highest accuracy as the result 
of sensitivity studies. The output layer consists of only one 
neuron, which gives the expected consumption of the node 
for the chosen hour, given that no PV is connected. The NN 
is trained with the following parameters: Adam optimizer, 
sigmoid activation function for the all nodes, mean absolute 
error loss function, learning rate of 0.03 and 1000 epochs. 
The training time is 10-20 seconds per node. 
The analytical classification algorithm is presented in 
Fig. 4. The basic idea is that, in absence of PV generation, 
an average difference between the baseline and the 
measurement values is roughly the same for hours of the 
day and of the night. Thereby, if this difference is greater 
during hours of the day, the algorithm detects the 
installation of new PV in the considered period, since the 
PV generation decreases the measurement values only 
during sunshine. 
First, the algorithm calculates Et (in %) as the difference 
between the baseline (Bt) and the measurement (Pt), for 
each hour t of period T. 

 
Fig. 4. Synoptic of the detection algorithm. 

Then Et
S is similarly computed as the difference between 

the baseline and the measurement, but only for sunshine 
hours (between 9 a.m. and 4 p.m. of each day). Thereby the 
total considered period TS is equal to 2920 hours for the 
whole year or less if T < 8760 hours. The time period 9 am 
- 4 pm is selected as period with noticeable solar radiation 
level whatever the season. 
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The algorithm then counts the number of hours N1 when Et 
exceeds the threshold value Emin (10% by default). In other 
words, it counts the number of hours for which the baseline 
is at least 10% greater than the measurement result. 

If N1 is outside the interval of [10 %; 35 %] of the total 
number of hours in the considered period, the algorithm 
adjusts the threshold Emin by 1 % to avoid an overestimation 
or underestimation from the NN and then repeats the 
process, counting N1 again until N1 falls into the interval. 
Emin is the only threshold that needs adapting. The values of 
the interval were obtained empirically through sensitivity 
studies that experimentally determined the best 
percentages.  

Once Emin is set, the algorithm calculates N2, the number of 
hours for which the baseline is greater than the 
measurement during the period TS by at least the value of 
the previously obtained threshold Emin. 

Then the algorithm checks if N2/TS is at least L1(140%) 
times greater than N1/T. Thus, it checks that the hours when 
the baseline is greater than the measurement on Emin are 
more frequent during the sunshine (period TS) than during 
the whole period T. If there is no new installed PV, N2/TS 
and N1/T should be roughly the same. If there is new PV, 
then N2/TS will be significantly greater than N1/T. 

Finally, the algorithm checks that N2/TS is greater than L2. 
That is, at least during L2 (35 %) hours of TS baseline is 
greater than measurement by Emin%. This is necessary to 
avoid situations where, for instance, N1/T = 10 % and 
N2/TS = 15 %. Indeed, then, the previous condition is met, 
but there is no PV on the node, because the proportion of 
N2/TS is too small. If both of the last checks were 
successful, the algorithm concludes that there is a new PV 
installed in this node. 

3 Results 

As already mentioned, 14 nodes with different consumption 
profiles were prepared, with PV connected to seven of 
them, arbitrary selected (Fig. 1). The proposed tool was 
independently tested on each of these 14 nodes. 

It is possible to increase the sensibility of the tool by 
analyzing only months with high level of solar radiation 
instead of the whole year. To confirm this hypothesis, two 
different cases are considered: application of the tool with 
consumption data over the six sunniest months (from April 
to September) and over the six least sunny months (from 
October to March). 

The average accuracy was calculated for all possible 
periods of x days over 6 months with a rolling basis. (e.g. 
for "period = 40 days", the average accuracy of 142 
possible 40-day periods between April and September was 
calculated). 

The dependence of the average accuracy of the tool with 
respect to the period under consideration and to 

/ max( )PV load
nomP P  for all nodes of the grid is presented in 

Fig. 5 (from April to September) and in Fig. 6 (from 
October to March). 

