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ABSTRACT

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-
restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs aremostly
rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by ‘stemness’ gene expression,
they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that
ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid
movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically
do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phe-
nomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are
considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the
Waddington landscape: the ‘wobbling Penrose’ landscape. Here, totipotent ASCs adopt ascending/descending courses of
an ‘Escherian stairwell’, in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully
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differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cel-
lular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.

Key words: adult stem cells, marine invertebrates, niche, gene expression, Waddington landscape, germ cells, totipotency,
cell lineages, regeneration, asexual reproduction
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I. INTRODUCTION

The prevailing vertebrate-centric paradigm suggests the exis-
tence of idiosyncratic populations of adult stem cells (ASCs)
in animals (Raff, 2003; Wagers & Weissman, 2004;
Clevers, 2015; Wiggans & Pearson, 2021). In vertebrates,
ASCs are defined as lineage-restricted with tissue or organ-
specific activities, and are capable of regulating homeostasis,
repair and regeneration of tissues and organs (Clevers &
Watt, 2018). Vertebrate ASCs are located in defined niches,
where they normally lie in a quiescent state (Slack, 2018;
Marescal & Cheeseman, 2020) until called upon to activate
by specific stimuli such as injury or disease (Clevers, 2015;
Clevers & Watt, 2018). The literature on mammalian stem
cells further defines ASCs as undifferentiated cellular entities
that give rise to either daughter stem cells, self-renewing pro-
genitors, or lineage-specific differentiated cells (Raff, 2003;
Clevers & Watt, 2018). While at early embryogenesis verte-
brate stem cells are totipotent, giving rise to both somatic
and germline descendants, post-embryonic stem cells are
multipotent at best [e.g. haematopoietic stem cells
(Raff, 2003; Wagers & Weissman, 2004)].

Over time, two distinct evolving views of ASCs in vertebrates
have been proposed. The first considers ASCs as ‘entities’: dis-
crete units of selection, development and regeneration
(Weissman, 2000). The second focuses on their ‘state’ or ‘func-
tion’, and posits that the biological state of a cell dictates its status
as an ASC or as a differentiated cell (Blau & Baltimore, 1991;
Blau, Brazelton & Weismann, 2001). The latter view is sup-
ported by the controversial findings that restrictions in cell fates
are flexible and that differentiated cells may regain levels of lost
stemness.

In vertebrates, ASCs have been categorized by their mor-
phology, tissue of origin, plasticity, and potency. While

existing in a quiescent state, they still maintain the power to
resume cellular proliferation. They tend to be found in small
numbers, but are long-lived as a population, and often
express specific ‘stemness’ genes (Poulsom et al., 2002;
Raff, 2003; Wagers & Weissman, 2004; Clevers, 2015;
Rumman, Dhawan & Kassem, 2015; Grün et al., 2016;
Clevers & Watt, 2018; Marescal & Cheeseman, 2020). Yet
other authors have referred to specific ‘conditions’, rather
than ‘characters’ or ‘functional potency’ when defining the
ASC concept (Loeffler & Roeder, 2002; Zipori, 2004). The
above views consider, as a prime defining feature, an ASC’s
ability to give rise to one or more differentiated cell types as
part of regular bodily homeostasis, and in acute states such
as those that require repairing damage (Slack, 2018).
While ASCs are inherently defined morphologically

(Fig. 1), phenotype alone provides only tantalizing hints for
their identification. For instance, it took decades of targeted
research to define the population of haematopoietic stem
cells (Eaves, 2015), andmany years of work before the discov-
ery of intestinal stem cells (van der Flier & Clevers, 2009).
Likewise, other ASC identification criteria may conceal the
authentic plasticity in their transcriptome profiles (Grün
et al., 2016), and the detection of asymmetric cell divisions,
often used to identify stem cells ‘unambiguously’, is particu-
larly elusive. Similarly, the criteria of ASC potency and plas-
ticity are a source of confusion (Poulsom et al., 2002;
Raff, 2003; Wagers & Weissman, 2004). Notwithstanding
such caveats, it is widely accepted that vertebrate ASCs are
rare, clonogenic, and undifferentiated (characterized by a
high nucleo-cytoplasmic ratio and small cell size compared
to lineage-differentiated progenies). Moreover, they are
multi/oligo/unipotent cells capable of self-renewal and mul-
tilineage differentiation, often interacting with specialized
stem cell niches, and are considered slow-cycling cells that
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show distinct germ/somatic lineage potential. The somatic
ASCs are tissue specific and function in homeostasis and,
with constraints, in regeneration of organs/tissues.

Does the above vertebrate ASC ‘archetype’ apply to the
animal kingdom (Metazoa) as a whole? Comparative
approaches may shed light on this important question. A
glance at the metazoan phylogenetic tree puts in stark relief
the fact that ASCs have only been studied in a limited number
of taxa, mainly those capable of asexual reproduction and/or
with high competency for regeneration, including some spira-
lian protostomes (lophotrochozoans, i.e. Platyhelminthes) and
deuterostomes (i.e. tunicates, echinoderms), as well as many

non-bilaterian lineages (i.e. cnidarians, poriferans). Somatic
ASCs have not been reported in most ecdysozoans
(i.e. Nematoidea, Scalidophora and Panarthropoda), except
for a few arthropods (Shukalyuk et al., 2007; Alié et al., 2015).

To fill this conceptual lacuna, we evaluate the distribution
and the properties of ASCs in non-vertebrate metazoans in
the context of the vertebrate ASC exemplar, excluding inver-
tebrates such as fruit flies and nematodes, which while excel-
lent genetic model systems are by all accounts highly derived
ecdysozoans. Using inter/intra-phyla comparative analyses
of ASC properties, their gene expression and the cellular
environment, as well as their role in unique biological

Fig 1. Adult stem cells (ASCs) from selected marine invertebrate phyla and a human haematopoietic stem cell visualized by
transmission electron microscopy. (A–C) Porifera: a choanocyte of Leucosolena variabilis (A), a pinacocyte of Oscarella sp. (B), an
archaeocyte of Crellomima imparidens (C). (D, E) Cnidaria: epitheliomuscular (D) and interstitial (E) stem cells of Hydra magnipapillata.
(F, G) Platyhelminthes: neoblasts of the planarian Schmidtea sp. (F) and the rhabditophoran Macrostomum lignano (G). (H) Acoela:
neoblast of Isodiametra pulchra. (I, J) Tunicata: haemoblast (I) and bud primordium cell (J) of Botryllus schlosseri. (K) Mammalia:
quiescent haematopoietic stem cell of Mus musculus (modified from Radley et al., 1999). ASCs in invertebrates occur as two basic
cell types, either as epithelial cells integrated into organized two-dimensional tissue layers (A, B, D, J) or as smaller cells located in
mesenchymal tissues (C, F–H), in interstitial spaces of epithelia (E), and in the circulating haemolymph/blood (I, K). Epithelial
ASCs exhibit the hallmarks of typical epithelial cells including a distinct apical–basal polarity. Mammalian ASCs typically show a
high nuclear to cytoplasmic ratio, round interphase nuclei with prominent nucleoli, and a ribosome-rich cytoplasm. Scale bars:
A–C, E–K, 5 μm; D, 5 μm. Photograph credits: A–C, A. Ereskovsky; D–H, B. Hobmayer; I, J, L. Manni).
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Table 1. Central traits distinguishing vertebrate adult stem cell (ASCs) from non-ecdysozoan invertebrate ASCs [selected citations;
aberrant status such as cancer cells in vertebrates or reprogramming approaches such as iPS (induced pluripotent stem) cells are not
included]

ASC trait Status in vertebrates Status in marine invertebrates (most cases)

Abundance Rare, 0.001–0.01% (e.g. Martin
et al., 2002)

Up to 20–30% of all cells in flatworms (Handberg-Thorsager,
Fernandez & Salo, 2008; Gentile, Cebrià & Bartscherer, 2011);
20–30% of all cells in the freshwater hydrozoan Hydra (Bosch
et al., 2010; Hobmayer et al., 2012); up to 50–80% (choanocytes) of
all cells in Calcarea (Jones, 1961; A. E., unpublished results) and up
to 3–14% of all cells in Demospongiae (Diaz, 1979; Custodio,
Hajdu & Muricy, 2004).

Potency Primarily uni/oligopotency, some
pluripotency

Pluri- and totipotency, with differentiation potential towards cell
lineages from more than a single germ layer (Müller, Teo &
Frank, 2004; Manni et al., 2007; Rinkevich & Matranga, 2009;
Rinkevich, Matranga & Rinkevich, 2009; Wagner, Wang &
Reddien, 2011; Reyes-Bermudez, Hidaka & Mikheyev, 2021).

