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Abstract 13 

Determining the phylogenetic origin of mitochondria is key to understanding the ancestral mitochondrial 14 

symbiosis and its role in eukaryogenesis. However, the precise evolutionary relationship between 15 

mitochondria and their closest bacterial relatives remains hotly debated. The reasons include pervasive 16 

phylogenetic artefacts, as well as limited protein and taxon sampling. Here, we developed a new model of 17 

protein evolution that accommodates both across-site and across-branch compositional heterogeneity. 18 

We applied this site-and-branch-heterogeneous model (MAM60+GFmix) to a considerably expanded 19 

dataset that comprises 108 mitochondrial proteins of alphaproteobacterial origin, and novel metagenome-20 

assembled genomes from microbial mats, microbialites, and sediments. The MAM60+GFmix model fits 21 

the data much better and agrees with analyses of compositionally homogenized datasets with 22 

conventional site-heterogenous models. The consilience of evidence thus suggests that mitochondria is 23 

sister to the Alphaproteobacteria to the exclusion of MarineProteo1 and Magnetococcia. We also show 24 

that the ancestral presence of a crista-developing MICOS complex (a Mitofilin domain-containing Mic60) 25 

supports this relationship. 26 

Introduction 27 

Mitochondria stem from an ancient endosymbiosis that occurred during the origin of eukaryotic cells1. As 28 

a result, all extant eukaryotes have mitochondria or evolved from mitochondrion-bearing ancestors1–3. 29 

Some hypotheses have it that mitochondria provided excess energy required for the origin of eukaryotic 30 

complexity4, whereas others suggest that mitochondrial symbiosis brought efficient aerobic respiration 31 

into a more complex proto-eukaryote5. The nucleocytoplasm of eukaryotes is now known to be most 32 

closely related to Asgard archaea6–8. Mitochondria, on the other hand, have been known for decades to 33 

be phylogenetically associated with the Alphaproteobacteria9,10,1. However, the precise relationship 34 

between mitochondria and the Alphaproteobacteria, or any of its sub-groups, has been elusive and 35 

remains a matter of intense debate (e.g., see 11,12). Settling this debate will provide insights into the nature 36 

of the mitochondrial ancestor and the ecological setting of its endosymbiosis with the host cell1. 37 

Mitochondria have been placed in various regions of the tree of the Alphaproteobacteria. Most early 38 

studies suggested that mitochondria were most closely related to the Rickettsiales13–20 (Rickettsiales-39 

sister hypothesis), a group classically known for comprising intracellular parasites. This led many to 40 

believe that mitochondria evolved from parasitic alphaproteobacteria18,21. However, relationships between 41 

mitochondria and the Pelagibacterales22,23, Rhizobiales24, or Rhodospirillales25 have also been proposed. 42 

These alternative proposals suggested that mitochondria may have evolved from either streamlined or 43 

metabolically versatile free-living alphaproteobacteria22–25. Most recently, the phylogenetic placement of 44 

mitochondria has been vividly debated11,12. One study found mitochondria as a sister group to the entire 45 

Alphaproteobacteria (i.e., the Alphaproteobacteria-sister hypothesis)11. This conclusion was supported by 46 

the inclusion of novel alphaproteobacterial metagenome-assembled genomes (MAGs) from worldwide 47 
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oceans, and by decreasing compositional heterogeneity through site removal. However, a subsequent 48 

study argued that removing compositionally heterogeneous sites from alignments might lead to the loss of 49 

true historical signal26,12.The authors of the latter study, instead, used a taxon-removal and -replacement 50 

approach, and concluded that mitochondria branch within the Alphaprotoebacteria as sister to the 51 

Rickettsiales and some environmental metagenome-assembled genomes (MAGs)12. 52 

There are several reasons why it is difficult to confidently place mitochondria among their 53 

alphaproteobacterial relatives. First, the evolutionary divergence between mitochondria and their closest 54 

bacterial relatives is estimated to have occurred >1.5 billion years ago27,28. This has erased the historical 55 

signal (e.g., through multiple amino acid replacements) that was originally present in the few genes that 56 

mitochondria and alphaproteobacteria still share. Second, the Alphaproteobacteria is under sampled and 57 

most of its diversity remains to be discovered, as suggested by recent metagenomic surveys11. Third, and 58 

perhaps most problematic, the genomes of some lineages in the Alphaproteobacteria and those of 59 

mitochondria have undergone convergent evolution. For example, the Rickettsiales and Holosporaceae 60 

(intracellular bacteria)29, or the Pelagibacterales and ‘Puniceispirillaceae’ (planktonic bacteria)30, have 61 

reduced or streamlined genomes with compositionally biased genes similar to those of mitochondria. The 62 

genes and genomes of these taxa are biased towards A+T nucleotides (and their proteins towards F, I, M, 63 

N, K, and Y amino acids) in contrast to other groups that have not evolved reductively (which might be 64 

biased towards G+C nucleotides and G, A, R, and P amino acids)29. This sort of compositional 65 

heterogeneity is often the cause of artefactual attractions among lineages with similar compositional 66 

biases in phylogenetic inference31. 67 

To cope with the aforementioned sources of phylogenetic errors, we developed and implemented a new 68 

phylogenetic model of protein evolution that accounts for compositional heterogeneity across both 69 

alignment sites and tree branches. Moreover, we also gathered an expanded set of 108 proteins of 70 

alphaproteobacterial origin in eukaryotes (in comparison to <67 previously available) and assembled 71 

more than 150 non-marine alphaproteobacterial MAGs from microbial mat, microbialite, and lake 72 

sediment metagenomes. We combined these improvements to explore and dissect the phylogenetic 73 

signal for the origin of mitochondria present in both modern eukaryotes and alphaproteobacteria. 74 

Results 75 

To date, most studies that aimed to phylogenetically place the mitochondrial lineage have relied 76 

exclusively on mitochondrion-encoded protein datasets that range from 12 to 38 proteins16–18,32,11,12. 77 

These markers are not only few (e.g., 24 genes and 6,649 sites in 11) but tend to be compositionally 78 

biased because most mitochondrial genomes are rich in A+T. The only set of nucleus-encoded proteins 79 

of mitochondrial origin published thus far comprises 29 proteins19,20. 80 

To expand the number of proteins for placing the mitochondrial lineage, we systematically surveyed both 81 

nuclear and mitochondrial proteomes. After a multi-step phylogenetic screening, we identified 108 marker 82 

proteins of alphaproteobacterial origin in eukaryotes. Of these, 64 are exclusively nucleus-encoded, 27 83 

are both nucleus- and mitochondrion-encoded, and 17 are exclusively mitochondrion-encoded proteins 84 