The average accuracy from April to September is between 
0.8 ( / max( )PV load

nomP P = 4.5 %, over a period of five days) and 
1 ( / max( )PV load

nomP P > 7.0 %, for a period of more than two 
months).  

 
Fig. 5. Average accuracy dependence from April to 

September. 

It can be concluded, that the average accuracy for the 
sunniest months is higher for longer periods, because the 
longer period allows to smooth out the impact of cloudy 
days, when PV generates less energy. It is also natural that 
a higher / max( )PV load

nomP P  makes it easier to detect PV, so the 
average accuracy is also higher.  

The results are different from October to Mars. The average 
accuracy for these months is between 0.87 
( / max( )PV load

nomP P = 10.0 %, over a period of five months) and 
0.5 ( / max( )PV load

nomP P = 4.5 %, for a period of six months). 
For values / max( )PV load

nomP P < 8.5 % the average accuracy is 
higher for shorter periods, because on average during these 
months the PV systems do not generate enough power for 
detection, but there are few days with high solar radiation 
level when detection is possible. 

 
Fig. 6. Average accuracy dependence from October to 

March. 

From Fig. 5 and Fig. 6 it can be concluded that, on average, 
three months are required to obtain the maximum detection 
accuracy. Considering the periods of the three sunniest 
months, 100 % accuracy can be achieved with values of 
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6.2 % for the installed PV capacity in the node 
( / max( )PV load

nomP P ) and 3.1 % for the generated PV energy 
compared to the energy consumption of the same node 
( /PV load

nomW W ), as shown in Table 1.  

Table 1. Distribution of the installed PV power and the 
corresponding energy production. 
Bus 2 3 4 8 9 11 12 

 
,%

max( )

PV
nom

load

P
P

 
6,2 6,2 6,2 6,2 6,2 6,2 6,2 

,%
PV

nom
load

W
W

 3,25 3,2 3,3 3,1 3,05 3,05 3,68 

 

The results of the metrics (for nodes with PV) that are used 
to detect PV are presented in Table 2. Data are given for the 
three sunniest months of the year (from May to July). The 
value of 1 2/ S

N N
T T

for node 12 is equal 1.4, which means that 

further decreasing the installed PV capacity in that node 
will cause the tool to be unable to detect it. 

Table 2. Results for nodes with PV from May to July 2013. 

Bus 2 3 4 8 9 11 12 

 
1N

T
 34,4 33,6 34,6 33,5 34 33,5 32,8 

2
S

N
T

 50,6 59,3 60,1 57 62,3 54 46 

1 2/ S

N N
T T

 1,47 1,76 1,74 1,70 1,83 1,61 1,40 

 

It should be mentioned that the sensitivity of the tool 
depends on consumption profiles (for two years), so for 
Node 11, for example, the tool can detect PV even with 
very small installed capacity ( /PV load

nomW W < 3 %). 

4 Conclusion 

The growing need for accurate prediction of consumption 
in distribution grid requires a way to detect locations with 
“hidden’’ installed PV. The use of neural networks for 
capturing energy consumption behavior is very popular as 
the model can be trained offline and then quickly applied 
for any period of time.  

The method proposed in the article for PV detection only 
needs data about temperature and net consumption that 
makes it more suitable for usage than other similar 
solutions, which require specific hard-to-find data (e.g., 
satellite images or solar radiation for specific spot). 
Moreover, the algorithm displays a high accuracy, which 

however depends on the period of consideration and the 
amount of installed capacity. Thus, it is necessary to find a 
compromise between the volume of available data and the 
required accuracy of the solution. It was found that the 
highest precision and accuracy could be reached for 
approximately a three months period under consideration. 
Future work may involve testing the tool on larger 
simulated grids. The next step will then be to not only 
detect PV installations in the nodes, but also to 
disaggregate the load and generation profiles, and hence 
approximate the installed PV capacity. Regarding the data, 
additional consideration could be given to noise and 
anomalies, because the simulated data has been very clean 
in the presented work.  
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