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• Childhood BPA exposure was linked to
higher BDNF DNA methylation at ado-
lescence.

• Childhood BPA was associated with
thought and somatic problems at ado-
lescence.

• BDNF may mediate BPA-behavior asso-
ciations and should be further investi-
gated.

• Brain derived neurotrophic factor-BDNF
seems a promising neurologic effect bio-
marker.
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Background: Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European
Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed
supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF).
Objective: To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain).
Methods: BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9–11 years,
normalized by creatinine and log-2 transformed. At adolescence (15–17 years), blood and urine specimens
were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNAmethyla-
tion levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-
pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in
148 boys. Adjusted linear regression and mediation models were fit.
Results: Childhood urinary BPA concentrations were longitudinally and positively associated with thought prob-
lems (β=0.76; 95% CI: 0.02, 1.49) and somatic complaints (β=0.80; 95% CI:−0.16, 1.75) at adolescence. BPA
concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36)
and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein
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Fig. 1. Adverse outcome pathway network leading to a re
Modified from Mustieles et al. (2020). Integration of 3 ful
(MIEs) and key events (KEs) leading to learning and me
thyroid andN-methyl-D-Aspartate (NMDAR) pathways, BP
pression (Mustieles et al., 2020).
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levels. When independent variables were categorized in tertiles, positive dose-response associations were ob-
served between BPA-thought problems (p-trend= 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought prob-
lems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNAmethylation was observed (β= 0.23; 95% CI:
0.01, 0.57), accounting for up to 34% of the BPA-thought problems association.
Conclusions: In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF
DNAmethylation, supporting the biological plausibility of BPA-behavior relationships previously described in the
epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be
replicated in larger birth cohorts.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bisphenol A (BPA) is a highly produced synthetic monomer used in
polycarbonate plastics and epoxy resins. Among many consumer prod-
ucts, BPA is found in the inner lining of cans and tins (Cao et al., 2009;
González et al., 2020; Kim et al., 2020), polycarbonate plastic bottles
(Carwile et al., 2009), thermal receipts (Ehrlich et al., 2014; Molina-
Molina et al., 2019), medical equipment (Iribarne-Durán et al., 2019),
and textiles (Freire et al., 2019). Human BPA exposure is ubiquitous
andmore than 90% of the European population still has detectable con-
centrations in their urine (Covaci et al., 2015; Tschersich et al., 2021),
despite the fact that BPA analogues have been recently introduced as re-
placements (Wu et al., 2018). BPA has also been measured in serum,
placenta, breastmilk and amniotic fluid, demonstrating internal expo-
sure (Vandenberg et al., 2010).

As a paradigmatic endocrine disrupting chemical (EDC), BPA is known
to interfere with diverse aspects of hormone signaling at low doses
(Heindel et al., 2020; Ma et al., 2019). Apart from its reprotoxic (Peretz
et al., 2014) and metabolism disrupting activities (Akash et al., 2020),
BPA is a developmental neurotoxicant in experimental animals (Nesan
et al., 2018; Patisaul, 2019). The human literature appears increasingly
consistent for altered behavior in children (Ejaredar et al., 2017;
duced release of BDNF.
ly-developed AOPs (12, 13 and 54) f
mory impairment. BPA has been sh
A can also interferewith estrogenic p
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Mustieles et al., 2015; Mustieles and Fernández, 2020), although the
potential mechanisms underlying observational associations remain
poorly investigated.

Research on novel effect biomarkers is among the aims of the
European Human Biomonitoring for Europe (HBM4EU) Initiative. Effect
biomarkers aremeasurable biological changes that allow the evaluation
of dose–response relationships and may provide a mechanistic link be-
tween exposure, early health impairment and health outcomes, conse-
quently improving HBM and risk assessment of environmental
chemicals (Baken et al., 2019; Mustieles et al., 2020). We have recently
reviewed all the effect biomarkers used in epidemiological studies in re-
lation to BPA exposure, identifying brain-derived neurotrophic factor
(BDNF) as a promising biomarker of brain function (Mustieles et al.,
2020). An adverse outcome pathway (AOP) network was also con-
structed, supporting that BPA may interfere with BDNF signaling
through different but converging biological mechanisms (thyroid, es-
trogenic and glutamatergic-related pathways), potentially leading to
behavioral and cognitive impairments (Fig. 1).

Discovered in 1982, BDNF is amember of the neurotrophin family of
growth factors (Binder and Scharfman, 2004). Although it can be found
throughout the brain, its expression is particularly high in the hippo-
campus, amygdala, cerebellum and cerebral cortex in both rodents
rom the AOP wiki (https://aopwiki.org/aops). Boxes represent molecular initiating events
own to interfere with most of these key events in toxicological studies. In addition to
athways to influence BDNF regulation and behavioral outcomes including anxiety and de-
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and humans (Miranda et al., 2019). The precursor pro-BDNF is synthe-
sized and stored in dendrites or axons, and then is used to produce
the mature BDNF protein. Of note, the pro- and mature-BDNF forms
show opposite actions on neuronal function, providing an additional
level of regulation. While pro-BDNF preferentially binds the p75
neurotrophin receptor leading to apoptosis, themature BDNF form acti-
vates tyrosine kinase receptors promoting cell survival and synaptic
plasticity (Miranda et al., 2019).

Epigenetic mechanisms, especially DNA methylation, influence
BDNF expression and regulation (Ikegame et al., 2013). Patients with
psychiatric disorders generally show decreased neural BDNF levels,
often associated with increased DNA methylation at specific BDNF pro-
moters (Ikegame et al., 2013). Importantly, DNAmethylation changes in
the BDNF gene are consistent across tissues including brain and blood,
supporting its use as a peripheral biomarker of psychiatric disorders
based on both rodent (Kundakovic et al., 2015) and human post-
mortem studies (Stenz et al., 2015). On the other hand, serum total
BDNF levels have been previously associated with depression and
other psychiatric disorders as shown by different meta-analyses
(Polyakova et al., 2015; Rodrigues-Amorim et al., 2018; Toll, 2015). Al-
though less studied, urinary total BDNF levels have also been proposed
as a biomarker of executive function in adults (Koven andCollins, 2014).

