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Abstract

In this work, we present the efficient combination of Smolyak representations with time indepen-

dent quantum mechanical approach using absorbing boundary conditions for the cumulative reac-

tion probability calculations of a multidimensional reactive scattering problem. Our approach uses

both kinds of Smolyak representations (finite basis and grid) which drastically reduces the size of

the basis representation for the cumulative reaction operator. The cumulative reaction probability

is thus obtained by solving the eigenvalue problem within the context of reaction path Hamiltonian

using the compact Smolyak basis combined with an iterative Lanczos algorithm. Benchmark cal-

culations are presented for reactive scattering models with a linear reaction coordinate and applied

to a 25D model highlighting the efficiency of the present approach for multidimensional reactive

processes.

∗ yohann.scribano@umontpellier.fr
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I. INTRODUCTION

Cumulative Reaction Probability (CRP), here designed as N(E), is the key ingredient for

the description of elementary chemical reactive scattering and represents one of the major

research field of theoretical chemistry and chemical physics[1]. In terms of the S matrix

theory[2], the CRP is defined as the sum of all state-to-state reaction probabilities at a

given energy by:

N(E) =
∑
nr

∑
np

∣∣Snrnp(E)
∣∣2 (1)

The sum is running over all open reactants and products channels (respectively asymptotic

states nr and np).

The most rigorous way to compute CRP of Eq.(1), is to perform Time Independent Quan-

tum Mechanical (TIQM) simulations for each collisional energy using the Close-Coupling

method[3–5]. This formalism is very well suited at low collisional energy for which a small

number of reactive and non-reactive channels are involved and leads to the determination of

the full state-to-state scattering matrix elements Snrnp(E). This approach was successfully

applied to both abstraction and insertions chemical reactions[6–10].

Many years ago, Miller and co-workers have proposed a direct calculation of the thermal

rate constant from the formalism of the flux correlation functions[11, 12]. The main advan-

tage of the Miller re-formulation is its efficiency for directly computing N(E) (and also the

thermal rate constant) which does not require the knowledge of individual S-matrix elements

unlike the S-matrix Kohn technique[13]. Based on this efficient reformulation of the CRP,

Seideman and Miller[14, 15] have then introduced a Discrete Variable Representation (DVR)

for both the Hamiltonian and the flux operator. By imposing absorbing boundary conditions

(ABC) they were able to get a well-behaved representation of the outgoing wave Green’s

function operator (leading to the DVR-ABC method). Moreover, Manthe and Miller [16]

have done an important progress in the reformulation of the CRP calculation by proposing

to compute it as the trace of an operator, the reaction probability operator P̂ (E):

N(E) = Tr
[
P̂ (E)

]
=
∑
k

pk(E)

= 4 Tr
[
ε̂r Ĝ(E) ε̂p Ĝ(E)†

]
(2)
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with the natural reaction probabilities pk(E) [17, 18] which all lie between 0 and 1. In the

above equation, ε̂r,p are absorbing potentials at the boundaries of the interaction region,

respectively towards the reactant and product regions of the potential energy surface and

Ĝ(E) = (E + iε̂− Ĥ)−1 is the Green’s function operator and Ĥ the Hamiltonian operator.

This approach was used by many other groups [19–22] for (3D) reactive processes but was

not applied to more challenging problems (with large number of Degrees of Freedom, DOF)

due to its intrinsic limitation. Indeed, as in any other eigenvalue problems (bound states

calculations), performing simulations for systems with many degrees of freedom require the

use of huge sets of basis functions. This is the famous curse of dimensionality, a well-know

problem met in vibrational bound state computations.

In this work, we propose to extend the ability to use the Miller and co-workers’s method

(the direct calculation of the CRP) to multi-D scattering. To achieve this goal, we propose

to use an efficient representation basis based on the concept of sparse grids and Smolyak

representations introduced many years ago by Smolyak.[23] The Smolyak’s schemes were

more recently introduced by Avila and Carrington[24–26] for vibrational spectroscopy of

semi-rigid molecules and also proposed by Lauvergnat and Nauts[27–29] for molecular spec-

troscopy of systems with one DOF with large amplitude motion. More recently, it was

extended to the eigenvalue calculation of confined diatomic molecule[30–33] and to van der

Waals complexes.[34–36] The present work involves the use of a Smolyak scheme for the

representation of the cumulative reaction probability operator P̂ (E) in combination with an

iterative Lanczos algorithm in order to determine its eigenvalues.

