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Abstract. We propose two approaches to obtain an isometric embedding of the

poloidal Kerr submanifold. The first one relies on the convex integration process using

the corrugation from a primitive embedding. This allows us to obtain one parameter

family of embeddings reaching the limits of an isometric embedding. The second one

consists in consecutive numerical resolutions of the Gauss-Codazzi-Mainardi and frame

equations. This method requires geometric assumptions near the equatorial axis of the

poloidal submanifold to get initial and boundary conditions. The second approach

allows to understand some physical properties in the vicinity of a Kerr black hole, in

particular the fast increasing ergoregion extent with angular momentum.

1. Introduction

Since the introduction of the general relativity, isometric embedding has helped to

picture the geometry of the curved space-time or parts of it. Essentially, two approaches

were used for those embeddings : the embedding of two-dimensional submanifold and

the embedding of the whole space-time into a higher dimension space as in the work of

Sheykin and Paston [2014] or Regge and Teitelboim [2016].

This paper follows the first approach. Many isometric submanifold embeddings have

already been produced. Smarr [1973] shows the existence of an isometric embedding

of Kerr black hole horizon section into the ordinary 3-dimensional Euclidean space for

a spin a lower than
√

3/2. We remind hereby the work of Gibbons et al. [2009] who

used 3-dimensional hyperbolic space instead of the ordinary 3-dimensional Euclidean

space; they achieved the isometric embedding of Kerr black hole horizon for values

of a higher than
√

3/2. The equatorial submanifold, usually called the “equatorial

plane”, has been isometrically embedded; one can see for example Han and Lee
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[2016] for the Kerr metric and a deformed Kerr metric. In Hled́ık [2001] and Hled́ık

et al. [2008], the isometric embedding of the equatorial submanifold is presented for

a Schwarzschild black hole with or without addition of uniform matter density, and

for different space-time manifolds (Reisner-Nordström, Ernst and Kerr-Newmann) with

and without cosmological constant.

Nevertheless, in each of those cases the considered submanifold possesses an inter-

nal symmetry (axisymmetry) that enables to detail the calculation of its embedding.

The embedding of distorted black hole horizons (without axisymmetry) has also in-

spired a lot of works that describe methods for the isometric submanifold embedding

with spherical topology as in Bondarescu et al. [2002], Jasiulek and Korzyński [2012],

and Tichy et al. [2014].

The history of isometric embedding problem started naturally after the introduction

and formalization of differential geometry by Riemann at the end of the XIX century. In

particular, the question came from Poincaré’s half-plane study. Hilbert [1901] showed

the non-existence of C2 global isometric embedding of this manifold.

In 1873, Schlaefli conjectured that the dimension of the Euclidean space for an

isometrically n-dimensional embedded manifold must be larger than sn = n(n+1)
2

. Cartan

[1927] proved that the system of isometric embedding equations for n = 2 has a local

solution if the dimension of the Euclidean space is at least s2 = 3 and if the considered

Riemannian manifold is analytic (i.e., the metric coefficients are analytic). Indeed the

proof requires the use of Cauchy-Kowalesky theorem. Janet [1927] extended the proof

for any n ∈ N and using a sn dimensional Euclidean space to embed the manifold. This

result requires that the considered manifold metric must be analytic, and Pogorelov

[1971] found a counter-example for a 2-dimensional manifold. Another counter-example

was given by Nadirashvili and Yuan [2002] whose metric is C∞ but not analytic and

whose isometric embedding does not exist. For non-analytic metrics, Lin [1985] proved

that a local embedding exists around points of non-zero curvature and also around points

of zero curvature if this latter is negative nearby. He will go further in Lin [1986] where

he proved this local existence around points of zero curvature, but whose gradient of

curvature does not vanish. You can find all these results and most of the demonstrations

in Han and Hong [2006].

Concerning global embedding problem, the famous result known as Withney the-

orem (Whitney [1936]) ensures the existence of non-isometric embedding in R2n for

n-dimensional manifold. Using a completely new approach, Nash [1954] and Kuiper

[1955] proved the existence of a C1 isometric embedding, if a non-isometric embedding

exists. Using Withney theorem, it implies the existence of isometric embedding in Eu-

clidean spaces of dimension greater than or equal to 2n. The proof introduced by Nash

is a prelude to the formalization of convex integration formulated by Gromov [1973].

Nevertheless the low smoothness of the embedding makes its use counter-intuitive. Nash

[1956] proved the existence of global C3 isometric embeddings with the need of an Eu-

clidean space of dimension n(3n+12)
2

. This result will be improved by Gromov [1970] who
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showed that the dimension can be reduced to n2 + 10n+ 3 and (n+2)(n+3)
2

if the metric is

at least C4. Later, the Hevea project (Borrelli et al. [2013]) included the tools developed

by Gromov to build an impressive image of the flat torus.

The symmetry of Kerr space-time induces the existence of a family of poloidal

submanifolds. Gourgoulhon [2010] notes the relevance of stationary and axisymmetric

space-times, and especially circular space-times, for astrophysics. He describes the

construction of poloidal submanifolds family as the orthogonally transitive set of

submanifolds linked to the R×SO(2) group action on the Kerr space-time (Papapetrou

[1966] and Carter [1969]). Thus, the poloidal submanifolds are intrinsically linked to

the Kerr space-time symmetry.

For magnetized flow model in the vicinity of a Kerr black hole, it is very common to

use the axisymmetry and stationarity assumptions (Blandford and Znajek [1977], Nitta

et al. [1991], Beskin and Par’ev [1993], Globus and Levinson [2013] or Chantry et al.

[2018]) for magneto-hydrodynamic equations; it allows to build solutions for modelling

incoming flows, accretion disks and even relativistic jets. The induced field solutions

have to be drawn only in the poloidal submanifold. The use of Cartesian pseudo-

coordinates is sufficient for drawing fields at some distances of the black hole. Whereas in

the case of ideal magnetized flows the field lines must penetrate the horizon orthogonally,

the use of these coordinates does not allow to visualize this property.

In a previous study (Chantry et al. [2020]), we have introduced different ways for

obtaining a conformal representation, i.e. producing an accurate representation of the

angles between curves of the same manifold. The purpose of this paper is to pursue

this study in the same perspective by presenting isometric embeddings of this manifold.

This leads to some accurate representations in terms of distances and angles for the

fields defined on this submanifold. After section 2, one could read independently the

sections 3 or 4 and 5.

In section 2, we start by reminding the basic properties of the 2-dimensional poloidal

submanifold. We will take advantage of this opportunity to introduce a coordinate

system adapted to the geometric study of this submanifold.

The method of corrugation from a primitive embedding is described in section 3. It

will enable us to obtain embeddings as close as one wishes from the isometric embedding.

In section 4, with the aid of geometric assumptions at the equatorial axis for initial

conditions, we developed the Gauss-Coddazzi-Mainardi equations (GCM) to obtain the

second fundamental form that respect these geometric requirements. We also introduced

the frame equations which allow to get an embedding from second fundamental form.

In section 5, we numerically integrate the GCM and frame equations in order to

obtain an approximate isometric embedding (the isometric default of induced metrics

is less than 10−3). The geometric shape and induced numerical error are analysed and

commented.

http://hevea-project.fr/ENIndexHevea.html
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2. The poloidal submanifold of Kerr metric

2.1. Definition and properties

We shall start by recalling some useful basics about Kerr manifolds. The Kerr manifolds

are the set of space-times whose metric is circular, stationary and axisymmetric solution

of the vacuum Einstein’s equation (see Gourgoulhon [2010] for a detailed review of the

circular space-time).

This set of space-times Mm,a is a two-parameter family, m, a ∈ R × [0, 1[ (mass

and spin of the black-hole; we do not consider the case where a = 1), of 4-dimensional

Pseudo-Riemmannian manifolds (Mm,a,gm,a). We will focus on the portion of Kerr

space-time outside the event horizon. This region can be described by a singular

map, that we call dimensionless Boyer-Lindquist coordinates. Then, there is a smooth

diffeomorphism,

χ : Mm,a −→ Ua
M 7→ (u, r, θ, φ)

, (1)

where Ua = R×]rH(a),∞[×]0, π[×[0, 2π[ is a subset of R4, with rH(a) = 1 +
√

1− a2.