(Fig. 1A, Fig. S1). Our expanded dataset comprises most marker proteins previously identified11,19,20 and 85 

adds 56 new ones (Fig. S1). Functional annotations show that these proteins have diverse functions 86 

within mitochondria (Fig. 1B, Table S1). Most are involved in energy metabolism (e.g., respiratory chain 87 

complex subunits) and protein synthesis (e.g., ribosomal subunits) (Fig. 1B, Table S1). The fact that all 88 

these proteins have mitochondrial functions strengthens the view that the genes that encode them were 89 

transferred from (proto-)mitochondria to nuclear genomes and are therefore not secondary lateral 90 

transfers to eukaryotes. The new nucleus-encoded proteins also tend to have much less variable and 91 

biased amino acid compositions in comparison to those which are mitochondrion-encoded and some that 92 

are both nucleus- and mitochondrion-encoded (Fig. 1A). Similarly, nucleus-encoded proteins also have a 93 

broader range of G A R P/F I M N K Y amino acid ratios of 0.70‒1.95, whereas mitochondrion-encoded 94 

proteins have a range of 0.25‒0.77 which suggests that they are much more compositionally biased 95 

towards F I M N K Y amino acids (and their genes towards A+T). The expanded set of nucleus-encoded 96 
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genes are expected to increase phylogenetic signal by virtue of increasing the amount of data, and also 97 

introduce potentially less compositionally biased sequences that could otherwise cause phylogenetic 98 

artefacts. 99 

Most studies have exclusively relied on genomes of cultured alphaproteobacteria (e.g., 18–20,32). Only one 100 

recent study incorporated novel alphaproteobacterial MAGs from metagenomes sequenced by the Tara 101 

Oceans project11. So far, all of these alphaproteobacterial MAGs came from oceanic open waters and 102 

tend to be small and A+T-rich11. Moreover, none of them appeared to be most closely related to 103 

mitochondria to the exclusion of other alphaproteobacteria11. 104 

To further increase taxonomic sampling across the Alphaproteobacteria, we assembled MAGs from 105 

metagenomes sequenced from diverse microbial mats, microbialites, and lake sediments (see Table S2 106 

for details). In addition, we also screened MAG collections released previously11,33–39, as well as the 107 

GTDB r89 database40, for potentially phylogenetically novel alphaproteobacteria—together, these 108 

databases comprise more than ~ 3,300 alphaproteobacterial genomes and MAGs. The newly assembled 109 

MAGs were considerably diverse and widely distributed across the tree of the Alphaproteobacteria (Fig. 110 

1C). Despite considerably expanding the sampled diversity of the Alphaproteobacteria, however, most of 111 

these new MAGs appear to fall within previously sampled major clades (Fig. 1C, Fig. 1D, Table S3), 112 

including those recently reported11,40 (Fig. 1D, Table S3). The most novel MAGs include new members of 113 

the ‘early-diverging’ MarineProteo1 clade whose genomes are relatively small (1.43‒2.71 Mbp) and not 114 

heavily compositionally biased towards A+T (43.6‒59.7%) (Fig. S2, Table S4). In addition, several novel 115 

MAGs for ‘basal’ members of the Rickettsiales were found to be larger (1.47‒2.36 Mbp) and enriched in 116 

G+C (49.2‒61.2 or ~49.3% on average) relative to previously sampled members of this group (>0.6‒2.11 117 

Mbp and 32.1‒34.2% G+C on average in the Rickettsiaceae, Anaplasmataceae, and Midichloriaceae) 118 

(Fig. S2, Table S4). The new alphaproteobacterial MAGs have moderate-to-high quality (according to 119 

criteria by 39,40; 53.41‒100% completeness and 0‒9.17 redundancy), a wide range of G+C content (30.3‒120 

73.5%) and sizes (0.88‒4.85 Mbp), and varying degrees of phylogenetic novelty (0.99‒0.56 Relative 121 

Evolutionary Divergence score40) (Fig. 1D, Table S3)—this suggests that the methods used here to 122 

recover MAGs were not biased toward those with certain features (e.g., small sizes or high A+T content). 123 

Most of the new MAGs, which are widely distributed across the Alphaproteobacteria tree, also appear to 124 

encode an almost-complete set of bacteriochlorophyll biosynthesis enzymes which suggest that they 125 

come from photosynthesizers in the diverse environments sampled (e.g., microbial mats; Fig. 1D, Table 126 

S3).  127 
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 128 

Figure 1. An expanded gene set and novel alphaproteobacterial MAGs from diverse environments. 129 

(A) Principal Component Analysis (PCA) of amino acid compositions for each one of the 108 130 

mitochondrial genes of alphaproteobacterial origin used in this study. Mitochondrion-encoded genes (light 131 

red); Mitochondrion- and nucleus-encoded genes (light blue); nucleus-encoded genes (green); 95% 132 

confidence ellipses follow the same color code as genes. This PCA was inferred from alignments that 133 

contain only eukaryotes. (B) Functional classification of the marker genes of alphaproteobacterial origin in 134 

eukaryotes used for multi-gene phylogenetic analyses in this study. All these functions take place inside 135 

mitochondria. A: Complex I subunit/assembly factor; B: Complex II subunit/assembly factor; C: Complex 136 

III subunit/assembly factor; D: Complex IV subunit/assembly factor; E: Complex V subunit/assembly 137 

factor; F: Cytochrome c biogenesis; G: D-lactate dehydrogenase (respiratory chain); H: Pyruvate 138 
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dehydrogenase complex subunit; I: Krebs cycle; J: Ribosome large subunit; K: Ribosome small subunit; 139 

L: Ribosome translational factor; M: rRNA modification/maturation; N: tRNA modification/maturation; O: 140 

Aminoacyl-tRNA synthetase; P: RNA polymerase; Q: Branched-chain amino acid/fatty acid metabolism, 141 

R: Pyrimidine biosynthesis; S: Ubiquinone biosynthesis; T: Protein import/export; U: Iron-sulfur cluster 142 

biogenesis; V: Clp protease complex subunit; W: Proteasome-like complex subunit; X: Mitochondrial 143 

division (see also Table S1). (C) Phylogenetic tree of 154 novel MAGs reported here, the 45 MAGs 144 

reported by Martijn et al. (2018), and 1,188 of maximally diverse alphaproteobacterial genomes in GTDB 145 

r89 database. Taxon sample reduction was done with Treemmer41 and phylogenetic inference with IQ-146 