The current work aimed to test our previous toxicologically-based
hypothesis (Mustieles et al., 2020) focusing on the BPA exposure –
BDNF – behavior triad in the Environment and Childhood (INMA)-Gra-
nada birth cohort of boys by investigating: i) whether childhood BPA
exposure (9–11 years) is longitudinally associated with behavioral
function at adolescence (15–17 years); ii) the longitudinal relationship
between childhood BPA exposure and BDNF biomarkers measured at
adolescence (protein levels in serum and urine, and blood DNAmethyl-
ation); iii) the cross-sectional relationship between BDNF biomarkers
and behavior in adolescents; and iv) whether BDNF biomarkers may
mediate BPA-behavior associations.

2. Methods

2.1. Study population

This study forms part of the INMA Project, a multicenter population-
based birth cohort study formed by seven cohorts designed to investi-
gate the effect of environmental exposures and diet during pregnancy
on fetal, child and adolescent development in different geographical
areas of Spain (Guxens et al., 2012). The INMA-Granada cohort initially
recruited 668mother-son pairs with the aim to investigate associations
between prenatal exposure to environmental chemicals and male uro-
genital malformations (Fernandez et al., 2007). A random sample of
the initial cohort was re-contacted and asked to participate in follow-
up clinical visits at the ages of 4–5 years (N = 220) and 9–11 years
(N= 300). In the last follow-up (2017–2019), all boys that participated
in the two previous visits were re-contacted. Of these, 155 boys aged
15–17 years agreed to participate and their parents signed the informed
consent (Castiello et al., 2020). The principles of the declaration of
Helsinkiwere followed, and the initial study and all follow-upswere ap-
proved by the Biomedical Research Ethics Committee of Granada. The
physical and neuropsychological evaluation was performed at the Pedi-
atric Unit of San Cecilio University Hospital (HUSC) in Granada.

The current analysis included 130 boys with available urinary BPA
concentrations at 9–11 years of age and behavioral data at
15–17 years completed by parents. Between 107 and 121 boys were in-
cluded in BPA-BDNF biomarker associations. Between 103 and 116 boys
were included in BDNF-behavior associations. Finally, 103 childrenwith
complete data on exposure, BDNF and outcome were included in the
mediation analysis (Fig. 2). Although no significant differences in
socio-demographic or clinical characteristics were observed between
the children included in this analysis (n = 130) and the remaining
who also participated in the previous follow-up at 9–11 years of age
3

(n = 139), childhood BPA concentrations tended to be higher and ma-
ternal education lower in the current analysis (Table S1).

2.2. Childhood BPA exposure assessment

Children provided a single non-fasting spot urine sample at the
9–11 year-old visit, between 17:00 and 20:00 h. Urine was collected
in 10-mL polypropylene tubes and immediately stored at −20 °C.
Total BPA (free plus conjugated) was determined by liquid
chromatography-mass spectrometry at the laboratory of the Depart-
ment of Analytical Chemistry of the University of Cordoba (Spain) as
previously described in detail (Perez-Lobato et al., 2016). The limits of
detection (LOD) and quantification (LOQ) were, respectively, 0.1 μg/L
and 0.2 μg/L. Extended analytical information and procedures, including
quality control and assurance (QA/QC) followed are provided in Perez-
Lobato et al. (2016). The collection, storage, and processing of urine
biospecimens was performed under controlled conditions, and account
was taken for potential BPA external contamination from collection
containers, equipment or labware. Urinary creatinine concentrations
(mg/dL) were assessed at the Public Health Laboratory of the Basque
Country (Spain) to account for urine dilution. BPA concentrations
were normalized by urinary creatinine and expressed as μg of BPA/g of
creatinine.

2.3. BDNF biomarkers at adolescence

On the day of their hospital visit at 15–17 years of age, each adoles-
cent collected the first morning urine void and peripheral venous blood
was collected from participants under non-fasting conditions between
17:00–19:00 h. Blood samples were immediately processed to obtain
serum and whole blood aliquots. Urine and processed blood samples
were subsequently stored at −80 °C. Whole blood was sent on dry ice
to the Human Genotyping Laboratory at the Spanish National Cancer
Research Centre, where genomic DNA was extracted with the
Maxwell® RSC equipment, quantified using the PicoGreen assay and
normalized to 50 ng/μL. The extracted DNA was always stored at
−80 °C until use.

Total serum BDNF levels (ng/mL) were measured using the com-
mercial Quantikine® enzyme-linked immunosorbent assay (ELISA) kit
(R&D Systems, Minneapolis, MN, USA). Serum samples were defrosted,
vortexed, separated in two aliquots of 10 μL, diluted 100 times and
tested according to manufacturer's instructions at the Biomedical
Research Center (CIBM) of theUniversity of Granada (Spain). Each sam-
plewas tested in duplicate in different plates and themean of these two
values was calculated in order to reduce measurement variation. Intra-
and inter-assay coefficients of variability were <5% and <15%, respec-
tively.

Total urinary BDNF levels were measured using the commercial
RayBio® ELISA kit (Raybiotech, Norcross, GA, USA). Urine samples
were defrosted, vortexed, and pre-treated following the protocol
established by Koven and Collins (2014), with minor modifications.
Samples were assessed at the Biomedical Research Center (CIBM) of
the University of Granada (Spain) following manufacturer's instruc-
tions. Each sample was assessed in duplicate and the mean value was
calculated. Intra- and inter-assay coefficients of variability were <5%
and <15%, respectively. Creatinine concentrations (mg/dL) in the
urine of adolescents were assessed at the Instituto de Investigación
Biosanitaria de Granada (ibs.Granada, Spain) to account for urine dilu-
tion. Urinary BDNF concentrations were normalized by creatinine and
expressed as μg of BDNF/g of creatinine.

