From seasonal flood pulse to seiche: Multi-frequency waterlevel fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin)

To cite this version:
Alexis Chaigneau, Victor Okpeitcha, Yves Morel, Thomas Stieglitz, Arnaud Assogba, et al.. From seasonal flood pulse to seiche: Multi-frequency waterlevel fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin). 2021. hal-03368402

HAL Id: hal-03368402
https://hal.science/hal-03368402
Preprint submitted on 6 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
From seasonal flood pulse to seiche: Multi-frequency water-level fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin).

Alexis CHAIGNEAUa,b,c,*, Victor OKPEITCHAd,c,b, Yves MORELa, Thomas STIEGLITZe, Arnaud ASSOGBAb, Morgane BENOISTa,b, Pierre ALLAMELf, Jules HONFOc, Thierry Derol AWOULMBANG SAKPAKg, Fabien RÉTIFh, Thomas DUHAUTa, Christophe PEUGEOTi, Zacharie SOHOUb

a Laboratoire d’Études en Géophysique et Océanographie Spatiale (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
b Institut de Recherches Halieutiques et Océanologiques du Bénin (IRHOB), Cotonou, Bénin
c International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey-Calavi, Cotonou, Benin
d Laboratoire d’Hydrologie Appliquée (LHA), Institut National de l’Eau (INE), African Centre of Excellence for Water and Sanitation (C2EA), Université d’Abomey Calavi, Bénin
e Aix-Marseille Université, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
f STATMarine, La Seyne Sur Mer, France
g Laboratoire des Technologies et Sciences Appliquées, Université de Douala, Douala, Cameroun
h RETIF FABIEN PHILIAN, Montferrier sur Lez, France
i Hydrosciences Montpellier (HSM), Université de Montpellier, CNRS, IRD, Montpellier, France

*Corresponding Author: alexis.chaigneau@ird.fr
Abstract

This study investigated the main water-level (WL) variability modes of Nokoué Lagoon in Benin (West-Africa). The average WL ranges between 1.3 and 2.3 m between the low- and high-water seasons. Seasonal as well as weak interannual variations between 2018 and 2019 are driven by rainfall regime over the catchment and associated river inflow. At sub-monthly scales, the lagoon is tidally choked: ocean tides can reach 90 cm, whereas in the lagoon semi-diurnal and diurnal tides hardly reach few centimeters. Choking conditions vary with river inflow and ocean tide amplitude, correctly represented by a simple tidal choking model. Diurnal modulation and asymmetry of the tide are stronger (weaker) during high (low) water period. We also observed WL variations of ±5-10 cm at a fortnightly frequency, stronger during wet (high-water) season. Superimposed on the seasonal, fortnightly and tidal WL variations, we further observed short-term high-frequency seiche events. Mostly observed during dry (low-water) conditions, they are characterized by typical standing-wave oscillations of 5-10 cm amplitudes and 3 h periods. They are forced by the passage of fast-moving squall-lines that induce strong wind variations, heavy rainfalls and rapid drop-off of the air temperature. Results obtained in this study provide useful metrics for the validation of flood forecasting models to be implemented in Benin, and elsewhere on the West African coastline.

Keywords: Water-levels; Lagoons; Tides; Seiches; Nokoué; Wavelet analysis.
1. Introduction

In the eastern tropical Atlantic Ocean, the coastal zone bordering the Gulf of Guinea include a series of coastal lagoons of varying sizes (Allersma and Tilmans, 1993; Lalèyè et al., 2007; Adite and Winemiller, 1997; Adite et al., 2013). These lagoons are often the main mixing zone of continental freshwater and coastal seawater, supporting some of the most productive aquatic ecosystems in the world (Knoppers, 1994; Valiela, 1995; Duck and da Silva, 2012). These coastal systems support important ecosystem services for the local populations who benefit from these natural or semi-natural areas through different activities (fishing, tourism, sand and/or salt extraction, etc.) (Djihouessi et al., 2017; Newton et al., 2018).

Among the various Beninese coastal lagoons, Nokoué Lagoon (Figure 1) is the largest and most exploited of the country’s water bodies (Lalèyè et al., 1995; 2003). This lagoon, which is also one of the most productive in West Africa (Lalèyè et al., 2007), is at the heart of important ecological and socio-economic issues. It is part of the RAMSAR site #1018, recognized to be of international importance for its various ecosystems that include flood plains, mangroves, floating vegetation, and diverse fauna. This lagoon also hosts several lacustrine villages inhabited by more than 60000 people living in stilt dwellings (Principaud, 1995). These local populations depend on this water body not only for fishing, which provides ~15000 tons of fish per year (Principaud, 1995), but also for domestic water supply, agriculture, market gardening, animal husbandry, etc.

But the Nokoué Lagoon, also bordered by 3 major urban centers (Cotonou, Abomey-Calavi, and Sémè Podji) totaling more than 1.5 million inhabitants, is strongly impacted by various anthropogenic pollution sources. For instance, the lagoon is the receptacle of numerous urban drains and direct discharge by the surrounding populations of various wastes which has led to a deterioration of the water quality (Adjahouinou et al., 2012; 2014; Aina et al., 2012a; 2012b). In addition, Nokoué Lagoon is also embedded within the 500 km long West African coastal water corridor that stretches from Lagos (Nigeria) to Accra (Ghana). This coastal corridor is projected to become the largest African urbanized area (Choplin, 2019), a development that will threaten the lagoons’ ecosystems and their service function. The planning and implementation of coastal management strategies requires a comprehensive knowledge of processes involved in the physical, chemical and ecological dynamics of the Nokoué Lagoon.
One of the key parameters of coastal lagoon dynamics is the water level (WL) whose variations are mainly subject to the triple influence of (i) ocean tides, (ii) the hydrological variability of the catchment and (iii) direct rainfall contributions. Generally, high WL is associated with strong freshwater river discharge and low WL with time periods when salty oceanic water penetrates into the lagoon. First, WL fluctuations impact the lagoon circulation and consequently the turnover, residence or flushing times and therefore the dispersion or retention of pollutants. Second, the lagoon WL determines the exchange of properties between the continent and the ocean and controls the ecosystems by various direct or indirect processes. In a direct way, WL fluctuations control the salinity of the lagoon (e.g. Djihouessi and Aina, 2018), which directly impacts the ecosystem composition from plankton to fish (Le Barbé et al., 1993; Gnohossou, 2006; Adandedjan et al., 2017; Odountan et al., 2019; Laléyè et al., 2003; 2005). In an indirect way, WL variations impact lagoon and sediment dynamics by modifying erosion and sedimentation zones and the rate of sediment resuspension. Thus, turbidity and the availability of light on the vertical can vary according to the WL,
which can modify the structure of biological communities, particularly phytoplankton (Evtimova and Donohue, 2016). Similarly, WL fluctuations are correlated with modifications of nutrient concentrations, mixing and vertical stratification in the water column, eventually affecting the development, distribution and dilution of organisms as observed in other water bodies (e.g. Lobo et al., 2018; Stević et al., 2013).