The outline of the paper is as follows. In Sec.II, we first describe the theoretical and com-

putational scheme used within this work as well as the multidimensional chemical reaction

model used as a benchmark on which we applied it. Sec.III presents our results using the

proposed numerical scheme and finally, Sec.IV concludes and presents perspectives of this

work.
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II. THEORY AND COMPUTATIONAL METHOD

A. Smolyak basis set representation

The concept of Smolyak scheme was introduced [23] many years ago and has seen renewed

interest in recent years. In its translated English paper in 1963[23], Smolyak proposed two

equivalent schemes to circumvent the exponential scaling of the basis set or grid sizes when

the number of 1D-basis sets or the number of degrees of freedom, n, increases. With respect

to others basis set selection or pruning approaches[37], the Smolyak schemes enable to use

a consistent way to push away the exponential scaling for both the basis set and the grid.

In its second scheme, Smolyak has shown that a large direct-product can be substituted by

a sum of small direct-products:

Srep =
∑

L−n+1≤|`|≤L
(−1)L−|`|CL−|`|

n−1 · S1
`1
⊗ S2

`2
⊗ · · · ⊗ Sn`n with |`| =

n∑
i=1

`i (3)

where C
L−|`|
n−1 are binomial coefficients. In this Eq. (3), one can select the small direct-

products (S1
`1
⊗ S2

`2
⊗ · · ·Sn`n) kept in the sum satisfying the constraint on |`| related to the

definition of the Smolyak scheme:

L− n+ 1 ≤ |`| ≤ L (4)

where, L is a parameter which controls the number of Smolyak terms in the sum and

therefore the basis set (Nb) and grid (Nq) sizes. In Eq. (3), the Si`i can be a finite basis

set (Bi
`i

with nbi`i basis functions) or finite quadrature grid points (Gi
`i

with nqi`i grid points

and weights).

Formally, nbi`i and nqi`i can be defined by any increasing sequences in `i. In the present

study, their expressions are given by:

nbi`i = Ai +Bi · `i and nqi`i = nbi`i (5)

Within this work, we keep the same value of the L parameter for both Smolyak’s repre-

sentations (for the grid representation and the finite basis representation). This choice was

done regarding several benchmark calculations which have shown that no better convergence

is obtained introducing two distincts parameter LB and LG as it was done previously in vi-

brational bound states calculations studies.[28, 31] Then, any vector |u〉 can be represented
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as a “weighted” sum of Smolyak contributions
∣∣u`1,`2···`n〉 as:

|u〉 =
∑

L−n+1≤|`|≤L
(−1)L−|`|CL−|`|

n−1 ·
∣∣u`1,`2···`n〉 (6)

and each contribution is expanded on a small direct-product S1
`1
⊗S2

`2
⊗· · ·Sn`n parametrized

by the `i of either restricted basis sets or restricted grids. In terms of basis functions, the

contribution sizes, are
∏n

i=1 nb
i
`i

and, they can be different from one another. Furthermore,

since a multidimensional basis function can present in several Smolyak contributions, we

need a mapping table between this basis function in a Smolyak contribution and the one

in |u〉. Therefore, the size of |u〉 is smaller than than the sum of the
∏n

i=1 nb
i
`i

. This

representation, as a sum of Smolyak contributions
∣∣u`1,`2···`n〉 of any vector is fundamental

so that the action of an operatorcan be split on the different Smolyak contributions.