DNA methylation was analyzed using the bisulfite pyrosequencing
technique at IRSET (Institut deRecherche en Santé, Environnement et Tra-
vail - INSERM UMR1085), Rennes, France. Briefly, genomic DNA concen-
tration and purity was measured using NanoDrop (Thermo Scientific
NanoDrop 8000; DNA50 mode). All the samples had approximately
1.8–1.9 ratio at 260/280 absorbance indicating that the extracted DNA



Fig. 2. Participant flow-chart in the Environment and Childhood (INMA)-Granada cohort follow-up visits from the age of 9–11 years to 15–17 years.
BPA (Bisphenol A); CBCL (Child Behavior Checklist); BDNF (Brain-derived neurotrophic factor).
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was pure. Since accurate quantification of DNA is extremely important for
epigenetic studies, DNA concentration was further verified using
QuantiFluor dsDNA system (Promega E2670) which is a highly sensitive
system formeasuring only double-stranded DNA (dsDNA). Subsequently,
500 ng of genomic DNA was bisulfite converted (BS) using Epitect Fast
Bisulfite Conversion kit (Qiagen, 59826) following manufacturer's proto-
col. The concentration after bisulfite conversion and purification was
remeasured using NanoDrop (Thermo Scientific NanoDrop 8000;
RNA40 mode) as recommended for BS-DNA. 20 ng of BS-converted DNA
was used for downstream PCR amplification (Biometra TProfessional
Thermoycler, France) of BDNF by using Takara EpiTaq hot-start DNApoly-
merase (Takara, R110A; 0.6 U/25 μl final concentration) that could am-
plify BS-converted DNA, under the following conditions: initial
denaturation 98 °C for 30 s followed by denaturation at 98 °C for 30 s, an-
nealing at 55 °C for 30 s, and extension at 72 °C at 30 s, for a total of 40 cy-
cles. The primers used for BDNF amplification (0.4 μMfinal concentration)
are provided in Table S2, of which the reverse primer was biotinylated.
The targeted region was Exon IV of BDNF (genomic coordinates:
chr11:27,723,070–27,723,280 retrieved from UCSC Genome Browser
Human February 2009 (GRCh37/hg19), which has been previously vali-
dated in rodents and humans (Kundakovic et al., 2015) and contains 6
CpGs including a CREB-binding site (cAMP response element-binding
site). Following PCR amplification, the products were purified using
MinElute PCR purification kit (Qiagen, 28,006) and were loaded on a 2%
agarose gel and a single BDNFproduct (210bp size)wasobserved indicat-
ing BDNF primer specificity and absence of primer-dimers. The samples
were sent to the Genomic Platform LIGAN (Lille Integrated Genomics
Advanced Network for personalized medicine), Lille (France), and were
pyrosequenced using Pyromark Q24 Advanced Pyrosequencing technol-
ogy. The degree of methylation at each CpGwas expressed as percentage
of DNA methylation.

The Pyromark Q24 software measures the percentage of methyla-
tion at each CpG and has a built-in quality control system for each run.
The software uses non-CpG peaks as reference peaks and determines
how well they match with the theoretical pyrogram generated based
on the original BDNF sequence to be analyzed. CpG sites that deviate
from an expected peak size are highlighted by the software. Since this
could happen due to variations in PCR efficiency at certain regions, sam-
ples with CpGs that did not pass the quality control were
4

pyrosequenced again to discard an error from technical handling. The
number of CpGs that did not finally pass the quality control was small
(<4% of all CpG measurements performed). Given that the quality con-
trol was CpG-specific, one individual could for example have data quan-
tified for CpGs 1-to-5 but lack data on CpG6 or any other CpG. This small
percentage of missing CpGs was multiple imputed (see Statistical
analysis section). Extended details on the fine-tuning and quality con-
trols performed for the measurement of BDNF biomarkers can be
found elsewhere, as part of the HBM4EU project (Fernández et al.,
2021).

2.4. Behavioral assessment

Adolescent's behavioral function was evaluated using the parent-
reported Child Behavior Checklist (CBCL/6-18), a validated question-
naire that evaluates the parental perception about the behavior of
their children and/or adolescents during the previous six months
(Achenbach and Rescorla, 2001). The CBCL includes 118 items rated
on a three-point Likert scale (0= “Not True”, 1 = “Somewhat or Some-
times True”, or 2= “Very/Often True”), that are grouped into eight syn-
drome scales (anxious/depressed, withdrawn/depressed, somatic
complaints, social problems, thought problems, attention problems,
rule-breaking behavior, and aggressive behavior). These scales are
grouped into two empirically-derived composite scales: i) the internal-
izing domain as ameasure of emotional problems (sumof scores on the
anxious/depressed, withdrawn/depressed, and somatic complaints
scales); and ii) the externalizing domain as a measure of behavioral
problems (sum of scores on the rule-breaking behavior and aggressive
behavior scales). Three other scales are considered mixed-syndrome
scales that do not belong to either domain: social, thought, and atten-
tion problems (Achenbach and Rescorla, 2001). The total problems
composite scale finally quantifies general impairment and corresponds
to the sum of scores from all eight syndrome scales, together with a
group of 17 “Other problems” items that do not belong to any specific
syndrome scale. Raw scores for each scale were converted to sex- and
age-normalized t-scores, which were used to evaluate behavior as a
continuous outcome in themain analyses. Higher scoresmeanmore be-
havioral problems in all scales. Children with CBCL/6–18 T-scores ≥60
on internalizing or externalizing problem scales and T-scores ≥65 on
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diagnostic scales are considered as borderline/clinical cases (Achenbach
and Rescorla, 2001). Parents assessed the behavioral functioning of ad-
olescents under the supervision of a trained psychologist (AM) blinded
to the BPA exposure status of the children.

2.5. Covariates

Information on sociodemographic, lifestyle factors and anthropo-
metric data were obtained from validated questionnaires and physical
examinations by trained stuff during the follow-ups of the children
and from their clinical records. Maternal education (categorized as up
to primary, secondary school or university) and age of boys (months)
were gathered from the questionnaires. Pediatricians measured the
weight (kg) and height (cm) of the adolescents without shoes and in
light clothing using an electronic scale (TANITA model 354, Seca
Corporation, Hamburg, Germany), and age- and sex-specific body
mass index (BMI) z-scoreswere calculated using the2007WorldHealth
Organization (WHO) growth reference standards (de Onis, 2007).
Urinary cotinine levels were measured at 9–11 years of age to account
for second-hand smoke exposure. Cotinine was determined by compet-
itive enzyme immunoassay (EIA) using commercial EIA microplate kits
at the Public Health Laboratory of the Basque Country (Fernández et al.,
2015). Alcohol consumption frequency and type of beverage
(fermented vs. distilled drinks) was self-reported by adolescents, and
classified as never or less than 1 drink/month vs. more than 1 drink/
month.

2.6. Statistical analysis

Study participant characteristics were described using measures of
central tendency anddispersion for numerical variables and frequencies
for categorical variables. Creatinine-normalized urinary BPA concentra-
tions were log2-transformed to minimize the skewness of the distribu-
tion. For BDNF DNA methylation measures, there was a small
percentage of specific CpGs that did not pass the quality control (<4%)
among individuals that had the remaining CpGs adequately quantified.
Given that CpGs showed varying degrees of correlation among them
(Table S3), missing CpG data were multiple imputed (20 imputations)
using the regression method to avoid potential selection bias issues
(i.e., slight differences in sample size for each CpG investigated).

