
HAL Id: hal-03368384
https://hal.science/hal-03368384v1

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isotropic and Non-Isotropic Signaling in Multivariate
α-Stable Noise

Malcolm Egan

To cite this version:
Malcolm Egan. Isotropic and Non-Isotropic Signaling in Multivariate α-Stable Noise. Frontiers in
Communications and Networks, 2021, pp.1-11. �10.3389/frcmn.2021.718945�. �hal-03368384�

https://hal.science/hal-03368384v1
https://hal.archives-ouvertes.fr


Isotropic and Non-Isotropic Signaling
in Multivariate α-Stable Noise
Malcolm Egan *

CITI Laboratory, Univ Lyon, INSA Lyon, Inria, Villeurbanne, France

A wide range of communication systems are corrupted by non-Gaussian noise, ranging
fromwireless to power line. In some cases, including interference in uncoordinated OFDM-
based wireless networks, the noise is both impulsive and multivariate. At present, little is
known about the information capacity and corresponding optimal input distributions. In
this paper, we derive upper and lower bounds of the information capacity by exploiting
non-isotropic inputs. For the special case of sub-Gaussian α-stable noise models, a
numerical study reveals that isotropic Gaussian inputs can remain a viable choice, although
the performance depends heavily on the dependence structure of the noise.
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1 INTRODUCTION

In many communication systems, additive Gaussian noise is the dominant form of signal corruption due
to thermal fluctuations in the electronic devices comprising the receiver. Nevertheless, additive non-
Gaussian noise has also been observed to play an important role in power line (Zimmermann and
Dostert, 2002) and molecular communications (Farsad et al., 2015). Even in wireless communications,
interference from uncoordinated transmitters, such as in the Internet of Things (IoT), has been suggested
to admit non-Gaussian statistics (Clavier et al., 2021b). Another form of wireless communications where
non-Gaussian noise arises is in underwater communications (Chitre et al., 2004).

A particularly important family of non-Gaussian noise models are impulsive, where the
probability of large amplitude noise is significantly higher than predicted by corresponding
Gaussian models; that is, impulsive noise is heavy-tailed. A key property of impulsive noise is
that higher-order moments are often infinite or undefined, arising in Student’s t (Hall, 1966),
generalized Gaussian (Dytso et al., 2018), and α-stable models (Middleton, 1977; Sousa, 1992; Ilow
and Hatzinakos, 1998; Gulati et al., 2010; Pinto and Win, 2010).

Of all impulsive noise families, one of the most ubiquitous are the α-stable models. As a
generalization of Gaussian models admitting the key property known as stability under convolution,
these models arise via several mechanisms. The first mechanism, relevant for molecular
communications, is via the distribution of the first hitting time of the standard Wiener process
(Farsad et al., 2015). The second mechanism is via the generalized central limit theorem, which
characterizes the behavior of partial sums of n independent and identically distributed random
variables under the scaling n−1

α (Mahmood et al., 2014).
The third mechanism to obtain α-stable models relevant for interference in wireless

communication systems was first identified by Middleton (Middleton, 1977) and further clarified
in (Sousa, 1992; Ilow and Hatzinakos, 1998). In particular, given uncoordinated transmitting devices
located according to a homogeneous Poisson point process on the plane, the interference under
power-law path loss converges almost surely to an α-stable random variable by identification with the
LePage series (Samorodnitsky and Taqqu, 1994). This third mechanism has recently seen application
in interference studies for the IoT (Egan et al., 2018). Indeed both theory and recent experimental
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data (Lauridsen et al., 2017) in the 868 MHz band, utilized by
SigFox and LoRa devices, has indicated the presence of heavy-
tailed interference which may be modeled via α-stable models
(Clavier et al., 2021b).

Despite the utility of α-stable noise models in communications,
the vast majority of work has focused on real-valued noise. In this
setting, information capacity bounds have been derived in (de
Freitas et al., 2017) and the structure of optimal input distributions
characterized in (Fahs and Abou-Faycal, 2017). The design of
symbol detection strategies and their performance has been
addressed in (Niranjayan and Beaulieu, 2009; Ghannudi et al.,
2010; Clavier et al., 2021a) and decoding algorithms developed in
(Gu and Clavier, 2012; Mestrah et al., 2020). Noise parameter
estimation algorithms have also been developed in (Kuruoglu,
2001) and power control strategies in (Freitas et al., 2018).

