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Abstract

Motivation: Metagenomic and metatranscriptomic sequencing have become increasingly popular tools
for producing massive amounts of short-read data, often used for the reconstruction of draft genomes
or the detection of (active) genes in microbial communities. Unfortunately, sequence assemblies of such
datasets generally remain a computationally challenging task. Frequently, researchers are only interested
in a specific group of organisms or genes; yet, the assembly of multiple datasets only to identify candidate
sequences for a specific question is sometimes prohibitively slow, forcing researchers to select a subset
of available datasets to address their question. Here we present PhyloMagnet, a workflow to screen meta-
omics datasets for taxa and genes of interest using gene-centric assembly and phylogenetic placement
of sequences.
Results: Using PhyloMagnet, we could identify up to 87% of the genera in an in vitro mock community
with variable abundances, while the false positive predictions per single gene tree ranged from 0% to 23%.
When applied to a group of metagenomes for which a set of MAGs have been published, we could detect
the majority of the taxonomic labels that the MAGs had been annotated with. In a metatranscriptomic
setting the phylogenetic placement of assembled contigs corresponds to that of transcripts obtained from
transcriptome assembly.
Availability: PhyloMagnet is built using Nextflow, available at github.com/maxemil/PhyloMagnet and is
developed and tested on Linux. It is released under the open source GNU GPL license and documentation
is available at phylomagnet.readthedocs.io. Version 0.5 of PhyloMagnet was used for all benchmarking
experiments.
Contact: max-emil.schon@icm.uu.se
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
High-throughput DNA sequencing has revolutionized biology, opening
up new fields of research and enabling new fundamental insights in the
life sciences. During the past decades, several sequencing technologies
have been developed, each differing significantly in sequence read
length, quality and throughput (Mardis, 2017). Applications comprise

DNA shotgun sequencing as well as RNA sequencing of complex
microbial communities, termed metagenomics and metatranscriptomics,
respectively (Mitchell et al., 2018).

Large environmental sequencing initiatives like the Tara Oceans
project (Sunagawa et al., 2015) have provided researchers with enormous
amounts of metagenome data. Using recently developed genome-resolved
or genome-centric metagenomic approaches, draft genomes or MAGs
(Metagenome assembled genomes) of uncultured taxa can be assembled
for the first time from shotgun metagenomic sequencing data of microbial
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communities (Alneberg et al., 2014; Eren et al., 2015). In order to apply
those tools, however, metagenome assembly needs to be performed,
which is computationally demanding and introduces additional challenges
compared to single genome assembly such as the uneven coverage of
contigs (contiguous sequences) from different organisms or the presence
of micro-diversity (Quince et al., 2017). Together with the ever-growing
sequencing capacity, it becomes increasingly demanding to identify which
of the available datasets (publicly deposited or locally generated sequence
datasets) actually contain sequence data of a given taxon or gene of interest.

Instead of assembling short reads into longer contigs, the taxonomic
composition of a metagenomic or metatranscriptomic dataset can be
assessed using microbiome profilers that classify reads directly. In general,
these tools base their classification on the comparison of reads to reference
sequences with a known taxonomy, and either work similar to the BLAST
algorithm (e.g. Huson et al., 2016; Truong et al., 2015) or use exact k-
mer matches to such reference sequences to classify reads (e.g. Ounit
et al., 2015; Wood and Salzberg, 2014). Development in this area is
continuing in order to increase analysis speed while reducing memory
footprint. Currently, DIAMOND is one of the fastest local aligners that has
a sensitivity comparable to BLAST (Buchfink et al., 2015), and MetaCache
is one of the fastest and most memory efficient k-mer based classifiers,
using only a discriminatory subset of available k-mers (Müller et al., 2017).
All of these approaches, however, are based on sequence similarity, which
can be incongruent with the true phylogenetic relationship of sequences
(Smith and Pease, 2017).

Traditional phylogenetic tools on the other hand offer several robust
evolutionary models for both nucleic and amino acids that theoretically
allow for a more reliable taxonomic assignment of sequences, but are
slow compared to similarity-based methods, usually prohibiting their
application to large metagenome datasets. In addition, short reads
generally do not provide enough phylogenetic signal, leading to artifactual
inferences (Matsen et al., 2010). Several tools have been developed
to overcome these barriers by instead placing fragmentary sequences
(particularly from amplicon sequencing data) onto a phylogenetic
reference tree (Matsen et al., 2010; Berger et al., 2011; Barbera et al.,
2019).