B. Time-independent quantum mechanical method

In the present work, we compute the cumulative reaction probability as defined by Sei-

deman and Miller[14]:

N(E) = Tr
[
Γ̂r.Ĝ(E).Γ̂p.Ĝ

†(E)
]

(7)

with

Ĝ(E) = (E − Ĥ + iε̂)−1 and ε̂ =
1

2

(
Γ̂r + Γ̂p

)
(8)

and where Γ̂α = 2ε̂α for α ≡ {r, p} (reactant and product). In the case of systems with many

degrees of freedom, it was well established that the trace of the cumulative reaction operator

as defined by Eq.(2) can be computed without explicitly computing (and storing) the full

matrix representation of cumulative reaction probability operator. Indeed, we only need to

evaluate the action of the operator P̂ (E) on a vector and its eigenvalues will thus be easily

computed by an iterative eigenvalue solver. The iterative method used in this work is the

one implemented in the ARPACK library[38] and based on the Implicitly Restarted Lanczos

algorithm (IRL). As a Krylov space method, it estimates a set of extremal eigenvalues by

computing successive applications of P̂ (E) to a randomized starting vector. Given that the

basis set is well suited for its representation, a low number of Lanczos iterations in compar-

ison to the initial size of the working basis is enough to get an accurate estimate of N(E).
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The number of required iterations scales with the number of non negligible eigenvalues which

needs to be accounted for.

The main task of the iterative Lanczos scheme to compute the CRP is thus linked to

our ability on applying; at a given total energy E; the Green’s function Ĝ(E) on a given

vector expanded in the working basis set. Since we have an efficient compact Smolyak

finite basis representation, we can build and store the full matrix representation of any

operator involved in the definition of the cumulative reaction operator. This allows us to

easily evaluate the action of this former operator by simple matrix-vector products. Each

action of the cumulative reaction probability operator on a vector requires two operations

of the Green’s function operator onto a vector (acting sequentially all various matrices).

The action of the Green’s function operator (using its matrix representation) onto a vector

requires that we solve the set of linear equations :

G−1(E).w = u (9)

where G−1(E) = (E + iε −H) and the vector u is known. We solved the linear equation

system using a LU decomposition[39] of the inverted Green’s function matrix appearing

in Eq.(9). This decomposition is done only once for a given energy E. The action of the

Green’s function (leading to the vector w) being subsequently obtained by backward sub-

stitution.

C. Multidimensional chemical reaction models

To highlight the efficiency of our methodology, we apply it to a multidimensional model

of a chemical reaction with many degrees of freedom. We consider the nD dimensional

bottleneck Hamiltonian model defined as:

Ĥ =
p̂2x
2m

+ V0(x) +
n∑
i=2

p̂ 2
yi

2m
+ Vc(x,y) (10)

where V0(x) is the one-dimensional potential defined along the rectilinear reaction coordinate

x and Vc(x,y) represents the multidimensional potential describing the coupling between the

x coordinate and all the other bath coordinates yi (that we can represent by y in a vectorial
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notation). Potentials used within this work are defined as:

V0(x) = V0 sech2(αx) and Vc(x,y) = m
n∑
i=2

ω2
0

2

[
1 + b sech2(αx)

]
y2i (11)

where along the x coordinate the potential shape is that of an Eckart barrier, while

along the other yi coordinates the potential is shaped as an harmonic oscillator. Parameters

involved in the potential function (m is the mass of the particle) are chosen as m = 1060

a.u., α = 1 a.u., V0 = ω0 = 0.425 eV. An illustration of the potential is reported on Fig.1,

where contour lines of a 2D potential (defined by a reaction coordinate x coupled with a

single harmonic mode y) are plotted.

D. Computational details

The calculation of the CRP is performed within the approximation that the Green’s func-

tion representation is done with optical potentials located in the two asymptotic regions,

the left (reactants) and the right (products). Considering the Implicitly Restarted Lanczos

parameters, the number of requested eigenvalues was taken equal to the number of eigenre-

action probabilities noc at a given energy, and the length of the Arnoldi factorization was set

to 2noc as suggested in ARPACK documentation. The number of restarts needed to achieve

convergence is between 2 and 16 depending on the system and energy considered.