On the other hand, baseband signals in wireless communications
are typically complex-valued for which few signal processing strategies
and studies of performance analysis have been developed, with notable
exceptions in (Gulati et al., 2010; Mahmood et al., 2014) for the
narrowband case. The situation is further complicated when
transmissions utilize orthogonal frequency division multiplexing
(OFDM), where signals are transmitted over multiple subcarriers.
In such cases, the noise forms a random vector and real-valued
α-stable models are insufficient. Nevertheless, it has recently been
shown that multivariate α-stable models can naturally arise from
statistical analysis of interference in complex baseband signals over
multiple subcarriers (Egan et al., 2018). However, little is known about
performance limits or optimal signaling strategies in the presence of
multivariate α-stable noise. In particular, the information capacity
remains an openquestion in such channels, which is useful for selecting
coding rates—via the noisy channel coding theorem—and in designing
resource allocation strategies (Freitas et al., 2018).

In this paper, as a step towards resolving these open questions,
we study the information capacity and signaling in multivariate
symmetric α-stable noise channels with 1 < α < 2. We first return
to the question of the information capacity in real-valued
symmetric α-stable noise channels, where we establish new
upper and lower bounds that are tighter and more general
than those given in (de Freitas et al., 2017). In particular,
bounds are also given for power-constrained inputs as well as
fractional moment constraints. In the case of a power constraint,
we establish that the information capacity is within a constant of
the information capacity for the Gaussian noise channel and that
Gaussian inputs yield this behavior.

We then turn to the case of multivariate symmetric α-stable
noise. We show that there exists a unique optimal input achieving
the information capacity and also derive a general upper bound,
which is applicable to all multivariate symmetric α-stable noise
channels subject to fractional moment and power constraints. We
then derive a general lower bound applicable for fractional
moment constraints with exponent r < α. In the case of sub-
Gaussian α-stable models, we also obtain a lower bound on the
information capacity subject to a power constraint.

Our bounds suggest, at least from an analytical point of view, that
it is desirable to match the dependence structure of the input
distribution to that of the noise. Indeed, our lower bounds are
obtained with non-isotropic inputs, often matched to the

dependence structure of the noise distribution. To study the
performance of non-isotropic inputs, we consider communication
in sub-Gaussian α-stable noise subject to a power constraint, and
numerically study the behavior of the bounds. In this particular case,
we observe that isotropic Gaussian inputs nearly achieve the capacity
upper bound, suggesting that matching the input to the dependence
structure of the noise is not always desirable.

1.1 Notation
Vectors are denoted by bold lowercase letters and random vectors
by bold uppercase letters, respectively (e.g., x, X). We denote the
distribution of a random vector X by PX. If X, Y are two random
vectors equal in distribution, then we write X

d ‖ Y.
Let z ∈ Rd, then ‖z‖r, 1 ≤ r ≤ 2 is given by

‖z‖r � ∑d
i�1

|zi|r⎛⎝ ⎞⎠1
r

(1)

and ‖·‖r is called the r-norm on Rd. For two vectors a, b ∈ Rn,
a c b indicates that ai ≥ bi, i � 1, . . . , n.

Let f: R→R and g: R→R. We use the Landau notation
where f(x) � o(g(x)) if limx→∞

f(x)
g(x) � 0 and f(x) � O(g(x)) if there

exists C > 0 and x0 ∈ R such that f(x) ≤ Cg(x), ∀x ≥ x0.

2 PROBLEM FORMULATION

In this section, we detail the problem of characterizing the
information capacity and optimal input distributions in
multivariate symmetric α-stable noise channels (1 < α < 2).
To this end, we first recall preliminary definitions and
properties of scalar and multivariate α-stable models that will
be used in the sequel. For further details, we refer the reader to
(Samorodnitsky and Taqqu, 1994).

2.1 α-Stable Models
The probability density function of an α-stable random variable is
described by four parameters: the exponent 0 < α ≤ 2; the scale
parameter c ∈ R+; the skew parameter β ∈ ( − 1, 1); and the shift
parameter δ ∈ R. If X has an α-stable distribution, then we write
X ∼ Sα(c, β, δ). In the case β � δ � 0, X is said to be a symmetric
α-stable random variable.

In general, α-stable random variables do not have closed-form
probability density functions. Instead, they are more compactly
represented by the characteristic function, given by
(Samorodnitsky and Taqqu, 1994, Eq. 1.1.6)

E[eiθX]

�

exp −cα|θ|α 1 − iβ(signθ) tan πα

2
( ) + iδθ{ },

α≠ 1

exp −c|θ| 1 + iβ
2
π
(signθ)log|θ|( ) + iδθ{ },

α � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)
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Observe that in the special case α � 2, the α-stable distribution is
Gaussian. As such, the family of α-stable distribution generalize
the family of Gaussian distributions. In fact, like Gaussian
models, if X(1) and X(2) are independent copies of an α-stable
random variable X, then for a, b > 0, there exists constants
c> 0, d ∈ R such that

aX(1) + bX(2) d ‖ cX + d. (3)

More precisely, the following property holds (Samorodnitsky
and Taqqu, 1994).

