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Thomas Le Jan 1 , Myriam Servières 1 , Thomas Leduc 2 , Vincent Tourre 1 1. AAU, Ecole Centrale de Nantes, Nantes thomas.le-jan@eleves.ec-nantes.fr,prenom.nom@ec-nantes.fr 2. AAU, CNRS, ENSA Nantes, Nantes thomas.leduc@crenau.archi.fr ABSTRACT. Isovists are powerful tools for the morphological analysis of urban spaces, allowing us to account for the characteristics of the visible space from a given point of view. However, computing isovist field from digital model is limited by the quality of the model, and computing isovist field of the real environment with LiDaR sensors is limited by its cost and the setup of cumbersome equipment (eg. on a car). To allow the use of lightweight devices, we propose a method to compute isovists from a single monocular camera, catching a path in an urban environment. This method uses SLAM (Simultaneous Localization and Mapping) and ray casting algorithms. Our results are compared against digital model's isovists.

RÉSUMÉ. Les isovists sont des outils performants d'analyse morphologique des espaces urbains permettant de rendre compte des caractéristiques de l'espace visible à partir d'un point de vue donné. Cependant, le calcul des champs d'isovists à partir d'un modèle numérique est limité par la qualité de ce modèle, et le calcul des champs d'isovists d'environnement réel à l'aide de capteurs LiDaR reste limité par son coût et la mise en place d'un équipement encombrant (par exemple, sur un véhicule). Pour permettre l'utilisation d'équipement portable, nous proposons d'établir une méthode d'obtention d'isovists à partir d'une caméra monoculaire captant un parcours dans un environnement urbain. Cette méthode est basée sur les algorithmes de SLAM (Simultaneous Localization And Mapping) et de lancer de rayons. Les résultats obtenus par notre méthode sont comparés à ceux obtenus sur un ensemble d'isovists calculés sur un modèle numérique 3D simplifié de la ville.
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Introduction

Isovists and isovist fields are conceptual tools used to carry out morphological analyses of architectural and urban spaces. They were developed and theorized in the 70s [START_REF] Benedikt | To take hold of space: isovists and isovist fields[END_REF]). An isovist determines the available space in a direct line of sight from a given position in an architectural or urban environment. As the visibility of the urban space is part of the urban design qualities identified by urban planners [START_REF] Ewing | Measuring the unmeasurable: Urban design qualities related to walkability[END_REF], isovists are particularly relevant to evaluate the quality of an urban space. Depending on the dimension of the space, these isovists have a polygonal (2D) or polyhedral (3D) shape.

They're usually computed from a digital urban model extracted from a GIS, which is a simplified representation of the urban environment. Some methods can calculate isovists along a route caught with sensors, such as LiDaR [START_REF] Schmid | Quantifying local spatial properties through lidar-based isovists for an evaluation of opinion-based vgi in a vr setup[END_REF], but the use of these powerful sensors is not accessible to as many people as possible and this may be very inconvenient because of the cumbersome equipment that requires additional transport (e.g. on a car). Although there is more consumer LiDaR equipment available, here we focus on sensors that are embedded in everyone's smartphones. It is possible to reconstruct a map of the environment with lightweight sensors, for example monocular cameras, using SLAM algorithms (Simultaneous Localization And Mapping). SLAM addresses the computational issue of constructing or updating a map of an unknown environment while simultaneously keeping track of the observer's location. Time-of-flight camera are also available on several smartphones, but their actual depth performances and sensitivity to lighting conditions, among others drawbacks, prevent us to use them to reconstruct outdoor environments.

In this article, we propose a method to delineate an isovist field from a video caught on a simple monocular camera (video-based isovists), using SLAM algorithms. To check the consistency of our results, we will confront them to the isovists generated from a digital urban model (mockup-based isovists).