TREE (-fast mode) and the LG4X model (120 GTDB-Tk marker genes; 14,048 amino acid sites). (D). 147 

Phylogenetic tree for the 154 alphaproteobacterial MAGs reconstructed from diverse metagenomes 148 

sequenced in this study and summary of major features for each MAG. Tree was inferred with IQ-TREE (-149 

fast mode) and the LG4X model after having removed 50% of most compositionally heterogeneous ɀ 150 

sites (120 GTDB-Tk marker genes; 7,024 amino acid sites) (see also Table S3).  151 
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To address recent controversies11,26,12, we first assembled the largest dataset to date that includes a new 152 

set of 64 nucleus-encoded and 44 mitochondrion-encoded proteins (108 genes in total and 33,704 amino 153 

acid sites; see above). Our dataset also comprised a wide taxon sampling with twelve mitochondria from 154 

diverse eukaryotes (from most ‘supergroups’), and a broad set of 104 alphaproteobacteria that covered 155 

all major known lineages and maximized phylogenetic diversity (subsampled from a set of more than 156 

3,300 genomes; see Methods). Importantly, our dataset incorporated several Rickettsiales species that 157 

have short branches and are less compositionally biased (Fig. 1D, Fig. S2, Table S4), as well as novel 158 

representatives of the MarineProteo1 clade (Fig. 1D, Fig. 2A, Table S4). Instead of relying on Beta-, and 159 

Gammaproteobacteria as outgroups (as in 11,12), we used the much closer Magnetococcia which has 160 

been consistently found to be sister to all other alphaproteobacteria (e.g., 11,12,20). This was done to 161 

decrease potential artefactual attractions between the long mitochondrial branch and distant outgroups, a 162 

concern raised before11,26,12. Furthermore, we also removed sites estimated to have undergone functional 163 

divergence at the origin of mitochondria (these represented only 5.2% of all sites) using the FunDi mixture 164 

model42. This was done to reduce potential artefacts from model misspecification as no phylogenetic 165 

model currently available adequately captures such patterns of functional divergence in proteins. 166 

We first analyzed our dataset using the MAM60 site-heterogeneous model that was specifically inferred 167 

from our own dataset—this model has been shown to have a better fit than generic site-heterogenous 168 

models (e.g., C10-60)43. Analyses on the untreated dataset (i.e., without compositionally heterogeneous 169 

sites removed) placed mitochondria as sister to all of the Alphaproteobacteria with maximum support, i.e., 170 

both the monophyly of the Alphaproteobacteria and the Alphaproteobacteria-mitochondria clade were 171 

fully supported (Fig. 2A). However, these analyses also recovered the grouping between the 172 

Pelagibacterales, Holosporaceae, and other long-branching species (Fig. 2C, Mendeley Data) that, in 173 

previous work29, were shown to artefactually attract each other because of similar amino acid 174 

compositional biases. A common strategy for dealing with compositional heterogeneity in the absence of 175 

site-and-branch-heterogeneous models is to remove alignment sites based on metrics that quantify their 176 

compositional heterogeneity11,12,29. The progressive removal of the compositionally most heterogeneous 177 

sites according to the ɀ and χ2 metrics11,29,44 disrupted compositional attractions and showed clear support 178 

for the Alphaproteobacteria-sister hypothesis (Fig. 2B, Fig. 2C).  179 

Because nucleus-encoded and mitochondrion-encoded proteins display different amino acid 180 

compositional patterns (Fig. 1A), we also analyzed these two protein sets separately. Whereas nucleus-181 

encoded proteins unambiguously supported the Alphaproteobacteria-sister hypothesis across all 182 

analyses (Mendeley Data), the mitochondrion-encoded proteins showed decreased support for this 183 

hypothesis as compositionally heterogeneous sites are removed (Fig. S3, Mendeley Data). However, no 184 

alternative hypothesis was favored and any placement of mitochondria among the Alphaproteobacteria 185 

was unsupported for mitochondrion-encoded proteins (Fig. S3; Mendeley Data). This suggests that 186 

mitochondrion-encoded proteins may have a more equivocal phylogenetic signal. Unlike in many previous 187 

studies19,20,12,11, we did not find support for the Rickettsiales-sister hypothesis in any of our analyses 188 

(Mendeley Data).  189 
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 190 

Figure 2. Phylogenetic tree of the Alphaproteobacteria and mitochondria, and support from our 191 

new site-and-branch-heterogeneous model. (A) Phylogenetic tree for the Alphaproteobacteria and 192 

mitochondria derived from a site-heterogeneous analyses of an untreated dataset. (B) Phylogenetic tree 193 

for the Alphaproteobacteria and mitochondria derived from a site-heterogeneous analysis of a dataset 194 

from which 50% of the most compositionally heterogeneous sites according to the ɀ metric had been 195 

removed. The removal of this amount of ɀ sites minimizes the variation of G A R P/F I M N K Y amino 196 

acid ratios across taxa (Table S5). The taxonomic labels follow the higher-level taxonomy outlined in 29. 197 

Thickened branches represent branch support values of >90% SH-aLRT and >90% UFBoot2+NNI. (C) 198 

Variation in support values for the placement of mitochondria outside of the Alphaproteobacteria (SH-199 

aLRT and UFBoot2+NNI) throughout the progressive removal of compositionally heterogenous sites 200 

according to the ɀ and χ2 metrics. Support for the branch that groups mitochondria with all 201 

alphaproteobacteria (but excludes MarineProteo1 and the Magnetococcia) is always maximum (i.e., 202 

100% SH-aLRT /100% UFBoot2+NNI; Mendeley Data). (D) Heatmap table summarizing the differences 203 

in log-likelihoods (lnL) relative to the highest log-likelihood for several alterative placements of 204 

mitochondria (A1-14 and B1-B12 in (A) and (B); see Table S6 and Fig. S4 for all tree topologies) under a 205 

conventional site-heterogeneous model (MAM60) and our new site-and-branch-heterogeneous model 206 