Property 1. Suppose Z1, Z2 are independent with Z1 ∼ Sα(c1,
β1, δ1) and Z2 ∼ Sα(c2, β2, δ2). Then, Z1 + Z2 ∼ Sα(c, β, δ),
where

c � (cα1 + cα2)
1
α,

β � β1c
α
1 + β2c

α
2

cα1 + cα2

δ � δ1 + δ2.

(4)

When β � δ � 0 in Eq. 2, the resulting α-stable distribution is
said to be symmetric. An important alternative
characterization of symmetric α-stable random variables is
via the LePage series.

Theorem 1. [Theorem 1.4.2 (Samorodnitsky and Taqqu, 1994)].
Suppose 0 < α < 2, (Γi)∞i�1 is a homogeneous Poisson point process
with intensity 1, and (Wi)∞i�1 are symmetric, independent and
identically distributed random variables satisfying E[|Wi|α]<∞.
Then,

∑∞
i�1

Γ−
1
α

i Wi (5)

converges almost surely to a random variable
X ∼ Sα((C−1

α E[|W1|α])1/α, 0, 0), where
Cα �

1 − α

Γ(2 − α) cos(πα/2), α≠ 1

2/π, α � 1.

⎧⎪⎪⎨⎪⎪⎩ (6)

In the multivariate setting, we consider random vectors X in
Rd ∼ d> 1. Analogously to the scalar case (d � 1), a random
vector X ∈ Rd is a symmetric α-stable random vector if for all a,
b > 0 there exists c > 0 such that

aX(1) + bX(2) d ‖ cX, (7)

where X(1) and X(2) are independent copies of X.
A sufficient condition for a random vector X in Rd to be a

symmetric α-stable random vector is that all linear
combinations of the elements of X are symmetric α-stable
(Samorodnitsky and Taqqu, 1994). In general, d-dimensional
symmetric α-stable random vectors can be represented via their
characteristic function, given by (Samorodnitsky and Taqqu,
1994)

E[eiθ·X] � exp −∫
Sd−1
∑d
k�1

θksk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
α

Γ(ds)⎛⎝ ⎞⎠, (8)

where Γ is the unique symmetric measure on the surface of the d-
dimensional unit sphere.

In the case that a d-dimensional α-stable random vector X is
truly d-dimensional, there exists a joint probability density
function pX(·) on Rd. Note that a simple necessary and
sufficient condition for X to be truly d-dimensional is for the
support of the spectral measure to span Rd (Byczkowski et al.,
1993). This condition means that degenerate α-stable random
vectors (e.g., when Xi � Xj for some i ≠ j, i, j ∈ {1, . . . , d}) are not
considered.

A key family of truly α-stable random vectors are the sub-
Gaussian α-stable random vectors, defined as follows.

Definition 1. Any vector X satisfying X d‖ (A
1/2G1, . . . , A1/2Gd),

where

A ∼ Sα/2((cos πα/4)2/α, 1, 0), (9)

and G � [G1, . . . , Gd]T ∼ N (0,Σ) is called a sub-Gaussian
α-stable random vector in Rd with underlying Gaussian vector
G. If Σ � σ2I with σ > 0, then X is said to be an isotropic sub-
Gaussian α-stable random vector.

2.2 The Information Capacity Problem
Consider the memoryless, stationary, linear and point-to-point
communication channel

Y � X + N, (10)

whereN is a truly symmetric α-stable random vector with 1 < α <
2, admitting a multivariate probability density function pN(·),
with X and N independent. The random vector X is defined on1

(Rd,B(Rd)) with probability measure μX lying in the set ΛX (P, r),
where

ΛX(P, r) � {μX: (EμX[|X1|r], . . . ,E[|Xd|r])cP}, (11)

for a given P ∈ Rd
+ and 1 ≤ r ≤ 2. As such, the set ΛX(P, r)

corresponds to the set of inputs satisfying element-wise moment
constraints. Note that by virtue of N admitting a probability
density function, Y also admits a probability density
function pY(·).

The main focus of this paper is to investigate the information
capacity and corresponding optimal inputs for communication
channels of the form Eq. 10. To this end, let P(Rd) be the set of
probability measures on (Rd,B(Rd)) equipped with the topology
of weak convergence (Billingsley, 1999).

C(P, r) � sup
μX∈ΛX(P,r)

I(X;Y) (12)

where the mutual information I(X; Y) is given by

1The notation B(Rd) denotes the Borel σ-algebra on Rd.
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I(X;Y) � ∫
Rd
∫

Rd
pN(y − x)logpN(y − x)

pY(y) dyμX(dx). (13)

In the case an optimal input exists, it satisfies

μ*X ∈ arg max
μX∈ΛX(P,r)

I(X;Y). (14)

Note that, by a generalization of Shannon’s noisy channel
coding theorem for vector non-Gaussian channels (Han, 2003),
the information capacity may be interpreted as the maximum
achievable rate with asymptotically zero average probability
of error.