Third, in addition to having direct or indirect effects on the ecosystem, variations in the WL of Nokoué Lagoon can have dramatic repercussions on local populations. Indeed, lacustrine villages and urbanized areas adjacent to the lagoon episodically experience flooding linked to major watershed floods and the regular overflow of the lagoon. For instance, in 2010, flooding killed tens of people and affected 360 000, leaving 100 000 homeless (World Bank, 2011; Ahouangan et al., 2014; Biao, 2017). More recently, in October-November 2019, the floods, less intense but spread over several weeks, also caused extensive damage and affected tens of thousands of households.

Finally, variations in the WL may also impact the quality of the groundwater that is exploited by residents bordering the lagoon, who use this unregulated shallow groundwater resource for domestic purposes, including drinking water supplies (Houéménou et al., 2020).

Only few studies described some patterns of WL fluctuations in Nokoué Lagoon (e.g. Le Barbé et al., 1983; Zandagba et al., 2016; Djihouessi and Aina, 2018). Based on observations obtained over isolated and short time periods, the WL variability is poorly described: a seasonal increase of ~50-70 cm is mentioned during the flood season (Le Barbé et al., 1983; Djihouessi and Aina, 2018) and tidal amplitudes of 10-25 cm were observed in the Cotonou channel (Zandagba et al., 2016). This study aims to fill this gap and to investigate WL variations in this lagoon at different time scales from a 2-year in-situ dataset at 20 min sampling, and to determine the main physical mechanisms governing the observed fluctuations.

2. Material and methods

2.1. Study area and hydrology

Nokoué is a coastal lagoon that extends about 20 km from east to west along the coast and 11 km from south to north (Figure 1), covering an average area of ~170 km² (Texier et al., 1980; Le Barbé et al., 1993; Mama et al., 2011; Djihouessi et al., 2019). Two main rivers flow into the lagoon on its northern shore, the Sô river, draining a relatively
small catchment area of ~1000 km², and the Ouémé river, the largest Beninese river, which drains a catchment area of ~50000 km² (Le Barbé et al., 1993; Djihouessi et al., 2017). The Sô and the lower Ouémé valley flow into the Nokoué Lagoon forming a large flooded deltaic plain (e.g. Le Barbé et al., 1993). A third river, the Djonou, whose extension and flow are much smaller, also contributes to the freshwater inflow in the lagoon’s southwestern part (Djihouessi and Aina, 2018).

On its southern part, Nokoué Lagoon is connected with the Atlantic Ocean by the ~280 m wide and ~4 km long Cotonou channel (Texier et al., 1980; Le Barbé et al., 1993). Through this relatively narrow channel, exchanges of fresh and salt water take place at the rhythm of the tides and the hydrological regime. Since the channel’s construction in 1885, the previously unconnected ‘Lake’ Nokoué (as it is still known in colloquial language) is today an extensive lagoon that exhibits important salinity variations (e.g. Okpeitcha et al., in review).

On the eastern side, Nokoué Lagoon is connected to the Porto-Novo lagoon (35 km²) via the ~4 km long Totchè channel. Porto-Novo lagoon extends eastward into a narrow coastal channel that discharges in the Atlantic Ocean at Lagos (Nigeria) at a distance of ~100 km from Nokoué Lagoon, with little effect on the dynamics and WL of Nokoué Lagoon (Texier et al., 1980; Le Barbé et al., 1993).

On seasonal scales, the lagoon’s hydrological regime is driven by the West African summer monsoon related to the meridional shift of the intertropical convergence zone (ITCZ) and the associated intense tropical rain belt (Sultan and Janicot, 2000; Gu and Adler, 2004), resulting in two rainy and two dry seasons. The main rainy season extends from April-May to late July when the ITCZ moves northward from its near-equatorial southernmost position, while the second shorter and less intense rainy period extends from late September to November when the ITCZ migrates southward from its northernmost position (e.g. N’Tcha M’Po et al., 2017; Ahokpossi, 2018). However, this double rainy season and associated local rainfalls only slightly influence the WL of the Nokoué Lagoon that is more subject to the hydrology of the central part of Benin, where the main area of the Ouémé catchment takes place (e.g. Colleuil, 1987; see also Figure 1b). This latter region is characterized by a single rainy season, with maximum precipitation between July and October (Biao, 2017; Ahokpossi, 2018; Lawin et al., 2019, Colleuil, 1987). The maximum discharge into the lagoon between September and November is unknown (rivers ungauged in the coastal region) and varies, depending on
authors, from ~400 m3 s$^{-1}$ (Le Barbé et al., 1993; Djihouessi and Aina, 2018) to more than 1000 m3 s$^{-1}$ (Lawin et al., 2019). This river discharge produces a complete desalinization of the Nokoué Lagoon and a strong increase of its volume (Texier et al., 1980; Colleuil, 1987; Djihouessi and Aina, 2018).

Figure 1d shows the bathymetry of the Nokoué Lagoon corresponding to the mean WL observed during low-water season in March-April. It was constructed using ~123000 depth soundings recorded with a Garmin GPSmap 421S echosounder and corrected for tidal and seasonal fluctuations. The mean and maximum depth is 1.3 m and 2.9 m, respectively. The lagoon deepens towards the Cotonou channel where the mean and maximum depths increase to ~3 m and ~8 m, respectively (Figure 1d).

2.2. Water level and atmospheric data

WL data was acquired by 4 pressure sensors deployed in the Cotonou channel and Nokoué Lagoon for a 2-year period (Figure 1c). Three of them (P_{Channel}, P_{South}, P_{North}) were located along a South-North axis whereas the 4$^{\text{th}}$ sensor (P_{East}) was deployed East of the lagoon. More precisely, P_{Channel} is located at 1.5 km from the coastal ocean; P_{South} is located at the lagoon entrance; P_{North} is located 8.5 km North of P_{South} and at ~2 km from the Sô river; finally, P_{East} is located 11.3 km southeast of P_{North} and 12.3 km northeast of P_{South}.

Each of the 4 stations consisted of an Onset HOBO U20L-01 WL logger anchored at 20-30 cm from the bottom in a perforated PVC tube of 7-cm outside diameter. Data were recorded continuously at 20-min interval between February 2018 and January 2020, with a typical accuracy of ±1 cm and a maximum error of 2 cm (https://www.onsetcomp.com/files/manual_pdfs/17153-G%20U20L%20Manual.pdf) (Wilson et al., 2016; Guragai et al., 2018).

From 30 August 2018, a Davis Vantage Pro2 weather station was installed on the roof of the Benin Institute of Fisheries and Oceanographic Research (IRHOB; Figure 1c) also recording at 20-min interval. Some of the atmospheric parameters (air temperature and humidity, precipitation rates, and winds) are used to explore the forcing mechanisms involved in high frequency WL variations (Section 3.4). However, atmospheric pressure data were overall used to correct the WL between September 2018 and January 2020. Before September 2018, WL was not corrected for barometric fluctuations, but this does not significantly alter the results and main conclusions drawn.
in this study. Indeed, atmospheric pressure, that varied between 1004 mbar and 1019 mbar over the available time period, exhibits two main modes of variability. First, at seasonal scale, atmospheric pressure varies by ~4 mbar, being minimum in April and maximum in August. This corresponds to a WL correction of ~4 cm which is weak compared with the seasonal WL variations of ~90 cm observed in this study (Section 3.1). Second, the stronger atmospheric pressure variability is observed at diurnal and semi-diurnal periodicities, with mean and maximum variations of ~3 and 6 mbar, respectively. This corresponds to WL variations of ~3-6 cm, of the same order than the tidal amplitudes observed in the lagoon. Thus, the tide characteristics in the lagoon (Section 3.3), are investigated using WL data corrected from inverse barometer effects (September 2018-December 2019).