(MAM60+GFmix). Models (rows) are arranged in increasing order (from top to bottom) according to lnL 207 

values. For each model (row), tree topologies (columns) are arranged in increasing order (from left to 208 

right) according to lnL values. Absolute log-likelihood values for each tree (A-T) under the different 209 

models tested are reported within parentheses. For all four models, all topologies other than the 210 

maximum-likelihood tree were rejected with p-values of < 0.0001 according to Bonferroni-corrected χ2 211 

tests. See Table S6 for all tree topologies and datasets tested.  212 
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All studies to date have exclusively relied on either site-homogenous or purely site-heterogeneous 213 

models (e.g., CAT in PhyloBayes or C60 in IQ-TREE)11,12,14–20,22,23,32. Indeed, no tractable model that 214 

accounts for compositional heterogeneity across branches and sites simultaneously is available; current 215 

branch-heterogeneous models cannot be combined with site-heterogenous models31, or are too 216 

computationally intensive and suffer from convergence problems45,46. To overcome these shortcomings, 217 

we developed a model that captures the most important compositional heterogeneity in 218 

alphaproteobacterial genomes— namely the variation in the G A R P/F I M N K Y amino acid ratio that is 219 

driven by variation in G+C vs. A+T nucleotide content (see 29). Our new branch-heterogeneous model, 220 

GFmix, models the variation in the ratio of G A R P/F I M N K Y amino acid frequencies across the 221 

phylogenetic tree in combination with conventional site-heterogeneous models (e.g., C10-60, MAM and 222 

UDM models). Briefly, this model requires a rooted tree, and introduces a new parameter that represents 223 

the G A R P/F I M N K Y ratio for every branch in a tree that is based on the amino acid compositions of 224 

all taxa that descend from that branch (see Materials and Methods for details). These parameters, in turn, 225 

adjust the frequencies of each site class in the site-profile mixture model resulting in a new transition rate 226 

matrix, Qc, for each mixture class for the given branch. We developed and implemented the new GFmix 227 

model in a maximum likelihood framework. 228 

To further test the phylogenetic placement of mitochondria, we used the MAM60+GFmix model to 229 

estimate log-likelihoods on two sets of fixed trees (Fig. 2A, Fig. 2B, Fig. S4). The first tree set was inferred 230 

from the untreated dataset (108 genes, 33,704 sites), whereas the second tree set was inferred from a 231 

compositionally homogenized dataset through site removal (108 genes, 16,029 sites); the latter dataset 232 

minimized the differences of G A R P/F I M N K Y amino acid ratios among taxa (Table S5). (Both tree 233 

sets were inferred using the MAM60 site-heterogeneous model; see above.) We then varied the position 234 

of mitochondria along all backbone branches on each fixed tree (Fig. 2A, Fig. 2B, Fig. S4). Furthermore, 235 

we also grouped proteins into partitions according to distances calculated based on their G A R P/F I M N 236 

K Y compositional disparity (Fig. S5). Our analyses show that likelihoods estimated under the 237 

MAM60+GFmix model improved significantly when compared to conventional site-heterogeneous models 238 

(Fig. 2D, Table S6, likelihood ratio test (LRT) p-value = 0); model fit was improved even more when the 239 

proteins were grouped into ten separate partitions according to G A R P/F I M N K Y compositional 240 

disparity (Fig. 2D, Table S6, LRT p-value = 0). Importantly, the partitioned MAM60+GFmix model clearly 241 

favours trees that display the Alphaproteobacteria-sister relationship and where the grouping of long-242 

branching and compositionally biased taxa (e.g., Pelagibacterales, Holosporaceae) is disrupted (i.e., 243 

those trees recovered from compositionally homogenized datasets through ɀ site removal; Fig. 2D, Table 244 

S6). This suggests that the removal of ɀ sites effectively decreases overall compositional heterogeneity 245 

and potential artefacts. 246 

The top three trees often favored by the MAM60+GFmix model (i.e., those with the highest likelihoods) 247 

have mitochondria in adjacent branches: Alphaproteobacteria-sister (trees A11 and B9 in Fig. 2A and Fig. 248 

2B), Rickettsiales-sister (trees A5 and B4 in Fig. 2A and Fig. 2B), and mitochondria as sister to all 249 

alphaproteobacteria except the Rickettsiales (or Caulobacteridae-sister; trees A10 and B8 in Fig. 2A and 250 

Fig. 2B)29,47. However, Bonferroni-corrected χ2 topology tests show that the optimal trees that display the 251 

Alphaproteobacteria-sister relationship are significantly better than all trees with other positions for 252 

mitochondria (see Fig. 2D). Even though the Alphaproteobacteria-sister relationship is also favored by the 253 

MAM60+GFmix model for the mitochondrion-encoded protein dataset, the Caulobacteridae-sister 254 

relationship cannot be rejected by the Bonferroni-corrected χ2 tests (i.e., p-values > 0.05; Table S6). This 255 

further supports the notion that the phylogenetic signal for the placement of mitochondria is weaker in 256 

mitochondrion-encoded proteins (see above). The Rickettsiales-sister relationship is rejected for all 257 

datasets and models (p-value < 0.005; Table S6). Overall, most of our distinct phylogenetic approaches 258 

show support for the Alphaproteobacteria-sister hypothesis. 259 

Discussion 260 
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We have found significant support for the Alphaproteobacteria-sister hypothesis that has the 261 

mitochondrial lineage as the closest sister to all currently sampled alphaproteobacteria. Our findings thus 262 

conflict with the recent suggestion that mitochondria may branch within the Alphaproteobacteria as sister 263 

to the Rickettsiales12. Indeed, we believe that the design of the study by Fan et al., (2020) was particularly 264 

prone to artefacts. In an effort to choose less compositionally biased (i.e., G+C-rich) species for 265 

mitochondria and the Rickettsiales, these authors inadvertently selected species that are more divergent 266 

than most members of their respective groups. For example, the inclusion of mitochondria of flowering 267 

plants led to a considerably long stem branch for the mitochondrial lineage (see their Fig. S31-48). 268 

Similarly, Anaplasma, Neorickettsia, and Wolbachia (Anaplasmataceae) are among the longest branches 269 

in the Rickettsiales (see their Fig. S50; see also our Fig. S2). All these species are secondarily, and not 270 

ancestrally, less compositionally biased, i.e., they evolved from species with A+T-rich genomes. 271 

Moreover, their analyses were based on a rather small dataset that comprised only 18 or 24 272 

mitochondrion-encoded genes (5,583 and 6,643 sites, respectively) and fewer than 41 taxa. These 273 

factors may, in combination, have led to the inference of poorly supported trees (e.g., see their Figs. S31-274 

40), and an artefactual attraction between mitochondria, the Rickettsiales, and the FEMAG I and II groups 275 

(i.e., Fast-Evolving MAG I and II; see their Fig. 4). 276 

Several previous studies have suggested that mitochondria were either sister to the Rickettsiales18–20 or 277 

phylogenetically embedded in a larger group comprised of both the Rickettsiales and the 278 