Shotgun metagenomic or metatranscriptomic data is often analysed
with a focus on gene rather than genome reconstruction, and is then usually
called gene-centric. In this approach, the short reads or the assembled
sequences are partitioned according to their affiliation to gene families.
These methods can be used to determine which genes are present or
actively transcribed in a sample, and can be combined with assemblers to
reconstruct full-length sequences for a gene of interest. There exist several
gene-centric targeted assemblers that perform de-novo reconstruction, e.g.
via an overlap graph of candidate reads (Kucuk et al., 2017; Pericard
et al., 2017; Steinegger et al., 2019; Gruber-Vodicka et al., 2019). While
several of those only reconstruct the 16S rRNA gene or are limited to
transcriptomic data, the MEGAN gene-centric assembler reconstructs
contigs based on the alignment of reads to any reference protein sequence
(Huson et al., 2017).

A recently published tool, GraftM, uses the ideas of phylogenetic
placement and gene-centric metagenomics to taxonomically classify
sequences of genes within metagenomes (Boyd et al., 2018). It is capable
of placing either short-read sequences or pre-assembled metagenomic
contigs onto a single reference tree at a time, but does not perform gene-
centric assembly, which would increase phylogenetic signal of query
sequences. Additionally, its reference trees can only be inferred using the
extremely fast but less accurate maximum-likelihood-based tree inference
program FastTree (Price et al., 2010; Zhou et al., 2018). Here, we present
PhyloMagnet, an efficient workflow management system for parallel
handling of both references and queries, gene-centric assembly, and robust

phylogenetic inference, and show that it outperforms GraftM in terms of
runtime and classification precision and sensitivity.

The goals of the work presented here were to:

i Create a computational workflow that could determine the presence
of taxa of interest in large short-read datasets based on gene-
centric assembly and robust phylogenetic inference, especially with
the objective of selecting good candidate datasets for metagenomic
assembly and genome-resolved metagenomics;

ii Create a workflow that uses state-of-the-art methods and is versatile
and fast enough to accommodate a broad range of applications, while
being modular in order to easily incorporate new approaches;

iii Compare the workflow’s performance in terms of computational
footprint and sensitivity/precision to GraftM, another recently
published tool with a similar application.

2 Implementation
PhyloMagnet exploits the idea of gene-centric assembly (Huson et al.,
2017) to efficiently screen sequence datasets of short reads for target
genes, and to taxonomically classify assembled gene sequences using
phylogenetic placement. Below is a description of the analysis steps
employed by the pipeline (see also Fig. 1), which requires the following
inputs:

a One or several query short-read sequence data files in FASTQ
or FASTA format (potentially ‘raw’, untrimmed reads, see 2.3),
corresponding to the metagenomic or transcriptomic dataset(s) to
query (Fig. 1:1);

b One or several homologous groups of reference proteins, each
sequence annotated with its taxonomic affiliation (in the EggNOG
format, containing ncbi’s taxonomy ID and a unique identifier, e.g.
’70448.Q0P3H7’).

2.1 Alignment and tree reconstruction of references

For each input group of reference sequences a multiple sequence alignment
is computed using either MAFFT (Katoh and Standley, 2013) or PRANK
(Löytynoja and Goldman, 2010), without applying any filtering or
trimming methods. Then a reference tree is reconstructed using any of
IQ-TREE (Nguyen et al., 2015), RAxML-NG (Stamatakis, 2014; Kozlov
et al., 2019) or FastTree (Price et al., 2010), making it possible to choose
the appropriate method for a specific analysis. This way the user can make
a trade-off between speed and quality of the reference tree and choose the
appropriate evolutionary model. Reference alignments and trees can be
precomputed (e.g. on a local machine) and then provided to PhyloMagnet
as a compressed reference package (e.g. on an HPC cluster). This also
increases reproducibility, as such reference packages can be released
alongside results.