In this work, we have used an optical potential proposed by González-Lezana et al.[40]

and derived from a semi-classical approximation[41] given by:

εr,p(x) = ε0

(
4

(κr,p(x) + c)2
+

4

(κr,p(x)− c)2 −
8

c2

)
(12)

with

κp(x) =


x− xp
Wp

, x > xp

0 , x < xp

κr(x) =


−x− xr

Wr

, x < xr

0 , x > xr

(13)

and where c = 2.62206 as proposed in Ref.[40].
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In Eq.(13), x designs the coordinate along which the optical potential is introduced and

xr,p are the onset positions respectively in the reactants and products asymptotes of the

absorbing regions (xp > 0 > xr). The width of this optical potential form is given by

c ×Wr,p. We chose aforementioned parameters to ensure Green’s function representation

will be accurate down to a minimum collision energy Emin = 0.0105 a.u., which is associated

to a value of N(Emin) = 1.7028×10−3 in the one-dimensional scattering through the Eckart

barrier V0(x). This criterion sets ε0 = Emin and Wp,r = 1.33 a.u.. Onset positions are

xp,r = ± 4 a.u. so that the absorbing bands are far enough from the interaction region.

In the following chemical reaction model, we use the Smolyak representation presented

in section II A for all coordinates. The Krylov space associated to the probability reaction

operator is built in the finite basis Smolyak representation, using specific basis for each kind

of coordinates. For the reactive coordinate x we use particule-in-a-box (PIB) basis functions

ψj(x) =
√

2/a sin(jπ(x/a+ 1/2)) where a = xp−xr+(Wp+Wr).c is the width of the box so

that the range of x is [−a/2, a/2]. For all the others remaining coordinates, we use harmonic

oscillator (HO) basis functions with a coordinate rescaling parameter β =
√
mω0 suited for

the potential. In the following calculations, the same constraint parameter L is used for

both grid and finite basis representation. For both basis set types, we use quadrature grid

points adapted to the basis: a set of equally space grid points for the PIB basis set and

gauss Hermite grid points for the HO basis set.

III. RESULTS AND DISCUSSION

1. Multidimensional uncoupled model: comparison to analytical results

In order to benchmark our approach, we start with a un-coupled multidimensional model

which can be solved exactly. In the uncoupled case (b = 0) an analytical result is obtainable

by microcanonical convolution of the one-dimensional CRP through the Eckart Barrier, for

which an analytical formula is known[14, 42].

NnD(E) =
∑
v

N1D(E − Ev) with Ev =
n∑
i=2

h̄ ω0

(
vi +

1

2

)
(14)
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where E is the total energy. The sum in Eq.(14) carries on all energetically allowed channels

(Ev < E). The Smolyak parameters of the sequences seen in Eq.(5) are such as (Ax =

50, Bx = 50) for the x reaction coordinate and (Ai = 1, Bi = 1) for all other coordinates (for

i = 2, . . . , n). For the (1+2)D system model (n = 3), both the complete sum and the channel

bundles associated to the same total vibrational number |v| =
n∑
i=2

vi are represented in Fig.2.

Additionally, two calculations using different parameters LB are drawn. The calculation

with LB = 1 (red circles) is accurate in the energy range between 1.5 and 3.5h̄ω0. It does

not account for the contribution of additional opened channels at higher energies, as this

Smolyak scheme contains eigenfunctions of harmonic oscillators up to |v| = 1, which are

sufficient to represent scattering states from the 2 first bundles only. Oscillations seen above

E = 4h̄ω0 are due to a lack of basis functions along the reaction coordinate x associated

to higher momentum. Of course, Smolyak parameters Ax = 50 and Bx = 50 could ( and

should ) be decreased to match the energy domain of accuracy for the y modes Smolyak

parameters (Ai, Bi) in order to minimize computational cost. Still, it is illustrative to see

the effects of insufficient basis sizes for reaction and bath coordinates separately.

Increasing LB to 2 increases both the maximum |v| for which harmonic eigenfunctions

are included in the Smolyak sum and the highest collisional energy along x accurately

resolved. 3 more channels associated to |v| = 2 are accounted for (red dots), in agreement

with the analytical result. In Tab. (I) are reported the number of converged eigenvalues pk

requested from the Lanczos algorithm for different values of E. Each eigenvalue is associated

to a different energetically allowed channel from equation (14) and satisfies 0 ≤ pk ≤ 1.

The lowest eigenvalues computed in each case are given in Tab.I along with N(E). Both

cumulative reaction probability N(E) and individual eigenreaction probabilities pk are well

converged.