The dimensionless Boyer-Lindquist coordinates (u, r, θ, φ) are linked to the usual ones

(tBL, rBL, θ, φ) by,

u =
ctBL
rg

, r =
rBL
rg

, (2)

with rg = Gm
c2

. In the dimensionless map, the metric gm,a could be written using

coordinate forms, du, dr, dθ and dφ,

gm,a = r2
g

[
−
(

1− 2

rΩ2(r, θ)

)
du⊗ du+

(
r2 + a2 +

2a2

rΩ2(r, θ)
sin2 θ

)
sin2 θdφ⊗ dφ

− 4a sin2 θ

rΩ2(r, θ)
du⊗ dφ+ Ω2(r, θ)

(
r2

∆(r)
dr ⊗ dr + r2dθ ⊗ dθ

)] , (3)

where we have,

Ω2(r, θ) = 1 +
a2

r2
cos2 θ and ∆(r) = r2 + a2 − 2r . (4)

Now we will shed light on (Pa,m,u0,φ0 ,µm,a,u0,φ0), the poloidal submanifolds of Kerr

manifold, which can be obtained fixing the value of u = u0 and φ = φ0 in Boyer-

Lindquist map. The induced metric is obviously,

µm,a = r2
gΩ

2(r, θ)

(
r2

∆(r)
dr ⊗ dr + r2dθ ⊗ dθ

)
, (5)

which is independent of the values u0 and φ0, so that we directly write µm,a,u0,φ0 = µm,a.

In the following, we will note (P ,µ) = (Pa,m,µm,a) for writing convenience. We

will remove also the factor r2
g which appears in (3). Indeed, this constant factor

can be retrieved by using a simple homothetic transformation with the factor rg.

This two-dimensionnal manifold is also represented by a singular map defined on

V =]rH ,∞[×]0, π[.
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It is easy to show that this submanifold has the same geometry as a poloidal

restriction of the simultaneity submanifold of the ZAMO-observers (cf. Gourgoulhon

[2007]). In what follows, we will refer to the submanifold (P ,µ) as the Kerr poloidal

manifold, and will try to find an associated isometric embedding in R3.

2.2. Coordinate system

We will use more adapted coordinates to the geometrical study of the poloidal

submanifold. Nevertheless, we will provide to the reader with the embeddings according

to these coordinates or to the usual Boyer-Lindquist coordinates.

First of all, we will use latitude λ = π
2
− θ instead of colatitude and introduce the

radial coordinate s : r 7→ s(r) which is defined by,

s(r) =

ˆ r

rH

x√
∆(x)

dx ⇒ s(r) =
√

∆(r) + ln

(√
∆(r) + r − 1√

1− a2

)
. (6)

The s coordinate function is strictly increasing and then invertible. We call r = s−1 the

inverse function of r 7→ s(r). Then the diffeomorphism that represents the coordinate

transformation is,

g : U −→ V
(s, λ) 7→ (r(s), π

2
− λ)

, (7)

where U =]0,+∞[×] − π/2, π/2[ is an open set. We will use es, eλ to note the

orthonormal basis of U ⊂ R2 and ds, dλ the associated coordinate form.

In this coordinate system, the metric of poloidal manifold could be written as,

µ = Ω2(s, λ)
(
ds⊗ ds+ r2(s)dλ⊗ dλ

)
, (8)

where

Ω2(s, λ) = 1 +
a2

r2(s)
sin2 λ . (9)

The s coordinate corresponds to the length of the equatorial line, λ = 0, for a given

radius in Boyer-Lindquist coordinates.

2.3. Gaussian curvature and Christoffel’s coefficients

We used SageMath (see Gourgoulhon and Mancini [2018]) to get the Christoffel’s

coefficients of the poloidal manifold,

Γsss = −
a2 sin2 λ

√
∆ (r(s))

r2(s)
(
r2(s) + a2 sin2 λ

) ,
Γssλ =

a2 cosλ sinλ

r2(s) + a2 sin2 λ
,

Γsλλ = −
r2(s)

√
∆ (r(s))

r2(s) + a2 sin2 λ
,

Γλss = − a2 cosλ sinλ

r2(s)
(
r2(s) + a2 sin2 λ

) ,
Γλsλ =

√
∆ (r(s))

r2(s) + a2 sin2 λ
,

Γλλλ =
a2 cosλ sinλ

r2(s) + a2 sin2 λ
,

(10)
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For the Gaussian curvature we get,

K = −
r(s)

(
r2(s)− 3a2 sin2 λ

)
(r2(s) + a2 sin2 λ)3

. (11)

Note that for a ≥
√

3/2 the Gaussian curvature could change sign in some parts of the

manifold. According to Audoly [2000], the degree of freedom for infinitesimal isometric

deformation is equal to the number of unconstrained boundaries minus the number of

principal asymptotic lines (i.e.: K = 0 and ∇K 6= 0). Thus, if there is a C∞ isometric

embedding, it looses two degrees of freedom for ”isometric infinitesimal deformation”,

when a passes through
√

3/2.

This aspect will not bring any difficulty concerning the use of the convex integration

method, but this will not be the case for the resolution of Gauss-Coddazzi-Mainardi

equations, with the initial conditions we will consider.

3. Quasi-isometric embedding by convex integration

3.1. Primitive embedding

3.1.1. Definition

We introduce the ordinary three dimensional Euclidean space E3 = (R3, < ·, · >)

and we define the isometric default of an embedding f : U −→ R3 as,

δ = µ− f ? < ·, · >R3 , (12)

where f ? < ·, · >R3 is a positive bilinear form corresponding to the induced metric

calculated from Euclidean scalar product on R3, and µ is the target metric. If δ is a

positive bilinear form, then the embedding f is strictly short.

The two-dimensional convex integration process, as explained in Chapter 2 of

Borrelli et al. [2013], can be simplified in the case where we get a primitive embedding

f : U −→ R3. A primitive embedding has an isometric default which is a positive

degenerate bilinear form,

δ = α`⊗ ` ⇒ µ = f ? < ·, · >R3 +α`⊗ ` , (13)

where α : U −→ R+ is a positive function and ` is some non zero linear form on R2.

Thus, f is said a strictly short primitive embedding along `. At this point, we are looking

for such an embedding in this way,

f : U −→ R3

(s, λ) 7→

∣∣∣∣∣∣∣
x(s) cosλ

y(s) sinλ

Z(s)

.
(14)

Thus, the induced metric is equal to,
< ∂s,∂s > = ẋ2 cos2 λ+ ẏ2 sin2 λ+ Ż2

< ∂s,∂λ > = −
[

d
ds

(x2 − y2)
]

cosλ sinλ

< ∂λ,∂λ > = x2 sin2 λ+ y2 cos2 λ

, (15)
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where ∂s = ∂sf and ∂λ = ∂λf . By choosing x(s) =
√
R2(s) + a2 and y(s) = R(s), we

ensure that the induced metric is orthogonal,
< ∂s,∂s > =

(
Ṙ2R2

R2+a2
+ Ż2

)
+ a2Ṙ2

R2+a2
sin2 λ

< ∂s,∂λ > = 0

< ∂λ,∂λ > = R2 + a2 sin2 λ

. (16)

In what follows, we will choose two directions for convex integration process, in order

to find the embedding which differs from µ by a primitive metric.

We will choose R and Z, so that we get firstly a strictly short primitive embedding

ρ along ∂s and secondly a strictly short primitive embedding Λ along ∂λ.

