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Resolvent analysis of boundary-layer flows interacting with finite-extent visco-elastic insert

. The attenuation of Tollmien-Shlichting waves obtained at low frequencies relies on a wave-cancellation mechanism. The amplification of Travelling-Wave Flutter at high frequencies relies on the existence of nearly unstable solid modes excited by the fluid forcing.

The use of compliant walls to delay the laminar/turbulent transition in boundary layers ( [START_REF] Benjamin | Effects of a flexible boundary on hydrodynamic stability[END_REF], [START_REF] Landahl | On the stability of a laminar incompressible boundary layer over a flexible surface[END_REF]) was inspired by the skin properties of animals, like dolphins. It is now well established that three types of instabilities occur in laminar boundary-layer flows developing over infinite-length compliant walls: Tollmien-Schlingthing (TS) waves, Travelling Waves Flutter (TWF) and Static Divergence instability. The effect of compliant walls has been mainly investigated using local stability analysis, reyling on the assumption of an infinite extent of the elastic wall in the streamwise direction. Based on resolvent analysis and harmonic fluid-solid linear response, we here investigate the effect on the flow perturbation of a finite-extent visco-elastic insert in the wall.

RIGID-WALL CONFIGURATION AND RESOLVENT ANALYSIS

The nominal flow configuration is a two-dimensional boundary-layer flow developing over a rigid wall. The local Reynolds number Re(x) = U * ∞ δ * (x)/ν, based on the freestream velocity U * ∞ and the local displacement thickness δ * (x) at the streamwise position x from the leading edge of the wall, varies in the range 3000 ≤ Re(x) ≤ 3179 between the inlet and the outlet of the computational domain. For such Reynolds numbers, the Blasius boundary layer is convectively unstable to Tollmien Schlichting waves at any streamwise position. In the following, all variables are made non-dimensional using U * ∞ and the displacement thickness at the inlet δ * (x i ), as the velocity and length scales, respectively. The flow, modelled with the incompressible Navier-Stokes equations, is decomposed into a steady component [U, P ] and an infinitesimally small perturbation [u, p] = [û, p] e i ωt , where [û, p] is the harmonic flow response at frequency ω to the harmonic momentum forcing f . The linear input-ouput relation between the momentum forcing and the harmonic flow velocity û is formally written

û = R(ω) f , R(ω) = C (iω M + L(U)) -1 B, (1) 
where R(ω) is the hydrodynamic resolvent operator, L is the linearized Navier-Stokes operator around the base flow velocity U, M is the mass matrix accounting for the time-independence of the divergence-free condition, while B and C are prolongation and extension operators, respectively. The no-slip condition imposed at the rigid wall is embedded in the definition of the resolvent operator. The resolvent analysis then consists in determining the largest singular values of this operator. They can be computed as the largest (positive) eigenvalues λ 2 k of the following eigenvalue problem

R(ω) H R(ω) fk = λ 2 k fk (2) 
Ordered by decreasing values, these eigenvalues represent the gain between the kinetic energy of the flow perturbation (output) and a norm of the focing (input), i.e.

λ 2 k = ûH k ûk / f H k fk .
The harmonic flow response associated to the largest energy gain λ 2 0 is plotted as function of the frequency in Figure 1, with the solid curve. The large energy gains obtained in the frequency range 0.05 ≤ ω ≤ 0.15 are associated to the amplification of low-frequency Tollmien-Schlichting waves, displayed in Fig. 2(a) using the pressure field. The shorter-wavelength Tollmien-Schlichting waves obtained at higher frequency are not amplified, as those displayed in Fig. 2(b) at ω = 0.45.

HARMONIC FLUID-SOLID RESPONSE IN THE VISCO-ELASTIC-WALL CONFIGURATION

To attenuate the Tollmien-Schlichthing waves that are amplified at low-frequencies, we insert in the rigid wall a solid patch of non-dimensional length 100 and thickness 5 at the distance 25 of the inlet domain. This solid patch is made of an incompressible visco-elastic material, modelled by a generalization of the one-dimensional Kelvin-Voigt constitutive relation. The elastic component of this stress tensor is proportional to the non-dimensional Young modulus E s , while the viscous component is proportional to the non-dimension damping D s . These non-dimensional parameters are fixed to E s = 1 and D s = 0.2 in the following (see [START_REF] Tsigklifis | The interaction of Blasius boundary-layer flow with a compliant panel: global, local and transient analyses[END_REF]). The attenuation of the Tollmien Schlichting waves induced by the visco-elastic coating is assesed by computing the linear harmonic response of the fluid-solid perturbation to the optimal flow forcing f0 previously determined. Formally, this is written

iω M f 0 0 M s + A f (Q) C f s C sf A s (E s , D s ) qf qs = P f0 0 ( 3 
)
In the first line that represents the linear harmonic equation governing the fluid perturbation qf , A f is the linearized Navier-Stokes operator written in the Arbitrary-Lagrangian-Eulerian formulation (see [START_REF] Pfister | Linear stability analysis of strongly coupled fluid-structure problems with the Arbitrary-Lagrangian-Eulerian method[END_REF] for more details) and C f s represents all the coupling terms with the solid perturbation qs . In the second line that represents the linear harmonic equation governing the solid perturbation, the operator A s represents the stress-strain elation of the visco-elastic patch and C sf accounts for all the couplings with the flud perturbation, as for instance the hydrodynamic loading at the fluid-solid interface. Solving the above linear problem for several frequencies, one can define the energy gain between the input and the output of the fluid-solid configuration, i.e. λ 2 0 = ûf H ûf / f H 0 f0 , where ûf is the velocity component of the fluid perturbation qf . This quantity is plotted in Fig. 1 A decomposition of the linear fluid-solid harmonic response, not detailed here, allows better understanding the attenuation of low-frequency waves and the amplification at high-frequency waves. In particular, we will show that the attenuation of TS waves relies on a wave-cancellation mechanism, while the amplification of TWF is related to the excitation by the flow of nearly unstable solid eigenmodes. We will further discuss the fluid-solid response to the sub-optimal fluid forcing, thus highlightenig the interest of performing a resolvent analysis of the fluid-solid operator. Results of this fluid-solid resolvent analysis will be compared to the harmonic fluid-solid response to optimal fluid forcing, described above.
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 1 Figure 1: Energy gain as a function of the frequency ω. The solid line depicts the optimal energy amplification of the rigid-wall boundary-layer flow. The dashed line is the linear response to the optimal fluid amplification. The low-frequency and high-frequency peaks corresponds to the amplification of Tollmien-Schlichting (TS) and Travelling-Wave-Flutter (TWF) instabilities.
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 2 Figure 2: . Attenuation of low-frequency TS instability by the visco-elastic patch. (a) Optimal response of the flow for the rigidwall configuration. (b) Response of the compliant-wall configuration to the optimal flow forcing. Isolines of the pressure and vertical discplacement are shown in the fluid and solid, respectivley.