Raw pressure data are converted to relative WLs corresponding to the height above the instrument. For each station, as no absolute vertical datum exists, the relative WLs are expressed in terms of anomalies, computed by subtracting the 20-min measurements from the seasonal mean calculated over low-water period of 2018.

No continuous in-situ ocean tide data is available. We therefore used the tidal heights computed from the last Finite Elements Solution for ocean tide (FES2014) on a 1/16° × 1/16° grid (http://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html) (Carrere et al. 2016; Lyard et al. 2020). Thus, WL anomaly timeseries at P_Ocean (Figure 1c) was reconstructed using the 34 tidal constituents (amplitudes and phases) computed from FES2014. P_Ocean is located ~5.5 km to the southeast of P_Channel (Figure 1c). FES WL at P_Ocean compared well with independent but irregular in-situ WL data acquired at the autonomous port of Cotonou in 2018-2019 by its hydrographic service. The correlation coefficient, mean difference, normalized root-mean-square error, and ratio of standard deviations between both datasets are 0.99, 0.02 cm, 2.7%, and 0.99, respectively.

2.3. Rainfall and river discharge data

Rainfall over the catchment was obtained from a Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) product (Huffman et al., 2014). We use the final Level 3 product developed for research applications, which is available daily on a 0.1°×0.1° longitude/latitude grid (https://gpm.nasa.gov/). Rainfall was extracted over the study period (2018-2019) and...
averaged in the river catchment area shown in Figure 1b. In order to filter out high frequency variability irrelevant to our study, we used monthly cumulative rainfall.

Historical estimates of the Ouémé River discharge at Bonou (~70 km upstream from the Nokoué Lagoon) and the Sô river discharge at Sô-Awa (~3 km upstream from the lagoon) are available. These daily data, available from the 1950's to the 1990's, were collected by the general Benin Directorate of water and made available by the Système d'Informations Environnementales sur les Ressources en Eau et Modélisation (SIEREM: http://www.hydrosciences.org/spip.php?article1236). A daily climatology was constructed from this multi-year dataset and the Sô and Ouémé discharges were summed to provide an estimate of the total fresh water discharge into the lagoon.

2.4. Time series analyses

The variability of the WL across temporal scales was investigated using a wavelet-based analysis (Torrence and Compo, 1998; Guo et al., 2015). The wavelet power spectrum, that estimates the spectral characteristics of the WL signal as a function of time, is computed here using the Morlet wavelet transform. In order to compare spectral peaks across different scales, the obtained wavelet power spectra, that are slightly biased, are rectified normalizing them by the local scale (Liu et al., 2007; Veleda et al., 2012). Wavelet decomposition can also be used for signal reconstruction and filtering (Torrence and Compo, 1998). By summing over a subset of scales, we here construct WL wavelet-filtered time series in several spectral bands, from high-frequency (periods < 5h) to subtidal and low-frequency (periods > 20 days) variability.

Global power spectra obtained from wavelet analyses provide consistent estimation of the true power spectra computed from Fourier analyses (Percival, 1995). However, due to the width of the wavelet filter in Fourier space, any close peaks in Fourier spectra could be smoothed out by the wavelet analysis, particularly at small (high-frequency) wavelet scales (Hudgins et al., 1993; Torrence and Compo, 1998). Thus, in order to resolve close principal tidal constituents, their mean amplitudes and phases (e.g. Table 1) are obtained from harmonic analyses using T_TIDE package in MATLAB for each time series (Pawlowicz et al., 2002). The temporal evolution of tidal amplitudes is subsequently investigated in the diurnal (D1), semi-diurnal (D2), and quarter-diurnal (D4) spectral bands by integrating wavelet power in these specific frequency/period bands and converting them into wavelet amplitudes as in Guo et al. (2015).
and D4 amplitudes are computed for periods of 15-36h, 7.5-15h and 5-7.5h, respectively.

3. Results

3.1. Low-frequency variations

At the entrance of the Nokoué Lagoon at PSouth, in the periods from February to August 2018 and from December 2018 to July 2019, the lagoon WL was low at mean WL of 0.5-0.6 m in 2018 and 0.6-0.7 m in 2019 (Figure 2a). These periods coincide with climatological periods when rivers are at baseflow and have discharges of less than ~50 m³/s (Figure 2b). From 20 August 2018 to 30 September 2018, the mean WL increased to reach a maximum value of ~1.4 m (Figure 2a). The peak observed in 2018 coincides with the maximum climatological river discharges of ~800 m³/s at the beginning of October. The decrease of the lagoon WL from 1.4 m to less than 0.6 m was observed between early October and early December 2018. The duration of the decrease was comparable to that of the WL rise. In contrast, the duration of increasing/decreasing WL were strongly asymmetric in 2019. The flooding phase began in late July 2019 and took 3 months to reach the maximum of ~1.4 m on 31 October 2019. Although the beginning of the flooding phase in 2019 approximately follows the climatological river discharge, the maximum WL was observed 1 month later than the average peak of the hydrograph. In 2019, the decrease of the lagoon WL took only 1 month, and the low-WL was reached at the beginning of December, as in 2018.

Figure 2. Water-level and hydrological variations. a) Temporal variations of the water-level (WL) at PSouth; red line shows the low-frequency component associated with periods longer than 20 days where grey vertical lines correspond to the
The monthly cumulative rainfall inferred from satellite data in the Sô and Ouémé catchment basins do not show strong differences between the time periods of the rainy season of 2018 and 2019 (Figure 2b). In both 2018 and 2019, the maximum rainfalls occurred in September. However, October 2019 was 35% rainier (~190 mm) than October 2018 (~140 mm), which explains the 1-month delay observed in 2019 on the maximum WL (Figure 2a). Similarly, heavy rainfalls (~190 mm) observed in July 2019, are responsible for the earlier rise in WL in 2019, as well as for the local maximum elevation of ~0.95 m observed at the beginning of August 2019. Heavy rainfalls in July-August 2019 also contributed to spread out the flooding phase and delay the flood peak in the lagoon.

Low-frequency WL variations of the Nokoué Lagoon are related to the rainfall in the catchment basin and the river flows that discharge fresh water into the lagoon. However, superimposed on these low-frequency fluctuations, Figure 2a shows that the unfiltered WL signal exhibits high-frequency variability patterns. The main goal of the following Sections is thus to investigate these distinct modes of variability.

3.2. WL Wavelet analysis

During the 2-year period, the 4 WL timeseries show similar patterns, not only at low-frequency (Figure 3). Superimposed on the already described low frequency WL variations, higher frequency WL variations with typical ranges of ~±20 cm that decrease from the Cotonou channel to the Nokoué Lagoon are evident (Figure 3). In order to better identify the dominant frequencies, we performed a wavelet analysis (Figures 3 and 4). WL timeseries show time-dependent variability with contributions from distinct frequency bands at certain times. Spectra can be divided into 5 main period bands, from high to low frequencies: i) high-frequency component with periods shorter than 5 hours; ii) tidal component with periods ranging between 5 hours and 1.5 days; iii) subtidal component with periods of 1.5-10 days; iv) fortnightly component with periods of 10–20 days; and v) low-frequency component with periods longer than 20 days.