2.2 Alignment to reference protein sequences

Identifiers from the EggNOG database, containing orthologous groups
of protein sequences from all domains of life with functional annotations
(Huerta-Cepas et al., 2016b), can be specified to be used as input reference
sequences. Alternatively, sets of homologous protein sequences curated by
the user in FASTA format can be used. In order to check for the potential
presence of homologs encoding these proteins of interest in the query
metagenomes or metatranscriptomes, each of the short-read datasets given
as input (see 2.a above) is then aligned to the collection of reference protein
sequences using the DIAMOND aligner in blastX mode (Fig. 1:2; Buchfink
et al., 2015).
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Fig. 1. Illustration of the main steps in the PhyloMagnet workflow. (1) The required input is a dataset of short reads. (2) These reads are aligned against the complete set of protein references
(blastX). (3) Using the protein alignments, homologous gene sequences are reconstructed for all groups of reference proteins. (4) The contigs are added to the reference protein alignments
(5) and are subsequently placed onto the reference phylogenetic tree. (6) The results of the placement are summarized and the classification is visualized.

2.3 Gene-centric assembly of reads

In a subsequent step, PhyloMagnet uses the gene-centric assembler
implemented in MEGAN (Huson et al., 2016, 2017) to assemble reads
into contigs (Fig. 1:3). The assembly is performed independently for each
orthologous group of reference proteins, and the available alignments
of reads to the protein reference sequences of a group is used to infer
overlaps between reads, thereby concatenating them into contigs. As only
the aligned part (core) of each read is used for the assembly, no pre-
processing such as adapter clipping or quality trimming is needed. The
results are written to a FASTA file per orthologous group if any contig
in that group passes the cut-off for the minimum length (200bp, can be
adjusted if needed) that the gene-centric assembler uses. The assembled
contigs are already in-frame and are subsequently translated into amino
acid sequences using the standard genetic code.

2.4 Phylogenetic placement of reconstructed protein
sequences

Next, the assembled and translated contigs are aligned to the alignments
of each homologous reference group (maintaining the columns of the
previously computed reference alignment), using the phylogeny-aware
alignment tool PaPaRa (Fig. 1:4; Berger and Stamatakis, 2011). This
alignment of reference sequences and contigs is then used to place the
contigs onto the reference tree using the evolutionary placement algorithm
(EPA-ng) (Fig. 1:5; Berger et al., 2011; Barbera et al., 2019). In a final stage
the tool gappa is used to annotate the internal branches of the reference
tree and assign taxonomic labels to the translated contigs based on the
likelihood weights of the placement (Czech and Stamatakis, 2019). Then
a summary list of taxonomic labels is created.

2.5 ‘Magnetizing’ trees and identifying candidate datasets

The user can choose to specify taxonomic names (e.g. ’Escherichia’)
that should be used to filter (‘magnetize’) the list of all labels, specify a
taxonomic rank (e.g. ’family’), or a combination of both. The occurrences
of the chosen taxonomic labels are summarized per reference group and
metagenomic or transcriptomic datasets in order to assist manual decision
of candidate datasets (Fig. 1:6). The information of how many trees were
positive for a taxon of interest can be used as an approximation of coverage

(see 4). The user could for example select datasets that display differential
coverage for subsequent genome extraction, which often relies on such
differences to group genome contigs together (Albertsen et al., 2013;
Alneberg et al., 2014).

2.6 Availability

PhyloMagnet is an open source software package and released under
a GPLv3 license. It is written as a Nextflow (Di Tommaso et al.,
2017) script and available on github (github.com/maxemil/PhyloMagnet).
Several functions and utilities are implemented either in python or bash
(Dalke et al., 2009; McKinney, 2010; Huerta-Cepas et al., 2016a). All
needed dependencies are available as a singularity (Kurtzer et al., 2017)
container (singularity-hub.org/collections/978) and the documentation can
be found on ReadTheDocs (phylomagnet.readthedocs.io).

3 Benchmarking
To evaluate the performance of the PhyloMagnet workflow and exemplify
its potential uses, we performed three benchmark experiments using an
in vitro mock community as well as environmental metagenomic and
metatranscriptomic sequencing datasets. We chose the datasets such that
we could compare the results produced by PhyloMagnet to reference
genome mapping data (Singer et al., 2016), genomes extracted from
metagenomes with taxonomic annotation (Delmont et al., 2018) and an
assembled metatranscriptome (Frazier et al., 2017), respectively. For
details on command line parameters see the supplementary methods.