Stemness outcomes Limited to organs and tissues May develop whole organisms via asexual reproduction (e.g.
budding) or via regeneration of minute fragments (Manni
et al., 2007, 2019; Rinkevich et al., 2007, 2009, 2011; Voskoboynik
et al., 2007; Bely & Nyberg, 2010; Bosch et al., 2010; Lehoczky,
Robert & Tabin, 2011; Lavrov & Kosevich, 2016; Lai &
Aboobaker, 2018).

Amoeboid cell motility Not recorded under normal conditions Demosponge archaeocytes (Funayama, 2008), hydrozoan interstitial
cells (Bode, 1996), planarian neoblasts (Isaeva, Aleksandrova &
Reunov, 2005a; Abnave et al., 2017) and amoebocytes in stellate
echinoderms (Khadra et al., 2018) competent for amoeboid
motility and/or active migration.

Exhibiting
morphologies of
differentiated cells

Not recorded under normal conditions Recorded in various phyla. Examples are the morphologies of
choanocytes in sponges and amoebocytes in anthozoans (Gold &
Jacobs, 2013; Ereskovsky et al., 2015; Funayama, 2018); epithelial
cells in Hydra (Hobmayer et al., 2012); filopodia/extended cell
processes in flatworm neoblasts (Baguñà, 2012; Abnave et al., 2017;
Ivankovic et al., 2019); also hypothesized for flagellated coelomic
epithelial cells in a starfish (Bossche & Jangoux, 1976).

Soma/germ stem cell
boundaries

The germline is sequestered at early
ontogeny

Boundaries between soma/germ stem cells are blurred in many taxa
and germ cells can arise from ASCs (Buss, 1982; Blackstone &
Jasker, 2003; Rinkevich & Yankelevich, 2004; Seipel, Yanze &
Schmid, 2004; Rinkevich et al., 2009; Rosner et al., 2009; Gold &
Jacobs, 2013; Dannenberg & Seaver, 2018; DuBuc et al., 2020;
Vasquez-Kuntz et al., 2020).

Expression of germ
cell markers in ASCs

Not recorded (except in some cancers) Present in ASCs and various somatic cells (e.g. Vasa, Piwi and POU
genes) (Raz, 2000; Mochizuki, Nishimiya-Fujisawa &
Fujisawa, 2001; Seipel et al., 2004; Shukalyuk et al., 2007; Rosner
et al., 2009; Rinkevich et al., 2010; Rosner & Rinkevich, 2011;
Fierro-Constaín et al., 2017; Xu & Sun, 2020).

Germ stem cell trans-
differentiation to
ASCs

Not recorded Present, recorded in some regenerative scenarios such as in flatworms
(Gremigni & Puccinelli, 1977).

De novo emergence of
ASCs

Not recorded Present in cnidarians, sponges and tunicates (Müller et al., 2004;
Manni et al., 2007, 2019; Schmich et al., 2007; Rinkevich
et al., 2010; Rinkevich & Rinkevich, 2013; Borisenko et al., 2015;
Ereskovsky et al., 2015; Ferrario et al., 2020; Xu & Sun, 2020).

Source cells for
regeneration

Tissue resident; mostly lineage-restricted
ASCs

Whole organismal residency; potential mobilization and expansion
of ASCs from other sites/tissues; in planarians and some tunicates,
a single ASC may regenerate a whole organism (Rinkevich,
Shlemberg & Fishelson, 1995; Rinkevich et al., 2010, 2011;
Lehoczky et al., 2011; Wagner et al., 2011; Rinkevich &
Rinkevich, 2013; Blanchoud, Rinkevich & Wilson, 2018; Fields &
Levin, 2018). Presence of dedifferentiation processes (Ferrario
et al., 2020; Xu & Sun, 2020).

(Continues)
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processes (e.g. whole-body regeneration), we put forward the
hypothesis that vertebrates represent only one particular pro-
totype of ASC, and that ASCs in fact exhibit a wider range of
properties and abilities, some non-existent in vertebrates. In
light of this, we propose a unified model to explain ASC
diversity in metazoans – ‘the wobbling Penrose landscape’,
a modification of the traditional Waddington landscape
metaphor.

II. VERTEBRATE VERSUS INVERTEBRATE ASCs
AT A GLANCE

Apart from two fundamental properties of stem cells, i.e. self-
renewal and differentiation potential, it appears that many
cardinal ASC traits differ between vertebrates and other
phyla. Fifteen traits are highlighted in Table 1, together
spanning a wide range of characteristics from morphology,
differentiation state and somatic/germ lineage characteris-
tics, to some key biological properties. Vertebrate ASCs are
constrained to one of the three germ layers (Weissman,
Anderson & Gage, 2001) and they give rise to lineage-
restricted progenies that are limited to specific organs/tissues
(Tanaka & Reddien, 2011), with the germline being seques-
tered from the somatic lineages early in ontogeny. ASCs
are generally rare in vertebrates (e.g. only 0.001–0.01% of
mononuclear cells isolated from a Ficoll density gradient of
feline bone marrow aspirate are mesenchymal stem cells;
Martin et al., 2002) and pluripotent at best; they are slow
cycling and reside in compartmentalized niches, with

restricted migration potential (Moore & Lyle, 2011). These
vertebrate traits are inconsistent with many of the ASC attri-
butes found in other groups (Table 1). Even the statement
that the ‘ability of stem cells to reside within niches is an evo-
lutionarily conserved phenomenon’ (Fuchs, Tumbar &
Guasch, 2004, p. 771) is not applicable to all, or even the
majority, of metazoan ASCs. Further, ASCs in other lineages
may arise de novo by trans-differentiation from somatic cells
(Ferrario et al., 2020), which is not a common phenomenon
in the vertebrates (Goodell, Nguyen & Shroyer, 2015;
Merrell & Stanger, 2016), and even from germ cells under
specific conditions (Table 1). The aforementioned disparate
characters have particularly emerged in long-lived and inde-
terminately growing animals, where organismal senescence
(sensu Rinkevich & Loya, 1986) has not been documented
or is delayed (e.g. sponges, corals, and the immortal Hydra).

III. THE WIDE RANGE OF METAZOAN ASC
MORPHOTYPES

Almost no study on ASCs outside vertebrates has been
devoted to capturing their degree of potency by using criteria
of increased stringency, as has recently been proposed for
mammalian systems (Posfai et al., 2021). However, many
phyla (e.g. Porifera, Cnidaria, Ctenophora, Annelida,
Acoela, Platyhelminthes, Echinodermata, Cephalochordata
and Tunicata) possess large pools of bona fide ASCs through-
out the lifespan of the organism, most of which are multipo-
tent (in sponges, flatworms, acoels, cnidarians, annelids and

Table 1. (Cont.)

ASC trait Status in vertebrates Status in marine invertebrates (most cases)

Contribution to
dormancy

Inconclusive Hibernation and aestivation in botryllid ascidians (Hyams
et al., 2017).

ASC niche Essential for ASC quiescence and long-
term survival (Marescal &
Cheeseman, 2020)

No distinct anatomical stem cell niche has been elucidated for the
vast majority of non-ecdysozoan invertebrates (Rinkevich, 2009;
Rinkevich et al., 2009). A few ephemeral ASC niches were
identified in botryllid ascidians (Voskoboynik et al., 2008;
Rinkevich et al., 2013; Rosner et al., 2013; Rosental et al., 2018).

Contribution to
indeterminate
growth

Indeterminate growth does not exist in
birds and mammals

Indeterminate growth exists in various taxa within sponges,
cnidarians, annelids, bryozoans, and tunicates (Jackson &
Coates, 1986; Hughes, 1987; Vogt, 2012; Gazave et al., 2013);
Direct evidence for the role of ASCs found in sponges, flatworms,
cnidarians and annelids (e.g. in atokous worms).

Contribution to
immortal lifespan

Immortality does not exist Immortality exists in cnidarians (Martínez, 1998; Schmich
et al., 2007; Da�nko, Kozłowski & Schaible, 2015), planarians
[further associated with neoblasts (Sal�o, 2006; Tan et al., 2012)]
and sponges (which may live for thousands of years) (Gatti, 2002;
McMurray, Blum & Pawlik, 2008); extended lifespan in bivalves,
the longest lived non-colonial animals (Gruber et al., 2015).