In the remainder of this paper, we address the following
questions:

(i) What is the value of C(P, r) for varying P and r?
(ii) Does an optimal input μ*X ∈ ΛX(P, r) exist?
(iii) What is the structure of nearly optimal inputs?

In this work, we will allow μX to be non-isotropic; that is, for all
d × d orthogonal matrices O ∈ O(d), it does not hold that

OX
d ‖ X, (15)

where X has probability measure μX. In the following section, we
begin with scalar channels—which have not previously been
comprehensively studied—before considering more general
vector channels in Section 4.

3 SCALAR CHANNELS

Before turning to multivariate α-stable noise channels, we
first consider the scalar case. In particular, we first improve
on the capacity bounds in (de Freitas et al., 2017) and in the
process develop techniques that will be generalized to the
multivariate setting in the sequel. To begin, we specialize the
problem in Eq. 12 to the scalar case: a stationary and
memoryless scalar additive symmetric α-stable noise
channel is given by

Y � X +N, (16)

where the noise N is a symmetric α-stable random variable with
scale parameter cN, admiting a probability density function pN(·),
with X and N independent. The input random variable X is
required to satisfy the constraint

E[|X|r]≤P, (17)

where 1 ≤ r ≤ 2. In terms of the probability measure of X, the
constraint can be written as

ΛX(P, r) � {μX ∈ P(R): EμX[|X|r]≤P}. (18)

In this case, the information capacity of the channel (16) is
defined as

C(P) � sup
μ∈ΛX(P,r)

I(X;Y) (19)

It follows from (Fahs and Abou-Faycal, 2016) that an optimal
solution of Eq. 19 exists and is unique. Indeed, the optimal input
is known to be discrete (Fahs and Abou-Faycal, 2017).

3.1 Capacity Upper Bounds
In (de Freitas et al., 2017), an upper bound on C(P, r) was
established when r � 1 and 1 < α < 2.

Theorem 2. Let λ > 0 and r � 1. For the channel (16), the capacity
C(P, 1) in (19) is upper bounded by

C(P, 1)≤ log 2Γ 1
α( )

λcαπ
⎛⎝ ⎞⎠ + λ

2cΓ 1 − 1
α( )

π
+ P⎛⎝ ⎞⎠. (20)

It was shown in (de Freitas et al., 2017) that this bound was tight
for moderate values of P and appropriate values of λ, but quickly
diverged. An asymptotic upper bound, that is, the upper bound is
only guaranteed to hold as P → ∞, was established. In the
following theorem, we establish an upper bound which holds for
all 1 ≤ r ≤ 2 and p > 0.

Theorem 3. Let 1 ≤ r ≤ 2 and p > 0. For the channel (16), the
capacity C(P, r) in (19) is upper bounded by

C(P, r) ≤ CUB(P, r)

� log 2 P
1
r +

2Γ 1 − 1
α

( )
π

cN
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠e⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − h(N). (21)

Proof. Note that under the constraint that E[|Y|] � cY, cY > 0,
the entropy is maximized by the Laplace distribution (Cover and
Thomas, 2006). This yields a bound of

h(Y)≤ log(2cYe). (22)

By the triangle inequality,

E[|Y|]≤E[|X|] + E[|N|]. (23)

We also have by (Zolotarev, 1957)

E[|N|] � 2Γ 1 − 1
α( )

π
cN. (24)

All that remains is to obtain E[|X|r]. By construction,
E[|X|r]≤P. Using Hölder’s inequality then yields

E[|X|]≤ (E[|X|r])1r � P
1
r . (25)

Substituting Eqs 23–25 into Eq. 22 gives

C(P)≤ log 2 P
1
r + 2Γ 1 − 1

α( )
π

cN
⎛⎝ ⎞⎠e⎛⎝ ⎞⎠ − h(N), (26)

as required.

3.2 Capacity Lower Bounds
We now turn to lower bounding C(P, r). We first consider the
case where 1 ≤ r < α.
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Theorem 4. Let 1 ≤ r < α. For the channel (16), the capacity
C(P, r) in (19) is lower bounded by

C(P, r) ≥ CLB(P, r)

� 1
α
log 1 + P

α

r

cαN

α
��
π

√ Γ −r
2

( )
2r+1Γ r + 1

2
( )Γ −r

α
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
r⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(27)

Proof. Let X ∼ Sα(cX, 0, 0) with cX ∈ R+. Consider the random
variable U ∼ Sα(1, 0, 0). By the scaling and translation properties
of α-stable random variables, we can write

X
d ‖ cXU

N
d ‖ cNU.

(28)

By the stability property

Y � X +N ∼ Sα (cαX + cαN)
1
α, 0, 0( ) (29)

and hence

Y
d ‖ cYU, (30)

where cY � (cαX + cαN)1α.