2. Multidimensional coupled model

To benchmark our approach, for multidimensional coupled system, we first consider a

coupled 3-dimensional system model with a coupling parameter b = 0.1. Now, the 1-D basis

functions associated to yi coordinates are no longer partial eigenfunctions of Vc(x,y). Hence,

a larger constraint parameter L will be needed to construct an accurate representation of

scattering states and obtain converged CRP values. Smolyak parameters are identical to the
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ones in the previous section, with decreased reaction coordinate parameters (Ax = 40, Bx =

40). On Fig.3 a comparison of N(E) obtained with Smolyak constraint parameters from 1

to 3 and an ABC-DVR calculation with energy cutoff is drawn.

In the range considered, that is up to |v| = 2, an excellent agreement is observed between

the results for L = 3 and the calculations using direct product DVR. By decreasing L,

scattering states associated to higher vibrational excitations |v| = L cannot be accurately

represented with the remaining Smolyak terms as they lack excited HO basis functions.

The corresponding eigenreaction probabilities are very similar to those of the uncoupled

potential model, as one would expect. In this simple case, choosing L = |vmax| + 1 is

enough to maintain accuracy.

Secondly, we applied our numerical scheme for the CRP calculation of a 25D system

model. The same convergence with respect to L was observed in those calculations keeping

other Smolyak parameters unchanged. The CRP of this 25-dimensional coupled bottleneck

system model obtained with L = 2 is drawn in Fig. 4. In this figure, we have also reported

two approximated results obtained from reduced dimensional calculations using adiabatic

and energy shifting models as proposed by Bowman.[43] The adiabatic model shows a global

better agreement with our exact results than the energy shifting model. Our full dimen-

sional calculation highlights the ability of our procedure to investigate high dimensional

scattering processes. In Tab. II are reported the sizes of the Smolyak basis and grid for

multidimensional bottleneck system models considered (from 3D to 25D), with L = 2, and

the corresponding direct product grid size is also given as a comparison. Smolyak grid size

benefits from a substantially better scaling law with the system’s size. Ending up 102 times

smaller than the direct product grid for the 9D system, its use allows a valuable reduction in

numerical requirements. This efficiency gap between a direct product grid and an adapted

Smolyak scheme continues to widen for bigger systems. The ratio is of the order of 108 for

25 DOF, making the computation unfeasible using the direct product grid. The Smolyak

basis compactness makes it the most advantageous to carry the final steps of linear algebra

described in section II B.

On Fig. 5 we report the size of the Smolyak finite basis representation used to compute

the eigenvalues of the reaction probability operator. We show that the size grows reasonably

with the dimensionality of the system model. Even for 25 DOF, the size of the basis (14

040 basis functions) is very far from the size that could reach a direct product basis. We
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also oberve on this figure that advantage of the Smolyak basis is even more confirmed if

we increases the value of the Smolyak parameter L since the Smolyak basis do not increase

dramatically increasing L by unit.

IV. CONCLUSIONS

In this paper, we have applied an efficient Smolyak scheme in a multidimensional chemical

reactive scattering model (bottleneck potential). Our 25D simulations have highlighted

that strong convergence of the CRP calculations can be reached using moderate number of

Smolyak basis functions. The high reduction of the basis size allow us to use the full matrix

representation of all operators used to define the probability reaction operator P̂ (E). Within

this work, we ensure a converged CRP calculations using of a basis truncation criteria, the

Smolyak parameter L.

The efficient contracted Smolyak representation with absorbing boundary condition (SR-

ABC method) used in this work will allow us to investigate high dimensional chemical

reactions for which most of the previous theoretical studied are based on a the use of small

reduced dimensional models. The feasibility of our method to increase the number of active

coordinates in any reduced dimensional scheme should be as important than to increase the

accuracy of the electronic structure calculation as reported by Farahani et al. in their study

of a SN2 mechanism.[44]

The present results are very encouraging and the new computational scheme will be used

to investigate much more complex reactive systems such as complex abstraction chemical

reactions characterised by the formation of a long-lived intermediate complex. Indeed, this

approach should be much relevant for more complex chemical reactions such as insertion

reactions for which calculations are notoriously more difficult. Further extensions of the

present work could be investigated for a more realistic representation of the chemical reac-

tivity. It is for example possible to relax the actual rectilinear model using a curvilinear

