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Abstract. This paper deals with the assembly line balancing issue. The 
considered objective is to minimize the weighted sum of products’ cycle times. 
The originality of this objective is that it is the generalization of the cycle time 
minimization used in single-model lines (SALBP) to the multi-model case 
(MALBP). An optimization algorithm made of a heuristic and a tabu-search 
method is presented and evaluated through an experimental study carried out on 
several and various randomly generated instances for both the single and multi-
product cases. The returned solutions are compared to optimal solutions given by 
a mathematical model from the literature and to a proposed lower bound inspired 
from the classical SALBP bound. The results show that the algorithm is high 
performing as the average relative gap between them is quite low for both 
problems. 
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1 Introduction 

Since their first use in 1913 as part of the Ford automotive manufacturing process, 
assembly lines have spread all over the world. They are now one of the main forms of 
industrial production, as they significantly reduce the manufacturing time, increasing 
thus the productivity. They also reduce the needed workforce and therefore the 
production costs.  

The performance of an assembly line depends on various factors. Finding a good 
balancing of the workload over the line’s stations is one of the most important. Several 
line-balancing problems have been dealt with in the literature. A review on the issue 
can be found in [18]. Assembly line balancing problems can first be classified according 
to the number of models (types of product) that the line can produce: we distinguish 
between single-model assembly line balancing problems (SALBP), where a unique 
type of product is produced, and the mixed/multi-model assembly line balancing 
problems (MALBP) where the outcomes are products of different types . Line balancing 
problems can also be classified according to the type of the line (serial line, line with 
parallel workstations…) and the durations of the operations (deterministic or 
stochastic). 
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Different objective functions and constraints have been considered  by researchers. 
The most known objective functions for single-model lines are the minimization of the 
number of workstations for a given cycle time (type SALBP-1) and the minimizat ion  
of the cycle time (type SALBP-2) for a given number of workstations [17]. Of course, 
this list is not exhaustive. In MALB problems, the objectives are more sophisticated. 
To name a few, we can mention the reduction of the assembly cost [20], the labor cost 
[22], the line idle time [16] or the smoothness index [15]. As for the other operational 
research problems, the methods used for the balancing of assembly lines can be exact  
or approximate. Exact methods range from mathematical programming [6, 9] to branch 
and bound [12, 14], among others. However, as line balancing problems are usually 
NP-hard, exact methods cannot solve big-sized instances in a reasonable time. The 
alternative is therefore to use heuristic methods, which can quickly find satisfying 
solutions. Various kind of heuristics have been proposed for SALBP and MALBP [7, 
11, 21]. Most of the time, the heuristic methods are combined with a metaheuristic that 
allows to visit more solutions and thus to improve the qua lity of the heuristic’s one [8]. 
Different kind of metaheuristics have been used; we can mention simulated annealing 
[4, 13], tabu search [3, 19], genetic algorithms [2, 5] or ant colony optimization [1]. 

In this paper, we deal with a line balancing problem where the objective is to 
minimize the weighted sum of products’ cycle times (i.e. the weighted sum of the 
maximum time each type of product spends on a workstation), where the weight of each 
product represents its ratio among all the demanded quantity. This objective, introduced 
by [22] as part of a multi-objective MALB optimization problem, can be applied for 
both the MALBP and the SALBP (where it will be equivalent to the minimization of 
cycle time, i.e. the maximum of the sum of task times assigned to each workstation). 
Therefore, we will treat both cases in this work, and provide an optimization algorithm 
that will be tested on single and multi-models instances. The rest of the constraints of 
the problems are the following: 𝑛 operations have to be assigned to 𝑚 serial 
workstations. Each operation can be assigned to any workstation but the precedence 
constraints should be respected: an operation 𝑖 cannot be assigned to a station 𝑘1 if one 
of its predecessors 𝑗 is assigned to a workstation 𝑘2 such that index 𝑘1 < 𝑘2 . We 
consider that the durations of the operations are deterministic. Apart from the 
workstations, all the other resources needed for the processing of the operations (such 
as workers or tools) are assumed available. This issue is NP-hard [10]. 

The rest of the paper is structured as follows: In section 2, an optimization algorithm, 
based on a heuristic and a tabu-search metaheuristic is presented. In section 3, we carry 
out an experimental study to assess the performance of our algorithm and we conclude 
the paper in section 4 with our remark and perspectives. 