ASCs as units of
selection

Unspecified; yes, in transmissible tumours Present, potentially in all marine invertebrates with a somatic
embryogenesis type of ontogeny (Buss, 1982; Rinkevich, 2000,
2009, 2011; Weissman, 2000; Laird, De Tomaso &
Weissman, 2005; Fields & Levin, 2018).
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tunicates; Fig. 2; see online Supporting Information, Tables S1
and S2) and some of which (e.g. cnidarians, flatworms and tuni-
cates) have been suggested to be totipotent (Müller et al., 2004;
Manni et al., 2007; Rinkevich & Matranga, 2009; Rinkevich,
Matranga & Rinkevich, 2009; Wagner et al., 2011; Kassmer,
Langenbacher & De Tomaso, 2020). In many groups, ASCs
give rise not only to somatic lineages, but also to germ cell line-
ages, with no signature of germ-cell sequestration (Gschwentner
et al., 2001; Takamura, Fujimura & Yamaguchi, 2002;
Rinkevich, 2009; Juliano, Swartz & Wessel, 2010; Juliano &

Wessel, 2010; Gold & Jacobs, 2013; Solana, 2013;
Yoshida et al., 2017; Adamska, 2018; Dannenberg &
Seaver, 2018; DuBuc et al., 2020; Vasquez-Kuntz et al., 2020),
and in some animals, ASCs are the only proliferative cells
(Bely & Sikes, 2010a).
ASCs in invertebrates represent a wide range of phylum-

specific and characteristic cell types, morphologies and
behaviours (Figs 1 and 2; Table S1), which range from
sponge archaeocytes and choanocytes (Simpson, 1984;
Ereskovsky, 2010), hydrozoan interstitial cells (i-cells)

Fig 2. Plasticity, self-renewal, and differentiation dynamics in selected invertebrate and vertebrate adult stem cell (ASC) lineages.
ASCs are highlighted in colour, differentiation products shown as black and white schemes. Conversion of one ASC type into
another occurs in pre-bilaterian sponges and hydrozoans, and within the flatworm neoblast lineage (A–D). Differentiation of
gametes as descendants of ASCs is a common feature in the pre-bilaterian sponges and hydrozoans (A, B). The dashed arrows in
sponge ASC lineages represent capacities for self-renewal, phenotypic conversion and differentiation based on observations of
cellular behaviour during growth, tissue renewal and regeneration, which have not yet been validated by stringent experimental
analysis. In C stippled arrows represent the formation of hydrozoan epithelial cells from interstitial stem cells as described in
Hydractinia spp., which does not occur in Hydra spp. In D red arrows in the planarian neoblast system are based on the lineage-
restricted expression of gene sets, which require further validation using precise lineage tracing and functional interference assays.
The self-renewal capacity of zeta-, gamma-, and nu-neoblasts is under discussion. Species sources: (A) Amphimedon queenslandica,
Ephydatia fluviatilis; (B) Oscarella lobularis; (C) Hydractinia spp., Hydra vulgaris; (D) Schmidtea mediterranea; (E) Botryllus schlosseri, Ciona
robusta; (F) Homo sapiens. Schemes in C and D are modified from Gold & Jacobs (2013) and Zhu & Pearson (2016), respectively.
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(Bosch, 2009; Plickert, Frank &Müller, 2012) and platyhelminth
or acoel neoblasts (Wagner et al., 2011; Baguñà, 2012) to tunicate
haemoblasts (Freeman, 1964; Voskoboynik et al., 2008;
Kawamura & Sunanaga, 2010; Rinkevich et al., 2013; Kassmer
et al., 2020). Comparisons within phyla reveal a considerable
degree of additional variation, where ASC properties are
possessed only by particular taxa within a phylum
(e.g. demosponge archaeocytes, hydrozoan i-cells). Simi-
larly, ASC lineages and progenitors may show intra-phylum
modifications (e.g. Müller et al., 2004; Borisenko et al., 2015;
Funayama, 2018; Lavrov et al., 2018; Fig. 2; Table S1).

Outside the vertebrates, ASCs are often highly abundant
(primarily choanocytes in sponges, ecto/endodermal epithe-
liomuscular cells in cnidarian polyps and neoblasts in flat-
worms; Simpson, 1984; Handberg-Thorsager et al., 2008;
Bosch et al., 2010; Gentile et al., 2011; Hobmayer
et al., 2012; Table 1) and the literature reveals cases of puta-
tive totipotency, as high differentiation potential contributes
to more than a single germ layer (Fig. 2; Rinkevich
et al., 2009; Wagner et al., 2011). Emblematic structures in
many of these ASCs are the so-called chromatoid bodies
[reported in neoblasts, i-cells and archaeocytes, as well as
most recently in a small pool of notochord cells in cephalo-
chordates (Rossi et al., 2008; Isaeva et al., 2009; Isaeva &
Akhmadiev, 2011; Holland & Somorjai, 2020)] – electron-
dense aggregates often adjacent to the nuclear envelope that
resemble the germline granules of vertebrates and insects.

Many invertebrate ASCs consist of epithelial tissues, exhi-
biting epithelial cell hallmarks (lacking the characteristic
large nucleus/cytoplasmic ratio of other ASCs), with distinct
apical–basal and planar cell polarities, apical cell–cell junc-
tions, and basal cell–extracellular matrix interactions, all of
which are features of differentiated cells. The most promi-
nent example is found in sponges, where cells of the inner
and outer epithelia – choanocytes and pinacocytes, respec-
tively (Fig. 1A, B) – function as true epithelial cells, while
potentially acting as stem cells during tissue renewal and
regeneration (Ereskovsky et al., 2015; Lavrov et al., 2018).
The same applies to the hydrozoan cnidarian ectodermal
and endodermal epitheliomuscular cells (Fig. 1D; Bosch
et al., 2010; Hobmayer et al., 2012) and the colonial tunicate
bud primordium (Fig. 1J; Manni et al., 2007, 2019). Further,
the literature reveals cases where these ASCs not only express
genes associated with germline stem cells, but are also able to
differentiate into somatic cells or gametes, indicating the lack
of strict boundaries between somatic/germline lineages.
Examples include sponge archaeocytes and choanocytes
(Fierro-Constaín et al., 2017; Funayama, 2018), hydrozoan
i-cells (Bode, 1996), flatworm and acoel neoblasts (Shibata,
Rouhana & Agata, 2010; Chiodin et al., 2013; Lai &
Aboobaker, 2018), the posterior stem cells of the annelid
growth zone (Giani et al., 2011; Gazave et al., 2013;
Kozin & Kostyuchenko, 2015) and tunicate haemoblasts
(Magor et al., 1999; Stoner, Rinkevich & Weissman, 1999;
Laird et al., 2005; Voskoboynik et al., 2007; Rosner
et al., 2009; Brown et al., 2009a; Rinkevich, 2017; Rosner,
Kravchenko & Rinkevich, 2019; Kassmer et al., 2020).

IV. GENE EXPRESSION IN INVERTEBRATE ASCs

Invertebrate ASCs express orthologues of many vertebrate
‘stemness’ genes, as well as genes that contribute to cancer cell
‘stem cell potential’ (Conte et al., 2009; Mashanov et al., 2010;
Yun et al., 2017; Ben-Hamo et al., 2018). A list of selected genes
and gene families is provided in Fig. 3 and Table S2. However,
it is challenging to identify or compare stemness gene signatures
across diverse taxa separated by wide evolutionary distances
(Alié et al., 2015;Wiggans & Pearson, 2021). Also, themolecular
mechanisms by which invertebrates maintain viable ASC
stocks, with long-term stability and constant proliferation during
their lifespan, remain elusive (Conte et al., 2009). This is true for
Myc, one of the major vertebrate stem cell maintenance factors,
and which has been associated with ASC self-renewal in hydro-
zoan i-cells (Hartl et al., 2010, 2019; Plickert et al., 2012). In-
depth single-cell transcriptome analysis of hydrozoan i-cell
and flatworm neoblast lineages failed to identify common sets
of stemness factors (Fincher et al., 2018; Plass et al., 2018; Siebert
et al., 2019).

As in the vertebrates (Lander, 2009), the essence of ASC
stemness cannot be distilled down to a single shared molecular
fingerprint, further highlighted by the co-expression of
somatic/germ stem cell signatures in invertebrate ASCs
(Table 1), wherever these ASCs have been studied. This
includes the expression of genes such as POU, SOX, Piwi, Bruno,
Vasa and Pl10 orthologues in a number of metazoan ASCs,
including sponge archaeocytes and choanocytes
(Funayama, 2008, 2018; Fierro-Constaín et al., 2017), hydro-
zoan i-cells (Seipel et al., 2004; Rebscher et al., 2008; Leclère
et al., 2012), neoblasts of acoels and planarians (Guo, Peters &
Newmark, 2006; Pfister et al., 2008; De Mulder et al., 2009b;
Önal et al., 2012), tunicate ASCs (Sunanaga, Watanabe &
Kawamura, 2007; Rosner et al., 2009, 2019; Rinkevich
et al., 2010), putative stem cells from annelid growth zones
(Rebscher et al., 2007; Giani et al., 2011; Gazave et al., 2013),
and presumably in regenerating nemertean tissues (Xu &
Sun, 2020). This toti/pluripotency in non-vertebrate phyla
maintains functions such as gametogenesis, embryogenesis,
homeostasis, asexual reproduction and regeneration (Fierro-
Constaín et al., 2017), supporting the idea of global conservation
in pluripotency-associated genes for day-to-day needs (Fig. 3;
Table S2), as reported for cell adhesion receptors and nuclear
receptors (Gamulin et al., 1994).