We then have

I(X;Y) � h(Y) − h(Y|X)
� h(cYU) − h(cNU)
� h(U) + log(cY) − h(U) − log(cN)

� log
(cαX + cαN)

1
α

cN
⎛⎝ ⎞⎠

� 1
α
log 1 + cαX

cαN
( ).

(31)

Using (Shao and Nikias, 1993, Theorem 4)

E[|X|r] � 2r+1Γ r+1
2( )Γ −r

α( )
α
��
π

√ Γ −r
2( ) crX. (32)

and the constraint E[|X|r]≤P, it follows that

C(P)≥ 1
α
log 1 + P

α
r

cαN

α
��
π

√ Γ −r
2( )

2r+1Γ r+1
2( )Γ −r

α( )⎛⎝ ⎞⎠1
r⎛⎜⎜⎝ ⎞⎟⎟⎠. (33)

Remark 1. When r � 1, Theorem 4 specializes to the lower
bound in (de Freitas et al., 2017).

Since 1 ≤ r < α and α < 2, it follows that Theorem 4 does not
apply in the important case where the input X is constrained to
satisfy E[X2]≤P. In the following theorem, we establish a lower
bound in this setting.

Theorem 5. Let r � 2. For the channel (16), the capacity C(P, 2) in
(19) is lower bounded by

C(P, 2) ≥ CLB(P, 2)
� ∫∞

0

1
2
pA(a)log(2πe(P + a))da − h(N), (34)

where pA(a) is the probability density function of a totally skewed
α/2-stable random variable with scale parameter cos2/α(π4 α).
Proof. Let X ∼ N (0, P) and G ∼ N (0, 2c2N). Then,

h(Y) � h(X +N)
� h(X + A1/2 G)
≥ h(X + A1/2G|A)
� h(GA|A),

(35)

where GA ∼ N (0, P + Ac2N). Hence,

h(Y)≥ ∫∞

0

1
2
pA(a)log(2πe(P + 2ac2N))da. (36)

As such,

C(P)≥ ∫∞

0

1
2
pA(a)log(2πe(P + 2ac2N))da − h(N), (37)

as required.
A key question is whether the capacity bounds we have

established so far are tight. To this end, we make the
following observation.

Corollary 1. Let 1 ≤ r < α. For the channel (16), the capacity
C(P, r) in (19) satisfies

C(P, r) � 1
r
logP + O(1), P→∞. (38)

Proof. Observe that

CLB(P, r) � 1
r
logP + O(1), P→∞,

CUB(P, r) � 1
r
logP + O(1), P→∞.

(39)

Since

CLB(P, r)≤C≤CUB(P, r), (40)

the corollary follows.
By the same argument, we also have the following corollary.

Corollary 2. Let r � 2. For the channel (16), the capacity C(P, 2) in
(19) satisfies

C(P, 2) � 1
2
logP + O(1), P→∞. (41)

As a consequence, for sufficiently large values of P and r � 2, the rate
achievable using a Gaussian input is within a constant of the capacity
C(P, 2). A further observation, which will be useful in the sequel, is
that matching the input distribution to the noise distribution yields a
rate that forms a good approximation of the capacity. Finally, the
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capacity of symmetric α-stable noise channels is within a constant of
the capacity for an additive Gaussian noise channel.

3.3 Numerical Results
In order to further verify the tightness of the upper bound in Theorem
3, we compare the bound with the numerical computation of the
capacity via the Blahut-Arimoto algorithm (Blahut, 1972; Arimoto,
1972). Figure 1 plots the power against the information capacity for
varying andα. The scale parameter is set as cN� 0.01.Observe that the
upper bound and the numerical approximation are in
good agreement. Note that the lower bound is obtained based on
a Gaussian input is also in good agreement, despite the fact that the
optimal input is discrete (Fahs and Abou-Faycal, 2017).

Figure 2 plots the capacity upper bounds in Theorem 2 [from (de
Freitas et al., 2017)] and our new upper bound in Theorem 3 in the
case of the constraint E[|X|]≤P with cN � 0.01 and α � 1.8. The
parameter λ required in the bound fromTheorem2 corresponds to λ
� 1. Observe that for all plotted values of P, the new bound in
Theorem 3 is below that of Theorem 2, implying that the new bound
is tighter. Note that the improvement over the bound in (de Freitas
et al., 2017) is already evident from the form of the bounds for large
P, due to the fact that P dominates log P.

4 VECTOR CHANNELS

In this section, we return to the general problem in Eq. 12 for
vector channels with d > 1.

4.1 Existence and Uniqueness of Optimal
Inputs
While existence and uniqueness of optimal inputs is well understood in
the scalar case (Fahs and Abou-Faycal, 2016), it has not yet been
established in the vector case. We prove this result in the following
theoremby utilizing the theory ofweak convergence (Billingsley, 1999).