Covariates were chosen a priori based on previous knowledge and/
or those thatmodified the estimate (regression coefficient) of the expo-
sure variable by >10%. To avoid an overadjustment, and to improve the
comparability of exposure-mediator-outcome associations, all models
were adjusted for the same set of covariates: adolescent's age (months)
and BMI (z-scores) at behavioral assessment, since age at assessment
predicted CBCL scores in this population and childhood adiposity is
known to play a relevant role in neurodevelopment (Steegers et al.,
2021); maternal education (primary, secondary or higher) as a well-
known measure of socioeconomic status and parenting environment
(Koutra et al., 2012; Patra et al., 2016), children's urinary cotinine levels
(mg/dL) at 9–11 years of age, as tobacco exposure during childhood is
an important predictor of neurobehavior (Chen et al., 2013); and alco-
hol consumption at adolescence since it has been identified as a relevant
predictor of BDNF regulation in this period (Miguez et al., 2020).

Multivariable linear regression models were fit to assess:
i) Longitudinal associations between childhood log2-transformed
creatinine-normalized BPA concentrations and continuous t-scores for
each behavioral scale at adolescence; ii) Longitudinal associations be-
tween childhood log2-transformed BPA concentrations and continuous
values of BDNF biomarkers at adolescence; and iii) Cross-sectional asso-
ciations between selected log2-transformed BDNF biomarkers and t-
scores of selected CBCL scales, both assessed at adolescence. Beta coeffi-
cients and 95% CIs represent the mean change in the dependent vari-
able, for each doubling in the independent variable. In order to
explore potential dose-response associations within positive findings,
5

we additionally categorized independent variables (BPA concentrations
and BDNF biomarkers) in tertiles, taking the lowest tertile as the refer-
ence. Statistical tests for trend across tertiles were calculated by enter-
ing the independent variable as an ordinal level indicator (1, 2, 3) of
each tertile in the regression model.

To determine whether selected BDNF biomarkers are potential me-
diators of the longitudinal association between BPA exposure and ado-
lescent's behavior, mediation analysis was performed to calculate the
total, direct and indirect effects. To reduce the number of comparisons,
mediation analysis was guided by associations previously observed in
multivariable regression models. Beta coefficients and 95% CIs were es-
timated after 10,000 bootstrapped replications. The total effect repre-
sents the relationship between the exposure (i.e., BPA) and outcome
(i.e., behavior) without accounting for any mediator. The natural direct
effect represents the proportion of the statistical relationship between
exposure and outcome that is not attributable to the mediator
(i.e., BDNF). The mediational or natural indirect effect represents the
proportion of the statistical relationship between exposure and out-
come that is driven by the mediator. The percentage mediated was cal-
culated as: indirect effect / (direct effect + indirect effect) × 100.

SPSS v25.0 (IBM, Chicago, IL) was used for data analyses. Mediation
analysis was performed using the PROCESS macro v3.5 for SPSS (http://
processmacro.org/index.html). The significance level was set at P-value
<0.05 and all tests were two-tailed. A P-value between 0.05 and 0.10
was considered as being suggestive of statistical significance. Notwith-
standing, results were interpreted considering their internal validity
and coherence, as well as the existing toxicological and epidemiological
support, rather than solely depending on statistical significance
(Amrhein et al., 2019). Given the targeted and predefined toxicological
hypothesis investigated in this work (Mustieles et al., 2020), and the
moderate number of comparisons tested, we did not perform a post-
hoc correction for multiple comparisons to avoid a disproportionate in-
crease in the frequency of type II errors (Rothman, 2014).

3. Results

3.1. Characteristics of the study population

Mean (standard deviation - SD) age of children at urine collection
was 9.90 (0.32) years. Children's mean (SD) urinary concentrations of
creatinine and cotinine were 100 (39.8) mg/dL and 15.9 (32.8) ng/mL,
respectively. Adolescents completed the follow-up with a mean (SD)
age and BMI of 16.6 (0.38) years and 23.6 (5.08) kg/m2, respectively,
and 38.5% consumed alcoholic beverages more than once per month.
Regarding mothers, more than two-thirds had completed primary
(37.7%) and secondary (36.2%) education, while 26.2% had completed
university studies (Table 1). The distribution of CBCL behavior t-scores
of adolescents is presented in Table S4. Internalizing problems (30.0%)
were more prevalent than externalizing behaviors (13.8%) (Table S4).

BPA concentrations were quantified in all urine samples at the
9–11 year-old visit, showing a large range of concentrations (between
0.46 and 76.4 μg/g), and a median and interquartile range (IQR) of
5.41 (3.05, 10.6) μg/g (Table 1). Serum and urinary total protein BDNF
levels measured in adolescents showed a median (IQR) of 31.5 (25.4,
38.8) ng/mL and 2.14 (1.56, 3.09) μg/g, respectively (Table 1). The
mean percentage of BDNFDNAmethylation in the six CpGs investigated
in blood samples from the adolescents showed a median (IQR) of 3.70
(3.45, 4.04), with a minimum value of 2.70% and a maximum of 5.54%.
The range and distributions of methylation percentages for each indi-
vidual CpG are presented in Fig. S1. Pearson correlation coefficients
were assessed between CpG's percentage of DNA methylation and
serum and urinary BDNF levels (Table S3). Most CpGs tended to posi-
tively correlate among them (suggesting the possibility of co-
methylation), while CpG1 showed a different pattern of correlation
(Table S3). A higher percentage of methylation in most CpGs tended
to correlate with lower serum protein BDNF levels, with the exception

http://processmacro.org/index.html
http://processmacro.org/index.html


Table 1
Descriptive analysis of BPA concentrations, BDNFbiomarkers, and sociodemographic char-
acteristics of boys evaluated at both 9–11 and 15–17 years of age (n = 130) from the
Spanish INMA-Granada cohort.