In contrast to the vertebrates, somatic and germline stem-
ness markers (e.g. Vasa, Pl10, Piwi, Nanos, Bruno, Pumilio,
Tudor, etc.; Fig. 3), as well as alkaline phosphatase
(Isaeva, 2011), are co-expressed in differentiated somatic
cells/tissues in many invertebrate phyla (Table 1). This char-
acter has been recorded in sponges (Funayama, 2018), cni-
darians (Mochizuki et al., 2001), ctenophores (Alié
et al., 2011), annelids (Rebscher et al., 2007; Dill &
Seaver, 2008; Gazave et al., 2013), parasitic crustaceans
(Shukalyuk et al., 2007; Shukayuk & Isaeva, 2012), molluscs
and echinoderms (Lai & Aboobaker, 2018) and colonial tuni-
cates (Rabinowitz, Alphasi & Rinkevich, 2009; Rosner
et al., 2009; Brown et al., 2009a; Rinkevich et al., 2010;
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Rabinowitz & Rinkevich, 2011). These observations may
either imply distinct functions or pleiotropy for the genes in
differentiated somatic cells (Juliano et al., 2010). Alterna-
tively, this may suggest that the conventional view of distinct
‘stem cell genes’ should be reconsidered.

By tracing shared transcriptomic signatures for demos-
ponge archaeocytes, flatworm neoblasts and Hydra i-cells,
Alié et al. (2015) revealed 180 orthology groups, considered
as a relevant proxy for the core set for ancestral stem cells.
Most of these genes pre-dated animal origins, with only a
few representing true metazoan innovations. These findings
reinforce the idea of a conserved ancestral multipotency pro-
gram associated with pluri/totipotency (Önal et al., 2012;
Fierro-Constaín et al., 2017; Fig. 3), although the putative
gene regulatory networks have been rewired throughout
evolution to generate clade-specific morphologies/physiol-
ogies. These observations are in line with the hypothesis
of the existence of primordial stem cells (Solana, 2013). Inter-
estingly, the ancestral stem cell transcriptomic landscape
(Alié et al., 2015) is noticeably poor in transcription factors,

yet it is rich in RNA regulatory players, including many
RNA-binding proteins, which are typical regulators of mam-
malian embryonic stem cells.

V. THE ENVIRONMENT – ASC NICHES IN
INVERTEBRATES

The term ‘stem cell niche’, originally conceptualized by
Schofield (1978), refers to a discrete anatomical microenvi-
ronment within which stem cells reside, as well as their
milieu, which together play critical roles in maintaining/
regulating ‘stemness’ properties (Spradling, Drummond-
Barbosa & Kai, 2001; Fuchs et al., 2004; Li & Xie, 2005;
Saez, Yusuf & Scadden, 2017). Morphologically, all ‘niches’
consist of homing stem cells and their progeny, heterologous
cell types and the surrounding niche-specific extracellular
matrix (Chac�on-Martínez, Koester & Wickström, 2018;
Christodoulou et al., 2020). Studies in vertebrate models have

Fig 3. The expression of ‘stemness’ genes in somatic cells of invertebrates. Five functional gene categories are depicted, each
represented by 3–9 specific genes (in grey boxes). Bilaterian phyla are grouped by colour, with pink for Deuterostomia (Chordata
and Ambulacraria) and blue (Spiralia) and yellow (Ecsysozoa) for Protostomia. Ticks indicate that expression of stemness genes in
ASCs in at least one species for the phylum has been reported. Note that for most metazoan phyla and many gene categories, no
data are available. Only taxa for which sufficient information on ASCs is available are included. The red skull and crossbones
indicate the absence/loss of the gene(s) in the phylum. RRM, RNA-recognition motif. Data from model ecdysozoans are excluded
(Drosophila, nematodes; see text for details). See Table S2 for the original data on which this figure is based.
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Fig 4. Adult stem cells (ASCs) are involved in four major biological processes inMetazoa: homeostasis, adult regeneration, dormancy
and agametic asexual reproduction. The presence of the biological process, involvement of undifferentiated/differentiated putative
ASCs or progenitors and their level of potency, as well as the specific classes of stemness gene families they express are mapped for
all phyla, when present in at least a single member of the group considered. In the metazoan phylogeny, Deuterostomia are in
pink, Ecdysozoa are in yellow, and Spiralia are in green (Gnathifera) and blue (Lophotrochozoa). The position of the
Acoelomorpha is debated (dotted line). Circles: empty circle – documented presence of the biological process; filled circle – cases
where putative ASCs or progenitors are involved; dotted line circle – inconclusive evidence for the presence of the biological
process. A red cross signifies the absence of the biological process in the clade as currently documented. As homeostasis is a
property of life, all phyla are shown with an empty circle. For adult regeneration, an asterisk within a circle documents the
presence of whole-body regeneration. Dormancy refers to any documented type of dormant stage or torpor-like process and has
likely evolved independently in each lineage. For dormancy, the dotted line circle indicates potential involvement in non-adults. A
– quiescence, diapause, growth/degrowth; D – diapause; G – growth/degrowth; O – ontogeny reversal; Q – quiescence. For
agametic asexual reproduction, B – any form of budding; F – any form of fission/fragmentation. Triangles indicate the level of
documented potency for ASCs (filled) and progenitors (empty). Red = lineage restricted/unipotent; cyan = totipotent;
blue = multi/pluripotent; gradient triangle = documented cases of several ASCs or progenitors with different potency. Selected
stemness gene families whose members are expressed in ASCs or progenitors during the biological process are listed in a box for
each process and phylum. The relative contribution of undifferentiated (U) versus differentiated (D) ASCs or progenitors within
each phylum is mapped onto the phylogeny if known; levels of confidence are represented by solid (higher) and dotted (lower)
diamonds, while the sizes of D and U reflect their presumed level of contribution. See Tables S4–S7 and Figs. S1 and S2 for the
original data used to generate this figure.
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elucidated a wide range of core elements associated with stem
cell niche environments, encompassing networks of cell–cell
and cell–extracellular matrix interactions and soluble signal-
ling factors (autocrine, paracrine, systemic), which act as bio-
chemical cues to determine ASC fates and behaviours
(Scadden, 2006; Chac�on-Martínez et al., 2018; Singh
et al., 2019). Thus, the maintenance of a niche is associated
with, and based on, active crosstalk between ASCs and their
niche components (Saez et al., 2017; Durand, Charbord &
Jaffredo, 2018). The niche architecture in model organisms
(e.g. mice, Caenorhabditis elegans, Drosophila melanogaster) consti-
tutes one of the basic consensus feature central to the defini-
tion of ASCs (Slack, 2018).

Fuchs et al. (2004) argued that ASC competence to reside
within discrete niches is an evolutionarily conserved feature
between Drosophila and vertebrates, and that ASC niches are
armedwith shared properties, such as three-dimensional spaces,
basement membranes, extracellular matrices and paracrine sig-
nalling (Spradling et al., 2001; Scadden, 2006). ASC niches fur-
ther generate extrinsic factors, such as BMP (bone
morphogenetic protein) and Wnt (wingless-related integration
site) signals, that have emerged as common pathways for con-
trolling stem cell self-renewal and lineage fate from Drosophila

to mammals (Li & Xie, 2005). Yet no such distinct anatomical
stem cell niche has thus far been convincingly elucidated in
non-ecdysozoan invertebrates (Rinkevich, 2009; Rinkevich
et al., 2009), and few putative stem cell niches have been identi-
fied (Table S3) that satisfy the strict criteria set for the verte-
brate/insect ASC niches.

While knowledge gained from mammalian, D. melanogaster
and C. elegansmodels provides guidelines for defining compara-
ble niches in other metazoans, studies on sponge archaeocytes
and choanocytes, hydrozoan i-cells and platyhelminth and acoel
neoblasts have failed to define either discrete anatomical micro-
environments where stem cells reside, or a niche-specific extra-
cellular matrix to which ASCs home. Nevertheless, by
employing the niche concept more loosely (Morrison &
Spradling, 2008), the existence of ‘permissive’ stem cell niches
for i-cells in Hydra (e.g. Khalturin et al., 2007; Table S3) and
for planarians neoblasts (Pellettieri & Sanchez Alvarado, 2007;
Dingwall & King, 2016; Table S3) has been proposed. These
claims were later adjusted by viewing the whole animal or tissue
as a single functional stem cell niche. In Hydra, it was first sug-
gested that the body column of the polyp could be considered
a stem cell niche (Bosch et al., 2010). In planarians, a ‘global
niche’ (macro-environment) tenet was postulated, implying that
the potential niche is ‘extended to the entire planarian body, in
which long-range signals, released by various differentiated tis-
sues, regulate stem cell behaviour in response to environmental
variations’ (Rossi & Salvetti, 2019, p. 33).

