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ABSTRACT. Isovists are powerful tools for the morphological analysis of urban spaces,
allowing us to account for the characteristics of the visible space from a given point
of view. However, computing isovist field from digital model is limited by the quality
of the model, and computing isovist field of the real environment with LiDaR sensors
is limited by its cost and the setup of cumbersome equipment (eg. on a car). To
allow the use of lightweight devices, we propose a method to compute isovists from a
single monocular camera, catching a path in an urban environment. This method uses
SLAM (Simultaneous Localization and Mapping) and ray casting algorithms. Our re-
sults are compared against digital model’s isovists.
RÉSUMÉ. Les isovists sont des outils performants d’analyse morphologique des es-
paces urbains permettant de rendre compte des caractéristiques de l’espace visible à
partir d’un point de vue donné. Cependant, le calcul des champs d’isovists à partir
d’un modèle numérique est limité par la qualité de ce modèle, et le calcul des champs
d’isovists d’environnement réel à l’aide de capteurs LiDaR reste limité par son coût
et la mise en place d’un équipement encombrant (par exemple, sur un véhicule). Pour
permettre l’utilisation d’équipement portable, nous proposons d’établir une méthode
d’obtention d’isovists à partir d’une caméra monoculaire captant un parcours dans un
environnement urbain. Cette méthode est basée sur les algorithmes de SLAM (Simul-
taneous Localization And Mapping) et de lancer de rayons. Les résultats obtenus par
notre méthode sont comparés à ceux obtenus sur un ensemble d’isovists calculés sur
un modèle numérique 3D simplifié de la ville.
KEYWORDS: Isovists, camera, space reconstruction
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1. Introduction

Isovists and isovist fields are conceptual tools used to carry out morpho-
logical analyses of architectural and urban spaces. They were developed and
theorized in the 70s (Benedikt, 1979). An isovist determines the available space
in a direct line of sight from a given position in an architectural or urban en-
vironment. As the visibility of the urban space is part of the urban design
qualities identified by urban planners (Ewing, Handy, 2009), isovists are par-
ticularly relevant to evaluate the quality of an urban space. Depending on the
dimension of the space, these isovists have a polygonal (2D) or polyhedral (3D)
shape.

They’re usually computed from a digital urban model extracted from a GIS,
which is a simplified representation of the urban environment. Some methods
can calculate isovists along a route caught with sensors, such as LiDaR (Schmid,
Stülpnagel, 2018), but the use of these powerful sensors is not accessible to as
many people as possible and this may be very inconvenient because of the cum-
bersome equipment that requires additional transport (e.g. on a car). Although
there is more consumer LiDaR equipment available, here we focus on sensors
that are embedded in everyone’s smartphones. It is possible to reconstruct
a map of the environment with lightweight sensors, for example monocular
cameras, using SLAM algorithms (Simultaneous Localization And Mapping).
SLAM addresses the computational issue of constructing or updating a map of
an unknown environment while simultaneously keeping track of the observer’s
location. Time-of-flight camera are also available on several smartphones, but
their actual depth performances and sensitivity to lighting conditions, among
others drawbacks, prevent us to use them to reconstruct outdoor environments.

In this article, we propose a method to delineate an isovist field from a
video caught on a simple monocular camera (video-based isovists), using SLAM
algorithms. To check the consistency of our results, we will confront them to
the isovists generated from a digital urban model (mockup-based isovists).