Percentiles Min p10 p25 p50 p75 p90 Max

Child BPA (μg/g) 0.46 1.71 3.05 5.41 10.6 18.9 76.3
Adolescent serum BDNF protein
levels (ng/mL)

17.2 20.3 25.4 31.5 38.8 47.4 56.0

Adolescent urinary BDNF protein
levels (μg/g)a

0.16 1.09 1.56 2.14 3.09 4.31 15.2

Adolescent urinary BDNF protein
levels (ng/mL)a

0.15 2.15 2.68 4.52 5.45 6.15 7.40

Adolescent BDNF mean CpG
methylation (%)

2.70 3.20 3.45 3.70 4.04 4.64 5.54

Characteristics N (%)/mean (SD)

Maternal education
Primary 49 (37.7%)
Secondary 47 (36.2%)
University 34 (26.2%)

Adolescent alcohol intake (Yes) 50 (38.5%)
Child age at urine collection (years) 9.90 (0.32)
Child urinary creatinine (mg/dL) 100 (39.8)
Child urinary cotinine (ng/mL) 15.9 (32.8)
Adolescent age at follow-up (years) 16.6 (0.38)
Adolescent BMI at follow-up (kg/m2) 23.6 (5.08)
Adolescent BMI z-scores 0.58 (1.33)

BPA (Bisphenol A); BDNF (Brain-derived neurotrophic factor); BMI (bodymass index); p:
percentile.

a Adolescent raw urinary BDNF protein levels were expressed as ng/mL, while creati-
nine-corrected urinary BDNF levels were expressed as μg/g.
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of CpG1. On the contrary, urinary protein BDNF levels were not corre-
lated with most CpGs, with the exception of CpG1, for which a positive
borderline-significant correlation was observed (Table S3). Serum and
urinary BDNF protein levels were not significantly correlated, although
an inverse relationship was observed between both biomarkers.

3.2. Longitudinal associations of childhood BPA exposure with behavior at
adolescence

Childhood urinary BPA concentrations tended to be associated with
poorer behavior in most CBCL scales at adolescence, except for social
and attention problems (Table 2). Each doubling in urinary BPA concen-
tration was associated with a 0.76-point (95% CI: 0.02, 1.49) increase in
Table 2
Longitudinal associations between childhood urinary BPA concentrations (9–11 years)
and parent-reported behavior of adolescent boys aged 15–17 (n = 130).

Behavioral functions (CBCL) BPA (μg/g of creatinine)⁎

β (95% CI) P-value

Syndrome scores
Anxious/depressed 0.34 (−0.44, 1.11) 0.392
Withdrawn 0.17 (−0.66, 0.99) 0.690
Somatic complaints 0.80 (−0.16, 1.75) 0.102
Social problems −0.11 (−0.87, 0.66) 0.779
Thought problems 0.76 (0.02, 1.49) 0.045
Attention problems −0.35 (−1.16, 0.46) 0.394
Rule-breaking problems 0.42 (−0.29, 1.13) 0.245
Aggressive behavior 0.00 (−0.77, 0.77) 0.998

Composite scores
Internalizing problems 0.39 (−0.50, 1.28) 0.382
Externalizing problems 0.23 (−0.35, 0.81) 0.433
Total problems 0.80 (−0.13, 1.73) 0.092

Data are presented as Beta estimates and 95% Confidence Intervals [β (95% CIs)]. Models
were adjusted for age and BMI z-scores (continuous) at behavioral assessment
(15–17 years), maternal education (primary, secondary or university), urinary cotinine
at 9–11 years (continuous) and alcohol consumption at adolescence (yes/no). Higher
Child Behavior Checklist (CBCL) t-scores mean more behavioral problems for all scales. *
Continuous BPA concentrations normalized by urinary creatinine were log2-transformed
and treated as the independent variable.
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t-scores for the thought problems scale (Table 2).When BPA concentra-
tions were categorized in tertiles, a dose-response function with
thought problems was confirmed (Fig. 3.A, p-trend = 0.08). Children
in the upper BPA tertile showed a mean increase of 2 points in thought
problems t-scores (range 50–82 points, Table S4) compared to those in
the lowest tertile (Fig. 3.A). BPA exposure was additionally associated
with increased somatic (β= 0.80; 95% CI:−0.16, 1.75) and total prob-
lems (β=0.80; 95% CI:−0.13, 1.73), although confidence intervals in-
cluded the null value, and a dose-response shape was not observed for
total problems (Fig. S2).

3.3. Longitudinal associations of childhood BPA exposure with BDNF
biomarkers at adolescence

Childhood urinary BPA concentrations tended to be associated with
a higher percentage of BDNF DNA methylation at adolescence in all
CpGs investigated (Table 3). BPA concentrations were positively and
significantly associated with higher DNA methylation at CpG6 (β =
0.21; 95% CI: 0.06, 0.36) and the mean methylation of the six CpGs
assessed (β = 0.10; 95% CI: 0.01, 0.18). Suggestive associations with
CpG3 and CpG5 were also observed (β = 0.09; 95% CI: −0.00, 0.17;
β = 0.11; 95% CI: −0.00, 0.22). Notably, the magnitude of the associa-
tion observed for CpG6 doubled those of CpGs 3, 5 and CpG mean.
When BPA concentrations were categorized in tertiles, dose-response
associations were observed for these three CpGs, with CpG6 showing
again the most robust association (Figs. 3.B and S2). Childhood BPA ex-
posure was not associated with total BDNF protein levels measured in
either serum or urine at adolescence (Table 3).

3.4. Cross-sectional associations between BDNF biomarkers and behavior at
adolescence

Given that BPA exposure was more clearly associated with thought
problems compared to the remaining CBCL scores (Table 2 and
Fig. S2),we decided to focus on this scale.When BDNFDNAmethylation
was considered as the independent variable, most CpGs tended to be
positively associatedwith thought problems, being CpG1 the unique ex-
ception (Table 4). CpG6was significantly associated with thought prob-
lems (β=2.59; 95%CI: 0.31, 4.87), and a suggestive positive association
was also observed for CpG5 (β = 3.42; 95% CI: −0.22, 7.05) [Table 4].
When the CpGs previously associated with BPA (Table 3) were catego-
rized in tertiles, dose-response associations were observed for CpGs 5
and 6 and the mean CpG methylation, but not CpG3 (Fig. S2). This
dose-response association was stronger and especially evident for
CpG6. Thus, boys in the upper tertile of CpG6 BDNF DNA methylation
showed a mean increase of 4 points in thought problems t-scores
(range 50–82 points, Table S4) compared to those in the lowest tertile
(Fig. 3.C). Regarding serum and urinary total BDNF levels, no cross-
sectional associations were observed with thought problems (Table 4).