Theorem 6. For the optimization problem in (12), there exists a
unique input probability measure μ* corresponding to an input
random vector X* on (Rd,Bd) such that C(P, r) � I(X*; Y).

Proof. The proof proceeds in three steps: (i) weak compactness of
the constraint set ΛX(P, r); (ii) weak continuity of I(X; Y) on
ΛX(P, r), yielding existence of μ*X; and (iii) uniqueness of μ*X .

(i) For any ϵ > 0, there exists aϵ � [a1,ϵ, . . . , ad,ϵ]T_0 such that
for all μ ∈ ΛX(P, r)

Pr |X1|r > a1,ϵ, . . . , |Xd|r > ad,ϵ( )< ϵ. (42)

The inequality in Eq. 42 holds as a consequence of the generalized
Markov inequality in (Marshall, 1984, Example 2.3). In more detail,

Pr |X1|r > a1,ϵ, . . . , |Xd|r > ad,ϵ( ) ≤ min
i�1,...,d

E[|Xi|r]
ai,ϵ

≤ min
i�1,...,d

ci
ai,ϵ

< ϵ.
(43)

Now, choose Kϵ � [− a1,ϵ, a1,ϵ] ×/ × [− ad,ϵ, ad,ϵ]. Then, Kϵ is
compact subset ofRd and μ(Kϵ)≥ 1 − ϵ for all μ ∈ΛX(P, r). Hence,
ΛX(P, r) is tight.

To establish closure, we apply a variation of the Portmanteau
theorem (Billingsley, 1999). Let {μn}∞n�1 be a weakly convergent
sequence in ΛX(P, r) with limit μ0. By a consequence of the
Portmanteau theorem, it follows that

Eμ0[|X1|r], . . . ,E[|Xd|r][ ]T
� ∫ |x1|rdμ0(x), . . . ,∫ |xd|rdμ0(x)[ ]T
6 lim inf

n→∞
∫ |x1|rdμn(x), . . . , lim inf

n→∞
∫ |xd|rdμn(x)[ ]T

6P.

(44)

Hence, μ0 ∈ ΛX(P, r). Since the choice of sequence is arbitrary, it
follows that ΛX(P, r) is closed in the topology of weak

FIGURE 1 | Capacity of symmetric α-stable noise channels subject to a
power constraint P, with cN � 0.01.

FIGURE 2 | Capacity of symmetric α-stable noise channels subject to
the constraint E[|X |]≤P, with cN � 0.01 and α � 1.8.
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convergence. Since ΛX(P, r) is tight and closed in the topology of
weak convergence, it then follows by Prokhorov’s theorem
(Billingsley, 1999) that ΛX(P, r) is compact.

(ii) The second step is to establish that I(X; Y) is weakly
continuous on ΛX(P, r). In particular, we need to show
that for any weakly convergent sequence of probability
measures (μn)

∞
n�1 with limit μ0

lim
n→∞

−∫pYn(y)logpYn(y)dy � −∫pY0(y)logpY0(y)dy, (45)

where Yn is the output corresponding to an input Xn with
probability measure μn. Note that Yn � Xn + N admits a
probability density function since N is truly d-dimensional.

Observe that if the limit and the integral in Eq. 45 can be
swapped, the result follows from the definition of weak
convergence if the probability density function of N, pN, is
bounded and continuous. Note that this is indeed the case
since the characteristic function of N, ΦN(t) � E[eit·N] is
integrable when N is truly d-dimensional.

To complete the proof, we must justify swapping of the limit
and integral in Eq. 45. Let 1 < s < α. We need to establish that for
all n ≥ 0 and any δ > 0, there exists R(δ) > 0 such that

∫
‖y‖s >R(δ)

pYn(y)logpYn(y)dy
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣< δ. (46)

To proceed, let

q(y) � 1
πd

1∏d
i�1(1 + y2

i )
, y ∈ Rd. (47)

which is a Cauchy density on Rd. Observe that

−∫
‖y‖s >R(δ)

pYn(y)logpYn(y)dy

� −∫
‖y‖s >R(δ)

pYn(y)log q(y)dy

−∫
‖y‖s >R(δ)

pYn(y)log
pYn(y)
q(y) dy

≤∫
‖y‖s >R(δ)

pYn(y) logπd + log∏d
i�1

(1 + y2
i )⎛⎝ ⎞⎠dy

+ 1
e
∫

‖y‖s >R(δ)
q(y)dy,

(48)

where the last term follows from the fact that a log a≥ − 1
e, a> 0.