Holosporaceae20. These hypotheses implied that the mitochondrial ancestor may have been an 279 

intracellular parasite: throughout its early evolution, the ancestor of mitochondria changed its function 280 

from an energy parasite to an ATP-producing respiratory organelle18–21. The finding that mitochondria are 281 

no longer phylogenetically associated to the Rickettsiales and are instead sister to the entire 282 

Alphaproteobacteria clade makes a parasitic origin of mitochondria less plausible. However, the nature of 283 

the mitochondrial ancestor remains poorly constrained. Future studies on species of the MarineProteo1 284 

clade might shed some light on the early evolution of the Alphaproteobacteria, and possibly also on the 285 

mitochondrial ancestor. However, we note that the MarineProteo1 clade is separated by a long branch 286 

from the Alphaproteobacteria and mitochondria. Currently available genomes for the MarineProteo1 clade 287 

are relatively small, but not necessarily compositionally biased, and suggest that these 288 

alphaproteobacteria might be reduced and physiologically specialized (Fig. S2, Table S4). 289 

Unravelling the deep evolutionary history of mitochondria is an inherently hard phylogenetic problem. One 290 

of the main challenges is to properly account for the drastically different compositional biases across 291 

anciently diversified lineages29. Here, we have moved towards overcoming this major obstacle. Our newly 292 

developed and implemented site-and-branch-heterogenous model allowed us, for the first time, to test 293 

different phylogenetic placements for mitochondria relative to the Alphaproteobacteria while accounting 294 

for the drastic amino acid compositional changes that alphaproteobacterial and mitochondrial proteins 295 

have undergone. A consilient view emerges from the combination of modelling and reducing 296 

compositional heterogeneity: the Alphaproteobacteria-sister hypothesis is robust and unlikely to be 297 

artefactual. However, we caution that the phylogenetic signal preserved in mitochondrion-encoded 298 

proteins is weak and ambiguous. The recovery of the Rickettsiales-sister relationship in previous 299 

studies11,12 may thus be result of ambiguous phylogenetic signal and long-branch attraction. Therefore, 300 

we suggest that it is currently best to view mitochondria as an early offshoot of the alphaproteobacterial 301 

lineage that diverged just prior to the diversification of known extant groups. This is suggested by the 302 

short internal branch lengths between mitochondria and Alphaproteobacteria (see Fig. 2A, Fig. 2B) and is 303 

supported by the shared presence of the Mitochondrial Contact Site and Cristae Organizing System (i.e., 304 

a Mitofilin domain-containing Mic60) in only mitochondria and the Alphaproteobacteria, but not in 305 

members of the Magnetococcia and MarineProteo148,49 (Fig. S2, Table S4). Future efforts should focus 306 

on exploring diverse environments for unknown and extant alphaproteobacterial lineages that may be 307 

more closely related to mitochondria. 308 

Materials and Methods 309 
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Metagenomic sequencing and MAG assembly 310 

Samples collected from (1) microbial mats in the Salada de Chiprana (Spain, December 2013), Salar de 311 

Llamara50, Lakes Bezymyannoe and Reid (Antarctica, January 2017) and several hot springs around 312 

Lake Baikal (Southern Siberia, July 2017), (2) microbialites in Lake Alchichica51, and (3) sediments in 313 

Lake Baikal, were fixed in ethanol (>70%) in situ and stored at -20°C as previously described50. Total 314 

DNA was purified from samples using the DNeasy PowerBiofilm Kit (QIAGEN, Germany) by following the 315 

manufacturer’s guidelines. DNA extracted from microbialite fragments was further cleaned using the 316 

DNeasy PowerClean Cleanup Kit (QIAGEN, Germany) as previously described52. DNA was quantified 317 

using Qubit®. DNA library preparation and sequencing were performed with an Illumina HiSeq2000 v3 318 

(2x100 bp paired-end reads) by Beckman Coulter Genomics (Danvers, MA, USA), and with an Illumina 319 

HiSeq2500 (2x125 bp paired-end reads) by Eurofins Genomics (Ebersberg, Germany). A summary of the 320 

metagenomic libraries sequenced can be found in Table S2. 321 

Raw Illumina short reads from all sequenced Illumina paired-end libraries were quality-assessed with 322 

FastQC v.0.11.7 and quality-filtered with Trimmomatic v.0.3653. Libraries made from samples from Lake 323 

Alchichica and the Llamara saltern were processed with the following workflow. Libraries were individually 324 

assembled, and technical replicates co-assembled (Table S2), with metaSPAdes v.3.10.054. Contigs 325 

smaller than 2,500 bp in the (co-)assemblies were removed. Filtered reads were then individually mapped 326 

onto each assembly with Bowtie2 to obtain contig coverages55. Contigs were binned using MaxBin v.2.2.2 327 

which relies on differential coverage across samples, tetranucleotide composition and single-copy marker 328 

genes56. The completeness and contamination of the bins reported by MaxBin v.2.2.2 were assessed with 329 

CheckM v.1.0.1257. Genome bins that were phylogenetically affiliated to the Alphaproteobacteria based 330 

on the manual examination of the CheckM reference genome tree (itself based on the concatenation of 331 

43 marker genes) were retained. Reads were then individually mapped onto each alphaproteobacterial 332 

genome bin with Bowtie2. All paired and unpaired reads that successfully mapped to the 333 

alphaproteobacterial bins were subsequently co-assembled with metaSPAdes. The resulting co-assembly 334 

was processed through the Anvi’o metagenomic workflow58. In brief, reads were mapped to the final 335 

metaSPAdes co-assembly with Bowtie2 to obtain contig coverage values. DIAMOND searches59 of 336 

predicted proteins against the NCBI GenBank nr database were done to assign taxonomic affiliations to 337 

each contig. CONCOCT260, implemented in the Anvi’o suite, was used to bin the resulting metagenome. 338 

Contigs were organized according to the composition and coverage by anvi-interactive. The predicted 339 

CONCOCT2 bins were visualized and manually refined based on their composition, coverage, taxonomy 340 

and completeness/redundancy. Libraries made from samples from Antarctica, the Chiprana saltern and 341 

Lake Baikal were processed with the following workflow. Libraries from the same location or environment 342 

type were co-assembled with MEGAHIT v.1.1.161. Contigs smaller than 2,500 bp in the co-assemblies 343 

were removed. Filtered reads were then individually mapped onto each co-assembly with Bowtie2 to 344 

obtain contig coverages. Contigs were binned using three different binners (MetaBAT v.2.12.162, MaxBin 345 