2 Tabu search algorithm 

The proposed solving method is made of a heuristic and a metaheuristic. The heuristic 
leads to an initial feasible solution and is based on the computation of a lower bound. 
This bound is inspired from the classical bound of SALBP-2 given in equation (1), with 𝐽 being the number of product types, 𝑚 the number of workstations, 𝑛𝑗  the number of 
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operations required by product type 𝑗 and 𝑝𝑖  the processing time of operation 𝑖. The 
latter is calculated for each product model and the lower bound for our problem is thus 
equal to the weighted sum of these cycle time bounds, as specified in equation (2), 
where 𝑤𝑗  is the demand proportion for product model 𝑗. 𝐿𝐵𝑗 = max (𝑚𝑎𝑥 𝑖=1,…𝑛𝑗(𝑝𝑖 ), ∑ 𝑝𝑖𝑚𝑛𝑗

𝑖 =1 )              ∀𝑗 = 1, … 𝐽                 (1) 

𝐿𝑜𝑤𝑒𝑟  𝑏𝑜𝑢𝑛𝑑 = ∑ 𝑤𝑗𝐿𝐵𝑗                                                                             (2)𝐽
𝑗=1  

The heuristic starts by sorting the operations on the basis of their precedence 
constraints. It puts them into groups as follows: group 1 contains the operations that do 
not have a predecessor, group 2 contains the operations whose predecessors are in group 
1, group 3 contains the operations whose predecessors are in groups 1 and 2, and so on. 
The operations within each group are then sorted in the decreasing order of the number 
of their successors and, in case of a tie, in the decreasing order of the sum of their 
successors’ processing times.  

The heuristic then browses the operations group by group, in that order, and assigns 
them to the workstations , starting by station 𝑘 = 1. At each iteration 𝑖, it selects the 
first non-assigned operation 𝑜 from the group and assigns it to a workstation, according 
to the rule given below, with 𝑆𝑗𝑘 being the sum of the operations’ processing times of 

product type 𝑗 that are already assigned to station 𝑘 at iteration 𝑖: 
- If assigning operation 𝑜 to station 𝑘 reduce the gap between the value ∑ 𝑤𝑗𝑆𝑗𝑘𝐽𝑗=1  and the 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 , or if 𝑘 = 𝑚, then assign 𝑜 to station 𝑘. 

- Otherwise: 𝑘 ← 𝑘 + 1 
The solution returned by the heuristic is then used as input for a tabu search 

algorithm that tries to improve it. The latter’s main steps are given in Algorithm 1. 

Algorithm 1: Tabu search 

Input, data: Initial solution 𝑆, stopping criterion 𝑐, size of the tabu list 𝑡𝑠; 
Initialization: Best solution  𝑆; Current solution  𝑆; 𝑖  0; Tabu List  ∅; 
while 𝑖 < 𝑐  do 

for each product type 𝑗 do 
  Select station 𝑘 on which 𝑗 has the longest processing time 
  Randomly select one of the operations 𝑖 of 𝑗 on 𝑘 with 𝑖 ∉ Tabu List 

  Move 𝑖 to either station 𝑘 − 1 and 𝑘 + 1 (the less loaded one if the  
                         precedence constraints are respected) 
  Compute the new solution 𝑆𝑗 

 Current solution  𝑚𝑖𝑛𝑗 =1,…𝐽(𝑆𝑗) ;  
Add the moved operation 𝑖 to Tabu List for 𝑡𝑠  iterations; 

 if Current solution < Best solution then 

  Best solution  Current solution 
 else 𝑖  𝑖 + 1 
return (Best Solution) 
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The idea behind choosing a tabu search method is to create a solution neighborhood 

structure for each product type: At each iteration and for each product type, the tabu 
search algorithm selects the workstation on which the selected type has its longest 
processing time and moves one of its operations to another station, by respecting the 
precedence constraints. The new obtained solutions are then compared and the best one 
is kept. The moved operation is added to a tabu list during a certain number of iterations, 
to prevent the algorithm from being stuck in the same movements’ loop .  

A neighborhood structure based on the different product types  seems useful since 
the considered objective directly depends on the cycle time of each model. This 
structure can ease the search process of efficient and high-quality solutions. To the best 
of our knowledge, this kind of neighborhood was never used before for multi-model 
balancing optimization. The algorithm repeats this process and stops after a certain 
number of consecutive iterations without improving the solution.  