Botryllid ascidians reveal a different scenario relative to
other taxa, with putative ASCs homing to discrete, yet
ephemeral, microenvironments (Table S3). The first pre-
sumed niche, considered a somatic stem cell niche, was iden-
tified in the endostyle area (Voskoboynik et al., 2008), to
which haemoblasts and proliferating cells migrate. Whole-
blood transcriptomes revealed a shared expression of >300

genes with human neural precursors and haematopoietic
bone marrow, suggesting that the endostyle represents
the haematopoietic stem cell niche (Rosental et al., 2018).
Rinkevich et al. (2013) revealed the transient presence of
ASC niches around zooid endostyles, termed ‘cell islands’.
They host cycling putative stem cells that migrate weekly
via the blood vasculature, from degenerating cell islands to
newly formed ones in developing buds, which are also
regarded as ‘ephemeral soma’ (Qarri et al., 2020). Cells
within cell islands express a wide range of markers, including
somatic stem cell markers [including PKC (protein kinase C),
STAT (signal transducer and activator of transcription)],
germ cell markers (Nanos, Vasa, alkaline phosphatase, Piwi)
and signalling components of the BMP, FGF (fibroblast
growth factor) and Slit/Robo (secreted SLIT glycoproteins
and their roundabout receptors) pathways. Trafficking of
germ stem cells between other putative transient niches was
suggested to occur during the weekly blastogenic cycles in
botryllid ascidians (Kawamura, Tachibana & Sunanaga,
2008b; Rosner et al., 2013).

VI. IDIOSYNCRATIC FEATURES ASSOCIATED
WITH ASCs IN INVERTEBRATES

Many of the characters used to identify vertebrate ASCs are
associated with their functions, primarily with the perpetuation
of lineages, replacement of cells due to wear-and-tear and the
supply of differentiated cells for maintenance (Raff, 2003;
Wagers & Weissman, 2004; Morrison & Spradling, 2008;
Rumman et al., 2015; Clevers & Watt, 2018). By contrast,
beyond their functions in supporting homeostasis, ASCs in
many metazoans (Fig. 4; Table S4) also play major roles in sup-
porting key biological features such as regeneration in adults,
including whole-body regeneration, and agametic asexual
reproduction such as budding and fission (Weissman, 2000;
Raff, 2003; Rinkevich et al., 2007, 2009, 2011; De Mulder
et al., 2009b; Isaeva et al., 2009; Bely & Nyberg, 2010;
Funayama, 2018; Lai & Aboobaker, 2018; Ivankovic
et al., 2019; Rossi & Salvetti, 2019; Tables S5 and S6; Figs S1
and S2), as well as regulation of dormancy or torpor-like states
(Hyams et al., 2017; Table S7).
A comprehensive survey across 26 metazoan phyla iden-

tifies ASCs and progenitors with putative roles in homeostasis
(10 out of 26 phyla), regeneration (9 out of 23 phyla able to
regenerate, of which 14 exhibit the capacity for whole-
body-regeneration), asexual reproduction (5 out of 15 phyla),
and in regulating dormant states (6 out of 20 phyla; Fig. 4;
Tables S5–S7). Regeneration patterns, type of dormancy
and asexual modes of reproduction differ among phyla
(Fig. 4) as well as within specific taxonomic groups
(Tables S5–S7; Figs S1 and S2), and are further tuned by
the contributions of dedifferentiation processes (Ferrario
et al., 2020). While proper identification of stem cells or
lineage-committed progenitor cells is still lacking for many
lineages, the literature already indicates major differences
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between ASCs in various species in terms of general and spe-
cific markers for ASCs (the current terminology is based on
the vertebrate ASC literature). Many metazoan phyla show
ASC-associated phenomena not recorded in vertebrates,
both under normal physiological and hostile environmental
conditions, including whole-body regeneration, budding, fis-
sion and fusion of body fragments, and cycles of growth/
decay. When studied in detail, the involvement of multi/
pluri/totipotent ASCs is often revealed (Fig. 4; Tables S5–S7;
Figs S1 and S2). Thus, at least some ASCs in invertebrates
can produce differentiated lineages and can impart stemness
at the totipotent level.

An additional biological feature of ASCs is their roles in
organisms with indeterminate growth (where growth does
not cease at adulthood), reflecting an unfolding ontogenic
trait from birth to death (Vogt, 2012). This rarely studied
phenomenon is characteristic of particular lineages
(e.g. bivalve molluscs, echinoderms, solitary ascidians, anne-
lids) as well as colonial/modular marine invertebrates
(e.g. corals, sponges, bryozoans, ascidians).

VII. DISCUSSION

This review describes ASC states across the breadth of
non-vertebrate metazoans, fuelling the argument that
ASCs in many taxa possess modified and diversified reper-
toires relative to the status and properties of vertebrate
ASCs. Indeed, current ACS concepts were constructed
from studies on vertebrates and select canonical ecdy-
sozoan models (fruit flies, nematodes). It is evident that
the ASC attributes detailed here are not shared by all ani-
mal phyla. However, cumulatively this review emphasizes
that vertebrate ASCs represent a ‘unique’ case that could
be considered distinct frommost other animals. Additional
work is needed to reach a better understanding of ASC
diversity and properties in other lineages in order to obtain
a comprehensive view of the similarities and differences
across the Metazoa.

ASCs in many aquatic invertebrates are the engine for
agametic asexual reproduction and whole-body regenera-
tion; they can be far from rare (up to 40% of the animal’s
cells), and encompass entities with unorthodox cellular
shapes and behaviours (e.g. amoeboid movement). These
ASCs drive whole-organismal functions (dormancy, fission,
fragmentation, budding); co-express repertoires of germ
and somatic lineage markers, refuting the rule of germ cell
sequestration; and may emerge de novo according to need,
without the requirement for a stem cell niche. Additionally,
as the shared stemness capacity of all ASCs ‘cannot be
reduced to the molecular properties of individual cells’
(Lander, 2009, p. 5), we suggest that other ASCs exhibiting
extensive lineage-specific adaptations or distant evolutionary
affinities of ‘stemness’ may go unnoticed.

The traditional powerful metaphor of Waddington’s land-
scape (e.g. Waddington, 1957; Noble, 2015; Moris, Pina &

Arias, 2016; Rajagopal & Stanger, 2016), is an iconic illustra-
tion that describes how sequential developmental fate deci-
sions allow an ASC to transform along alternative
descending cell lineages. Discussed extensively, this meta-
phor reveals the conceptual framework for ASC stemness,
hitherto through the vertebrate perspective. However, Wad-
dington’s metaphor does not cover many ASC phenomena,

Fig 5. A graphical visualization of the ‘wobbling Penrose
landscape’ metaphor. In the Penrose Staircase of stemness (the
dark-blue stairs), totipotent adult stem cells (ASCs) make turns
in ascending or descending courses, forming a continuous
loop, so that the stemness course of a totipotent stem cell could
extend throughout ontogeny (presenting endless totipotency;
with no niche involvement) and never acquires any upper or
lower values. At any step during this journey (represented by
funnels), an ASC may start a labyrinthine journey down
stemness echelons (the grey downhill walls), descending from
one tier (where they can stay, or continue onwards) to a lower
one, downhill to a fully differentiated state (with multipotency
to unipotency levels of stemness correspondingly coloured in
paler blues, see key). The Penrose landscape carries the
property of Escherian movement, allowing continuous passage
of stem cells at any stemness status either up (towards
totipotency, even from fully differentiated states; shown by the
ladders) or sideways to change their stemness status (through
transdifferentiation/dedifferentiation; shown by the ropes). In
the Penrose landscape, as opposed to the hilly Waddingtonian
landscape metaphor (see insert), there is no automatic downhill
route (symbolized by valleys) in potency and no determinant
bifurcated choices, but stemness is portrayed by a flexible,
multi-choice status without a decisive fate. Depending on the
internal and external cues experienced, the Penrose landscape
can ‘wobble’, representing a dynamic landscape of stemness.
Not all ASCs from every lineage display the full range of
movements possible within the wobbling Penrose landscape,
but the cumulative data suggest its existence.
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such as regeneration in non-vertebrate deuterostomes
(echinoderms, hemichordates and cephalochordates), which
is largely based on local dedifferentiation rather than
on undifferentiated ASCs (Ferrario et al., 2020) or transdifferen-
tiation in regeneratingmedusae (Schmid&Reber-Muller, 1995).
These disparities lead us to propose an alternative metaphor,
termed the ‘wobbling Penrose landscape’, which illustrates
metazoan stemness better (Fig. 5). It defines the continuously
acquired totipotency through ontogeny and astogeny
observed in many phyla, and thus differs fundamentally from
the unidirectional trajectory of differentiation in the Verteb-
rata, typified by gradually diminished cellular potency
through ontogeny.