2.2.456, CONCOCT260) and their results were combined into consensus contigs bins with DAS Tool 346 

v.1.1.063. 347 

Marker protein selection 348 

We built an expanded dataset of mitochondrion- and nucleus-encoded proteins of alphaproteobacterial 349 

origin in eukaryotes. For the nucleus-encoded proteins, BLAST64 similarity searches of all proteins 350 

contained in the predicted proteomes of 13 representative eukaryotes were conducted against a 351 

database of 176 prokaryotes (136 bacteria and 40 archaea). BLAST hits were clustered into homologous 352 

families with a custom Perl script, aligned with MAFFT and the L-INS-I method65, and then trimmed with 353 

BMGE66. Phylogenetic trees for each homologous gene family were inferred under the LG model in 354 

RAxML v.867. These trees were then sorted based on the criterion that eukaryotes form a clade with 355 

alphaproteobacteria. Manual inspection of the trees then followed to remove paralogs and contaminants. 356 

For mitochondrion-encoded genes, mitochondrial clusters of orthologous genes (MitoCOGs)68 that are 357 

widespread among eukaryotes were used. 358 
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Both mitochondrion-, and nucleus-encoded candidate marker proteins were then compared through 359 

BLAST searches against those reported previously by Wang and Wu (2015)20 and Martijn et al., (2018)11. 360 

Our dataset encompassed most proteins from these other datasets, with few exceptions. The non-361 

redundant and remaining candidate marker proteins comprising the union of these five datasets, were 362 

then further screened phylogenetically. Using a representative eukaryotic (mitochondrial) query for each 363 

marker gene, BLAST searches were done against a database that comprises 107 diverse bacteria 364 

(representing 27 cultured phyla) and 23 diverse eukaryotes (representing 6 major groups); eukaryotes 365 

were selected based on the availability of both mitochondrial and nuclear genomes or transcriptomes 366 

(see Table S7). Homologues were aligned with MAFFT, alignments trimmed with TrimAl69 and single-367 

protein trees inferred with IQ-TREE70. The single-protein trees were inspected visually to remove 368 

duplicates, paralogues, and any other visual outlier such as extremely divergent sequences. Single-369 

protein trees were then re-inferred from the curated alignments and visually inspected. Proteins for which 370 

trees showed a sister relationship between eukaryotes and alphaproteobacteria were kept for further 371 

analyses. Finally, these candidate marker proteins were annotated and further refined using the EggNOG 372 

database and BLASTp searches. The final marker proteins set comprised 108 genes, 64 of which are 373 

exclusively nucleus-encoded, 17 are exclusively mitochondrion-encoded, and 27 are both mitochondrion- 374 

and nucleus-encoded (Fig. S1). The annotations confirm that all marker proteins are predicted to be 375 

localized to mitochondria in eukaryotes (Table S1). 376 

Dataset assembly 377 

To increase taxon sampling as much as possible, MAGs reported in Anantharaman et al., (2016)33, 378 

Graham et al., (2018)34, Delmont et al., (2018)35, Martijn et al., (2018)11, Mehrshad et al., (2016)36, Tully et 379 

al., (2017)37, Tully et al., (2018)38 and Parks et al., (2017)39 were added to those reconstructed here (see 380 

Metagenomic analyses). To improve the quality of our MAG selection, MAGs were analyzed with the 381 

CheckM lineage workflow and those with quality values (completeness – 5x contamination) lower than 50 382 

were discarded, just as done before by Parks et al., (2017, 2018)39,40. MAGs were then filtered according 383 

to their taxonomic affiliation to the Alphaproteobacteria. A phylogenetic tree for all MAGs and all 384 

Proteobacteria taxa in the GTDB r89 database40 was inferred from 120 marker proteins, built-in in the 385 

GTDB-Tk software, using IQ-TREE v.1.6.1070 and the LG4X+F model. To increase phylogenetic 386 

accuracy, a second tree was inferred with the LG+PMSF(C60)+G4+F using the LG4X tree as guide. All 387 

MAGs that fell within the Alphaproteobacteria clade in the GTDB-Tk tree were chosen for subsequent 388 

analyses. Together, these added up to more than 3,300 alphaproteobacteria. In order to reduce 389 

computational burden, Treemmer v.0.1b was then used to reduce the number of alphaproteobacterial 390 

taxa from the GTDB-TK tree while maximizing phylogenetic diversity41. The Treemmer analysis was 391 

constrained so representatives from major clades, as visually identified, were retained. Finally, a set of 392 

reference alphaproteobacteria (formally described species) were added, and long-branching 393 

alphaproteobacteria were replaced by short-branching relatives. 394 

To retrieve homologues, PSI-BLAST searches with either one, two, or three iterations using 395 

representative mitochondrial (eukaryotic) query sequences for each marker protein were done against a 396 

database that comprised all carefully selected predicted proteomes. To remove non-orthologous 397 

sequences, homologous protein sets were retrieved for each marker protein, aligned with MAFFT, 398 

trimmed with TrimAl and trees inferred with IQ-TREE. The single-protein trees were visually inspected to 399 

remove duplicates, paralogues, and any other visual outlier such as extremely divergent sequences. The 400 

curated homologous protein sets were finally aligned again with MAFFT v.7.3.10 and the L-INS-I method. 401 

To increase phylogenetic signal by removing poorly aligned and non-homologous aligned regions, Divvier 402 

v.1.0 was used with the -partial and -mincol options71. Only sites with more than 10% of data were 403 

retained. To reduce incongruency among proteins due to, for example, lateral gene transfer, Phylo-MCOA 404 

v.1.472 was employed on single-protein trees with UFBoot2+NNI as branch support which were inferred 405 

with IQ-TREE v.1.6.10 and the best-fitting model as identified by Model-Finder70,73. Single-protein 406 

alignments were concatenated with SequenceMatrix v.1.874. 407 
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Phylogenetic analyses using site-heterogeneous models 408 

For multi-protein phylogenetic analyses on the supermatrix, trees were first inferred in IQ-TREE v.1.6.10 409 

under the LG4X+F model. The resulting site-homogenous tree was then used as a guide tree to infer a 410 

new phylogenetic tree under the LG+PMSF(C60)+F+G4 model75. Consequently, the resulting site-411 

heterogenous tree was used as a guide tree to infer a new phylogenetic tree under the dataset-specific 412 

LG+PMSF(MAM60)+F+G4 model. The dataset-specific MAM60 model was estimated using the MAMMaL 413 

software43. This site-heterogeneous mixture model is directly inferred from the dataset analyzed and 414 

therefore is more specific than the general C10-60 mixture models. To account for more than 60 (e.g., 415 