3.1.2. Strictly short primitive embedding along ∂s
From equations (16) and the expression of target metric in Eq.(5), it is obvious

that the choice of R(s) = r(s) insures that < ∂λ,∂λ >= µ(eλ, eλ). It allows us to find

an embedding which gives an isometric default proportional to ds⊗ds. We also choose

Ż2, so that we have,(
Ṙ2R2

R2 + a2
+ Ż2

)
= 1 ⇒ Z(s) =

ˆ s

0

√
2r(s)

r2(s) + a2
ds . (17)

One could check that this integral is not defined for a = 1. The strictly short primitive

embedding ρ is then,

ρ : U −→ R3

(s, λ) 7→

∣∣∣∣∣∣∣
√
r2(s) + a2 cosλ

r(s) sinλ

Z(s)

.
(18)

In this case the induced metric is,

ρ? < ·, · >R3= Ω̃(s, λ)ds⊗ ds+ r2Ω2(s, λ)dλ⊗ dλ , (19)

with,

Ω̃(s, λ) =

(
1 +

a2∆

(r2 + a2) r2
sin2 λ

)
. (20)

The isometric default can be written as,

δ =
2a2 sin2 λ

r (r2 + a2)
ds⊗ ds , (21)

and the function α : (s, λ) 7→ 2a2 sin2 λ
r(r2+a2)

verifies 0 ≤ α(s, λ) ≤ a2

r2H
≤ 1.

3.1.3. Strictly short primitive embedding along ∂λ
From Eq.(16), to get a primitive embedding along ∂λ we need to verify,(

Ṙ2R2

R2 + a2
+ Ż2

)
+

a2Ṙ2

R2 + a2
sin2 λ = 1 +

a2

r2
sin2 λ , (22)
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which is equivalent to solve the ordinary differential system,{
Ṙ2R2

R2+a2
+ Ż2 = 1

Ṙ2

R2+a2
= 1

r2

. (23)

The second equation immediately yields to,

dR√
R2 + a2

=
dr√
∆
. (24)

Then the integration can be performed,

R +
√
R2 + a2

RH +
√
R2
H + a2

=
r − 1 +

√
∆√

1− a2
, (25)

where RH = R(rH). In order to have R ∼ r when r −→∞, we put,

RH +
√
R2
H + a2 =

√
1− a2 ⇒ RH =

1− 2a2

2
√

1− a2
, (26)

so as to avoid self-intersection, we impose that RH > 0 which is equivalent to a < 1/
√

2.

Then the primitive embedding along ∂λ will not exist for a ≥ 1/
√

2.

We could express directly R in function of r,

R(r) = r − 1− 1

2
[
r − 1 +

√
∆(r)

] , (27)

which is a strictly increasing function verifying R(r) ≤ r for all r. The value of Z will

be easily deduced from the R function,

Z(r) =

ˆ r

rH

√
r2 −R2(r)

∆
dr . (28)

As for the primitive embedding along ∂r, we use the coordinate change from Eq.(6) and

Eq.(7). The strictly short primitive embedding Λ is then,

Λ : U −→ R3

(s, λ) 7→

∣∣∣∣∣∣∣
√
R(r(s))2 + a2 cosλ

R(r(s)) sinλ

Z(r(s))

,
(29)

where R and Z are defined by Eq.(27) and Eq.(28). The induced metric verifies,

µ = Λ? < ·, · >R3 +
(
r2 −R2

)
dλ⊗ dλ . (30)

The inequality r2 − R2 > 0 implies that Λ is strictly short and Eq.(30) also proves the

primitive character of this embedding.
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3.2. Convex integration

3.2.1. Corrugation

For a regular curve γ : I −→ R3, the 1D integration process has to construct

another curve, Γ : I −→ R3, which is longer and remains close to the first curve γ

(C0-close to γ) with an explicit control of speed ||Γ̇(x)||. For a given scalar function

κ : I −→ R+, such that for each x in I, we have a strictly short curve if κ(x) ≥ ||γ̇(x)||
(see chapter 2 in Borrelli et al. [2013]). The convex integration allows us to construct

Γ : I −→ R3 such that for each x in I we have ||Γ̇(x)|| = κ(x). We completely control

the speed magnitude and then the local length of the curve. The control of the speed

magnitude comes from the explicit construction of the curves using what we call the

loop function. The corrugated curve Γ is C0-close to γ and it is due to the C0-Lemma.

To explain the 2D convex integration for isometric embedding, we shall follow

Borrelli et al. [2013]. We consider here the previous strictly short primitive embedding

ρ : U −→ R3. For simplification, we will take f = ρ in the following, but the

demonstration could be easily adapted with f = Λ by swapping the variables. The basic

idea is to construct, from this embedding, a 1-parameter family (Fν)ν∈R?+
of embeddings,

such that ||µ − F ?
ν < ·, · >R3 || = O(1/ν). The limit of this family when ν → +∞ is

f , a non-isometric embedding, but the induced metrics F ?
ν < ·, · > are as close as we

need to the target metric. Furthermore, our new embedding will verify a C0-close to f

condition. We remind that f verifies,

µ = f ? < ·, · >R3 +α(s, λ)ds⊗ ds , (31)

where α(s, λ) = 2a2 sin2 λ
r(r2+a2)

.

To construct the corrugated embedding Fν , we span our set of departure U with

a 1-parameter family of lines φλ. This family must be chosen carefully (see p 20-24 of

Borrelli et al. [2013]). In our case, because our target metric verifies µ(es, eλ) = 0 for

each λ, we could choose φλ : s 7→ (s, λ).

We apply a 1D corrugation method on each curve φλ ”transported” by the primitive

embedding f ◦ φλ. Because 1D corrugation method can only increase the local length,

it is important to work with strictly short primitive embedding. We summarize the

2D-corrugation process in Fig.(1).

Let us introduce the loop function,

h : U × R/Z −→ R3

(s, λ, u) 7→ r(s, λ)u(s, λ, u)
, (32)

with,

u(s, λ, u) = cos (β(s, λ) cos 2πu) t(s, λ) + sin (β(s, λ) cos 2πu)n(s, λ) , (33)

and,

r(s, λ) =
√
µ(es, es) = Ω(s, λ) t(s, λ) =

∂sf

||∂sf ||
n(s, λ) =

∂sf × ∂λf
||∂sf × ∂λf ||

. (34)
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U

f

U

n

∂s = ||∂s||t

∂λ

Ω(s, λ)n

Ω(s, λ)t

h(s, λ, u)

β(s, λ)

∂s

h(s, λ, νs)

Γ

γ

Fν
2

1

3

∂s

Figure 1. Corrugation schematic view. Top-left, a strictly short primitive embedding

is shown. Blue lines represent a ”well-adapted” one-parameter family of curves

(φλ)λ∈]−π/2;π/2[ in the whole domain. This construction implies the existence of

vectorial functions ∂s,∂λ,n defined on U . Top-right, these functions are used to

construct the loop function, which oscillates with the corrugated frequency in the red

part of the circle. Bottom-right, the integration of the loop function for one blue line

gives the corrugated line in red. Bottom-left, the corrugated lines are gathered together

to give the corrugated surface.

The function h is called loop function because it constructs a vector of magnitude

r(s, λ), which oscillates around ∂sf in function of u,ˆ 1

0

h(s, λ, u)du = r(s, λ)J0 (β(s, λ)) t(s, λ) = ∂sf , (35)

where J0 is the one order Bessel function. The last equality is verified if we choose the

amplitude of the angular oscillation as,

β(s, λ) = ±J−1
0

(
||∂sf ||
r(s, λ)

)
= ±J−1

0

(
Ω̃(s, λ)

Ω(s, λ)

)
. (36)

When λ = 0 we have Ω̃
Ω

= 1. Because J−1
0 is not differentiable in 1, we loose C1

regularity on the line λ = 0. Since we have J−1
0 (1 − ε) =

ε→0+
2
√
ε (1 + o(ε)), we obtain

the following result,

J−1
0

(
||∂sf ||
r(s, λ)

)
= J−1

0

√1− 2a2 sin2 λ

r(r2 + a2)Ω2

 ∼
λ→0

J−1
0

(
1− a2 sin2 λ

r(r2 + a2)Ω2

)
∼
λ→0

2
a| sinλ|√
r(r2 + a2)Ω

.
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That confirms the loss of C1 regularity of angular oscillations amplitude β for λ = 0. In

order to get back a C2 regularity (and probably a C∞ one), we choose the sign of β so

that we can remove the absolute value that appears in the previous equations. Then,

β : U −→ R3

(s, λ ≥ 0) 7→ +J−1
0

(
Ω̃(s,λ)
Ω(s,λ)

)
(s, λ ≤ 0) 7→ −J−1

0

(
Ω̃(s,λ)
Ω(s,λ)

) , (37)

which has C2 regularity. The amplitude β of angular oscillations is represented by a

colormap in Fig.(2). This function is λ-odd, and reaches its maximum for (s, λ) =

(0, π/2). We also have β → 0 when s→ +∞.