In the classical Waddington’s landscape metaphor
(Waddington, 1957; see inset to Fig. 5), a stem cell begins
its journey at the top of a hill (representing the highest
stemness level, or totipotency) and slides down to bi- or
multifurcated paths within inescapable valleys (signifying
determined fates) in a landscape driven by a metaphorical
gravitational force, which guides the cell into one of several
possible decisions or fates (each leads to a different cell type
and altered level of specification). The kernel of ASC stem-
ness in invertebrates, on the other hand, relies on the logic
of the Penrose staircase (https://en.wikipedia.org/wiki/
Penrose_stairs), an ‘Escherian stairwell’ of stemness. Here
the stairs make turns in ascending or descending courses,
yet form continuous loops, from birth to death, where the
totipotent stemness course of a stem cell lasts for the dura-
tion of the animal’s lifespan (Fig. 5). At any point in the
Penrose staircase, an ASC may start a journey down stem-
ness echelons to initiate cascades of cellular phenotypes and
lineage segregations that recapitulate hierarchies of
potency and differentiated cell types. This cascading land-
scape further allows cells at any point in the slope to turn
back into an ascending trajectory towards higher levels of
stem cell potency. Cells may thus travel all the way up to
the Penrosian loop of totipotency, or move to different sta-
tuses (dedifferentiation, transdifferentiation; Fig. 5),
depicting a dynamic (wobbling) landscape that does not
inevitably entail progressive loss of stemness. Thus, when
a cell ‘makes a decision’, the subsequent journey is not
bound by this decision. Importantly, in this model, there
is no need for the existence of any ASC niches.

The wobbling Penrose landscape diverges conceptually
from the Waddingtonian landscape in three key ways: (i)
there is no bifurcation ‘choice’, or travelling along symbolic
valleys, as in the Waddingtonian landscape, which is subject
to a gravity force. The Penrose landscape is a gravity-
independent construct, allowing continual gradients of cel-
lular potency, without any predetermined decision. (ii) The
likelihood of backward/sideways trajectories in the Wad-
dingtonian landscape has rarely been raised in the literature
(e.g. Pesaresi, Sebastian-Perez & Cosma, 2019) as, concep-
tually, such processes necessitate invested energy. In the
wobbling Penrose landscape, stem cells, progenitors and
even fully differentiated cells at any level of stemness status
can move up or change stemness position (Fig. 5). (iii) There

is no single downward route in the potency slope but,
instead, multiple trajectories of cellular potency can emerge.
The vertebrate literature also reveals cases more in keeping

with the wobbling Penrose than the Waddingtonian unidirec-
tional landscape (e.g. Furusawa & Kaneko, 2012;
Clevers, 2015; Sieweke, 2015; Kholodenko & Yarygin, 2017;
Buczacki, 2019), including ASCs that are not endowed with a
determined fate while subjected to stochastic events
(Clevers, 2015; Post & Clevers, 2019) or cases of ‘stem cell plas-
ticity’ (Loeffler & Roeder, 2002; Poulsom et al., 2002;
Raff, 2003; Wagers & Weissman, 2004; Chac�on-Martínez
et al., 2018) where committed stem cells differentiate or transdif-
ferentiate into different cell lineages.While we do not review the
vertebrate literature extensively here, such putative cases fitting
a wobbling landscape may commonly exist.
As in the vertebrates, ASCs in invertebrates maintain line-

ages, replace cell losses caused by wear-and-tear, and regulate
between quiescence and proliferation. Yet, in many inverte-
brate taxa, stemness is further associatedwith (i) sets of responses
to environmental assaults (e.g. whole-body regeneration, dor-
mancy), or ecotoxicological impacts (Rosner et al., 2021). (ii)
novel biological traits expressed irrespective of environmental
cues (e.g. budding, fission, fragmentation), (iii) innate immunity
(Ballarin et al., 2021), and (iv) indeterminate growth [e.g. sponges,
cnidarians, annelids (e.g. atokous worm stage), tunicates
(Jackson & Coates, 1986; Hughes, 1987; Gazave et al., 2013)],
a largely neglected trait as the conventional models in stem cell
research follow determinate growth plans (Vogt, 2012). Along
this line of acquired traits, aquatic invertebrate ASCs not only
demonstrate a higher fidelity of stem cell renewal, even when
compared with tumorigenesis (Robert, 2010; Vogt, 2012;
Tascedda & Ottaviani, 2014), but in some cases, are also ele-
vated to the level of legitimate units of selection (Buss, 1982;
Rinkevich, 2000, 2009, 2011; Weissman, 2000; Fields &
Levin, 2018).

VIII. CONCLUSIONS

(1) The current paradigm suggests the lifelong existence of
adult stem cells (ASCs) in Metazoa. In vertebrates, ASCs
are defined as lineage-restricted cells, limited to tissue or
organ-specific activities, that are capable of regulating
homeostasis, repair and regeneration of tissues and organs.
While during early embryogenesis stem cells in vertebrates
are totipotent and then pluripotent, post-embryonic ASCs
are multipotent at best. It is widely accepted that vertebrate
ASCs are rare, clonogenic, undifferentiated, and often
express specific ‘stemness’ genes. They are capable of self-
renewal and multilineage differentiation, often interacting
with specialized stem cell niches, and are considered slow-
cycling cells that show distinct germ/somatic lineage poten-
tial. They function in homeostasis and, with constraints, in
the regeneration of organs/tissues.
(2) Numerous key ASC traits in invertebrates differ from

those assigned to ASCs of vertebrates. Fifteen such traits
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are highlighted herein, revealing a wide range of disparate
characteristics from morphology, differentiation states and
somatic/germ lineage characteristics, to some essential bio-
logical properties and roles. Numerous predominantly
marine phyla (e.g. Porifera, Cnidaria, Ctenophora, Anne-
lida, Acoela, Platyhelminthes, Echinodermata, Cephalo-
chordata and Tunicata) possess large pools of bona fide ASCs
throughout the lifespan of the organism (sometimes consist-
ing of up to 40% of all animals’ cells), most of which are
multipotent, pluripotent and even totipotent, with high dif-
ferentiation potential that contribute to more than a single
germ layer. They may arise de novo by transdifferentiation
from somatic cells and even from germ cells, with no signa-
ture of germ-cell sequestration, and are key players in phe-
nomena such as whole-body regeneration, asexual budding
and dormancy. Many invertebrate ASCs consist of epithelial
tissues, exhibiting epithelial cell hallmarks with distinct
apical–basal and planar cell polarities, apical cell–cell junc-
tions, and basal cell–extracellular matrix interactions, all of
which are features of differentiated cells.

(3) ASCs in invertebrates represent a wide range of
phylum-specific and characteristic cell types, morphologies
and behaviours, ranging from sponge archaeocytes and cho-
anocytes, hydrozoan i-cells, platyhelminth or acoel neoblasts
to tunicate haemoblasts. Even within phyla, comparisons
reveal a considerable degree of additional variation, where
ASC properties are possessed by only particular taxa within
a phylum. In the same way, ASC lineages and progenitors
may show intra-phylum specializations.

(4) Invertebrate ASCs express orthologues of many verte-
brate ‘stemness’ genes, as well as genes that contribute to
cancer cell ‘stem cell potential’. However, it is challenging
to identify let alone compare stemness gene signatures across
diverse invertebrate taxa spanning wide evolutionary dis-
tances. The molecular mechanisms by which invertebrates
hold viable ASC stocks, with long-term stability and constant
proliferation during their lifespan, remain elusive. In addi-
tion, the essence of ASC stemness in marine invertebrates
cannot be distilled down to a single shared molecular finger-
print. Also, in contrast to the vertebrates, somatic and germ-
line stemness markers (e.g. Vasa, Pl10, Piwi, Nanos, Bruno,
Pumilio, Tudor, etc.) are co-expressed in differentiated somatic
cells/tissues in many invertebrate phyla.

(5) While knowledge gained from mammalian,
D. melanogaster and C. elegans models provide guidelines for
defining comparable niches in other metazoans, studies on
sponge archaeocytes and choanocytes, hydrozoan i-cells
and platyhelminth and acoel neoblasts have failed to define
either discrete anatomical microenvironments where stem
cells reside, or a niche-specific extracellular matrix to which
ASCs home. In hydrozoans and planarians, studies further
view the whole animal or tissue as a single functional stem cell
niche. Botryllid ascidians, by contrast, reveal a different sce-
nario relative to other taxa, with putative ASCs homing to
discrete, yet ephemeral, microenvironments.

(6) Beyond their functions in supporting homeostasis,
ASCs in many metazoans also play major roles in supporting

key biological processes such as regeneration in adults,
including whole-body regeneration, agametic asexual repro-
duction such as budding and fission, indeterminate growth,
postponed ageing and dormancy phenomena.