The low-frequency component has been described in Section 3.1 and corresponds to large WL variations mainly due to rainfall in the catchment basins that...
drives the seasonal change in river discharge into the lagoon. In contrast, the subtidal component does not present significant spectral energy (Figures 3 and 4) and is thus not further investigated. Fortnightly, tidal and high-frequency components are described in more detail.

Figure 3. Water-level (WL, in m) timeseries and corresponding rectified continuous wavelet power spectra, at a) P_{Channel}, b) P_{South}, c) P_{North}, and d) P_{East}. The rectified wavelet power is log_{2}(A^2/s), where A is the wavelet coefficient amplitude, and s the scale it associates (Liu et al., 2007). The y axis is on a log_{2} scale and in day (hour, respectively) for periods higher (lower) than 1 day. The cone of influence is indicated by hatched area by 95% confidence level due to the edging effects. Horizontal black lines on the wavelet spectra delimit 5 frequency bands: High-frequency component (HFC) (periods<5 hours); Tidal component (TC) (5-36 hours); Subtidal component (STC) (1.5-10 days); Fortnightly component (FNC) (10-20 days); Low-frequency component (LFC) (>20 days).
3.3. Fortnightly and tidal components

a) Harmonic Analysis and main tidal constituents

Figures 3 and 4 show relatively strong spectral energy in the fortnightly (MSf) component. These oscillations of a period of ~14.8 days on the mean WL are associated with neap and spring tides. Indeed, the combination of the principal lunar (M2) and solar (S2) semidiurnal tidal constituents, characterized by very close periods (Table 1), induces a compound tide (MSf) and fortnightly variation of the oceanic semi-diurnal tide amplitude (e.g. LeBlond, 1979; Pugh, 1987). In the open-ocean, where the mean WL variations are weak compared to the tidal range, both the highest and lowest sea-levels are observed during spring tides, and the mean WL is not significantly modulated at MSf frequencies (Table 1). In contrast, in shallow lagoons or estuaries, complex non-linear interactions between oceanic semi-diurnal tides, river fluxes, bottom friction and morphology of the channel, result in MSf variations of the WL (LeBlond, 1979; Gallo and Vinzon, 2005; Guo et al., 2015). These MSf variations are observed in the Cotonou.
channel and Nokoué Lagoon (Table 1), where the highest high-waters are observed during spring tides whereas the lowest low-waters are observed during neap tides (Figures 2a and 3). This is due to the fact that the tidal amplitude is generally weaker than the fortnightly variations of the mean WL (Figures 2a and 3; Table 1) induced by tidal-river interaction processes (e.g. LeBlond, 1979; Guo et al., 2015). Harmonic analyses indicate a mean MSf amplitude of \(\sim 4 \) cm (Table 1), which strongly increases to 10-15 cm during the wet season (not shown but see the evolution of the fortnightly component in Figure 3).

In the open-ocean off Cotonou, tides are semi-diurnal with a relatively important diurnal component (Table 1). Semi-diurnal tide constituents \((A_{M2}+A_{S2}) \) are typically of \(\sim 70 \) cm amplitude whereas diurnal constituents \((A_{O1}+A_{K1}) \) are of \(\sim 15 \) cm. As a result, the tidal form factor, \(F = \frac{A_{O1}+A_{K1}}{A_{M2}+A_{S2}} \), which is the amplitude ratio of the diurnal to semi-diurnal tide constituents, is of 0.22, close to the mixed-tide threshold of 0.25 (Courtier, 1938). Off Cotonou, the tide is thus of semi-diurnal-dominant type, but characterized by two slightly unequal high and low tides per day. In the Cotonou channel and Nokoué Lagoon, tidal ranges are strongly dampened and the tidal form factor increases to 0.41 (Table 1). This suggests a stronger modulation of the tides at diurnal scale in the lagoon and a stronger attenuation of the semi-diurnal constituents compared to the diurnal constituents.

In shallow water, the progression of a tidal wave is modified by bottom friction and other physical processes that lead to the distortion and asymmetry of the tidal wave (Pugh et al., 1987). These non-linear effects are associated with the generation of higher harmonics such as the main M4 constituent, which is the second harmonic (or overtide) of the principal lunar tide M2, that causes disparities in the rising and falling times (e.g. Pugh et al., 1987; Gallo and Vinzon, 2005; Ray, 2007). Thus, tidal wave deformation and asymmetry are mainly due to M2-M4 interactions (e.g. Friedrichs and Aubrey, 1988; Speer and Aubrey, 1985). The general flood-dominated character of the lagoon system is highlighted by the phase difference of \(2\varphi_{M2} - \varphi_{M4} \) in the range of 0-90° that leads to a longer falling tide than rising tide (Friedrichs and Aubrey, 1988; Guo et al., 2015). The magnitude of the amplitude ratio of the M4 and M2 components \(\left(\frac{A_{M4}}{A_{M2}} \right) \) is an indicator of the strength of the tidal asymmetry. This factor is of 0.02 at \(P_{\text{ocean}} \) where the tide is
symmetric, but increases to 0.11-0.15 in the lagoon system indicating a stronger asymmetry and, on average, a deformation of the tidal wave (Table 1).

Table 1. Average tidal properties: Tidal amplitudes (A) and phases (φ) of major diurnal (D1), semi-diurnal (D2), quarter-diurnal (D4) and fortnightly (FNC) components’ frequencies at POP, PChannel, PSouth, PNorth and PEast. These average tidal constituent properties were determined by harmonic analyses of 2-year WL timeseries using T_TIDE (Pawlowicz et al., 2002). Periods are in hours, except for FNC frequencies where they are in days.

<table>
<thead>
<tr>
<th>Period</th>
<th>POP</th>
<th>PChannel</th>
<th>PSouth</th>
<th>PNorth</th>
<th>PEast</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (cm)</td>
<td>φ (°)</td>
<td>A (cm)</td>
<td>φ (°)</td>
<td>A (cm)</td>
</tr>
<tr>
<td>FNC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSf</td>
<td>14.77</td>
<td>0.0</td>
<td>125</td>
<td>4.2</td>
<td>60</td>
</tr>
<tr>
<td>Mf</td>
<td>13.66</td>
<td>0.0</td>
<td>96</td>
<td>1.6</td>
<td>55</td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>25.82</td>
<td>2.6</td>
<td>318</td>
<td>0.3</td>
<td>119</td>
</tr>
<tr>
<td>P1</td>
<td>24.07</td>
<td>3.8</td>
<td>346</td>
<td>0.4</td>
<td>45</td>
</tr>
<tr>
<td>S1</td>
<td>24.00</td>
<td>0.1</td>
<td>91</td>
<td>1.0</td>
<td>110</td>
</tr>
<tr>
<td>K1</td>
<td>23.93</td>
<td>12.5</td>
<td>1</td>
<td>1.4</td>
<td>35</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>12.66</td>
<td>10.8</td>
<td>101</td>
<td>1.5</td>
<td>130</td>
</tr>
<tr>
<td>M2</td>
<td>12.42</td>
<td>50.8</td>
<td>105</td>
<td>7.5</td>
<td>134</td>
</tr>
<tr>
<td>S2</td>
<td>12.00</td>
<td>17.8</td>
<td>130</td>
<td>1.8</td>
<td>167</td>
</tr>
<tr>
<td>K2</td>
<td>11.97</td>
<td>4.3</td>
<td>144</td>
<td>0.8</td>
<td>184</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>6.21</td>
<td>1.3</td>
<td>319</td>
<td>1.1</td>
<td>266</td>
</tr>
<tr>
<td>MS4</td>
<td>6.10</td>
<td>0.0</td>
<td>104</td>
<td>0.7</td>
<td>288</td>
</tr>
</tbody>
</table>