Previous Works

SLAM algorithms provide a fairly accurate estimation of the trajectory of a camera while reconstructing the environment in which the camera evolves. Usually, SLAM algorithms return a point cloud mapping the environment, socalled reconstructed map. Depending on the SLAM method, the point cloud can be sparse (e.g. ORB-SLAM2 (Mur-Artal, Tardos, 2017), PTAM [START_REF] Klein | Parallel Tracking and Mapping for Small AR Workspaces[END_REF]), dense (e.g. DTAM [START_REF] Newcombe | DTAM: Dense tracking and mapping in real-time[END_REF]) or semi-dense (e.g. [START_REF] Engel | LSD-SLAM: Large-Scale Direct Monocular SLAM[END_REF]). The sparse methods detect feature points on keyframes and they are assigned 3D coordinates in the reconstructed map. The dense methods rather give depth to almost every pixel of a keyframe. The map is then reconstructed by overlapping the different depth maps. Finally, semidense methods fall midway between sparse and dense methods. They detect areas of interest in keyframes and assign a depth to every pixel of these areas. Unfortunately, these methods each present some weaknesses. Indeed, a sparse point cloud may be fairly accurate but, due to its lack of density, it does not permit to reconstruct real obstacles (there are not enough feature points detected). Dense and semi-dense methods can return much denser point clouds but the returned maps will be very noisy. Some recent methods [START_REF] He | Incremental 3D Line Segment Extraction from Semi-dense SLAM[END_REF] can reconstruct a map of the environment with lines instead of points, which makes it easier to reconstruct accurate surfaces using Delaunay triangulation. The method implemented in this paper uses a semi-dense version of ORB-SLAM2 [START_REF] Mur-Artal | Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[END_REF] to generate a semi-dense point cloud and extract lines from it.

SLAM methods often include loop closure which improves tracking and mapping by recognizing places already visited by the user. Then the associated map points and camera poses are adjusted according to their previous values.

There are some methods that allow isovist computation from point clouds [START_REF] Díaz-Vilariño | From point clouds to 3D isovists in indoor environments[END_REF]. These methods are based on space discretization. Once space is subdivided into voxels, we determine if the voxels are occupied or empty by the number of points they contain. Then by ray-casting, we determine if the voxels are visible or obstructed which gives us our isovist. There are limits to these kinds of methods. The first is that the returned isovists won't be a vector object, as it is computed in a discretized space. The second is that the method expects a dense and accurate point cloud to clearly model the environment, which is not the case of the previous common visual SLAM methods.

The other simple way to compute isovists as vector objects is to apply raycasting on surfaces, instead of points. That is possible with semi-dense-line SLAM [START_REF] He | Incremental 3D Line Segment Extraction from Semi-dense SLAM[END_REF] and its surface reconstruction method.

Proposal -LIghtweight Real Isovist: LIRI

Our method's workflow is shown in Fig. 1. It is based on semi-dense-line SLAM algorithm [START_REF] He | Incremental 3D Line Segment Extraction from Semi-dense SLAM[END_REF], which can reconstruct surfaces from semidense point cloud obtained by video processing (Fig. 2). We use a smartphone monocular camera but this method is standard enough to be applied to any type of monocular camera provided that we know its intrinsic parameters, which can be computed by camera calibration. So we have a 3D model of the environment made of triangles and an estimation of the sensor trajectory in the reconstructed map. The different poses returned by the algorithm are located in the coordinate system of the first detected keyframe. The global orientation of the reconstructed map then depends on the orientation of the camera lens during the detection of the first keyframe. In order to ease the comparison between video-based isovists and mockup-based isovists and to stabilize the skyline, we use an additional phone stabilizer, minimizing the camera orientation error. The phone stabilizer doesn't impact the standard and lightweight setup hypothesis. The resulting model has some outlier triangles that don't represent real assets so we apply a filter upon the area and the perimeter of the triangles to eliminate the outliers. This filter was set up experimentally.