2. Previous Works

SLAM algorithms provide a fairly accurate estimation of the trajectory of
a camera while reconstructing the environment in which the camera evolves.
Usually, SLAM algorithms return a point cloud mapping the environment, so-
called reconstructed map. Depending on the SLAM method, the point cloud
can be sparse (e.g. ORB-SLAM2 (Mur-Artal, Tardos, 2017), PTAM (Klein,
Murray, 2007)), dense (e.g. DTAM (Newcombe et al., 2011)) or semi-dense (e.g.
(Engel et al., 2014)). The sparse methods detect feature points on keyframes
and they are assigned 3D coordinates in the reconstructed map. The dense
methods rather give depth to almost every pixel of a keyframe. The map is
then reconstructed by overlapping the different depth maps. Finally, semi-
dense methods fall midway between sparse and dense methods. They detect
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areas of interest in keyframes and assign a depth to every pixel of these areas.
Unfortunately, these methods each present some weaknesses. Indeed, a sparse
point cloud may be fairly accurate but, due to its lack of density, it does not
permit to reconstruct real obstacles (there are not enough feature points de-
tected). Dense and semi-dense methods can return much denser point clouds
but the returned maps will be very noisy.

Some recent methods (He et al., 2018) can reconstruct a map of the en-
vironment with lines instead of points, which makes it easier to reconstruct
accurate surfaces using Delaunay triangulation. The method implemented in
this paper uses a semi-dense version of ORB-SLAM2 (Mur-Artal, Tardos, 2015)
to generate a semi-dense point cloud and extract lines from it.

SLAM methods often include loop closure which improves tracking and
mapping by recognizing places already visited by the user. Then the associated
map points and camera poses are adjusted according to their previous values.

There are some methods that allow isovist computation from point clouds
(Díaz-Vilariño et al., 2018). These methods are based on space discretization.
Once space is subdivided into voxels, we determine if the voxels are occupied
or empty by the number of points they contain. Then by ray-casting, we
determine if the voxels are visible or obstructed which gives us our isovist.
There are limits to these kinds of methods. The first is that the returned
isovists won’t be a vector object, as it is computed in a discretized space. The
second is that the method expects a dense and accurate point cloud to clearly
model the environment, which is not the case of the previous common visual
SLAM methods.

The other simple way to compute isovists as vector objects is to apply ray-
casting on surfaces, instead of points. That is possible with semi-dense-line
SLAM (He et al., 2018) and its surface reconstruction method.

3. Proposal – LIghtweight Real Isovist: LIRI

Our method’s workflow is shown in Fig. 1. It is based on semi-dense-line
SLAM algorithm (He et al., 2018), which can reconstruct surfaces from semi-
dense point cloud obtained by video processing (Fig. 2). We use a smartphone
monocular camera but this method is standard enough to be applied to any
type of monocular camera provided that we know its intrinsic parameters,
which can be computed by camera calibration. So we have a 3D model of the
environment made of triangles and an estimation of the sensor trajectory in the
reconstructed map. The different poses returned by the algorithm are located
in the coordinate system of the first detected keyframe. The global orientation
of the reconstructed map then depends on the orientation of the camera lens
during the detection of the first keyframe. In order to ease the comparison
between video-based isovists and mockup-based isovists and to stabilize the
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Figure 1. Workflow of our method.

skyline, we use an additional phone stabilizer, minimizing the camera orienta-
tion error. The phone stabilizer doesn’t impact the standard and lightweight
setup hypothesis. The resulting model has some outlier triangles that don’t
represent real assets so we apply a filter upon the area and the perimeter of
the triangles to eliminate the outliers. This filter was set up experimentally.

We use a ray-tracing based method to compute isovists from the recon-
structed map of the environment and estimated trajectory. We scan the envi-
ronment using a panoptic approach in the horizontal plane of vision. To com-
pute ray-tracing, we use the Möller-Trumbore intersection algorithm (Möller,
Trumbore, 2005) that can quickly calculate the intersection point between a
triangle and a ray in 3D space, without using plane equations. For each ray,
we look at every triangle and determine the intersection point, if it exists, and
we only keep the nearest intersection point from the ray origin. By connecting
the intersection points obtained in the different directions we can reconstruct
the isovist for a given position. Finally, if we aggregate the different isovists
obtained by the positions along a trajectory, we have the isovists field related
to that trajectory.