b) Tidal WL fluctuations during dry/wet seasons and spring/neap tides

Figure 5 shows two-day snippets of WL fluctuations during the dry and wet seasons (April and October, respectively) and for different phases of spring-neap tidal cycles. During dry season spring tides (Figure 5a), the maximum tidal amplitude is of ~80-90 cm in the ocean. It decreases to ~10-15 cm in the Cotonou channel and ~3-5 cm in the lagoon. During this period, the average diurnal tidal amplitude (AD1) is of ~15 cm in the offshore ocean and of 1-2.5 cm in the lagoon (Table 2). Similarly, the average semi-diurnal tidal amplitude (AD2) varies from ~90 cm at POP to ~3-15 cm at the other stations (Table 2). The AD1/AD2 ratio is 0.1-0.3, suggesting that the tide is mainly semidiurnal without strong diurnal modulation, as seen in Figure 5a. Both the quarter-diurnal amplitude (AD4) and the AD4/AD2 ratio are weak and the tide appears mostly symmetric, without strong deformation.

During dry season neap tides (Figure 5b), the minimum tidal amplitude is of ~20 cm at POP but is strongly modulated at diurnal scale. The AD1 amplitude is ~18 cm and
AD2 decreased to ~36 cm leading to a relatively strong AD1/AD2 ratio of 0.5 (Table 2). In the lagoon, tidal amplitudes decrease to ~1-2 cm for AD1 and to 2-7 cm for AD2. These values are weaker but the associated AD1/AD2 ratios (0.3-0.7) are slightly higher to what was observed during spring tides (Figure 5a-b and Table 2). In the Cotonou channel and Nokoué Lagoon during dry season, the rising and falling tidal durations are slightly unequal and the tide is only very slightly asymmetric, as indicated by weak AD4 values of 0.1-0.2. Indeed, the ebb-tide lasts ~30-45 min longer than the flood-tide, hence the lagoon system tends to be flood-dominated (e.g. Speer et al., 1991).

![Figure 5. Examples of water-level evolution in the tidal frequency band (periods of 5-36 hr) during a] a dry season spring tide, b] a dry season neap tide, c] a wet season spring tide, d] a wet season neap tide. Water levels (WL, in m) in the Cotonou channel (P_Channel) and Nokoué Lagoon (P_South, P_West, P_East) correspond to left axes whereas WL in the ocean (P_Ocean) correspond to right axes (and green lines).](image)

During the wet season, the tide characteristics in the open ocean are similar to the dry season, with AD1 of ~15 cm and AD2 varying from ~95 cm for spring tides to ~30 cm for neap tides (Figure 5c-d and Table 2). In contrast, tide characteristics are significantly modified in the channel and the lagoon, and more particularly during wet season spring tides (Figure 5c). AD2 decreases during wet season and AD1 tends to increase (see also wavelet power spectra in Figure 3). The tidal form factor AD1/AD2 increases from ~0.1-0.7 during the dry season, to 0.5-2.2 during the wet season (Table 2), as a result of a stronger modulation of the tides at diurnal scale during high water periods. During spring tides (Figure 5c), the flood duration is 4-5 h, whereas the ebb-
tide lasts 7-8 h. Notably the wave shape of the tides tends to be positively skewed with a slack-tide asymmetry, in particular at P_{Channel} (blue line in Figure 5c). This slack-tide asymmetry is due to a phase difference between M_2 and M_4 ($2\phi_{M_2} - \phi_{M_4}$) that is, on average, close to 0° (Table 1) (e.g. Guo et al., 2019).

Finally, high and low tides are systematically observed 1 hour later at P_{Channel} than at P_{Ocean} (Figure 5). In contrast, the high or low tide phase shift between P_{South} and P_{North} or P_{East}, varies from 1h-3h during dry season (Figure 5a,b) and is strongly uncertain during wet season when the tide is much more asymmetric and deformed (Figure 5c,d).

Note also that winds can impact WL in shallow lagoons, in particular by pushing and piling up water in the downwind direction (e.g. Stieglitz et al., 2013; Colvin et al., 2018).

However, data from the weather station reveals that the dominant southwest wind is weak and varies from 2.2 m s$^{-1}$ in December to 4.5 m s$^{-1}$ in August. Similarly, at diurnal scale, the wind only varies by 2 m s$^{-1}$, being minimum at 6-7 am and maximum at 3-4 pm. Considering a steady state balance between the wind-stress and the barotropic pressure gradient generated by the slope of the free surface, these typical winds would result on wind setups of ~1-3 cm in the northeastward direction (see equations in e.g. Colvin et al., 2018). This weak signal could not be evidenced in the WL dataset, and no significant WL slope was observed between $P_{\text{North}}/P_{\text{East}}$ and P_{South}, neither at seasonal nor diurnal scales. However, as described in the following Section, high-frequency fluctuations of the wind field generate high-frequency variations of the WL slope in Nokoué Lagoon.

Table 2. Average tidal amplitudes of diurnal (AD1), semi-diurnal (AD2), and quarter-diurnal tides (AD4) at P_{Ocean}, P_{Channel}, P_{South}, P_{North} and P_{East} and for 4 selected 48-hour periods. Amplitude ratios (AD1/AD2 and AD2/AD4) are also indicated.

These average tidal constituent properties were determined by integrating wavelet powers in specific frequency/period bands (15-36h for D1, 7.5-15h for D2, and 5-7.5h for D4). Amplitudes are in cm.

<table>
<thead>
<tr>
<th></th>
<th>P_{Ocean}</th>
<th>P_{Channel}</th>
<th>P_{South}</th>
<th>P_{North}</th>
<th>P_{East}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Season – Spring Tide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD1</td>
<td>13.3</td>
<td>2.6</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>AD2</td>
<td>94.2</td>
<td>14.2</td>
<td>5.1</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>AD4</td>
<td>3.8</td>
<td>2.0</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>AD1/AD2</td>
<td>0.14</td>
<td>0.18</td>
<td>0.17</td>
<td>0.30</td>
<td>0.29</td>
</tr>
<tr>
<td>AD4/AD2</td>
<td>0.04</td>
<td>0.14</td>
<td>0.12</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>Dry Season – Neap Tide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD1</td>
<td>17.6</td>
<td>3.1</td>
<td>2.2</td>
<td>0.6</td>
<td>1.1</td>
</tr>
<tr>
<td>AD2</td>
<td>36.0</td>
<td>6.7</td>
<td>3.2</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>AD4</td>
<td>1.9</td>
<td>1.2</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>AD1/AD2</td>
<td>0.49</td>
<td>0.47</td>
<td>0.70</td>
<td>0.26</td>
<td>0.42</td>
</tr>
<tr>
<td>AD4/AD2</td>
<td>0.05</td>
<td>0.18</td>
<td>0.15</td>
<td>0.18</td>
<td>0.13</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Season – Spring Tide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD1</td>
<td>14.9</td>
<td>3.3</td>
<td>1.8</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>AD2</td>
<td>95.3</td>
<td>14.0</td>
<td>2.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>AD4</td>
<td>3.8</td>
<td>5.7</td>
<td>1.5</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>AD1/AD2</td>
<td>0.16</td>
<td>0.24</td>
<td>0.68</td>
<td>2.06</td>
<td>2.24</td>
</tr>
<tr>
<td>AD4/AD2</td>
<td>0.04</td>
<td>0.41</td>
<td>0.57</td>
<td>1.02</td>
<td>1.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AD4</th>
<th>1.7</th>
<th>5.1</th>
<th>1.9</th>
<th>1.0</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1/AD2</td>
<td>0.59</td>
<td>0.41</td>
<td>0.34</td>
<td>0.54</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>AD4/AD2</td>
<td>0.06</td>
<td>0.21</td>
<td>0.24</td>
<td>0.21</td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>
3.4. High-frequency component (periods < 5 hours)