0 1 2 3 4 5 6 7 8
s

−π/2

−π/3

−π/6

0

π/6

π/3

π/2

λ

0.96

0.72

0.48

0.24

0.00

0.24

0.48

0.72

0.96

β

Figure 2. Colormap of the amplitude of the angular oscillations β for a = 0.99.

Let us introduce the corrugated embedding,

Fν(s, λ) = f(λ, 0) +

ˆ s

0

h(u, λ, νu)du . (38)

This embedding verifies,

∂sFν(s, λ) = h(s, λ, νs) , (39)

and has the expected length,

||∂sFν(s, λ)||2 = F ?
ν < es, es >R3= r(s, λ) = µ(es, es) . (40)

In the following subsection, we will discuss the application of the C0-density Lemma. In

our case, this provides,

Fν(s, λ) =
ν→∞

f(s, λ) +O(1/ν) ,

∂λFν(s, λ) =
ν→∞

∂λf(s, λ) +O(1/ν) ,
(41)
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which implies that Fν verifies both required properties, C0-close to f and as close as we

want to the isometric embedding. Thus we have,

||µ− F ?
ν < ·, · >R3 || =

ν→∞
O(1/ν) . (42)

Before discussing the relations in Eq.(41), we justify why we obtain these properties.

When ν becomes large, the local average of the curve s 7→ h(s, λ, νs) needs to be “close

to” ∂sf (see also Eq.35) which explains why s 7→ Fν(s, λ) is getting closer to s 7→ f(s, λ)

as ν is increasing.

3.2.2. C0-density Lemma extension

In our case, we have two main differences in comparison to the C0-density Lemma

proof presented in Borrelli et al. [2013].

The first one concerns the embedding definition domain U . U is not compact, unlike

R/Z×R/Z. This difference is important because in different parts of C0-density Lemma

proof, the authors use compacity in the majorization process. Nevertheless, if we look

carefully at all the functions introduced in this section, they can be extended smoothly

in λ = π/2, λ = −π/2 and s = 0. Furthermore, we limit our study to a subset of U
by setting an upper limit smax for s coordinate and this limitation will happen in every

numerical computations. So we will replace U by a compact set and we will define it

Usmax = [0, smax]× [−π/2, π/2].

The second one concerns the value of α(λ, s). Indeed, even if α is positive

everywhere in our case, this function reaches 0 for λ = 0. Nevertheless, by examining

carefully the demonstration made in Borrelli et al. [2013], it can be easily extended to

prove Eq.(41) and Eq.(42), if and only if the functions h, ∂sh, ∂λh and ∂2
λ,sh are C0

and have a maximum on Usmax × R/Z.

In Borrelli et al. [2013] these functions are majorized, because the departure set is

compact and the functions and their derivatives are continuous. The regularity issue

that could arise from the definition of β was overcome by the judicious choice of the

sign inversion for λ = 0 in Eq.(37). Thus the functions h, ∂sh, ∂λh and ∂2
λ,sh are

continuous and the C0-density Lemma is valid on every compact subset of U × R/Z.

In order to get a reasonable computational time, we are working on the compact

subset Usmax of poloidal manifold with finite radius s < smax. The convergence of

the corrugation process is obtained thanks to the extension of the C0-density Lemma

(Eq.(41) and Eq.(42)).

The maximisation of h, ∂sh, ∂λh and ∂2
λ,sh on the entire U × R/Z set may be

proved. This proof would come from the extremely smooth behaviour of the primitive

embedding and all the different functions in the vicinity of infinity. We will not further

discuss this point because it is not necessary for our present work.

In our coordinates µ is diagonal and rest metric is proportional to ds ⊗ ds, then

there is no need to determine the family of curves by integration as in Eq.(2.6) of Borrelli

et al. [2013]. In fact, this aspect allows us to use the simple construction presented in

paragraph 2.3.1 of Borrelli et al. [2013].
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3.3. Results

Figure 3. Evolution of the corrugated embedding in respect of the corrugation

frequency. Top-left, ν = 1. Top-right, ν = 3. Bottom-left, ν = 5. Bottom-right,

ν = 8. The colors indicate the value of Gaussian curvature K of the target metric.

The red color is for the larger value of K.

The corrugated embedding Fν is built from the strictly short primitive embedding

ρ. Table (1) gives the main characteristic of the computations for a = 0.99 in order

to present results where the corrugation is the most visible. We choose smax = s(rmax)

with rmax = 5 and we estimate Fν on a Ns × Nλ regular grid. We use Nλ = 21 and

adapted values for Ns.

ν Ns ||µ− F ?
ν < ·, · >R3 ||∞

1 80 < 0, 5

3 241 < 0, 135

5 401 < 0, 081

8 642 < 0, 065

Table 1. Number of grid points Ns and residual ||µ − F ?ν < ·, · >R3 ||∞ versus ν for

the corrugated surface

The computational time increases with frequency because in Eq.(38), the function

in the integral is oscillating. In order to obtain the embedding, the number of points in
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s must increase with the frequency (we choose Ns = b10 νsmaxc). As expected we get a

decrease in 1/ν of the isometric default

We draw in Fig.(3) the corrugated embedding for different frequencies. One should

notice that the odd property of λ 7→ β(s, λ) implies a phase opposition between the

northern and the southern part of the corrugated embedding. If we note S the symmetry

with respect to the plane Ox,z, corresponding to λ ↔ −λ on the primitive embedding,

then the phase opposition of the corrugation is visible on the vector ∂sFν ,

∂sFν(s,−λ) = h(s,−λ, νs) = Sh(s, λ, νs+ 1) .

We observe the effect of C0-density Lemma : the corrugated surface is getting

closer to the primitive embedding Eq.(41). Nevertheless the high frequency and the

small amplitude of the oscillations make this embedding difficult to use for physicists

who aim to get ”smooth” isometric representations.
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Figure 4. Evolution of Gaussian curvature Kν of corrugated embedding with the

corrugation frequency. Top-left, ν = 1. Top-right, ν = 3. Bottom-left, ν = 5. Bottom-

right, ν = 8.

The Fig.(4) shows the evolution of the Gaussian curvature of the corrugated surface

for a = 0.99 and for different frequencies ν. The Gaussian curvature of the corrugated

embedding Kν does not converge to the one of the poloidal submanifold K, and takes

higher values as we increase the frequency (||Kν ||∞ ∝ ν). This is one of the most

important properties about corrugation process. Indeed, even if we have the results

Eq.(41) and Eq.(42), this does not imply the convergence of the Gaussian curvature Kν

to the one of the target metric K.
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In general relativity, the Gaussian curvature needs to be well defined, which is

problematic with the use of corrugation embedding. Mathematicians use this method

to construct a Cα isometric embedding with α ∈] 1, 2 [, i.e. this embedding (for the flat

torus see Borrelli et al. [2013]) has a tangent plane at any point but not necessarily a

second fundamental form and, a fortiori, a Gauss curvature.

Using corrugation, we can obtain an embedding defined on the whole U as close

as we want to the isometric one. Another possibility is to apply corrugation from Λ

Eq.(29) but we decided to use an alternative method with greater regularity. This is

the object of the next section.