3.1 Reference sequences

To assess the general taxonomic composition of datasets we used a set
of 16 ribosomal proteins (rp16) that are thought to represent reliable
phylogenetic markers, as they should be vertically inherited throughout
evolution and present in a single copy in most organisms (Brown et al.,
2015). For this, we downloaded the corresponding sets of unaligned
homologous sequences from the EggNOG database v4.5.1 (Huerta-Cepas
et al., 2016b).

As a second set of reference protein sequences, we used the set of
12 protein coding genes known to be present in chloroplast genomes of
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Dinophyceae (Howe et al., 2008). This phylum of single-celled algae can
be found in a wide range of aquatic environment and notably contains coral
symbionts within the genus Symbiodinium (Gómez, 2012). For each of the
genes we downloaded all available curated chloroplast encoded protein
sequences for all phyla from UniProt (Apweiler et al., 2004) as well as all
available proteins from the Dinophyceae from the same database.

All reference groups were aligned using MAFFT E-INS-i (Katoh and
Standley, 2013) and reference trees were reconstructed using IQ-TREE
(under the LG+G+F model; Nguyen et al., 2015).

3.2 Datasets

The first dataset we selected was the MBARC-26 (Mock Bacteria ARchaea
Community), an in vitro mock community of 23 bacterial and 3 archaeal
strains (in 24 genera) with finished reference genomes that were pooled
and sequenced on an Illumina HiSeq instrument (Singer et al., 2016).
As the taxonomic classification is dependent on the reference sequences,
we added orthologous sequences to the EggNOG rp16 references for
those genera missing from the original EggNOG datasets. To avoid
using identical sequences as references, we used available genomes from
related species within the same genera to expand the rp16 references.
The orthologous proteins were identified by performing HMMER (v3.1b2;
Eddy, 2011) searches of the EggNOG rp16 reference alignments against
the additional proteomes (see supplementary methods). These extended
rp16 references were then used as references in PhyloMagnet in order to
classify the MBARC-26 short-read data.

As a second dataset we used several metagenomic datasets from the
geographic region ‘Southern Ocean’ that are part of the metagenomic
datasets of the Tara Oceans Initiative, as defined by Delmont et al.
(2018). We used the EggNOG rp16 references to assess taxonomic
composition in those datasets and compared the results to the taxonomic
classification of the MAGs reconstructed by Delmont et al. (2018). The
authors extracted 375 genome bins from these datasets, but only presented
detailed information, including taxonomy, for 13 ‘non-redundant’ MAGs
that passed several quality and completeness filters. To be able to compare
our classification results to a more extensive set of extracted genome bins,
we inferred taxonomic labels for those bins that were not part of the 13
non-redundant MAGs using the tool sourmash that uses k-mer matches to
taxonomically classify genomes (Titus Brown and Irber, 2016).

Finally, we analysed the metatranscriptomes published by Frazier
et al. (2017), who sequenced mRNA from both healthy corals and
such that are affected by so-called ‘bleaching’, a stress response in
which Symbiodinium symbionts are expulsed (Howe et al., 2008). We
used the chloroplast protein references to search for Dinophyceae (and
especially Symbiodinium) sequences in the metatranscriptome data. We
then compared the assembled sequences and their placement in the
reference trees with the sequences from the metatranscriptomic assembly
available at NCBI’s GEO database (Barrett et al., 2012). Similar to
how the assembly was generated, we combined all of the 27 individual
datasets by Frazier et al. (2017) into a single dataset for this analysis. In
order to identify the transcripts in the assembly, we performed a tblastN
search, querying the reference sequences against a database of the quality
filtered transcripts. The identified sequences were then, analogous to how
sequences are classified in PhyloMagnet, placed onto the reference tree
with EPA-ng.

3.3 Comparison with GraftM

We compared the performance of PhyloMagnet with that of the recently
published tool GraftM (Boyd et al., 2018, v0.11.1). GraftM also places
sequences (either unassembled reads or pre-assembled contigs) onto a
reference phylogeny using the tool pplacer, for which EPA-ng represents
a scalable replacement that is able to handle larger amounts of data.