Relatively strong HF variability was observed between February and June 2018, October-November 2018, and February to June 2019 (Figure 6a). For example, during a 2-week period in 2018, 4 individual HF events were observed (Figure 6b). These high-frequency fluctuations can be either in phase or in opposition between the different stations. Typical oscillations of ±5-10 cm are observed.

![Figure 6. High-frequency component (HFC) of the water level evolution in the Nokoué Lagoon (P_{south}, P_{North}, P_{East}). a] HFC (periods < 5 hours) for the 2-year study period (2018-2019), showing strong high-frequency events. b] HFC for a 12-day period in April 2018. c] zoom for a particular high-frequency event observed in April 10, 2018. In these figures, horizontal dashed lines correspond to ±4 standard deviations around the mean and are used to automatically detect high-frequency events associated with seiches. The period with available meteorological data (September 2018-January 2020) is also indicated by a black arrow in a].

As an example, Figure 6c shows the HF WL variations for the particular event that occurred during the night 09-10 April 2018. Between 08:00 and 10:00 pm, the WL increased by ~7-8 cm in the eastern part of the lagoon (P_{East}) at a simultaneous decrease of 4-5 cm at P_{South} and P_{North}. Thus, this rapid evolution generated a WL difference of 12-13 cm between the East and the central line of the lagoon joining P_{South} and P_{North}. After 10:00 pm, the WL rapidly decreased (increased, respectively) at P_{East} (P_{South} and P_{North}) to reach a maximum negative (positive) anomaly of -13.5 cm (+10 cm) between 11:00 pm and midnight (Figure 6c). This led to a maximum WL difference of ~23 cm between the eastern and central parts of the lagoon. Subsequently, the WL began to oscillate
around its equilibrium value with amplitudes of a few cm. These oscillations, characterized by a period of \(\sim 2h45\text{mins} \), were rapidly dissipated on 10 April after 08:00 am. This \(\sim 12 \)-hour duration event, characterized by regular WL free standing-wave oscillations that are progressively dampened, is typical of a seiche event as frequently observed in other lakes, lagoons or coastal embayments (e.g. Chapman and Giese, 2001).

For this particular event, the observed standing-wave oscillation period of \(2h45\text{mins} \) is in close agreement with the Merian’s theoretical period of a seiche oscillation in a rectangular flat-bottom basin (Chapman and Giese, 2001): considering the larger dimension of the Lagoon (\(L = 20 \) km) and a mean depth (\(H \)) of 1.3 m, the Merian’s theoretical period value (\(T = \frac{2L}{\sqrt{gH}} \)) is of \(\sim 3h \).

In order to better characterize such HF events, and to provide a more robust description of their main characteristics, a composite analysis was performed. First, individual HF events were filtered as any event associated with a strong WL increase at a given lagoon station (\(P_{\text{South}}, P_{\text{North}}, \) and \(P_{\text{East}} \)) and a simultaneous strong WL decrease in another gauged station. In order to ensure a high confidence level and exclude any potential false detection, a strong increase/decrease is defined as higher than +/- 4 standard deviations from the mean (Figure 6). Peaks with such high variations occur less than 0.1% of the time. A total of 44 HF events, significantly impacting at least 2 WL stations, were detected. Interestingly, more than 75% (34 on 44) of these events were associated with a strong WL minimum in the eastern part of the lagoon at \(P_{\text{East}} \), as also observed in Figure 6c. In terms of seasonality, about 85% of the 44 HF events took place during the dry season between February and June and none of them between August and September.

Second, since the lagoon is elongated in East-West direction and seiche phenomena are expected to more likely develop along the elongated direction, we selected only HF events characterized by a significant WL minimum at \(P_{\text{East}} \). Furthermore, after visual inspections, we retained 32 events characterized by similar evolutions in meteorological parameters. Figure 7a displays the composite analysis of the WL evolution for these 32 events, obtained by centering each event at the time the WL minimum at \(P_{\text{East}} \) was observed (\(t=0h \) in Figure 7). On average, about 3 hours before the start of the seiche, the WL gently rises by 2 cm to the East and decreases by \(\sim 1 \text{ cm} \) at \(P_{\text{South}} \) and \(P_{\text{North}} \). Note that the seiche is triggered at time \(t=-1.5h \), when the WL starts to decrease (increase respectively) at \(P_{\text{East}} \) (\(P_{\text{South}} \) and \(P_{\text{North}} \)). The WL anomaly reaches its
minimum value (-5 cm) at \(P_{\text{East}} \) at \(t=0 \text{h} \), while maximum WL anomalies (~2 cm) are observed at \(P_{\text{North}} \) and \(P_{\text{South}} \) at \(t=-0.5 \text{h} \) and \(t=+0.5 \text{h} \) respectively. Then, as observed for the individual event shown in Figure 6, the WL oscillates with inverse anomalies between \(P_{\text{East}} \) and \(P_{\text{North}}/P_{\text{South}} \) (Figure 7a), with an oscillation period of ~3h-3h30. The dissipation is much faster than the single event analyzed in Figure 6, due to the averaging of 32 events that can be characterized by slightly different periods and amplitudes.

![Composite analysis of the high-frequency seiche events and associated atmospheric parameters](image)

Figure 7. Composite analysis of the high-frequency seiche events and associated atmospheric parameters. a] Averages of water-level (WL, in cm) evolution in the Nokoué Lagoon (\(P_{\text{South}}, P_{\text{North}} \) and \(P_{\text{East}} \)) for the 32 high-frequency events associated with a maximum negative WL anomaly at \(P_{\text{East}} \) at \(t = 0 \). b] Mean water-level differences between \(P_{\text{South}} \) and \(P_{\text{East}} \) and between \(P_{\text{North}} \) and \(P_{\text{East}} \). c] Mean temporal variations of air-temperature (in °C, black line), air-humidity (in %, blue line) and rain (in mm/hr, red line). d] Mean temporal variations of wind velocity components (in black and blue, left axis) and wind speed (in red, right axis). Color shading correspond to ±1 standard deviation around the means. In order not to overload the figure, standard deviations are not shown for wind speed in c).