Reaction Path Hamiltion (RPH) formulation. We can indeed use an exact numerical deriva-

tion of the Kinetic Energy Operator for the RPH using the most adapted set of curvilinear

coordinates as provided by the numerical code TNUM.[45] function application on a given

Lanczos vector. Indeed, the LU matrix decomposition scales in CPU time as N3 and re-

quires storage of at least the N ×N Hamiltonian matrix, will be a limiting factor for very
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high dimensional problems. The use of efficient preconditioner[46] in the Green’s function

calculation is also a possibility to increase again the efficiency of our numerical scheme of

CRP’s calculation. Such development is actually investigated in our laboratories. Moreover

the present methodology based on the Green’s function calculation with absorbing bound-

ary conditions can be used for other processes than bimolecular reactions, as for example

photodissociation processes (or radiative association, the inverse process), which can be

investigated in a very similar way to what has been presented in this article.
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cage of structure II clathrate hydrate: Vibrational frequency shifts from fully coupled quantum

six-dimensional calculations of the vibration-translation-rotation eigenstates, J. Chem. Phys.

150(15), 154303 (2019).

[32] D. M. Benoit, D. Lauvergnat and Y. Scribano, Does cage quantum delocalisation influence

the translationrotational bound states of molecular hydrogen in clathrate hydrate?, Faraday

Discussions 212, 533 (2018).

[33] A. Powers, Y. Scribano, D. Lauvergnat, E. Mebe, D. M. Benoit and Z. Bačić, The effect of
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Energy (h̄ω0) noc pmin
k CRP (3D)

This work Analytical

1.667 1 1.50280×10−3 1.50280×10−3 1.51411×10−3

2.163 1 9.51417×10−1 9.51417×10−1 9.51155×10−1

2.863 3 8.06611×10−2 1.16132 1.16245

3.1545 3 9.44637×10−1 2.88927 2.88849

3.738 6 6.98826×10−3 3.02095 3.02103

4.117 6 8.98919×10−1 5.69676 5.70027

TABLE I. Cumulative reaction probabilities computed for the 3D uncoupled bottleneck potential

model with Smolyak constraint parameter L = 2 compared with the analytical result obtained

by microcanonical convolution (see the text). For each energy is also reported the number of

eigenreaction probabilities noc as well as its smallest value pmin
k .
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Dimension Smolyak Basis Smolyak Grid Direct Product grid

3D 400 1 120 1 080

6D 1 120 3 640 29 160

9D 2 200 7 600 787 320

12D 3 640 13 000 21 257 640

15D 5 440 19 840 573 956 280

25D 14 040 53 040 3.3891544×1013

TABLE II. Scaling of the Smolyak scheme basis sizes with increasing dimension for the coupled

bottleneck calculations with Smolyak constraint parameter L=2, and other parameters as in sect.

III 2. Direct Product grid size is computed as (Ax + Bx × L)×
n∏
i=2

(Ai + Bi × L). See discussion.

18



−0.1

−0.05

0

0.05

0.1

−4 −3 −2 −1 0 1 2 3 4

y
[a
.u
.]

x [a.u.]

FIG. 1. Contour lines illustrating the coupled bottleneck potential. The reaction coordinate is

labelled by x and y is one of the equivalent coupled harmonic degrees of freedom.
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FIG. 2. Cumulative reaction probability for the 3D uncoupled bottleneck. In black continuous

curve is the analytical result, in dashed curves are the analytical contributions from each bundle of

channels associated to a total vibrational number. In red circles is the numerical result obtained

for L=1, in red dots for L=2.
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FIG. 3. Cumulative reaction probability for the coupled (b = 0.1) 3-dimensional bottleneck po-

tential. In black curve is the DVR calculation, Smolyak scheme numerical results are drawn for

L=1,2,3 with squares, circles and dots respectively.
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FIG. 4. Full dimensional cumulative reaction probability for the coupled (b = 0.1) 25-dimensional

bottleneck potential using L = 2 and reduced dimensional calculations (adiabatic and energy

shifting models[43]).
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FIG. 5. Smolyak FBR basis size as a function number of degrees of freedom (DOF) and for different

values of L. Values of other Smolyak parameters correspond to the coupled (b = 0.1) bottleneck

case.
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