3.5. Mediation analysis

As summarized in Fig. 3, BPA was longitudinally and dose-
dependently associated with increased thought problems (Fig. 3.A),
and with a higher percentage of BDNF DNA methylation, especially at
CpG6 (Fig. 3.B) at adolescence. Additionally, CpG6 methylation was
cross-sectionally and dose-dependently associated with increased
thought problems (Fig. 3.C). Based on these results, we decided to eval-
uate whether there was a mediation effect in the subset of 103 boys
with available data for the exposure,mediator and outcome. In adjusted
models, a significant indirect effect of CpG6 DNA methylation (β =
0.23; 95% CI: 0.01, 0.57) was observed, accounting for up to 34% of the
BPA-thought problems association (Fig. 4). No significant indirect ef-
fects were observed for CpG5 and themean CpGmethylation in relation
to thought problems, or somatic complaints (Table S5).



Fig. 3. Relationships among BPA exposure, CpG6 DNAmethylation and thought problems categorizing the independent variable in tertiles to assess dose-response trendswithin themost
robust findings.
Childhood urinary BPA concentrations categorized in tertileswere longitudinally, dose-dependently and positively associatedwith thought problems (A) andwith the percentage of BDNF
DNAmethylation at CpG6 of Exon IV (B). Additionally, CpG6 DNA methylation percentage categorized in tertiles was cross-sectionally, dose-dependently and positively associated with
thought problems (C). Models were adjusted for age and BMI z-scores (continuous) at neuropsychological evaluation (15–17 years), maternal education (primary, secondary or
university), urinary cotinine at 9–11 years (continuous) and alcohol consumption at adolescence (yes/no). Higher t-scores mean more behavioral problems. Note: The scales of Y-axes
represent the range of mean values for tertiles. The full range is 50–82 points for thought problems t-scores, and 1.17%–6.36% in the case of CpG6 BDNF DNA methylation.
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4. Discussion

In the INMA-Granada birth cohort, higher childhood urinary BPA
concentrations were longitudinally associated with increased behavior
problems at adolescence, especially thought problems. Childhood BPA
exposure was also longitudinally associated with a higher percentage
of DNA methylation at the promoter region IV of the BDNF gene mea-
sured at adolescence, especially evident at CpGnumber 6.Moreover, in-
creased BDNF DNA methylation predicted the occurrence of thought
problems, and CpG6 mediated the association between BPA and
thought problems. Our findings suggest that BPA exposure may alter
BDNF epigenetic regulation, leading to altered neurobehavior during a
critical and understudied period of development such as adolescence
(Fuhrmann et al., 2015; Pfeifer and Allen, 2020).

In this same cohort, we previously found that higher urinary BPA
concentrations were cross-sectionally associated with increased
thought, somatic and social problems in 269 boys at the age of
9–11 years (Perez-Lobato et al., 2016). Although in the current work
the number of adolescent boys assessed at 15–17 years was lower due
to attrition during the follow-up (n=130),we prospectively confirmed
previous associations with thought and somatic problems, which may
Table 3
Longitudinal associations between child urinary BPA concentrations (9–11 years) and
BDNF biomarkers in adolescent boys (15–17 years) from the INMA-Granada cohort.

BDNF measurements BPA (μg/g of creatinine)*

β (95% CI) P-value N

BDNF protein levels
Serum BDNF (ng/ml) −0.19 (−1.47, 1.10) 0.773 120
Urinary BDNF (μg/g) 0.13 (−0.09, 0.35) 0.254 121

Blood BDNF DNA methylation
CpG1 (%) 0.03 (−0.09, 0.14) 0.635 107
CpG2 (%) 0.06 (−0.02, 0.13) 0.142 107
CpG3 (%) 0.09 (−0.00, 0.17) 0.056 107
CpG4 (%) 0.09 (−0.08, 0.26) 0.290 107
CpG5 (%) 0.11 (−0.00, 0.22) 0.055 107
CpG6 (%) 0.21 (0.06, 0.36) 0.006 107
CpG mean (%) 0.10 (0.01, 0.18) 0.027 107

Data are presented as Beta estimates and 95% Confidence Intervals [β (95% CIs)]. Models
were adjusted for age and BMI z-scores (continuous) at behavioral assessment
(15–17 years), maternal education (primary, secondary or university), urinary cotinine
at 9–11 years (continuous) and alcohol consumption at adolescence (yes/no). * Continu-
ous BPA concentrations normalized by urinary creatinine were log2-transformed and
treated as the independent variable.
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signal greater vulnerability to the subsequent development of a mental
disorder in adulthood (Paus et al., 2008). The thought problems scale in-
cludes obsessive thoughts, compulsive behaviors and strange ideas
among other items, and has been linked to psychosis during adulthood
(Salcedo et al., 2018). Moreover, the co-occurrence of high scores in
both the thought problems and somatic complaints scales has been re-
lated tomania (Morgan and Cauce, 1999). Nevertheless, the interpreta-
tion of our resultsmust be done at a population instead of a clinical level
(Bellinger, 2012, 2004).

Previous studies have reported associations between prenatal BPA
exposure and child internalizing problems (Braun et al., 2017, 2011;
Grohs et al., 2019; Harley et al., 2013; Perera et al., 2016; Philippat
et al., 2017), including somatic complaints (Evans et al., 2014; Li et al.,
2020). Regarding thought problems, higher prenatal BPA exposure
was associated with increased scores in this scale at 7–9 years in chil-
dren from the Columbia Center for Children's Environmental Health
(CCCEH) cohort, although postnatal BPA exposure in the same children
was not cross-sectionally associated with this scale (Roen et al., 2015).
Postnatal studies have been more scarce, although our findings may
be compatible with those previously described by Hong et al. (2013)
and Harley et al. (2013) who found cross-sectional associations be-
tween postnatal BPA exposure and CBCL total problems and
Table 4
Cross-sectional associations between BDNF biomarkers and behavior in adolescent boys
(15–17 years) from the INMA-Granada cohort.