Note that by the Markov inequality,

∫
‖y‖s >R(δ)

logπdpYn(y)dy ≤ d log π
E[‖Y‖s]
R(δ)

≤ d log π
L

R(δ),
(49)

which tends to zero as R(δ)→∞. Here, L <∞ since by the Jensen
and Hölder inequalities

E[‖X‖s] � E ∑d
i�1

|Xi|s⎛⎝ ⎞⎠1/s⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ ≤ E ∑d
i�1

|Xi|s⎡⎣ ⎤⎦⎛⎝ ⎞⎠1/s

≤ ∑d
i�1

E |Xi|r[ ]( )s/r⎛⎝ ⎞⎠1/s (50)

which implies

E[‖Y‖s]≤E[‖X‖s] + E[‖N‖s]≤ ∑d
i�1

E |Xi|r[ ]( )s/r⎛⎝ ⎞⎠1/s

+ E[‖N‖s]< L<∞, (51)

since the probability measure μ corresponding to X lies in ΛX(P,
r). Similarly,

1
e
∫

‖y‖s >R(δ)
q(y)dy

≤
1

eR(δ)Eq[‖Y‖s],
(52)

which tends to zero as R(δ) → ∞.
Moreover,

∫
‖y‖s >R(δ)

pYn(y)log∏d
i�1

(1 + y2
i )dy

≤ 2∫
‖y‖s >R(δ)

pYn(y)log∏d
i�1

(1 + |yi|)dy

≤ 2 sup
‖y‖s >R(δ)

log∏d

i�1(1 + |yi|)
‖y‖s

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭∫‖y‖s >R(δ)

‖y‖spYn(y)dy.

(53)

Note that

log∏d
i�1(1 + |yi|)
‖y‖s ≤

∑d
i�1|yi|
‖y‖s ≤ 1, (54)

by Hölder’s inequality. As such, Eq. 53 is finite and tends to
zero as R(δ) → ∞.

After an application of the dominated convergence theorem,
for any δ > 0

lim
n→∞

−∫
‖y‖r ≤R(δ)

pYn(y)logpYn(y)dy

� −∫
‖y‖r ≤R(δ)

pY0(y)logpY0(y)dy.
(55)

Since the identities in Eqs 49, 52, 53, 55 hold for all δ > 0, weak
continuity of I(X; Y) follows by taking δ → 0 (and hence R(δ)→
∞). The existence part of Theorem 6 then holds by applying the
extreme value theorem.

(iii) The uniqueness of the optimal input follows from the fact
that the entropy h(Y) is a strictly concave function of the
distribution PY. By the fact that the characteristic function of
N is strictly positive, PY is a one-to-one function of the
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distribution PX. Hence, h(Y) is a strictly concave function of
PX. As the mutual information can be written as

I(X;Y) � h(Y) − h(N) (56)

it follows that I(X;Y) is a strictly concave function of PX since h(N)
does not depend on PX. Since this holds for any input lying inΛ(P,
r), it then follows that the optimal input probability measure μ*X is
unique.

4.2 Capacity Upper Bound
Wenowobtain a general upper bound on the capacity inmultivariate
α-stable noise, which holds for constraints with 1 ≤ r ≤ 2.

Theorem 7. Let 1 < α < 2, 1 ≤ r ≤ 2, Pc0 and cNi
be the scale

parameter for the ith element of N. The capacity C(P, r) in (12) is
upper bounded by

C(P, r) ≤ CUB(P, r)

� ∑d
i�1

log 2 P

1
r
i +

2Γ 1 − 1
α

( )
π

cNi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠e⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − h(N). (57)

Proof. Recall that

h(Y)≤ ∑d
i�1

h(Yi). (58)

For each term h(Yi), the same argument as Theorem 3 yields

h(Yi)≤ log 2 P
1
r
i +

2Γ 1 − 1
α( )

π
cNi

⎛⎝ ⎞⎠e⎛⎝ ⎞⎠. (59)

The result then follows since for allXwith probability measure μX
∈ Λ(P, r),

I(X;Y)≤ ∑d
i�1

h(Yi) − h(N). (60)

As for the scalar case, the term h(N) is not available in closed-form
and must be numerically evaluated. In the numerical study in
Section 4.4, h(N) will be estimated via nearest neighbor methods.

4.3 Capacity Lower Bounds
We now generalize the results in Section 3.2 to the case of vector
channels. As for scalar channels, we consider the two cases: 1 ≤ r <
α; and r � 2.

Theorem 8. Let 1 < α < 2, 1 ≤ r < α and Pc0. The capacity C(P, r)
in (12) is lower bounded by

C(P, r) ≥CLB(P, r)

� 1
α
∑d
i�1

log 1 + cαXi
( ), (61)

where

cXi
� Piα

��
π

√ Γ −r
2( )

2r+1Γ r+1
2( )Γ − r

α( )crNi

⎛⎝ ⎞⎠1
r

.