4. Gauss-Coddazzi-Mainardi system and frame equations

To bypass the corrugation process from primitive embedding, an alternative is to solve

both Gauss-Coddazzi-Mainardi (GCM) and frame equations. Indeed, the local existence

of an C3-isometric embedding is ensured by the existence of a local solution of GCM

equations (Han and Hong [2006]), as well as the frame equations (see Palais [2003] and

Spivak [1975]). In the following, we will present a numerical resolution of GCM equations

which can be transformed in a quasi-linear partial derivative system. We subsequently

solve the frame equations (Frobenius partial derivative type). Boundary conditions for

the resolution of the GCM equations are deduced from symmetric considerations. The

latter are also used to deduce the initial conditions of the frame equations.

4.1. Frame application, first and second fundamental forms

Let us consider a C3 isometric embbeding f : U −→ Σ ⊂ R3. The frame equations

determine the variations of ∂sf and ∂λf in function of first and second fundamental

forms. We shall introduce the frame application,

R : U −→ M3 (R)

(s, λ) 7→ (∂sf,∂λf,n) ,
(43)

where n is the usual Gauss application,

n : U −→ R3

(s, λ) 7→ ∂sf × ∂λf
||∂sf × ∂λf ||

.
(44)

We also introduce the usual functions for the first fundamental form,
E(s, λ) = < ∂sf,∂sf >

F (s, λ) = < ∂sf,∂λf >

G(s, λ) = < ∂λf,∂λf >

, (45)

and G the Gram matrix associated to R,

G(s, λ) =t R(s, λ)R(s, λ) =

E(s, λ) F (s, λ) 0

F (s, λ) G(s, λ) 0

0 0 1

 . (46)
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The second fundamental form h is written as,

h = L(s, λ)ds⊗ ds+M(s, λ) [ds⊗ dλ+ dλ⊗ ds] +N(s, λ)dλ⊗ dλ(47)

with 
L(s, λ) =< n,∂2

ssf > = − < ∂sn,∂sf >

M(s, λ) =< n,∂2
sλf > = − < ∂λn,∂sf >= − < ∂sn,∂λf >

N(s, λ) =< n,∂2
λλf > = − < ∂λn,∂λf >

. (48)

4.2. General frame and GCM equations

For each p ∈ U , detR = ||∂sf × ∂λf || 6= 0 and (∂sf,∂λf,n) is a base of R3. Every

vector can be decomposed with the help of frame application and usual calculations

gives, {
∂sR = RKs = RG−1F s

∂λR = RKλ = RG−1Fλ

, (49)

with,

Ks =

Γsss Γssλ ass
Γλss Γλsλ aλs
L M 0

 , Kλ =

Γssλ Γsλλ asλ
Γλsλ Γλλλ aλλ
M N 0

 , (50)

where we used the notation ∂in = aji∂j and the Christoffel symbols Γkij. The

computation of the aji coefficients requires the use of the inverse matrix G−1. The

matrices F s and Fλ are written from the Christoffel symbols and the second

fundamental form as,

F s =

 1
2
∂sE

1
2
∂λE −L

∂sF − 1
2
∂λE

1
2
∂sG −M

L M 0

 , Fλ =

 1
2
∂λE ∂λF − 1

2
∂sG −M

1
2
∂sG

1
2
∂λG −N

M N 0

 . (51)

The system of equations Eqs.(49) is know as frame equations. We suppose here that f is

C3, then R is C2, and the Schwarz’s theorem conditions hold and lead straightforwardly

to,

∂sKλ − ∂λKs + [Ks;Kλ] = 0 . (52)

For the first line and the second column in Eq.(52) we get the Theorema Egregium that

is an expression of the Gaussian curvature in function of the first fundamental form

coefficients and their derivatives. For the last line and the last column we obtain two

equations usually called Mainardi-Coddazzi equations,
LN −M2 = K̃ =̂ K (EG− F 2) Gauss

∂λL− ∂sM = ΓssλL+
(
Γλsλ − Γsss

)
M − ΓλssN Coddazzi−Mainardi− 1

∂λM − ∂sN = ΓsλλL+
(
Γλλλ − Γsλs

)
M − ΓλλsN Coddazzi−Mainardi− 2

. (53)

We refer to the system (53) as the GCM system.
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In the context of Kerr poloidal manifold described by (s, λ) coordinates, frame

equations matrices are,

Ks(s, λ) =

− a2
√

∆ sin2 λ
r2(r2+a2 sin2 λ)

a2 cosλ sinλ
r2+a2 sin2 λ

− Lr2

r2+a2 sin2 λ

− a2 cosλ sinλ
r2(r2+a2 sin2 λ)

√
∆

r2+a2 sin2 λ
− M
r2+a2 sin2 λ

L M 0

 , (54)

Kλ(s, λ) =

 a2 cosλ sinλ
r2+a2 sin2 λ

− r2
√

∆
r2+a2 sin2 λ

− r2M
r2+a2 sin2 λ√

∆
r2+a2 sin2 λ

a2 cosλ sinλ
r2+a2 sin2 λ

− N
r2+a2 sin2 λ

M N 0

 . (55)

We remark that ifM(s, λ = 0) = 0 we have (∂s(s, 0),n(s, 0)) ∈ R∂s(0, 0)⊕ Rn(0, 0).

Indeed for λ = 0 we get,
∂s∂s = Ln

∂sn = −L∂s
∂s∂λ =

√
∆
r2
∂λ

⇒

{
∂s(s, 0) = cosψ(s)∂s(0, 0) + sinψ(s)n(0, 0)

n(s, 0) = − sinψ(s)∂s(0, 0) + cosψ(s)n(0, 0)
, (56)

with,

ψ(s) =

ˆ s

0

L(s, λ = 0)ds . (57)

This proves that ∂s(s, 0),n(s, 0) ∈ R∂s(0, 0)⊕ Rn(0, 0), meaning that the s 7→ f(s, 0)

curve is contained in the f(0, 0) + R∂s(0, 0)⊕ Rn(0, 0) plane.

To solve the frame equations we need the second fundamental form. This could be

achieved by a numerical integration of the GCM equations.

4.3. Quasi-linear form of GCM equations

Under some assumptions (see Appendix B), Gauss-Codazzi-Mainardi equations Eq.(52)

could be written as,

∂λU +A (s, λ,U) ∂sU = S (s, λ,U) , (58)

where U is linked to the second fundamental form with,

L(s, λ) = K̃(s,λ)+u2(s,λ)√
2r(s)v(s,λ)

, M(s, λ) = u(s, λ), N(s, λ) =
√

2r(s)v(s, λ) . (59)

The matrix A (s, λ,U) ∈ M2 (R) and the source term S (s, λ,U) is a column of R2.

Their explicit expressions are given in the Appendix C (Eq.(B.9) and Eq.(B.10)). The

Eq.(58) is a quasi-linear partial derivative system of equations, which is adapted to be

numerically solved.

4.4. Boundary conditions for GCM system

We are seeking for a C3 isometric embedding (s, λ) 7→ f ∈ R3 which respects a particular

symmetry. Indeed, the transformation λ↔ −λ corresponds to an orthogonal symmetry
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with respect to a plane. The coordinate system of R3 will be fixed so that the symmetry

plane is 0xz. Then the matrix of this symmetry is,

S =

 1 0 0

0 −1 0

0 0 1

 . (60)

Let us introduce the components of f ,

f : V −→ R3

(s, λ) 7→

 X(s, λ)

Y (s, λ)

Z(s, λ)

 .
(61)

Then we have,

f(s,−λ) = Sf(s, λ) , (62)

which implies that X and Z are λ-even function and Y is λ-odd function. Eqs.(48)

and Gauss application definition imply that M is λ-odd and L and N are λ-even.