3 Experimental study 

Although there are many benchmark instances from line balancing literature, only few 
of them are made for MALB problems. Moreover, to the best of our knowledge, there 
is no comparative study dealing with the same objective function. Therefore, we choose 
to test the proposed algorithm on several randomly generated instances, where the 
durations, the precedence cons traints and the repartition of the operations over the 
product types are generated given some probability parameters . We generated two 
families of instances: small-sized and big-sized. For the small-sized ones, we compared 
the algorithm’s  solutions to optimal solutions, obtained with a mathematical model 
inspired from the formulation presented in [22]. These small-sized instances are made 
of {10, 20, 50} operations, {3, 5, 6} workstations and {1, 3, 5} product types. The big-
sized ones are made of {100, 200} operations, {6, 10, 15, 20} workstations and {1, 3, 
5} product types. For these latter instances, the returned solutions are compared to the 
lower bound, since the optimal solving of these instances with the mathematical model 
cannot be done in a reasonable time. For each size, 5 instances are tested, for a total of 
225 tests. The durations of the operations are generated with a uniform distribution in 
[1, 99]. The precedence relationship between the operations  and the repartition of the 
operations over the different product types are generated based on data from a real life 
assembly line manufacturing pneumatic cylinders . 

All the instances were quickly solved by our algorithm. Those with 200 operations 
and multiple products required between 1 and 3 minutes to be solved, while the other 
instances took only a few seconds. As it is expected from an approximate approach, the 
proposed method thus shows its ability to solve rather quickly big-sized instances of 
this NP-hard problem, for which the mathematical solving may take hours. Table 1 and 
Table 2 display the results obtained for the small-sized and big-sized instances, 
respectively. In Table 1, the ‘GLB’ column gives the average relative gap between the 
lower bound calculated in equation (2) and the optimal solutions, while the ‘GSol’ 
column gives the average relative gap between the algorithm’s solutions and  the 
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optimal ones. In Table 2, the ‘Products’ columns display the average relative gap 
between the obtained solutions and the lower bound. 

As we can see from Table 1, our algorithm is high performing for both the single 
and multiple products instances, with a 0.99% overall average relative gap to the 
optimal solutions. This is confirmed by a 42.2% rate of optimal solutions among those 
returned by the algorithm. Table 1 also shows that the algorithm’s solutions are closer 
to the optimal ones than the lower bound, whose average relative gap is  higher (about 
6.3%). This gap between the bound and the optimal solutions helps to explain the 
behavior of our algorithm for the big-sized instances: Indeed, even if the average 
relative gap between the algorithm’s solutions and the lower bound is a bit higher in  
Table 2, this may be due to the gap between the bound itself and the optimal solutions. 
The results of our algorithm are therefore also promising for the big-sized instances. 

Table 1. Results for the small-sized instances. 

Operations Stations 
Products 

1 3 5 

GLB GSol GLB GSol GLB GSol 

 
10 

3 2.26 0.76 12.47 0 16.07 0 
5 12.89 0 13.33 0.29 7.5 0.19 
6 7.24 1.89 8.28 0 0.21 0 

 
20 

3 1 0 5.29 0.16 8.93 0.26 
5 3.58 0.62 9.47 1.43 13.99 1.4 
6 2.77 1.94 11.36 1.8 13.93 2.74 

 
50 

3 0 0.07 0.77 0.9 1.88 0.74 
5 0 0.53 2.12 2.44 3.63 2.4 
6 0 0.84 2.51 2.4 8.98 3.2 

Average  3.3%  0.73% 7.28%  1.04%  8.34%  1.21%  

Table 2. Results for the big-sized instances 

Operations Stations 
Products 

1 3 5 
 

100 
6 0.78 4.34 5.04 
10 1.5 7.46 9.64 
15 2.81 12.42 15.01 

 
200 

6 0.17 2.22 2.87 
10 0.56 4.43 6.26 
20 1.29 10.44 12.81 

Average  1.18%  6.88%  8.6%  

4 Conclusion 

In this paper, an optimization algorithm based on a tabu search procedure is presented 
to solve a line-balancing problem. The objective is to minimize a weighted sum of the 
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product cycle times, where the weights represent the demand-ratio for each product. 
The algorithm is tested on both single-model and multi-model problems and the results 
obtained show that the outcomes are very satisfying in both cases, with a close average 
relative gap to the optimal solutions and to the lower bound. 

The next step of this work is to test the algorithm for other objective functions for 
the multi-model line-balancing problems. As a perspective, the balancing obtained for 
these different objective functions can also be compared through a simulation for 
example, in order to analyze their impact on the production, considering various 
constraints. Future work also includes the experimentations of other heuristics to 
provide the initial solutions for the tabu search algorithm and testing the method on a 
real assembly line. A case-study line producing several models of pneumatic cylinders 
has already been linked with this project.  
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