We created GraftM reference packages (gpkgs; containing the reference
alignment, tree and the taxonomic annotation) from each of the extended
rp16 references using the create command (see supplementary methods).
We then used each gpkg to analyse the MBARC-26 dataset and recovered
taxonomic classifications of the query sequences. For both tools, we
counted the number of genera that were correctly identified in each tree
(true positives) as well as the number of genera that were identified even
though they were not present in the MBARC-26 mock community (false
positives). We also assessed the runtime and memory consumption of
both tools for analysis of the full MBARC-26 dataset (50 Gb) as well as
for subsamples of 1% and 10% (0.5 and 5 Gb, respectively).

4 Results

4.1 Classification of ribosomal proteins in the MBARC-26
dataset

We evaluated the performance of PhyloMagnet and GraftM to detect the
presence of the 24 MBARC genera (23 of those detectable, as Nocardiopsis
was part of the pooled community but not present in the sequence data from
Singer et al., 2016) in the metagenomic dataset (Fig. S1 and Table S1).
The number of correctly detected as well as falsely reported genera are
displayed in Fig. 2. PhyloMagnet correctly identified up to 20 (87%) of
the MBARC genera and up to 7 (with an average of 2) false positive genera
in all of the 16 trees. In contrast, GraftM identified a maximum of 9 (39%)
of the correct MBARC genera while giving up to 14 (with an average of 4)
false positives for each tree (Fig. 2). Some of the reported false positive and
false negative errors of both PhyloMagnet and GraftM could be attributed
to closely related and possibly unresolved taxonomic groups such
as Escherichia/Salmonella, Thermobacillus/Paenibacillus or possibly
Clostridium/Ruminiclostridium. Another confounding factor might be the
well-known disagreement between phylogeny and taxonomy in some
cases (e.g. Escherichia/Salmonella; Retchless and Lawrence, 2010). Some
taxa with very low abundance in the data (e.g. Corynebacterium and
Clostridium) were picked up by GraftM but not PhyloMagnet, which is
likely due to the fact that there are not enough reads to reconstruct longer
contigs for theses taxa, impeding an identification by PhyloMagnet as we
used the default cut-off implemented in the gene-centric assembler. In
general we observe a correspondence between the percentage of mapped
reads (Singer et al., 2016) and the number of trees a genus was detected
in (Fig. S2), suggesting that we can use the number of trees as a rough
proxy for the abundance of a taxon in a dataset. When comparing results
for the full dataset and the subsampled datasets, PhyloMagnet seems to
profit immensely from the additional data, likely because the assembler
can connect more reads and thus reconstruct more contigs above the
length threshold. In terms of runtime, PhyloMagnet is twice as fast as
GraftM when using 10 threads, making more efficient use of available
computational resources. It uses, however, significantly more memory
due to the requirements of MEGAN that performs the memory intensive
sequence assembly, which GraftM does not include (see Fig. S1).

We tested the performance of PhyloMagnet in a scenario where no
sequences from the correct genus or family were available by removing
the respective sequences from the rp16 references. PhyloMagnet was then
run on each such reference dataset and we assessed wether the correct
family or order was recovered. Our results show that if not the right genus
(or family) is present but only other sequences from the corresponding
family (or order), the right taxon could be recovered in 30% and 20% or
the reference trees (see Fig. S3). To further compare the performance of
PhyloMagnet with that of a k-mer based metagenome profiling tool, we
used Kraken2 (Wood and Salzberg, 2014; Wood et al., 2019) to classify the
MBARC-26 dataset. Kraken performs the classification at a significantly
higher speed and with a very good recovery rate of true positives, but also
predicts a significant amount of false positive labels (see Fig. S4).
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Fig. 2. Classification results of PhyloMagnet and GraftM on the MBARC-26 dataset. True positive and false positive (on the negative y-axis including zero) values are shown for both
PhyloMagnet (blue circles) and GraftM (red triangles) and for each reference OG (x-axis). The 3 different dataset sizes are shown by lighter (1%), middle (10%) and darker (full dataset)
shades of the respective color.