Consequently it implies,
M(s, λ = 0) = 0

∂λL(s, λ = 0) = 0

∂λN(s, λ = 0) = 0

. (63)

Nevertheless, the second and third equations of the previous system derive immediately

from the first equation combined with the GCM Eqs.(53) where the Christoffel symbols

and curvatures are given by Eq.(10,11,A.1). Therefore it is necessary to add a second

boundary condition that determines the value of L or N on the line λ = 0 in order to

use Cauchy-Kowalevsky’s theorem or a numerical integration.

For geometrical reasons, the second boundary condition is ∂λM(λ = 0) = 0.

Combined with the last equation of Eqs.(53), it implies that,

∂

∂r

(
N2 − 2r

r2

)∣∣∣∣
λ=0

= 0 =⇒


N(s, λ = 0) = ±

(
−
√

2r(s) + Ar2(s)
)

L(s, λ = 0) = ± 1√
2r3(s) + Ar4(s)

, (64)

where A is an arbitrary constant. In the previous equation, the choice of the sign ±
fixes the ”global orientation” of the surface. To clarify, the GCM equations Eqs.(53)

are such that if L,M,N are solutions, then −L,−M,−N are also solutions. Note

that L±,A,M±,A, N±,A are the solutions corresponding to these initial conditions. Thus

Cauchy-Kowalvsky’s theorem and the preceding property easily implies that,

L±,A = ±L+,A, M±,A = ±M+,A, N±,A = ±N+,A . (65)

Furthermore, if we note Sz = diag(1, 1,−1) and R+ a solution of frame equations

Eq.(49) for the values L+,A,M+,A, N+,A, SzR+Sz is a frame equations solution for

L−,A,M−,A, N−,A. Respectively, if R− is a solution of frame equations Eq.(49) for the

values L−,A,M−,A, N−,A, SzR−Sz is a frame equations solution for L+,A,M+,A, N+,A.
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Then, Frobenius theorem ensures the uniqueness of the solution and the corresponding

surface f+ and f− are deduced from each other by a translation plus a Sz symmetry.

To choose the sign ± and A, we evaluate the second fundamental form from the

immersion given by Eq.(18). This immersion is the primitive embedding used for

corrugation process. On the line (λ = 0), we get,

L(s, λ = 0) = − 1√
2r3

(r2(s)− a2)

(r2(s) + a2)
, (66)

which requires A = 0. And the ± sign becomes minus, in order to obtain, for a large

radius, a similar behaviour of the primitive embedding given in Eq.(18). Then the initial

conditions become,
M(s, λ = 0) = 0

N(s, λ = 0) = +
√

2r(s)

L(s, λ = 0) = − 1√
2r3(s)

. (67)

The boundary conditions explain also why we chose the form gives in Eqs.(59).

4.5. Pseudo-boundary conditions for frame equations

The boundary conditions and the symmetry of the problem lead to solve analytically

frame equations for λ = 0. Indeed, for λ = 0, the symmetry λ ↔ −λ implies that

the curve s 7→ f(s, 0) is contained in the 0xz plane. This implies that for λ = 0, ∂s
belongs to this plane and ∂λ is orthogonal to this plane too. Since ∂s is an unitary

vector (λ = 0), there is a function s 7→ ψ(s) such that,{
∂λ(s, λ = 0) = r(s)ey

∂s(s, λ = 0) = u(ψ(s))
, (68)

where u : ψ 7→ cos(ψ)ez + sin(ψ)ex is a rotating vector function of the 0xz plane. We

call these equations, pseudo boundary conditions for the frame equations. The term

“pseudo” is used because the frame equations are Frobenius-like. Then they just need

initial conditions (at s = λ = 0) to determine the solution. The frame equations became

for λ = 0,

d∂s
ds

= −L(s, 0)ey × ∂s ⇒ dψ

ds
= −L(s, 0) , (69)

and by integrating from 0 to s,

ψ(s) = ψ0 −
ˆ s

0

L(s̃, 0)ds̃ . (70)

We set ψ0 such that ψ →
s→+∞

π/2 (see right side of Fig.(5)) and this leads to,

ψ(s) =
π

2
+

ˆ ∞
s

L(s̃, 0)ds̃ , (71)
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which gives for the choice of L(s, 0) (see Eq.(67)),

ψ(s) =
π

2
−

√
2

r+

F

(√
r+

r(s)
;

√
r−
r+

)
, (72)

where x, k 7→ F (x; k) is the usual elliptic integral of the first kind. This implies, using

arithmetic-geometric mean, that ψ(0) ≤ 0 with ψ(0) = 0 for a = 0. We also get

ψ(0)→ −∞ when a→ 1. The trend of ψ(0) in function of a is plotted on the left side

of Fig.(5). This leads to calculate the pseudo boundary conditions for the surface,

f(s, 0) =

ˆ s

0

u(ψ(s))ds . (73)
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Figure 5. On the left, the evolution of ψ along the equatorial curve in s = 0 with Oz
as a function of a: a 7→ ψ(0). On the right, the evolution of the angle s 7→ ψ(s) along

the equatorial curve with Oz for different values of a.

The Eq.(71) insures that ex is the asymptotic direction of s 7→ f(s, 0) when s

reaches infinity (see right side of Fig.5).

4.6. Numerical resolution

Since an analytical solution is difficult to provide, we decided to solve GCM and frame

equations with numerical methods. On each step, the numerical errors is estimate to

reach the convergence. The dedicated developed program called Isopol‡ is provided,

with documentation, as an open source license.

4.6.1. GCM equations resolution

Firstly, the program solves the Eqs.(58) with the source term and the matrix

explicitly given in Eq.(B.9) and Eq.(B.10). The integration along λ is numerically

done using a second order finite difference method. We use a regular grid of ns
points for s ∈ [0, smax] and nλ points for λ ∈ [0, π/2]. The value of nλ is evaluated

from a reference parameter (∆λ/∆s)ref . We ensure that nλ is an integer by setting

nλ =

⌊
π

2

(
∆λ

∆s

)
ref

smax

ns

⌋
.

‡ https://perso.imcce.fr/frederic-dauvergne/isopol/index.html

https://perso.imcce.fr/frederic-dauvergne/isopol/index.html
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For a >
√

3/2, we restrict to a sub-domain of the negative gaussian curvature

region, defined by Ua,fsmax
=
{

(s, λ) ∈ Usmax | r2(s)− 3fa2 sin2 λ > 0
}

with f = 1.27.

Then to evaluate the error order, we numerically estimate the left side of the

equation Eq.(52). We call K̃ns,nλ
s , K̃ns,nλ

λ the values of the matrices Ks,Kλ obtained

with the linear interpolation of GCM system numerically integrated. Thus, we evaluate,

∂sK̃
ns,nλ
λ − ∂λK̃

ns,nλ
s +

[
K̃ns,nλ
s ; K̃ns,nλ

λ

]
= εns,nλ(s, λ) . (74)

The error δR on the Rns,nλ matrix, provided by the GCM integration is written as,

δR =

ˆ
γ1

ω −
ˆ
γ2

ω =

˛
γ1∪−γ2

ω , (75)

with ω = R
(
K̃ns,nλ
λ dλ+ K̃ns,nλ

s ds
)

, γ1 the path from (0, 0) to (s, λ) passing

through (s, 0) and γ2 the path from (0, 0) to (s, λ) passing trough (0, λ).

Using the Stockes theorem,˛
γ1∪−γ2

ω =

¨
[0,s]×[0,λ]

R(s̃, λ̃)εns,nλ(s̃, λ̃)ds̃dλ̃ , (76)

the error can be majorized by,

||δR|| ≤ πsmax

2
||εns,nλ||∞

√
r2

max + a2 . (77)

4.6.2. Frame equations resolution

Once solved the GCM system Eq.(53), we used the pseudo boundary conditions to

get the frame R and the surface f .