We use a ray-tracing based method to compute isovists from the reconstructed map of the environment and estimated trajectory. We scan the environment using a panoptic approach in the horizontal plane of vision. To compute ray-tracing, we use the Möller-Trumbore intersection algorithm [START_REF] Möller | Fast, minimum storage ray/triangle intersection[END_REF] that can quickly calculate the intersection point between a triangle and a ray in 3D space, without using plane equations. For each ray, we look at every triangle and determine the intersection point, if it exists, and we only keep the nearest intersection point from the ray origin. By connecting the intersection points obtained in the different directions we can reconstruct the isovist for a given position. Finally, if we aggregate the different isovists obtained by the positions along a trajectory, we have the isovists field related to that trajectory.

To compare our method to the topographic-based model, we have to transform our data in a geographical context. So we have to apply scaling, translation, and homothety (dilation) but also extract geographical coordinates of one of the points of the trajectory. In our case we focus on the first point which corresponds to the first moment a keyframe is detected. The position of the camera associated with this first keyframe is predominant; we determine it empirically with the help of orthophotographs. We use a similar method to get the scale factor: we determine manually the geographical location of two points of the trajectory, using a GIS and orthophotographs, and we calculate the distance between them in the reconstructed map and in the topographic-based model. By applying this factor to our data, it is now possible to implement the estimation of the trajectory in the digital model to compute mockup-based isovists 1 . We can also compare the isovists obtained by both models.

1. To calculate the mockup-based isovists, we use standard topographic data sets such as the ones provided by the IGN BD TOPO® database (June 2020 edition) and the t4gpd Python plugin [START_REF] Leduc | Minimum-area ellipse bounding an isovist: towards a 2D GIS-based efficient implementation[END_REF].
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Results

We present here the results on one dataset collected in the city of Nantes. We suppose that the user made a single one-way journey. We also implement an arbitrary limit distance for the ray-casting, based on the size of the reconstructed map. The computation has been conducted on a PC with 8GB RAM, 4x2.60 GHz Intel Core i7 CPU, using Ubuntu 16.04 64 bits. With these characteristics, semi-dense-line SLAM ran for half an hour to fully map the environment from a one minute video. Then our method takes about two minutes to generate the 164 isovists related to the video. A quick comparison (Fig. 3) of the video-based and mockup-based isovists shows the similarities and the differences between the two models. Thus, the video-based isovists from the first poses of the trajectory are very circular, because of the limited field of view of the camera that doesn't allow the SLAM method to reconstruct the environment behind the observer. As seen in Fig. 3 left, as the scene behind the observer is not reconstructed, there is no mask (i.e. no building facades) to stop the rays. This lack of mask casts the rays to the limits of the artificial horizon (which is here of very limited range) which explains the circularity of the resulting shape. The video-based and mockupbased isovists attached to the following poses seem pretty similar. Finally, the last poses show again some differences. This is caused by the fact that videobased isovists take into account walls delineating private plots while mockupbased isovists only consider buildings surfaces. The fences detected in the video are not present in the 3D model derived from standard datasets.

To go beyond visual comparison of the different isovists, we used four morphological indicators:

-Perimeter : P -Area : A -Ellipticity factor : = π × L 2 /4A -Convexity defect : e conv = A/A hull With L, the largest distance between two vertices of the polygon and A hull the area of the convex hull of the polygon.

The ellipticity factor reflects the compression of a circle to form an ellipsoid and the flattening of the isovist. The convexity defect reflects the convex aspects of an isovist, especially the presence of concavity.

All these four parameters give information upon the global form of an isovist. We then compute these parameters for one in ten of the isovists.

By observing the Fig. 4, 5 and 6 we can separate the isovists into three main groups whose limits are indicated by green dashed lines in the figures. The first group may contain the isovists corresponding to the first poses of the trajectory. In this group, the video-based and mockup-based isovists show some differences. Indeed the first video-based isovists of the trajectory are almost circular, because of the lack of information of the reconstructed map in the first poses of the trajectory. This lack of information is due to the camera's limited field of view. This period during which the SLAM algorithm has not reconstructed the environment with enough information yet could be considered as an initialization phase.

The second group contains the next isovists. Here, the video-based and mockup-based isovists show much more similarities than in the first group. This is because there is enough information in the video to fully map the environment and the digital model is similar to what we can see in the video.