(7) Conceptualizing the above disparities, we present an
alternative stemness metaphor to theWaddington landscape,
termed the ‘wobbling Penrose’ landscape. In this metaphor,
totipotent ASCs adopt ascending/descending courses of an
‘Escherian stairwell’, in a lifelong totipotency pathway.
ASCs may also travel along lower stemness echelons to reach
fully differentiated states. However, from any starting state,
cells can change their stemness status, underscoring their
dynamic cellular potencies. Thus, vertebrate ASCs may
reflect just one metazoan ASC archetype.
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Bavestrello, G., Sommer, C. & Sarà, M. (1992). Bidirectional conversion in
Turritopsis nutricula (Hydrozoa). Scientia Marina 56(2-3), 137–140.

*Bely, A. E. & Nyberg, K. G. (2010). Evolution of animal regeneration: re-
emergence of a field. Trends in Ecology & Evolution 25, 161–170.

*Bely, A. E. & Sikes, J. M. (2010a). Acoel and platyhelminth models for stem-cell
research. Journal of Biology 9, 14.

Bely, A. E. & Sikes, J. M. (2010b). Latent regeneration abilities persist following
recent evolutionary loss in asexual annelids. Proceedings of the National Academy of

Sciences of the United States of America 107(4), 1464–1469.
Bely, A. E. & Wray, G. A. (2001). Evolution of regeneration and fission in annelids:
insights from engrailed- and orthodenticle-class gene expression. Development 128,
2781–2279.

Bely, A. E., Zattara, E. E. & Sikes, J. M. (2014). Regeneration in spiralians:
evolutionary patterns and developmental processes. The International Journal of

Developmental Biology 58, 623–634.
Ben Khadra, Y., Sugni, M., Ferrario, C., Bonasoro, F., Oliveri, P.,
Martinez, P. & Candia Carnevali, M. D. (2018). Regeneration in stellate
echinoderms: Crinoidea, Asteroidea, and Ophiuroidea. Results and Problems in Cell

Differentiation 65, 285–320.
Ben Khadra, Y., Sugni, M., Ferrario, C., Bonasoro, F., Varela Coelho, A.,
Martinez, P. & Candia Carnevali, M. D. (2017). An integrated view of
asteroid regeneration: tissues, cells and molecules. Cell and Tissue Research 370, 13–28.

*Ben-Hamo, O., Rosner, A., Rabinowitz, C.,Oren, M. & Rinkevich, B. (2018).
Coupling astogenic aging in the colonial tunicate Botryllus schlosseri with the stress
protein mortalin. Developmental Biology 433, 33–46.

Bennet, A. F. (1994). Exercise performance of reptiles. Advances in Veterinary Science and
Comparative Medicine 38B, 113–138.

Berrill, N. J. (1941). The development of the bud in Botryllus. Biological Bulletin 80(2),
169–184.

Berrill, N. J. (1951). Regeneration and budding in tunicates. Biological Reviews 26,
456–475.

Betti, F., Bo, M., Di Camillo, C. G. & Bavestrello, G. (2012). Life history of
Cornularia cornucopiae (Anthozoa: Octocorallia) on the Conero promontory (north
Adriatic Sea). Marine Ecology 33, 49–55.

Bhambri, A., Dhaunta, N., Patel, S. S., Hardikar, M., Bhatt, A.,
Srikakulam, N., Shridhar, S., Vellarikkal, S., Pandey, R.,
Jayarajan, R. & Verma, A. (2018). Large scale changes in the transcriptome of
Eisenia fetida during regeneration. PLoS One 13(9), e0204234.

Bhattacharyya, K. N., Chaki, K. K., Sarkar, A. K. & Misra, K. K. (2012).
Ultrastructure of the salivary gland cells in active and aestivated mollusk, Pila
globosa (Gastropoda: Orthogastropoda: Ampularidae). Proceedings of the Zoological

Society 65, 64–69.
Bird, A., von Dassow, G. &Maslakova, S. (2014). How the pilidium larva grows.
EvoDevo 5, 13.

Biressi, A., Zou, T., Dupont, S., Dahlberg, C., Di Benedetto, C.,
Bonasoro, F., Thorndyke, M. & Candia Carnevali, M. D. (2010). Wound-
healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis

(Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis.
Zoomorphology 129, 1–19.

Bisbee, J. W., Francis, J. C. &Harrison, F. W. (1989). Cytological examination of
freshwater sponge regeneration from reduction bodies. Transactions of the American
Microscopical Society 108(3), 299–303.

*Blackstone, N. W. & Jasker, B. D. (2003). Phylogenetic considerations of
clonality, coloniality, and mode of germline development in animals. Journal of
Experimental Zoology Part B: Molecular and Developmental Evolution 297, 35–47.

*Blanchoud, S., Rinkevich, B. &Wilson, M. J. (2018). Whole-body regeneration
in the colonial tunicate Botrylloides leachii. InMarine Organisms as Model Systems in Biology

and Medicine (eds M. KLOC and J. Z. KUBIAK), pp. 337–355. Switzerland: Springer.
*Blau, H. M. & Baltimore, D. (1991). Differentiation requires continuous
regulation. Journal of Cell Biology 112(5), 781–783.

*Blau, H. M., Brazelton, T. R. & Weismann, J. M. (2001). The evolving concept
of a stem cell: entity or function? Cell 105(7), 829–841.

*Bode, H. R. (1996). The interstitial cell lineage of hydra: a stem cell system that arose
early in evolution. Journal of Cell Science 109, 1155–1164.

Bode, H. R. & David, C. N. (1978). Regulation of a multipotent stem cell, the
interstitial cell of Hydra. Progress in Biophysics & Molecular Biology 33, 189–206.

Bode, H. R., Flick, K. M. & Smith, G. S. (1976). Regulation of interstitial cell
differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell
population size. Journal of Cell Science 20, 29–46.

Biological Reviews (2021) 000–000 © 2021 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

14 Baruch Rinkevich et al.



Boehm, A. M., Khalturin, K., Anton-Erxleben, F., Hemmrich, G.,
Klostermeier, U. C., Lopez-Quintero, J. A., Oberg, H. H., Puchert, M.,
Rosenstiel, P., Wittlieb, J. & Bosch, T. C. (2012). FoxO is a critical
regulator of stem cell maintenance in immortal Hydra. Proceedings of the National

Academy of Sciences of the United States of America 109, 19697–19702.
Boero, F., Bouillon, J., Piraino, S. & Schmid, V. (2002). Asexual reproduction in

the Hydrozoa (Cnidaria). In Reproductive Biology of Invertebrates. XI Progress in Asexual

Reproduction (ed. R. N. HUGHES), pp. 141–158. Oxford & IBH Publishing Co, New
Delhi & Kolkata.

Bonuccelli, L., Rossi, L., Lena, A., Scarcelli, V., Rainaldi, G.,
Evangelista, M., Iacopetti, P., Gremigni, V. & Salvetti, A. (2010). An
RbAp48-like gene regulates adult stem cells in planarians. Journal of Cell Science 123,
690–698.

*Borisenko, I. E., Adamska, M., Tokina, D. B. & Ereskovsky, A. V. (2015).
Transdifferentiation is a driving force of regeneration in Halisarca dujardini

(Demospongiae, Porifera). PeerJ 3, e1211.
*Bosch, T. C. G. (2009). Hydra and the evolution of stem cells. BioEssays 31, 478–486.
*Bosch, T. C. G., Anton-Erxleben, F.,Hemmrich, G. & Khalturin, K. (2010).

The Hydra polyp: nothing but an active stem cell community. Development, Growth &
Differentiation 52, 15–25.

Bosch, T. C. G. & David, C. N. (1984). Growth regulation in Hydra: relationship
between epithelial cell cycle length and growth rate. Developmental Biology 104(1),
161–171.

Bosch, T. C. G. & David, C. N. (1987). Stem cells of Hydra magnipapillata can
differentiate into somatic cells and germ line cells. Developmental Biology 121(1),
182–191.

*Bossche, J. P. V. & Jangoux, M. (1976). Epithelial origin of starfish coelomocytes.
Nature 261, 227–228.

Braden, B. P., Taketa, D. A., Pierce, J. D., Kassmer, S., Lewis, D. D. & De

Tomaso, A. W. (2014). Vascular regeneration in a basal chordate is due to the
presence of immobile, bi-functional cells. PLoS One 9, e95460.

Bradshaw, B., Thompson, K. & Frank, U. (2015). Distinct mechanisms underlie
oral vs aboral regeneration in the cnidarian Hydractinia echinata. eLife 4, e05506.

Brenneis, G. & Scholtz, G. (2014). The ‘ventral organs’ of Pycnogonida
(Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous
system development. PLoS One 9(4), e95435.