Then the Frobenius-type equations are transformed into an ordinary differential

equation by setting the value of s. Indeed, the frame equations could be written in this

form,

d

dλ

∣∣∣∣∣∣∣
f

∂s
∂λ

=

∣∣∣∣∣∣∣
∂λ

Γssλ∂s + Γλsλ∂λ +M ∂s×∂λ
||∂s×∂λ||

Γsλλ∂s + Γλλλ∂λ +N ∂s×∂λ
||∂s×∂λ||

. (78)

For each abscissa s, on the grid, the integration will be done along the λ direction. The

resolution of the differential equations is solved by a 4th order Runge-Kutta with initial

conditions deduced from the pseudo-boundary conditions,

∀s ≥ 0,


f(s, 0) =

ˆ s

0

u(ψ(s))ds

∂s(s, λ = 0) = u(ψ(s))

∂λ(s, λ = 0) = r(s)ey

. (79)

Once this integration is done, the isometric default of the induced metric could be

estimated by a discrete derivative on f in order to get the value of (∂s,∂λ), and then

we get induce metrics and the corresponding isometric default.
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5. Isometric embedding from GCM and frame equations

5.1. Global analysis and numerical errors

The main input parameters are,

• the ns number,

• rmax value (associated with a value of smax),

• the spin of the black hole a,

• a reference value (∆λ/∆s)ref for the ratio between ∆λ and ∆s in the grid.

In the solution, we choose ns = 3000, smax = 20 and (∆λ/∆s)ref = 0.01. This choice is

a good compromise between numerical stability and computational time.

a smax nλ ||εns,nλ ||∞ ||µ− f ? < ·, · >R3 ||
0.00 22.6 20 841 < 10−5 < 7, 4× 10−4

0.50 22.8 20 703 < 10−5 < 6.8× 10−4

0.86 23.3 20 021 < 10−5 < 7.65× 10−4

0.99 24.6 19 159 < 1.72× 10−3 < 8.16× 10−4

0.999 25.7 18 304 < 2.45× 10−3 < 8.16× 10−4

0.9999 26.9 17 520 < 5.50× 10−3 < 8.16× 10−4

0.99999 28.0 16 801 < 4.06× 10−4 < 8.16× 10−4

Table 2. Characteristics of the solutions, all of them are calculated with ns = 3000

and (∆λ/∆s)ref = 0.01.

The main characteristic of the solutions are shown in Tab.2. The error ||εns,nλ||∞
on GCM evolves with the spin. In particular above alim, the error increases but remains

lower than 5.50×10−3. The right part of the equations Eq.(58) concerns the propagation

(with velocities and directions related to the eigenvector and eigenvalues of the A

matrix), and the left part has a source term. The introduction of the sub-domain

Ua,fsmax
induces a stair edge slicing and then the boundary condition computation leads to

the propagate errors as shown on Fig.(6). Nevertheless, except for a few ”small” areas

of the domain, the error remains small in most of the domain. Errors appear when λ

reaches the edge of the domain, and these errors propagate along s direction.

The reduced area of errors on the GCM equations explains why this jump on

||εns,nλ||∞ does not impact much the isometric default ||µ − f ? < ·, · >R3 ||, which

always remains below 10−3. The most important contribution to the isometric default

comes from the term f ? < es, es >R3=< ∂s,∂s >.

5.2. Second form analysis

As expected in sub-section 2, the value alim =
√

3/2 is a limiting value. In Eqs.(58,

B.9 and B.10) singularities can appear for K + u2 = 0 or v = 0, equivalent to L = 0
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Figure 6. Colormap of ||εns,nλ || for a = 0.99 (right) and a = 0.999 (left).

2 4 6 8
s

0

/6

/3

/2

0.27

0.24

0.21

0.18

0.15

0.12

0.09

0.06

0.03

L

2 4 6 8 10
s

0

/6

/3

/2

0.384

0.344

0.304

0.264

0.224

0.184

0.144

0.104

0.064

0.024

L

2 4 6 8
s

0

/6

/3

/2

0.0375

0.0250

0.0125

0.0000

0.0125

0.0250

0.0375

0.0500

0.0625

0.0750

M

2 4 6 8 10
s

0

/6

/3

/2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M

2 4 6 8
s

0

/6

/3

/2

1.60

1.85

2.10

2.35

2.60

2.85

3.10

3.35

3.60

3.85

N

2 4 6 8 10
s

0

/6

/3

/2

0.00

0.48

0.96

1.44

1.92

2.40

2.88

3.36

3.84

N

Figure 7. Colormap of L (left), M (medium) and N (right) functions of second

fondamental form Eq.(47,48) for the value of black hole spin a = 0.5 (up) and 0.86

(down).

or N = 0. We present in Fig.(7) the color map of the functions L,M and N for two

values of black hole spin. The quantity M(0, λ) remains close to 0, especially when a is

close just bellow alim. Gauss equation could be written L(0, λ)N(0, λ) ≈ K̃(0, λ). For

a ≥ alim, K̃(0, λ) reaches zero for λ0 ∈ [0, π/2], then L(0, λ) or N(0, λ) would reach zero

for some λ value near λ0.

The numerical integration of GCM equations systematically diverges to infinity

near the region where the Gaussian curvature gets null. It explains why we need to slice

our domain to avoid infinite values.

For a = alim, the surface point corresponding to s = 0 and λ = π/2 is a quasi-

planar point. For a = 0.86, which is the last two-digit precision computed value where

we could get the solution without slicing our domain, the values L(0, π/2), N(0, π/2)

and M(0, π/2) are close to 0. We can confirm the property of the point at s = 0 and
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Figure 8. Evolution of a 7→ P (0, π/2) for a ≤ 0.86 ≤ alim.

λ = π/2 by considering the function,

P : (s, λ) 7→
√
H2(s, λ)− 2K(s, λ) ,

where H is the usual mean curvature. On a planar point, the function P is equal to

0. On the Fig.(8), the function a 7→ P (0, π/2) decreases strongly when a → alim. We

could expect that it reaches zero for a = alim. Even if P does not reach 0 for a = alim,

its value remains small and the surface point (0, π/2) quasi-planar.

5.3. Isometric embedding analysis for black hole spin below alim

In Fig.(9), for a = 0.86 the point (s = 0, λ = π/2) is a quasi-planar point.
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Figure 9. From the left to the right, the isometric embedding in the 3D Euclidean

space for a = 0, 0.5 and 0.86. In green the equatorial axis (λ = 0), in black the polar

axis (λ = ±π/2), in red the ergosphere and in blue the horizon.

To understand how the isometric embedding evolves with respect to a ∈ [0;
√

3/2]

(cf Fig.(9)), we consider the evolution of polar axis, horizon and equatorial line lengths

for s ∈ [0, smax] (see Fig.(10)). The equatorial line length is constant and equal to smax.

The length of the line λ 7→ f(λ, s = smax) is nearly constant with a for smax sufficiently
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Figure 10. On the left, evolution of the polar axis length for s ∈ [0, smax] and on the

right, evolution of the horizon length in function of a ∈ [0,
√

3/2].

large. The length of the polar axis increases while the length of the horizon decreases

in the respect of a. It is coherent with the surface twist when a increases as seen in

Fig.(9).

5.4. Torsion analysis

In Fig.(11), we compare the torsion of the polar axis and horizon lines for different

values of a. The horizon torsion gets its maximum value τH,max(a) around λ ≈ ±π/2.

Moreover, τH,max(0.86) is lower than τH,max(0.5). It implies that for a = 0.86 the horizon

gets closer to a planar curve than the horizon for a = 0.5. Polar axis torsion reaches its

maximum value around s ≈ 2 that increases with a. For a = 0.86, the horizon torsion

is one order of magnitude lower than the one of the polar axis. For a = 0.86 and s

approximately between the values 1 and 4, the polar axis is strongly non-planar curve.
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Figure 11. On the left, evolution of torsion for the horizon line (black line in Fig.9)

in function of s. On the right, evolution of torsion for polar axis (blue line in Fig.9) in

function of λ.
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5.5. Isometric embedding for black hole spin greater than alim
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Figure 12. Evolution of isometric embedding in the sub domain Ua,fsmax
for a = 0.99

(top-left), a = 0.999 (top-right), a = 0.9999 (bottom-left), a = 0.99999 (bottom-right).