Finally, in order to better understand the forcing mechanisms involved in the seiche generation, a composite analysis of some key meteorological parameters was
performed (Figure 7c-d). Leading up to the seiche triggering, atmospheric conditions are relatively stable with on average an air temperature of \(\sim 28.5^\circ C\), a humidity of \(\sim 85\%\), and no rain (Figure 7c). The wind is also regular, blowing towards the Northeast (zonal and meridional components are equal and positive) with a mean speed of 4-5 m s\(^{-1}\) (Figure 7d). This wind regime tends to accumulate water in the Northeast/East of the lagoon as observed in Figure 7a. At the start of the seiche \((t=-1.5h)\) the wind suddenly decreases and progressively reverses (Figure 7d). At \(t=0\), when the WL is minimum at \(P_{\text{East}}\), the wind blows towards the West-Southwest with a mean speed of \(\sim 4\) m s\(^{-1}\) (Figure 7d). This strong and rapid wind inversion is thus the main forcing mechanism of the seiche, causing the displacement of the water from the East to the West and initiating the WL oscillations. After this maximum wind inversion, the wind progressively blows again towards the Northeast but with a very weak intensity \((< 2\) m s\(^{-1}\)). Interestingly, during the seiche event the air temperature suddenly drops by 4-5°C, the humidity increases to reach an average value of 93% and very strong rain events are observed (Figure 7c). These showers of up \(\sim 100\) mm/h rainfall have a duration of 30-60 mn. These patterns are likely related to the passage of fast-moving squall-lines, characterized by strong pressure jumps and downdraft winds, with short but intense rainfalls (e.g. Omotosho, 1984; 1985; Schrage and Fink, 2007). Interestingly, the seasonal variation of the number of squall-lines in West African coastal regions, shows a bi-modal distribution with a strong maximum in March-June and almost no squall-line in July-September (Omotosho, 1984; 1985). Both the number of squall-lines and the number of seiche events show similar seasonal variations (85% of the seiche events were observed in February and June and none in August-September), which strongly suggests that the passage of these atmospheric disturbances (squall-lines) are likely responsible of the observed seiche phenomena.

4. Discussion

As noted by Ekeu-Wei (2018), floods are one of the most devastating natural hazards in West Africa, increasing in frequency, magnitude and impact in recent decades (Aerts et al., 2014; Di Baldassarre et al., 2010). Flood in West-Africa is thus a growing issue and various political or economic capitals are concerned by flooding, in particular due to their proximity from coastal lagoons fed by important watersheds (e.g. Lagos in Nigeria, Cotonou in Benin, Lomé in Togo, Abidjan in Ivory Coast, etc.). Local governments therefore need information
to implement appropriate flood management measures. However, the acquisition and maintenance of environmental and climate observation networks in these developing regions is very challenging despite their vulnerability to climate variability and change (Ampadu et al., 2013; Eku-Wei, 2018; Dinku, 2019; Brocca et al., 2020). As such, WL timeseries in West-African lagoons are rare or non-existent. Results presented in this study, which are based on several 2-year timeseries of WL in the Nokoué Lagoon in Benin, are therefore unique in West-Africa and provide important information on the hydrological functioning of this coastal lagoon for the future implementation of flood early warning system.

In particular, this study complemented previous limited studies (Le Barbé et al., 1983; Djihouessi and Aina, 2018), highlighting the main roles of river runoffs, tides and winds in the WL variations of Nokoué Lagoon. Observed low-frequency subtidal WL variations of \(-0.8-0.9\) m are the result of the importance of continental water inflow and the lagoon's evacuation capacities, which depend on the ocean level. At regional scale, the WL has only been measured in the Ebrié Lagoon (Ivory Coast) for 1-year in 1952. This lagoon also showed an increase of 50 cm during watershed flooding in October-November (Varlet, 1978; Durand and Guiral, 1994). In Nokoué Lagoon, our results suggested a 1-month delay between maximum rainfall in the catchment basin and the maximum WL in the lagoon, which is encouraging to elaborate an operational seasonal flood forecasting system in the lagoon from rainfall observations.

Our study also suggests that such forecasting system has to take into account tide forcing. The interaction of M2 and S2 tidal constituents through non-linear bottom friction and river interaction resulted in a pronounced fortnightly-period oscillation of lagoon WL, as expected from one-dimensional simplified models (e.g. Hill, 1994; MacMahan et al., 2014). Tides are strongly attenuated, with a main semidiurnal (M2+S2) tidal amplitude decreasing from 30-90 cm in the ocean to \(~1-3\) cm in the Nokoué Lagoon (see Table 2 and also Zandagba et al., 2016). The tidal signal is thus altered by the frictional channel that acts as a dynamic low-pass filter (Kjerfve and Magill, 1989) and the Nokoué Lagoon can be classified as a choked coastal lagoon (Kjerfve, 1986) with a choking coefficient varying with the season and ocean tide amplitude (Table 3).

Based on Stigebrandt (1980), many studies have explained choking conditions using a simple one-dimensional model (e.g. Rydberg and Wickbom, 1996), where the response of the WL within the lagoon \(\eta_{\text{lagoon}}\) to the ocean sea-level forcing \(\eta_{\text{ocean}}\) and M2 tide and a variable freshwater supply \(Q_{\text{river}}\) is given by:
\[
\frac{d\eta_{\text{lagoon}}}{dt} = P \frac{\eta_{\text{ocean}} - \eta_{\text{lagoon}}}{\sqrt{|\eta_{\text{ocean}} - \eta_{\text{lagoon}}|}} + S \tag{1}
\]

where the parameters characterizing the choking conditions are (Stigebrandt, 1980)

\[
P = \frac{hl}{A\sqrt{1+\lambda}} \left[2gT^2 \right] \lambda = 2\kappa \frac{L}{h} \quad \text{and} \quad S = \frac{Q_{\text{river}}T}{Aa_{\text{ocean}}}
\]

with \(g = 9.81 \text{ m/s}^2 \) is the gravitational acceleration; \(T = 12.42 \) hours and \(d_{\text{ocean}} = 0.5 \) m, are the M2 tidal period and amplitude in the ocean, respectively; \(\kappa \sim 0.003 \) is a friction coefficient used in quadratic friction laws (e.g. Robinson et al., 1983; Stigebrandt and Molvær, 1988; Sternberg, 1968; Rydberg and Wickbom, 1996); \(A = 170 \) km² is the lagoon area, \(L = 4000 \) m the length of the Cotonou channel, \(l = 280 \) m its breadth, and \(h = 3 \) m its depth. The river discharge, \(Q_{\text{river}} \), is poorly known but estimated climatologies show it varies from \(~50 \text{ m}^3 \text{ s}^{-1} \) in low-water season to \(~800 \text{ m}^3 \text{ s}^{-1} \) during flood period (Figure 2).

Table 3. Tidal choking coefficients (in bold) obtained from average semi-diurnal tidal amplitudes observed in the ocean \((a_{\text{ocean}}) \) and Nokoué Lagoon \((a_{\text{lagoon}}) \), and from theoretical results from Equation 1 (Stigebrandt, 1980) for different hydrological periods (dry and wet seasons) and tidal characteristics (spring and neap tides). \(a_{\text{lagoon}} \) was obtained from Table 2, averaging semi-diurnal tidal amplitudes \((AD2) \) at the 3 stations located in Nokoué Lagoon \((P_{\text{South}}, P_{\text{North}}, P_{\text{East}}) \).