Brockington, S. (2001). The seasonal energetics of the Antarctic bivalve Laternula

elliptica (King and Broderip) at Rothera point, Adelaide Island. Polar Biology 24(7),
523–530.

Brooks, N. E., Myburgh, K. H. & Storey, K. B. (2015). Muscle satellite cells
increase during hibernation in ground squirrels. Comparative Biochemistry and

Physiology - Part B: Biochemistry and Molecular Biology 189, 55–61.
Brown, F. D. & Swalla, B. J. (2007). Vasa expression in a colonial ascidian,

Botrylloides violaceus. Developmental Biology 9, 165–177.
Brown, F. D.& Swalla, B. J. (2012). Evolution and development of budding by stem

cells: ascidian coloniality as a case study. Developmental Biology 369, 151–162.
*Brown, F. D., Keeling, E. L., Le, A. D. & Swalla, B. J. (2009a). Whole body

regeneration in a colonial ascidian, Botrylloides violaceus. Journal of Experimental Zoology
Part B: Molecular and Developmental Evolution 312, 885–900.

Brown, F. D., Tiozzo, S., Roux, M. M., Ishizuka, K., Swalla, B. J. & De

Tomaso, A. W. (2009b). Early lineage specification of long-lived germline
precursors in the colonial ascidian Botryllus schlosseri. Development 136(20), 3485–3494.

Buczacki, S. (2019). Fate plasticity in the intestine: the devil is in the detail. World

Journal of Gastroenterology 25, 3116–3122.
Burighel, P., Brunetti, R. & Zaniolo, G. (1976). Hibernation of the colonial

ascidian Botrylloides leachi (Savigny): histological observations. Italian Journal of

Zoology 43(3), 293–301.
Burns, G., Ortega-Martinez, O., Thorndyke, M. C. & Peck, L. S. (2012).

Dynamic gene expression profiles during arm regeneration in the brittle star
Amphiura filiformis. Journal of Experimental Marine Biology and Ecology 407(2),
315–322.

Burton, P. M. & Finnerty, J. R. (2009). Conserved and novel gene expression
between regeneration and asexual fission in Nematostella vectensis. Development Genes
and Evolution 219, 79–87.

Buscema, M., De Sutter, D. & Van de Vyver, G. (1980). Ultrastructural study of
differentiation processes during aggregation of purified sponge archaeocytes. Roux’s
Archives of Developmental Biology 188, 45–53.

*Buss, L. W. (1982). Somatic cell parasitism and the evolution of somatic tissue
compatibility. Proceedings of the National Academy of Sciences of the United States of America
79, 5337–5341.

Buzgariu, W., Al Haddad, S., Tomczyk, S., Wenger, Y. & Galliot, B. (2015).
Multifunctionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers
3, 1068908.

Buzgariu, W., Crescenzi, M. & Galliot, B. (2014). Robust G2 pausing of adult
stem cells in Hydra. Differentiation 87, 83–99.
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Brunberg, S., Josefsson, J., Arnemo, J. M., Zachar, V., Swenson, J. E. &
Fröbert, O. (2011). Adipose-derived stem cells from the brown bear (Ursus arctos)
spontaneously undergo chondrogenic and osteogenic differentiation in vitro. Stem
Cell Research 7, 89–95.

Fischer, A. B. & Hofmann, D. K. (2004). Budding, bud morphogenesis, and
regeneration in Carybdea marsupialis Linnaeus, 1758 (Cnidaria:Cubozoa).
Hydrobiologia 530(1), 331–337.

Forsthoefel, D. J., James, N. P., Escobar, D. J., Stary, J. M., Vieira, A. P.,
Waters, F. A. & Newmark, P. A. (2012). An RNAi screen reveals intestinal
regulators of branching morphogenesis, differentiation, and stem cell proliferation
in planarians. Developmental Cell 23, 691–704.

Fortunato, S. A. V., Vervoort, M., Adamski, M. & Adamska, M. (2016).
Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum.
EvoDevo 7, e23.

Fraguas, S., C�arcel, S., Vivancos, C., Molina, M. D., Ginés, J.,
Mazariegos, J., Sekaran, T., Bartscherer, K., Romero, R. & Cebrià, F.
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Fig. S1.Diversity of adult stem cell (ASC) contributions to four
major biological processes in the Cnidaria: homeostasis, dor-
mancy, regeneration and agametic asexual reproduction. The
presence of the biological process, involvement of undifferen-
tiated/differentiated putative ASCs or progenitors and their
level of potency, as well as the specific classes of stemness gene
families they express are mapped for major cnidarian lineages.
Circles: empty circle – documented presence of the biological
process; filled circle – cases where putative ASCs or progenitors
are involved. A red cross signifies the absence of the biological
process in the lineage as currently documented. As homeostasis
is a property of life, all groups are shown with an empty circle.
For adult regeneration, the asterisk documents the presence of
whole-body regeneration. Dormancy refers to any documented
type of dormant stage or torpor-like process and has likely
evolved independently in each lineage. For dormancy, A – qui-
escence, diapause, growth/degrowth; G – growth/degrowth; O
– ontogeny reversal; Q – quiescence. For agametic asexual
reproduction, B – any form of budding, F – any form of fis-
sion/fragmentation. Triangles indicate the level of documented
potency for ASCs: red = lineage restricted/unipotent;
cyan = totipotent; blue = multi/pluripotent; gradient
triangle= documented cases of several ASCs or progenitors with
different potency. Selected stemness gene families whose mem-
bers are expressed in ASCs during the biological process are
listed in a box for each process and groupwhere known. The rel-
ative contribution of undifferentiated (U) versus differentiated
(D) ASCs or progenitors within each subclass is mapped onto
the phylogenywhere known; levels of confidence are represented
by solid (higher) and dotted (lower) diamonds, while the sizes of
D and U reflect their presumed level of contribution. A hypo-
thetical ancestral state for this character is proposed at the corre-
sponding node of the simplified cnidarian phylogenetic tree. A
general consensus for all features across Cnidaria is proposed
at the top of the figure. Key species for which data exist in each
subclass are named. Data are derived from Tables S4–S7.
Fig. S2. Diversity of adult stem cell (ASC) contributions to
four major biological processes in the Echinodermata:

homeostasis, dormancy, regeneration and agametic asexual
reproduction. The presence of the biological process, involve-
ment of undifferentiated/differentiated putative ASCs or pro-
genitors and their level of potency, as well as the specific classes
of stemness gene families they express are mapped for major
echinoderm lineages. Circles: empty circle – documented pres-
ence of the biological process; filled circle – cases where puta-
tive ASCs or progenitors are involved. A red cross signifies
the absence of the biological process in the lineage as currently
documented. As homeostasis is a property of life, all groups are
shown with an empty circle. For adult regeneration, the aster-
isk documents the presence of whole-body regeneration. Dor-
mancy refers to any documented type of dormant stage or
torpor-like process and has likely evolved independently in
each lineage. For dormancy, the dotted line circle indicates
potential involvement in the respective biological feature in
non-adults. Q – quiescence. For agametic asexual reproduc-
tion, F – any form of fission/fragmentation. Triangles indicate
the level of documented potency for ASCs (filled) and progen-
itors (empty). Red = lineage restricted/unipotent;
blue = multi/pluripotent; gradient triangle = documented
cases of several ASCs or progenitors with different potency.
Selected stemness gene families whose members are expressed
in ASCs or progenitors during the biological process are listed
in a box for each process and groupwhere known. The relative
contribution of undifferentiated (U) versus differentiated
(D) ASCs or progenitors within each class is mapped onto
the phylogeny; levels of confidence are represented by solid
(higher) and dotted (lower) diamonds, while the sizes of D
andU reflect their presumed level of contribution. A hypothet-
ical ancestral state for this character is proposed at the corre-
sponding node of the simplified echinoderm phylogenetic
tree. A general consensus for all features across Echinodermata
is proposed at the top of the figure. Key species for which data
exist in each class are named. Data are derived from
Tables S4–S7.
Table S1. Properties of selected, well-studied adult stem cell
(ASC) lineages in invertebrates.
Table S2. Genes expressed in invertebrate adult stem
cell (ASCs) and progenitor cells during potency state
changes.
Table S3. Suggested stem cell niches (SCNs) present in
invertebrates.
Table S4. Overview of the involvement of adult stem cell
(ASCs) and progenitors during homeostasis in metazoans.
Table S5. Overview of the involvement of adult stem cell
(ASCs) and progenitors in regeneration processes in
metazoans.
Table S6. Overview of the involvement of adult stem cell
(ASCs) and progenitors in agametic asexual reproduction
(budding, fission/fragmentation) in metazoans.
Table S7. Overview of the involvement of adult stem cell
(ASCs) and progenitors in dormancy in metazoans.
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