BDNF measurements* Thought problems (CBCL)

β (95% CI) P-value N

BDNF protein levels
Serum BDNF (ng/ml) −0.79 (−3.55, 1.97) 0.571 115
Urinary BDNF (μg/g) −0.48 (−1.82, 0.86) 0.481 116

Blood BDNF DNA methylation
CpG1 (%) −2.22 (−7.03, 2.60) 0.363 103
CpG2 (%) 0.85 (−4.11, 5.81) 0.735 103
CpG3 (%) 0.88 (−3.70, 5.46) 0.704 103
CpG4 (%) 2.64 (−2.02, 7.31) 0.263 103
CpG5 (%) 3.42 (−0.22, 7.05) 0.065 103
CpG6 (%) 2.59 (0.31, 4.87) 0.026 103
CpG mean (%) 3.52 (−2.07, 9.11) 0.214 103

Data are presented as Beta estimates and 95% Confidence Intervals [β (95% CIs)]. Models
were adjusted for age and BMI z-scores (continuous) at behavioral assessment
(15–17 years), maternal education (primary, secondary or university), urinary cotinine
at 9–11 years (continuous) and alcohol consumption at adolescence (yes/no). * Continu-
ous BDNF biomarkers were log2-transformed and treated as the independent variable.



Fig. 4. Mediation model showing associations between childhood urinary BPA concentrations, BDNF DNA methylation and thought problems t-scores at adolescence (n = 103).
Beta coefficients and 95% CIs are reported for the total, direct and indirect (i.e.,mediated) effects. Continuous log2-transformed BPA concentrations and CpG6methylation percentage, and
continuous thought problems t-scores were used. Models were adjusted for age and BMI z-scores (continuous) at neuropsychological evaluation (15–17 years), maternal education (pri-
mary, secondary or university), urinary cotinine at 9–11 years (continuous), and alcohol consumption (yes/no) at adolescence.
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internalizing problems, respectively. Noteworthy, BPA exposure has
been related to both internalizing and externalizing behaviors in toxico-
logical and observational studies (Mustieles and Fernández, 2020), hin-
dering comparisons but suggesting that poorer emotional regulation
and executive function may underlie these altered behavioral pheno-
types. In this context, the effect biomarker approach followed in this
work complemented the information provided by neuropsychological
scales, increasing the internal coherence and validity of our findings.

Similar to toxicological studies in rodents (Kundakovic et al., 2015;
Mustieles et al., 2020), our findings support that childhood BPA expo-
sure promotes a higher degree of DNAmethylation at the promoter re-
gion IV of the BDNF gene. Kundakovic et al. (2015) orally treated
pregnant BALB/c mice with either BPA (200 μg/kg per day) or vehicle
throughout gestational days 0–19, demonstrating lasting DNAmethyla-
tion changes in Exon IV of the BDNF gene in the hippocampus and blood
of the exposed offspring, which is in linewith a CLARITY-BPA toxicolog-
ical report in adult rats (Cheong et al., 2018). Kundakovic et al. (2015)
additionally tested their hypothesis in a subset of children from the
abovementioned CCCEH cohort. The authors found that boys -but not
girls- born to mothers in the highest category of prenatal urinary BPA
concentrations showed a significantly higher cord blood DNAmethyla-
tion of BDNF Exon IV at CpG sites 1 and 2 compared to boys in the lowest
exposure group (n = 40 boys with either low or high prenatal BPA ex-
posure). Importantly, prenatal BPA was previously associated with be-
havioral problems in 198 children from the CCCEH cohort (Perera
et al., 2012) including thought problems at 7–9 years of age (Roen
et al., 2015). Although in the current study BPA exposure was more ro-
bustly associated with CpGs 5 and 6, a possible association towards
higher methylation at CpG 2 -but not CpG 1- was also noticed
(Table 3). Our findings point to the same direction as Kundakovic
et al. (2015), although BDNF DNA methylation was evaluated at differ-
ent developmental periods (neonates vs. adolescents). Indeed, this
may explain the divergence in the involvement of specific CpGs, since
BDNF regulation varies throughout development (Kowiański et al.,
2018).

Themediational effect observed for CpG6DNAmethylation between
BPA exposure and thought problems is supported by: i) the strong and
predefined toxicological hypothesis (Kundakovic et al., 2015; Mustieles
et al., 2020); and ii) the consistent dose-response associations between
the BPA – CpG6 – thought problems triad (Fig. 3). Our results highlight
BDNF epigenetic regulation as a plausible key event in BPA-
neurobehavior associations that should be further investigated in larger
birth cohorts.
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All CpGs investigated showed a methylation status below 10%
(Fig. S1), supporting previous reports describing BDNF as a low-
methylated gene in absolute terms (Cattaneo et al., 2016). Indeed, due
to this characteristic,microarray-based DNAmethylomemeasurements
do not seem a reliable method for BDNF methylation assessment com-
pared to bisulfite-pyrosequencing (Forest et al., 2018; Sugden et al.,
2020). Despite low absolute methylation status in the BDNF gene, slight
variations inmethylation at Exon IV have been linked to functional gene
expression changes in experimental animals and human in vitromodels
(Kundakovic et al., 2015; Martinowich et al., 2007; Pruunsild et al.,
2011; Zheleznyakova et al., 2016). Our results support this point, since
in the case of CpG6, even small meanmethylation differences of around
2% between extreme tertiles (T3: 3.8% vs. T1: 1.8%) predicted a differ-
ence of almost 4-points in thought problems t-scores (T3: 56.7 vs. T1:
52.8) [Fig. 3.C].

Serum total protein BDNF levelsmeasured in INMA-Granada adoles-
cents (median: 31.5 ng/mL) were in line with a previous report in 223
male teenagers around 14 years of age showing a mean of 27.0 ng/mL
(Pedersen et al., 2017). While no previous study has assessed urinary
BDNF concentrations in adolescents, current urinary BDNF levels (me-
dian: 4.52 ng/mL) were higher compared to young adults (0.6 ng/mL)
(Koven and Collins, 2014). Despite serum total BDNF levels have been
related to psychiatric diseases (Polyakova et al., 2015; Rodrigues-
Amorim et al., 2018) and that urinary BDNF has been proposed as a bio-
marker of executive function in adults (Koven andCollins, 2014),we did
not find associations with BPA exposure.

The fact that we found longitudinal associations between BPA expo-
sure and blood BDNF DNA methylation but not with serum or urinary
total BDNF levels may be due to several reasons. First, we expect DNA
methylation to be more stable over time (months or even years) com-
pared to circulating protein levels (Kundakovic et al., 2015), facilitating
the detection of prospective associations. However, the temporal vari-
ability of BDNF biomarkers is unknown for DNAmethylation and scarce
in the case of urinary and serum BDNF protein levels (Molendijk et al.,
2012). Second, total BDNF protein levels were measured, not differenti-
ating between the pro- andmature forms, whichmay have reduced the
ability to detect associations (Jiang et al., 2017; Lin et al., 2021). Finally,
while peripheral BDNF DNA methylation seems to be well correlated
with its methylation status in the brain (Stenz et al., 2015), serum
BDNF may be influenced by peripheral sources such as platelets (Gejl
et al., 2019), and urinary BDNF by local production in the bladder
(Antunes-Lopes and Cruz, 2019), which would tend to mask associa-
tions. Further research is needed to confirm our findings and identify
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the most predictive BDNF biomarkers, as well as to assess their stability
over time through repeated measures.