<table>
<thead>
<tr>
<th>Observations</th>
<th>(a_{\text{ocean}}) (cm)</th>
<th>(a_{\text{lagoon}}) (cm)</th>
<th>(c_c = \frac{a_{\text{lagoon}}}{a_{\text{ocean}}})</th>
<th>Theoretical (Stigebrandt, 1980)</th>
<th>(C_c)</th>
<th>(P)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Season ((Q_{\text{river}} = 50 \text{ m}^3 \text{ s}^{-1}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Tide</td>
<td>94.2</td>
<td>4.0</td>
<td>0.04</td>
<td>0.06</td>
<td>0.34</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Neap Tide</td>
<td>36.0</td>
<td>2.8</td>
<td>0.08</td>
<td>0.09</td>
<td>0.54</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Wet Season ((Q_{\text{river}} = 800 \text{ m}^3 \text{ s}^{-1}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Tide</td>
<td>95.3</td>
<td>1.4</td>
<td>0.01</td>
<td>0.02</td>
<td>0.33</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Neap Tide</td>
<td>28.0</td>
<td>1.3</td>
<td>0.05</td>
<td>0.06</td>
<td>0.62</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

In this model, tidal choking depends at first order upon the geometrical characteristics of the lagoon and channel including friction effects (e.g. Stigebrandt, 1980; Hill, 1994; MacMahan et al., 2014). River outflows plays an additional role in modifying both the mean lagoon WL and the tidal amplitude and phase (Stigebrandt, 1980). Given the lagoon and river discharge characteristics, we obtain \(\lambda \sim 8 \) indicating a strong control of tidal choking by bottom friction. \(P \) varies from 0.3 for spring semi-diurnal tides to 0.6 for neap tides (Table 3). Interestingly, because of extreme hydrological variability, \(S \) varies from 0.01 in dry season to 0.8 in wet season (Table 3), implying a strong influence of river discharge for the choking process. Following Stigebrandt (1980; see his Table 1), the predicted choking coefficient...
varies from 0.02 to 0.09 (Table 3). These results only slightly differ from our estimates (Table 3), in particular because river inflow is poorly known. This good agreement shows that this simple model is able to explain the observed choking conditions and its strong seasonal and fortnightly variability.

Also, for the considered river outflows (50 and 800 m3 s$^{-1}$) the Stigebrandt’s (1980) theory predicts a similar tidal asymmetry in the lagoon, with an ebb duration ~35 mn longer than the flood. This is in agreement with what we observed during dry season (30-45 mn), but the observed ebb-flood asymmetry was stronger during flood period. The expected phase delay between high water in the ocean and in the lagoon is predicted to be of 1.5-3 hours (longer phase shifts for stronger river outflows), in agreement with the values observed in Section 3.3b. Furthermore, Stigebrandt (1980) suggested from his theory that the mean WL in the lagoon would increase by 5 cm in low-water period and ~80 cm during flood season, which is very close to our observations (Figure 2). These comparisons between observed and predicted values from the Stigebrandt’s (1980) theory at different timescales are very promising for using this simplified one-dimensional models to predict WL in Nokoué Lagoon from river discharge data and tidal constituents. Implementing a forecasting system was beyond the scope of the present study, but this problem and approach will deserve future studies.

Finally, as shown in Section 3.4, the HF WL acquisition rates allowed us to highlight the occurrence of seiches in Nokoué Lagoon and to provide their main characteristics. These HF events, forced by the passage of fast-moving squall lines, are characterized by typical WL oscillations of ±5-10 cm. Seiches are commonly observed in large lakes or lagoon in the World (e.g. Chapman and Giese, 2002). However, due to the lack of continuous WL monitoring, these HF events have been only marginally documented in some lakes of Central and East Africa (e.g. Beauchamp, 1939; 1953; Jolyman, 1955; Fish, 1957; Ward, 1959). In West-Africa, only Varlet (1978) mentioned the occasional existence of damped oscillations in the Ebrié Lagoon whose amplitude could reach 10 cm and whose period was about thirty minutes. He also noted that in 1952, a tornado produced a momentary rise of 5-15 cm in the Ebrié lagoon. Our study, based on a robust statistical analysis, provides an unprecedented description of the seiche phenomenon in an African coastal lagoon. These results provide useful metrics to validate barotropic shallow-water models, that in turn could be used to better understand seiche dynamics in Nokoué Lagoon. They also suggest that, to be exhaustive, flood forecasting system should incorporate or parameterize seiche oscillations in Nokoué Lagoon.
5. **Conclusion**

The lagoon WL exhibits strong variability in 4 main frequency bands. First, a low-frequency variability is directly associated with the seasonal variation of rainfall and river discharge that causes the WL in the lagoon to increase by 0.9 m between low and high water periods. Some interannual variability was observed, related to variations of rainfall over the watershed and associated river discharge, but the lack of available contemporary hydrological and meteorological data prevents any further diagnostics.

Second, we documented the propagation and interaction of oceanic tidal constituents within the Cotonou channel and Nokoué Lagoon. Fortnightly frequency variations of the mean WL are observed in the lagoon with the highest high-waters observed during spring tides and the lowest low-waters during neap tides. Amplitudes of the fortnightly variations are much higher (10-15 cm) during the wet season. A strong attenuation of the tidal range within the Cotonou channel is observed, as well as the general flood-dominated character of the lagoon. On average, semi-diurnal (diurnal, respectively) tidal amplitudes decreases from ~70 cm (15 cm) in the ocean to ~2-3 cm (<2 cm) within the lagoon. Thus, the relatively long Cotonou channel, that connects the Nokoué Lagoon to the ocean, acts as a natural low-pass filter that reduces tidal effect in the lagoon but increase the fortnightly component, and more particularly during wet season when river discharge is high.

Third, we observed higher frequency WL variability, characterized by periods shorter than 5 h. Most of these energetic events are observed during the dry season, and are associated with typical WL variations of 5-10 cm. These HF patterns correspond to wind-forced seiches associated with the passage of fast-moving squall-lines. The perturbation of the persistent southwest winds by the passage of these atmospheric disturbances leads to the development of seiches with a period of ~3 h. During these events, that are rapidly dissipated, heavy rainfalls are observed and the air temperature drops on average by 5°C.

The observations and diagnostics of this study contribute to a better understanding of the dynamics of the Nokoué Lagoon and may be used to inform an improved management of flood risks of the adjacent low-lying coastal cities. Indeed, our study shows that in order to be realistic, a flood early warning system should not only consider the hydrological regime of the Sô and Ouémé rivers, but also the propagation
and non-linear interactions of the ocean tide that produces significant WL fluctuations of Nokoué Lagoon, in particular at fortnightly periods during flood season (Figures 2-3). In a second step, this flood warning system should also include seiches that give rise to high frequency WL oscillations and can cause additional surges.

Acknowledgments.

Field campaigns and instrumentation were supported by IRD, IRHOB and ANR @RAction chair medLOC (ANR-14-ACHN-0007-01–T.Stiegltz). V. OKPEITCHA was funded by OmiDelta project of the Embassy of the Netherlands in Benin, through a scholarship grant of the National Institute of Water (INE). This work is a contribution to the « JEAI SAFUME » project funded by IRD. Special thanks to the members and crew participating to the deployment and recovery of the sensors, and in particular to Joseph AZANKPO.
References.