C60 or MAM60) amino-acid composition profiles across the data, we used the general UDM128 mixture 416 

model as LG+UDM128+G4+F that allows for 128 amino acid composition profiles76. The software FunDi 417 

was used to estimate functionally divergent sites in the branch that separates the mitochondrial lineage 418 

from all other taxa42. Sites with a probability of being functionally divergent > 0.5 were removed. 419 

Progressive removal of compositionally heterogeneous sites was performed according to the ɀ and the χ2 420 

metrics/methods as described before11,29,44. Both metrics are designed to estimate compositional 421 

heterogeneity per site based on different criteria. 422 

Bayesian analyses were conducted with PhyloBayes MPI v1.8 using the CAT-GTR+G4 model77,78. 423 

PhyloBayes MCMC chains were run for >20,000 cycles or until convergence between the chains was 424 

achieved and the largest discrepancy in posterior probabilities for splits between chains (‘max-diff’) was 425 

<0.1. Individual chains were summarized into a Bayesian consensus tree using a burn-in of 500 trees and 426 

subsampling every 10 trees. However, most chains did not reach convergence or resolve the 427 

phylogenetic placement of mitochondria relative to alphaproteobacterial lineages (Mendeley Data). 428 

Phylogenetic analyses using the site-and-branch-heterogeneous GFmix model 429 

The site profile mixture models discussed above have C site frequency profiles and a K-class discretized 430 

gamma mixture model for site rates. Under these models, the likelihood of site pattern 𝐱𝐢 at site i is given 431 

by: 432 𝑃(𝐱𝐢; 𝑤𝑐 , 𝜽) =∑  𝑪𝒄=𝟏 𝑤𝑐∑ 𝑃(𝐱𝐢 ∣ 𝑟𝑘 , 𝝅(𝑐); 𝜽) 𝐾⁄  𝐾𝑘=1  433 

Where 𝑟𝑘 is the site rate of gamma-rates class k, 𝝅(𝑐)is the vector of amino acid frequencies in class c of 434 

the site-profile mixture model, 𝑤𝑐 is the class weight and 𝜃 is the vector of other adjustable parameters 435 

(branch lengths,  shape parameter and tree topology) in the model. In order to model shifts in the 436 

relative frequencies of the amino acids G A R P (specified by G+C-rich codons) and F I M N K Y 437 

(specified by A+T-rich codons) in different branches of the tree, the foregoing vectors of amino acid 438 

frequencies, 𝝅(𝑐), are modified in a branch-specific manner in the following way. 439 

Let b denote the ratio of aggregate frequencies of G A R P to F I M N K Y amino acids; i.e., 𝑏 ∶=  𝜋𝐺 𝜋𝐹⁄  440 

for  𝜋𝐺 = ∑  𝜋𝑗𝑗 ∈{𝐺,𝐴,𝑅,𝑃}  and  𝜋𝐹 = ∑  𝜋𝑗𝑗 ∈{𝐹,𝑌,𝑀,𝐼,𝑁,𝐾}   where  𝜋𝑗 is the frequency of amino acid j. For every 441 

branch e in the phylogenetic tree under consideration, we can obtain estimates by a hierarchical 442 

procedure where be is obtained from the GARP/FIMNKY ratio of all of the sequences at the tips of the 443 

tree that descend from branch e. Using these estimates, the values in the class frequency vectors, 𝝅(𝑐), 444 

for any site profile class are modified in the following way to be branch-e-specific class frequencies, 𝝅(𝑐𝑒). 445 

The modified class frequencies have to satisfy a number of constraints including: 446 

𝜋𝑗(𝑐𝑒) = { 
 𝜇(𝑐𝑒)𝑆𝐺(𝑒)𝜋𝑖(𝑐) 𝑗 ∈ {𝐺, 𝐴, 𝑅, 𝑃}𝜇(𝑐𝑒)𝑆𝐹(𝑒)𝜋𝑗(𝑐) 𝑗 ∈ {𝐹, 𝑌,𝑀, 𝐼, 𝑁, 𝐾}𝜇(𝑐𝑒)𝜋𝑗(𝑐) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  447 

and ∑ 𝜋𝑗(𝑐𝑒)𝑗 = 1 and 448 
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∑  𝐶𝑐=1,𝑗∈{𝐺,𝐴,𝑅,𝑃} 𝑤𝑐𝜋𝑗(𝑐𝑒)∑  𝐶𝑐=1,𝑗∈{𝐹,𝑌,𝑀,𝐼,𝑁,𝐾} 𝑤𝑐𝜋𝑗(𝑐𝑒) = 𝑏𝑒 449 

This leads to non-linear equations for μ(ce) , 𝑆𝐺(𝑒) and 𝑆𝐹(𝑒)that are solved numerically for each branch e to 450 

generate the modified class frequencies. For each branch and site class c, πj
(ce) values are used to create 451 

a new transition Q(ce) matrix for likelihood calculations for all site patterns over that branch.  The same 452 

approach is used with frequencies coming all extant taxa to obtain the root frequencies. A software 453 

implementation of GFmix is available at https://www.mathstat.dal.ca/~tsusko/software.html. 454 

Partitioning the data matrix for GFmix calculations. 455 

The foregoing framework assumes that for each aligned protein in a given concatenated dataset, the 456 

GARP/FIMNKY ratios (be’s) for every branch in the tree will be similar. However, for our data matrix this 457 

assumption is not true as different proteins show different degrees of GARP/FIMNKY variation across 458 

taxa depending on the location of the corresponding gene (e.g., nucleus-encoded vs. mitochondrial-459 

encoded) and degree of conservation.  For this reason, we clustered the proteins in our dataset into 460 

groups in the following way.  For each protein v and each taxon t we calculated the GARP/FIMINKY ratio, 461 𝑏𝑣(𝑡) = 𝜋𝐺(𝑡) 𝜋𝐹(𝑡)⁄ .  Then, we calculated the overall distance between these ratios for every pair of proteins u 462 

and v in the data matrix as 𝑑𝑢,𝑣 = ∑ |𝑏𝑣(𝑡) − 𝑏𝑢(𝑡)|𝑡 𝑁𝑢,𝑣⁄  where Nu,v is the total number of taxa for which 463 

sequences were available for both proteins (this normalization accounts for the differing amounts of 464 

missing data for different proteins).  The proteins were then clustered based on 𝑑𝑢,𝑣 distances using the 465 