Finally, the third group contains the isovists of the last poses of the trajectory. Here the video-based and mockup-based isovists show differences. This may be explained by the fact that the video shows the reality of the environment, with additional occlusions such as walls or fences delineating private plots, while the digital model only considers buildings as polygons. The environment around the latter part of the trajectory contains a lot of these additional occlusions.

It can also be seen from Fig. 7 that the convexity defect graph of videobased isovist is less constant and overall higher than the mockup-based isovist convexity defect graph. This indicates the presence of more occlusion leading to more concavity, which corresponds to the less smooth real environment. 
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In this way, video-based isovists generated by our method more accurately reflects the reality of the environment, as long as there are enough data provided by the video.

Conclusion, Discussion and Perspectives

In this paper, we presented a process to generate isovists from a video recorded with a monocular camera, in an urban street. If the video shows enough information, the video-based isovists are pretty similar to the ones generated using standard topographic datasets, provided the viewing distance. There is even evidence to suggest that our method gives additional details upon the real environment, compared to the digital urban model, by taking into account some obstacles that are not houses or buildings.

Our method can be used to further improve the digital model by taking into account real assets obstructing the user's view represented by video-based isovists; thus tackling the well known updating problem in GIS. Moreover, the video-based reconstruction of the shape of the immediate surroundings could help several applications, eg. the display of geolocalised information in augmented reality.

Our method cannot run in real-time due to the important amount of calculation during the mapping of the environment in the semi-dense-line SLAM algorithm. This forced us to use short videos to test our method and thus to work on small environments, and this is why we limited the range of the isovists. This issue could be solved using a more powerful computer and longer videos of the environment. We could also use the loop closure of the SLAM algorithm to optimize the reconstructed map by recognizing places already visited by the user.

Another axis of improvement would be to automatize the acquisition of world coordinates and scale factor of the reconstructed map of the environment and the estimated trajectory. This may be done by getting the camera's metadata giving GPS coordinates and orientation of the sensor. This would also allow an automatic correspondence of video-based and mockup-based isovists.

Our method is not dependant on any kind of device, and any monocular video -if we know the intrinsic parameters of the camera -can be taken as an entry. Considering that a limit of the video-based isovists is the limited field of view of a simple monocular camera, we may wonder about the possibility to extend this method to omnidirectional cameras. Indeed omnidirectional cameras can catch videos with a very large field of view and adapting this method to this kind of camera only demands to adapt the mathematical model of the SLAM algorithm from pinhole model to unified model [START_REF] Caruso | Large-scale direct SLAM for omnidirectional cameras[END_REF]. Using omnidirectional cameras implies processing more pixels which may make the calculations heavier but we would have complete video-based isovists rather than half video-based isovists for the first poses of the trajectory.

Furthermore, it would be interesting to add semantic treatment to our video in order to optimize the surface reconstruction. It's an approach which is already used by MIT-SPARK [START_REF] Rosinol | Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping[END_REF] but with stereo cameras. This approach may soon be extended to monocular cameras which could also be inserted in our method.

Another very recent method [START_REF] Yang | Mobile3Drecon: Real-time monocular 3D reconstruction on a mobile phone[END_REF] allows user to reconstruct in real-time a dense surface mesh of the environment with a mobile device equipped with an embedded monocular camera. This method has given interesting results in indoor environments. We could imagine applying it to outdoor environments to replace the semidense-line SLAM.

As future work, we could directly compare isovist field extracted from LiDaR point cloud with mock-up based isovist. Such a comparison could validate our method, taking the point cloud as a reference.
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 1 Figure 1. Workflow of our method.
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 2 Figure 2. Surfaces reconstructed with semidense-line SLAM method. The red line represents the trajectory of the sensor.
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 3 Figure 3. Comparison of isovists field. Left: video-based isovists. Right: mockup-based isovists.
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 4567 Figure 4. Perimeters (m) of video-based (blue) and mockup-based (red) isovists.