4.2 Classification of taxa in the Tara Southern Ocean
dataset

The PhyloMagnet workflow could identify 65 taxa (families) over the
8 datasets and 16 reference trees, whereof 21 were found in at least 4
trees for at least one dataset (Fig. 3). These taxa cover all but one of the
taxonomic groups for which genomic bins could be identified by Delmont
et al. (2018, marked with an asterisk in Fig. 3). Most noticeable, the
authors of that study recovered 6 non-redundant high-quality MAGs for
the family Flavobacteriaceae which could be identified in every single
tree for each dataset here as well. Further, the original authors identified
one MAG each within the Alteromonadaceae, the Rickettsiales and the
Alphaproteobacteria as well as two within Gammaproteobacteria. All of
these taxonomic groups were detected by PhyloMagnet except for the
Rickettsiales, who could have been misidenfied as Pelagibacterales in the
phylogenetic placement. Alternatively, the genomic bins could have been
mislabelled as Rickettsiales and actually belong to the Pelagibacterales, as
those two lineages commonly artifactually branch together in phylogenetic
trees due to convergent genome streamlining resulting in a similar sequence
composition bias (Roger et al., 2017; Martijn et al., 2018; Rodríguez-
Ezpeleta and Embley, 2012; Viklund et al., 2013). It is very likely that
the MAGs that were labelled as Gammaproteobacteria by Delmont et al.
(2018) are actually members of the Piscirickettsiaceae or Porticoccaceae,
which were both detected by PhyloMagnet in several individual datasets
and the majority of single gene trees. Here, we also recovered the additional
taxonomic labels (Porticoccaceae, Rhodobacteraceae, Pelagibacteraceae,
Cryomorphaceae) that could be assigned to raw genomic bins (which
were not included in the original analyses as they did not pass quality
and/or completeness thresholds) from the same study (Table S2). Some
of the labels we recovered were not represented by any MAGs/Bins,
indicating either false positive classification of contigs or a low abundance
of the genomic DNA, such that no genome bins could be reconstructed by
Delmont et al. (2018).

4.3 Identification of chloroplast genes in the Coral
bleaching dataset

Using PhyloMagnet contigs were reconstructed from the pooled coral
bleaching dataset of Frazier et al. (2017). Using the Phylogenetic
placement workflow, contigs classified as Symbiodiniaceae could be
identified in 10 out of the 12 chloroplast gene reference trees. The
number of contigs that were reconstructed for each gene from the pooled
sequencing data of 23 datasets ranged from 2 (psbE) to as many as 169
(psbA), whereas we could identify either one or two transcripts from the
corresponding published transcriptome assembly for 9 out of the 12 genes.

The two genes for which no contigs could be reconstructed were psbI and
petD, both missing in the assembled transcriptome as well, which is likely
due to two distinct issues. First, the psbI gene is only around 30 amino
acid residues long, making contigs shorter than the default length cut-off of
200bp implemented in the gene-centric assembler. Besides, psbI has never
been identified, experimentally or computationally, in any Symbiodinium
species, but the identification within the Dinophyceae comes from the
species Amphidinium operculatum (Nisbet et al., 2004; Barbrook et al.,
2014). Second, it seems that the transcription level of petD is quite low,
so that very few reads would have been sequenced, making assembly of
contigs or transcripts virtually impossible (Nisbet et al., 2008). In those
cases where transcripts could be identified, they were generally placed on
the same branches or very close within the reference tree as were all of the
corresponding contigs (Fig. 4).

5 Conclusion
We have shown that by applying phylogenetic placement methods to
protein sequences that were reconstructed from short-read sequencing
data, our PhyloMagnet workflow can accurately identify short-read
sequence datasets that contain sequences for genes and taxa of interest.
We compared PhyloMagnet to a similar tool that does not rely on using
a gene-centric assembly approach and demonstrated that PhyloMagnet is
faster and has a higher precision and sensitivity (at the price of consuming
more memory).

PhyloMagnet allows researchers to explore the microbial diversity
of a specific clade, or to specifically assess the presence of a metabolic
pathway of interest. For example, PhyloMagnet was able to identify several
lineages from single gene trees that match the results of a genome-resolved
metagenomic study, showcasing how our tool could be used to screen the
contents of a metagenomic dataset before applying metagenome assembly
and binning methods.

Finally, we have also shown that the gene-centric phylogenetic
approach of PhyloMagnet can be successfully used to efficiently detect
expressed genes of taxa of interest in metatranscriptomic datasets.

Hence, PhyloMagnet represents a powerful tool that will enable
researchers to pre-screen large metagenomic and metatranscriptomics
datasets prior to engaging in time and resource consuming computational
analyses in their research.
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