UPGMA algorithm in MEGA-X79 and 10 clusters were chosen as a computationally tractable number of 466 

partitions for further analysis. The GFmix model was then applied to these 10 partitions allowing for 467 

separate be values and branch lengths for each partition. The overall log-likelihoods for topologies were 468 

obtained as the sum of log-likelihoods of that topology over all partitions. 469 

To test the relative fits of the foregoing phylogenetic models to the data we used likelihood ratio tests 470 

(LRTs). Briefly, the log-likelihood of a given mixture model (e.g., MAM60) under its optimal tree was 471 

compared to the log-likelihood of the corresponding mixture-GFmix model. The former model is a special 472 

case of the latter where all the be parameters are equal to the overall GARP/FIMNKY ratio. The likelihood 473 

ratio statistic LRS, which is defined as twice the difference in these log-likelihoods, was calculated and a 474 

p-value was determined as 𝑃[χ𝑑2 > 𝐿𝑅𝑆] where d is the difference the number of additional parameters in 475 

the more complex model (i.e., the be parameters); here d=2t-2 where t is the number of taxa.  A similar 476 

approach is taken to compare the partitioned models to the non-partitioned models. In this case there 477 

were additional branch lengths and be parameters for each partition and so for 10 partitions, d=9(2t-478 

2)+9(2t-3).  We note that this test is conservative because be estimates were not determined by maximum 479 

likelihood. Therefore, the true p-values for the LRTs are less than 𝑃[χ𝑑2 > 𝐿𝑅𝑆]. If the LRT rejects the null 480 

hypothesis under these conditions, then the correct test would also reject. 481 

Topology testing using the Bonferroni-corrected χ2 test. 482 

The topology test is a variation of the chi-squared test presented in Susko (2014)80 that corrects for 483 

selection bias. The chi-squared test is a test of two trees. The null hypothesis 𝐻0: τ = τ0 is tested against 484 𝐻𝐴: τ = τ𝐴 where τ is the true topology. As a test statistic, it uses the likelihood ratio statistic, LRS, which 485 

is defined as twice the difference between the maximized log likelihood when the true topology is τ𝐴 and 486 

the maximized log likelihood for τ0. It gives a p-value 𝑝(τ𝐴) = 𝑃[χ𝑑2 > 𝐿𝑅𝑆], the probability that a chi-487 

squared random variable with d degrees of freedom is greater than the observed LRS. Here the degrees 488 

of freedom, d, are determined as the number of branches that are 0 in the consensus tree representing 489 

both τ0 and τ𝐴. 490 

In the absence of a particular τ𝐴 of interest, to test whether 𝐻0: τ = τ0 can be rejected, we consider the 491 

alternative 𝐻𝐴: τ = τ̂, where τ̂ is the maximum likelihood (ML) topology. Because the topology under the 492 
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alternative hypothesis was selected based on the data rather than being fixed a priori, this can induce a 493 

selection bias81. The Bonferroni approach uses a input set of trees and approximates the p-value when 494 𝐻𝐴: τ = τ̂ by the Bonferroni-corrected p-value one would obtain testing 𝐻0: τ = τ0 against 𝐻𝑖 : τ = τ𝑖, 𝑖 ∈ 𝐴 495 

where 𝐴 is the set of input trees that are compatible with the consensus tree of τ0 and τ̂. 496 

The approximation is based on probability calculations treating the consensus tree of τ̂ and τ0 as the true 497 

tree. This is consistent with what is done in the chi-square test and in testing more generally, where one 498 

often calculates p-values under parameters on the boundary between the null and alternative hypotheses 499 

spaces (see 80 for additional discussion). If the true tree is the consensus tree, then it is likely that the ML 500 

topology will be in 𝐴. Because the largest likelihood is the one corresponding to τ̂, the smallest p-value 501 

among the 𝑛(𝐴) p-values obtained by testing 𝐻0: τ = τ0 against 𝐻𝑖 : τ = τ𝑖  is likely to be 𝑝(τ̂); there is 502 

some possibility that a tree with a smaller degrees of freedom would give the smallest p-value, so this is 503 

an approximation. In summary, 𝑝(τ̂) is approximately the same as the minimum p-value obtained by 504 

testing 𝐻0: τ = τ0 against 𝐻𝑖 : τ = τ𝑖. 505 

Rephrasing the test as approximately the same as the result of multiple tests 𝐻0: 𝜏 = 𝜏0 against 𝐻𝑖 : 𝜏 = 𝜏𝑖, 506 𝑖 ∈ 𝐴 lays bare that multiple testing is the source of selection bias. Bonferroni correction is a widely used 507 

approach to adjusting for multiple testing. As one final approximation, rather than using the usual 508 

Bonferroni-corrected p-value, n(A) p(τ̂), we use the exact correction had the p-values coming from the 509 

tests been independent, 510 1 − [1 − 𝑝(τ̂)]𝑛(𝐴). 511 

This p-value is approximately the same as the usual Bonferroni correction when 𝑛(𝐴) 𝑝(�̂�) is small, which 512 

is the case of greatest interest, but has the advantage of always being between 0 and 1. Additional 513 

information about the Bonferroni correction is available in 82. 514 

Profile Hidden Markov Model (pHMM) searches 515 

To search for bacteriochlorophyll enzymes, a set of 17 custom-made pHMMs for the genes bchB, bchC, 516 

bchD, bchE, bchF, bchG, bchH, bchI, bchJ, bchL, bchM, bchN, bchO, bchP, bchX, bchY, bchZ was used 517 

against predicted proteomes from the MAGs reconstructed in this study. These pHMMs were created 518 

from manually curated sets of bch genes from diverse proteobacteria. The searches were done with the 519 

program hmmsearch of the HMMER suite using an E-value cut-off of 1E-25. To search for mitofilin-520 

domain containing mic60 genes, the Pfam pHMM for Mitofilin (PF09731) was used with its own GA cut-off 521 

value. 522 

Data Availability 523 

Sequencing data were deposited in NCBI GenBank under the BioProjects PRJNA315555, 524 

PRJNA438773, PRJNAXXXXXX, PRJNAXXXXXX, PRJNAXXXXXX, and PRJNA703749. Assembled 525 

metagenomes, novel alphaproteobacterial MAGs, and gene files (unaligned, aligned, and aligned and 526 

trimmed) are available at: DOI: 10.6084/m9.figshare.14355845. Datasets and phylogenetic trees inferred 527 

in this study are available at: DOI: http://dx.doi.org/10.17632/dnbdzmjjkp.1. The GFmix model software is 528 

available at: https://www.mathstat.dal.ca/~tsusko/software.html. 529 
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