(62)

Proof. Let

A � diag(cX1
, . . . , cXd

)
Aα � diag(cαX1

, . . . , cαXd
) (63)

and set X �d AN. We then have

I(X;Y) � h(Y) − h(N)
� h(X +N) − h(N)

� h (Aα + I)
1
αN⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ − h(N)

� log det(Aα + I)
1
α + h(N) − h(N)

� 1
α
∑d
i�1

log(1 + cαXi
).

(64)

In order to ensure that μX ∈ ΛX(P, r), we recall (Shao and Nikias,
1993, Theorem 4)

E[|Xi|r] � E[|cXi
Ni|r]

� crXi

2r+1Γ r + 1
2

( )Γ −r
α

( )
α
��
π

√ Γ −r
2
( ) crNi

≤Pi.
(65)

It then follows that

cXi
� Piα

��
π

√ Γ −r
2( )

2r+1Γ r+1
2( )Γ − r

α( )crNi

⎛⎝ ⎞⎠1
r

, (66)

as required.

Theorem 9. Let 1 < α < 2, r � 2, and Pc0 For the channel (10)
with N sub-Gaussian α-stable with underlying random vector
G ∼ N (0,Σ), the capacity C(P, 2) in (12) is lower bounded by

C(P, 2) ≥ CLB(P, 2)

� max 0,∫∞

0

1
2
pA(a)log det(2πe(ΣX + aΣ))da − h(N){ },

(67)

where ΣX is any positive definite matrix with diagonal elements

ΣX,ii � Pi, i � 1, . . . , d (68)

and A ∼ Sα/2(cos2/α(π4 α), 1, 0).

Proof. Let X ∼ N (0,ΣX) and G ∼ N (0,Σ). Then,
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h(Y) � h(X + N)
� h(X + A1/2G)
≥ h(X + A1/2G|A)
� h(GA|A),

(69)

where GA ∼ N (0,ΣX + AΣ). Hence,

h(Y)≥ ∫∞

0

1
2
pA(a)log det(2πe(ΣX + aΣ))da. (70)

In order to satisfy the power constraints, we require

ΣX,ii ≤Pi, i � 1, . . . , d, (71)

which yields the desired result.

4.4 Numerical Results
In this section, we study the behavior of the bounds in the case of
two-dimensional sub-Gaussian α-stable noise, where inputs are
subject to a power constraint.

Figure 3 plots the capacity bounds in the previous section for
varying values of P in the presence of sub-Gaussian α-stable noise,
with α � 1.2 and

Σ � 2 · 0.012 · 1 0.7
0.7 1
( ). (72)

In order to compute the entropy h(N), the 1-nearest neighbor
method (Berrett et al., 2019) was used. Observe there is roughly a
gap of approximately one nat between the upper bound in
Theorem 7 and the lower bound in Theorem 9 with ΣX
chosen to proportional to Σ.

The third curve in red corresponds to the case of a two-
dimensional isotropic Gaussian input where each component
has variance P. Observe that the mutual information obtained
with this input is close to the upper bound. This suggests that
for sub-Gaussian α-stable noise channels, Gaussian inputs

perform well and, moreover, independent components are
desirable. This can be understood by an inspection of
Theorem 9, where choosing ΣX to be diagonal maximizes
the determinant when Σ � 0.

Figure 4 plots the capacity bounds in the previous section
subject to a power constraint p � 0.01 for varying values of ρ in the
presence of sub-Gaussian α-stable noise, with α � 1.2 and

Σ � 2 · 0.012 · 1 ρ
ρ 1
( ). (73)

The results are consistent with Figure 3, with the isotropic
Gaussian input performing well for all values of ρ. We also
observe that the curves also increase for sufficient large values
of ρ, suggesting that increasing the dependence can lead to
performance improvements. This is relevant for
communication systems, such as in (Zheng et al., 2019, 2020),
where noise is dominated by interference, which may be modified
via changes to access policies.

5 CONCLUSION

Multivariate α-stable models have been suggested to capture the
heavy-tailed nature of interference in OFDM-based wireless
communication systems. In this paper, we studied the capacity
of fractional moment and power constrained signaling in the
presence of such noise. By considering non-isotropic inputs, we
obtained upper and lower bounds, which provide insights into the
behavior of the capacity and its relation to Gaussian noise models.
Via a numerical study in two-dimensional channels with sub-
Gaussian α-stable noise, we compared the performance of
isotropic and non-isotropic Gaussian inputs. This suggests, at
least for this special case, isotropic Gaussian inputs remain a
desirable choice.

FIGURE 3 | Capacity bounds for two-dimensional sub-Gaussian
α-stable noise channels subject to a power constraint P, with Σ given in Eq. 72
and α � 1.2.

FIGURE 4 | Capacity bounds for two-dimensional sub-Gaussian
α-stable noise channels for varying noise dependence ρ subject to a power
constraint p � 0.01, with Σ given in Eq. 73 and α � 1.2.
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