To compare our method to the topographic-based model, we have to trans-
form our data in a geographical context. So we have to apply scaling, trans-
lation, and homothety (dilation) but also extract geographical coordinates of
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Figure 2. Surfaces reconstructed with semidense-line SLAM method. The red
line represents the trajectory of the sensor.

one of the points of the trajectory. In our case we focus on the first point
which corresponds to the first moment a keyframe is detected. The position of
the camera associated with this first keyframe is predominant; we determine it
empirically with the help of orthophotographs. We use a similar method to get
the scale factor: we determine manually the geographical location of two points
of the trajectory, using a GIS and orthophotographs, and we calculate the dis-
tance between them in the reconstructed map and in the topographic-based
model. By applying this factor to our data, it is now possible to implement
the estimation of the trajectory in the digital model to compute mockup-based
isovists1. We can also compare the isovists obtained by both models.

1. To calculate the mockup-based isovists, we use standard topographic data sets such as the
ones provided by the IGN BD TOPO® database (June 2020 edition) and the t4gpd Python
plugin (Leduc, Leduc, 2020).
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4. Results

We present here the results on one dataset collected in the city of Nantes.
We suppose that the user made a single one-way journey. We also implement
an arbitrary limit distance for the ray-casting, based on the size of the re-
constructed map. The computation has been conducted on a PC with 8GB
RAM, 4x2.60 GHz Intel Core i7 CPU, using Ubuntu 16.04 64 bits. With these
characteristics, semi-dense-line SLAM ran for half an hour to fully map the en-
vironment from a one minute video. Then our method takes about two minutes
to generate the 164 isovists related to the video.

Figure 3. Comparison of isovists field. Left: video-based isovists.
Right: mockup-based isovists.

A quick comparison (Fig. 3) of the video-based and mockup-based isovists
shows the similarities and the differences between the two models. Thus, the
video-based isovists from the first poses of the trajectory are very circular,
because of the limited field of view of the camera that doesn’t allow the SLAM
method to reconstruct the environment behind the observer. As seen in Fig. 3
left, as the scene behind the observer is not reconstructed, there is no mask
(i.e. no building facades) to stop the rays. This lack of mask casts the rays to
the limits of the artificial horizon (which is here of very limited range) which
explains the circularity of the resulting shape. The video-based and mockup-
based isovists attached to the following poses seem pretty similar. Finally, the
last poses show again some differences. This is caused by the fact that video-
based isovists take into account walls delineating private plots while mockup-
based isovists only consider buildings surfaces. The fences detected in the video
are not present in the 3D model derived from standard datasets.
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To go beyond visual comparison of the different isovists, we used four mor-
phological indicators:

– Perimeter : P
– Area : A
– Ellipticity factor : ε = π × L2/4A
– Convexity defect : econv = A/Ahull

With L, the largest distance between two vertices of the polygon and Ahull

the area of the convex hull of the polygon.

The ellipticity factor reflects the compression of a circle to form an ellip-
soid and the flattening of the isovist. The convexity defect reflects the convex
aspects of an isovist, especially the presence of concavity.

All these four parameters give information upon the global form of an isovist.
We then compute these parameters for one in ten of the isovists.

By observing the Fig. 4, 5 and 6 we can separate the isovists into three
main groups whose limits are indicated by green dashed lines in the figures.
The first group may contain the isovists corresponding to the first poses of
the trajectory. In this group, the video-based and mockup-based isovists show
some differences. Indeed the first video-based isovists of the trajectory are
almost circular, because of the lack of information of the reconstructed map
in the first poses of the trajectory. This lack of information is due to the
camera’s limited field of view. This period during which the SLAM algorithm
has not reconstructed the environment with enough information yet could be
considered as an initialization phase.

The second group contains the next isovists. Here, the video-based and
mockup-based isovists show much more similarities than in the first group.
This is because there is enough information in the video to fully map the
environment and the digital model is similar to what we can see in the video.