In order to obtain the isometric embedding, we have worked on the sub-domain

Ua,fsmax
=
{

(s, λ) ∈ Usmax | r2(s)− 3fa2 sin2 λ > 0
}

. For f = 1.27 we are able to obtain

the solutions for a ∈ [0.86, 0.99999].

On Fig.(12), we can observe the coiling of the ergoregion as a increases toward 1.

This coiling is visible only for values of a extremely close to 1.

The coiling of the equatorial axis on the left of Fig.(13) is entirely determined

by the choice of the initial conditions in Eq.(67). This coiling gets a nearly constant

principal curvature along s on the equatorial line when s is close to 0. When a→ 1−, the

equatorial line is coiling around a circle of radius
√

2. We already noticed (see Fig.(5)),

that the angle ψ(0)→−∞, when a→ 1−, and it explains this coiling.

Since the length of the equatorial axis remains the same for s ∈ [0; smax], the whole

surface is “sliding” by the coiling. The size of the ergoregion increases accordingly to

this sliding. On the equatorial line, the length of the line included in the ergoregion is

increasing with a (see Fig. 13).
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Figure 13. On the left, the evolution of equatorial axis of isometric embeddings

for different values of a in 0XZ plane. The dots correspond to the location of the

ergosphere. On the right, the evolution of ergoregion volume (in r3g units) measured

by ZAMO frame.

The significant increase of this length - see Fig.(13) - or the corresponding area in

the ergoregion - see Fig.(12) - are in good agreement with the evolution of the ergoregion

volume measured by the ZAMO observers,

VE(a) = 2π

ˆ π

0

sin θdθ

ˆ rE(θ)

rH

√
r(r2 + a2)Ω2 + 2a2r sin θ

r∆
r2dr . (80)

We plot in the right part of Fig.(13) the evolution of ergoregion volume measured

by ZAMO observers in function of black hole spin. This volume is increasing with a,

and it diverges for a = 1.

6. Conclusion

We exploited two different methods in order to obtain an approximate isometric

embeddings of Kerr poloidal submanifold in the ordinary 3-dimensional Euclidean space.

On one hand, the strictly short primitive embedding corrugation has the advantage

of giving the explicit formula of the embeddings. The corrugated embeddings are

furthermore defined over the entire starting domain U . Nevertheless, the numerical

computation of the explicit formula can be excessively long when the corrugation

frequency increases. Moreover, these embeddings are difficult to exploit. The gaussian

curvature of poloidal submanifold cannot be retrieved. These embeddings could not help

for visualization because the fast oscillations of the tangent plane make the perspective

difficult to exploit.

On the other hand, the integration of GCM and frame equations gives good results

for metric calculation particularly in the case of a ≤ alim =
√

3/2. Beyond this limiting

value alim, from computational reasons, we had to shrink down the initial set but we
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succeed to get the embedding near the equatorial axis for spin a < 0.99999. It is very

likely that the C3 isometric embedding of Kerr poloidal submanifold in the 3-dimensional

Euclidean ordinary space (like for Kerr black hole horizon Smarr [1973]) could not exist

in a global way beyond the limiting value alim. Besides, we showed that the ergoregion

volume increase in function of a is mainly due to the length increase of the equatorial

axis inside ergosphere and the ergoregion surface on the embedding.

The main difference between the GCM and the corrugation methods concerns the

regularity of the obtained isometric embedding. The corrugation approach corresponds

to the deformation of a primitive embedding. It implies the non existence of the second

fundamental form of the limit embedding. In one hand, GCM equation system becomes

a mixed type one, elliptic-hyperbolic, for a > alim because the curvature changes its sign.

One the other hand, the corrugation process is independent of the Gaussian curvature

of the target metric.

To be applied to any smooth 2-dimensional manifold, GCM method requires, to

start the integration, to set the initial conditions on a line by the value of the second

fundamental form. It could be also adapted to find a quasi-isometric embedding of

pseudo-Riemannian 2-dimensional manifold in 2+1 Minkowskian spaces. It will allow,

for example, to embed isometrically into the Minkowskian M1,2 space and thus to

visualize the region of the poloidal manifold connecting the inner horizon and the outer

one r ∈]1−
√

1− a2; 1 +
√

1− a2[.

Finally, a possible option for getting a global embedding of the poloidal submanifold

is, as in Gibbons et al. [2009] for the horizon, to consider an isometric embedding in

3-dimensional hyperbolic space. This method could probably be applied to represent

different submanifolds of space-time (especially those prescribed in numerical relativity),

on condition of being able to obtain boundary conditions.
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Appendix A. Curvature

We introduce the reduced Gaussian curvature,

K̃(s, λ)=̂K(s, λ)Ω4(s, λ) = − r2(s)− 3a2 sin2 λ

r(s)(r2(s) + a2 sin2 λ)
, (A.1)

and its derivative that appears in Eq.(B.10),

∂λK̃(s, λ) =
8a2r2 cosλ sinλ

r
(
r2 + a2 sin2 λ

)2 . (A.2)
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Appendix B. Compact form of GCM

The ordinary way to solve Eqs.52 is to introduce a change for the functions L,M,N ↔
u, v which solves the Gauss equation,

L(s, λ) = fL(s, λ, u(s, λ), v(s, λ))

M(s, λ) = fM(s, λ, u(s, λ), v(s, λ))

N(s, λ) = fN(s, λ, u(s, λ), v(s, λ))

, (B.1)

with,

∀u, v fL(s, λ, u, v)fN(s, λ, u, v)− f 2
M(s, λ, u, v) = K̃(s, λ), (B.2)

where K̃ is defined in Eq.(A.1).

Finally we obtain a semi-linear partial derivative form and the system can be written

as:

Aλ (s, λ,U) ∂λU +As (s, λ,U) ∂sU = S0 (s, λ,U) , (B.3)

with,

U =

(
u

v

)
, S0 (s, λ,U ) =

(
∂sfM − ∂λfL + ΓssλL+

(
Γλsλ − Γsss

)
M − ΓλssN

∂sfN − ∂λfM + ΓsλλL+
(
Γλλλ − Γsλs

)
M − ΓλλsN

)
, (B.4)

and

Aλ (s, λ,U) =

(
∂ufL ∂vfL
∂ufM ∂vfM

)
, As (s, λ,U) = −

(
∂ufM ∂vfM
∂ufN ∂vfN

)
. (B.5)

In most of the cases, the matrix Aλ could be inverted, and the system takes the form,

∂λU +A (s, λ,U) ∂sU = S (s, λ,U) , (B.6)

with the matrix A (s, λ,U) and the source term S (s, λ,U) given by,

A (s, λ,U) = A−1
λ (s, λ,U )As (s, λ,U ) (B.7)

S (s, λ,U ) = A−1
λ (s, λ,U)S0 (s, λ,U) (B.8)

We choose the Eq.(59) to make explicit the Eq.(B.1) in our specific case. The condition

given in Eq.(B.2) for the Eq.(59) is verified. The matrix and source term are given by,

A (s, λ,U) =

(
0 −

√
2r√

2rv2

K̃+u2
−2
√

2ruv
K̃+u2

)
, (B.9)

and,

S =

(
Su

Sv

)
, (B.10)

with,

Su = v

√
∆

2r3
+ Γsλλ

(
K̃ + u2

√
2rv

)
+
(
Γλλλ − Γsλs

)
u−
√

2rΓλλsv

Sv =
v

K̃ + u2

[
uv

√
2

∆

r3
+ ∂λK̃ + 2rΓλssv

2 + 2u2
(
Γλλλ − Γssλ

)
+ 2Γsλλ

(
K̃ + u2

√
2rv

)
u+
√

2ruv
(
Γsss − 3Γλλs

)
− Γssλ

(
K̃ + u2

)]
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