A higher percentage of DNA methylation in most CpGs correlated
with lower serum protein BDNF levels, with the exception of CpG1
(Table S3). This is in line with our initial hypothesis that a higher per-
centage of DNA methylation would reduce BDNF gene expression and
protein synthesis. However, we were not able to elucidate whether
this negative correlation was mainly accounted by reduced levels of
the mature BDNF form, the pro-BDNF form, or both. Interestingly, uri-
nary BDNF levels showed and inverse relationship with CpG1 DNA
methylation, and with serum BDNF levels, suggesting that serum and
urinary BDNF levels may have a different biological meaning.

BPA exposure in INMA-Granada boys is higher compared to some
studies (Covaci et al., 2015; Tschersich et al., 2021), but similar to others
(Braun et al., 2011; Calafat et al., 2008; Perera et al., 2012). Timing of
urine collection in the present study (i.e., evening), but also food intake
and lifestyle patterns may partially explain the higher levels, since a
subset of the same boys at 4–5 years of age showed similar urinary
BPA concentrations compared to the 9–11 years-old visit (Casas et al.,
2011).

Overall, our findings suggest that BDNFmethylation status at Exon IV
is a physiologically valid molecular effect biomarker of children's behav-
ior thatmaymediate some of thewell-known toxicological effects of BPA
exposure on brain and behavior (Nesan et al., 2018; Patisaul, 2019).
Given that many previous epidemiological studies have reported associ-
ations betweenprenatal/postnatal BPA exposure andneurodevelopment
(reviewed in Mustieles et al., 2015; Mustieles and Fernández, 2020),
BDNF biomarkers, as well as other neurological effect biomarkers
(Cediel Ulloa et al., 2021), could be implemented in future biomonitoring
studies to improve the inference of causal relationships. Moreover,
effect biomarkers of brain function will be useful for the timely
assessment of BPA structural analogues such bisphenol S and F which
show similar neuroendocrine disruption potential (Rosenfeld, 2017;
Tanner et al., 2020).

Among the strengths of this work are the predefined hypothesis
based on toxicological data organized following the AOP framework
(Mustieles et al., 2020), together with the assessment of BDNF at com-
plementary levels of biological organization. For BDNF DNA methyla-
tion, the gold standard (bisulfite-pyrosequencing) was used. The need
for amore systematic implementation of effect biomarkers has been re-
cently highlighted (Zare Jeddi et al., 2021), and together with our previ-
ous theoretical work (Mustieles et al., 2020), this study exemplifies how
to go from toxicological knowledge to the implementation and valida-
tion of novel effect biomarkers in HBM studies. Another strength is
that BPA exposure was evaluated during late childhood and behavior
during adolescence, which are important but understudied periods of
brain development (Konrad et al., 2013). The longitudinal design con-
firmed previous cross-sectional associations between BPA and behavior
in the same cohort (Perez-Lobato et al., 2016), reducing the possibility
of reverse causality issues. Additionally, we observed dose-response re-
lationships among the exposure-BDNF-behavior triad, and indications
of potential mediation by BDNF DNA methylation. Overall, this effect
biomarker approach grounded on toxicological data helped to establish
dose–response and mechanistic relationships, increasing the biological
plausibility and internal consistency of the findings.

Regarding limitations, BPA exposure was assessed in one spot urine
sample, which may lead to exposure misclassification due to its non-
persistent nature and short-term viability. However, this would likely
result in attenuation bias, rather than an overestimation of effects
(Vernet et al., 2019). The sample size was small, reducing our ability
to detect potential associations, and limiting the number of covariates
to be controlled for in the models. Notwithstanding, this dataset was
sufficient to observe interrelated associations coherent with the hy-
pothesized toxicological pathway. A limitation of ourmediation analysis
is that BDNF methylation was measured in samples collected at the
same time that adolescent's behavior was assessed. Notwithstanding,
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we do not expect a substantial alteration in the temporal ordering of
the exposure-mediator-outcome (Gelfand et al., 2009), since DNA
methylation constitutes the most stable “omics” signature over time
(Gallego-Paüls et al., 2021), probably providing information on the
pastmonths before themeasurement. Future studies testing the tempo-
ral variability of BDNF biomarkers will help to improve the interpreta-
tion of exposure-BDNF associations. Another limitation is that our
study design only included boys and sex-dependent associations could
not be tested (Mustieles and Fernández, 2020). Apart from anxiety, de-
pression and other psychiatric diseases, BDNF has also an important role
in long-termmemory and learning (Cunhaet al., 2010). Althoughwe in-
vestigated behavioral outcomes, unfortunately no evaluation of cogni-
tive abilities was performed during the last INMA-Granada follow-up
when boys were aged 15–17 years. While adolescence is an important
and understudied period of brain development, BPA exposure during
pregnancy was not available in this cohort, being unable to compare
how prenatal and postnatal BPA exposures interact to influence adoles-
cent's neurobehavior. In addition to BPA, other environmental
chemicals such as phthalates (Ponsonby et al., 2016), lead (Sachana
et al., 2018) and arsenic (Karim et al., 2019), are also known to alter
BDNF regulation in experimental animals, and futureworks should con-
sider the influence of chemical mixtures. Finally, residual confounding
arising from unmeasured or uncontrolled covariates including lifestyle
patterns (e.g., physical activity, diet, etc.) cannot be ruled out.

5. Conclusions

Childhood BPA exposurewas longitudinally associatedwith a higher
percentage of BDNF DNAmethylation at adolescence, partially account-
ing for BPA-behavior associations. Our results highlight the role of BDNF
as a promising and toxicologically-supported effect biomarker of brain
function that may help to improve the inference of causal relationships
in observational studies dealing with environmental exposures and
children's neurodevelopment. Given the modest sample size analyzed
in this pilot study and the novelty of these findings, future studies
should replicate them under different settings, windows of develop-
ment, and in the context of chemical mixtures.
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