Finally, the third group contains the isovists of the last poses of the trajec-
tory. Here the video-based and mockup-based isovists show differences. This
may be explained by the fact that the video shows the reality of the envi-
ronment, with additional occlusions such as walls or fences delineating pri-
vate plots, while the digital model only considers buildings as polygons. The
environment around the latter part of the trajectory contains a lot of these
additional occlusions.

It can also be seen from Fig. 7 that the convexity defect graph of video-
based isovist is less constant and overall higher than the mockup-based isovist
convexity defect graph. This indicates the presence of more occlusion leading
to more concavity, which corresponds to the less smooth real environment.
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Figure 4. Perimeters (m) of video-based (blue) and mockup-based (red)
isovists.
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Figure 5. Areas (m2) of video-based (blue) and mockup-based (red) isovists.
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Figure 6. Ellipticity of video-based (blue) and mockup-based (red) isovists.
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Figure 7. Convexity defect of video-based (blue) and mockup-based (red)
isovists.
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In this way, video-based isovists generated by our method more accurately
reflects the reality of the environment, as long as there are enough data provided
by the video.

5. Conclusion, Discussion and Perspectives

In this paper, we presented a process to generate isovists from a video
recorded with a monocular camera, in an urban street. If the video shows
enough information, the video-based isovists are pretty similar to the ones
generated using standard topographic datasets, provided the viewing distance.
There is even evidence to suggest that our method gives additional details
upon the real environment, compared to the digital urban model, by taking
into account some obstacles that are not houses or buildings.

Our method can be used to further improve the digital model by taking
into account real assets obstructing the user’s view represented by video-based
isovists; thus tackling the well known updating problem in GIS. Moreover,
the video-based reconstruction of the shape of the immediate surroundings
could help several applications, eg. the display of geolocalised information in
augmented reality.

Our method cannot run in real-time due to the important amount of cal-
culation during the mapping of the environment in the semi-dense-line SLAM
algorithm. This forced us to use short videos to test our method and thus to
work on small environments, and this is why we limited the range of the isovists.
This issue could be solved using a more powerful computer and longer videos
of the environment. We could also use the loop closure of the SLAM algorithm
to optimize the reconstructed map by recognizing places already visited by the
user.

Another axis of improvement would be to automatize the acquisition of
world coordinates and scale factor of the reconstructed map of the environment
and the estimated trajectory. This may be done by getting the camera’s meta-
data giving GPS coordinates and orientation of the sensor. This would also
allow an automatic correspondence of video-based and mockup-based isovists.

Our method is not dependant on any kind of device, and any monocular
video – if we know the intrinsic parameters of the camera – can be taken as an
entry. Considering that a limit of the video-based isovists is the limited field
of view of a simple monocular camera, we may wonder about the possibility
to extend this method to omnidirectional cameras. Indeed omnidirectional
cameras can catch videos with a very large field of view and adapting this
method to this kind of camera only demands to adapt the mathematical model
of the SLAM algorithm from pinhole model to unified model (Caruso et al.,
2015). Using omnidirectional cameras implies processing more pixels which
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may make the calculations heavier but we would have complete video-based
isovists rather than half video-based isovists for the first poses of the trajectory.

Furthermore, it would be interesting to add semantic treatment to our video
in order to optimize the surface reconstruction. It’s an approach which is
already used by MIT-SPARK (Rosinol et al., 2020) but with stereo cameras.
This approach may soon be extended to monocular cameras which could also
be inserted in our method.

Another very recent method (Yang et al., 2020) allows user to reconstruct
in real-time a dense surface mesh of the environment with a mobile device
equipped with an embedded monocular camera. This method has given inter-
esting results in indoor environments. We could imagine applying it to outdoor
environments to replace the semidense-line SLAM.

As future work, we could directly compare isovist field extracted from LiDaR
point cloud with mock-up based isovist. Such a comparison could validate our
method, taking the point cloud as a reference.
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