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Abstract 

A comprehensive analysis of the MOSFET subthreshold swing for a 2D subband with 

exponential band tail of states is first proposed. Then, a compact analytical expression for the 

subthreshold swing as a function of temperature is derived, well accounting for both its cryogenic 

temperature saturation and classical higher temperature increase. Moreover, a generalized 

subthreshold swing calculation applicable to the situation where the MOSFET drain current should 

be evaluated from the conductivity function within the Kubo-Greenwood formalism is developed. 
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1. Introduction 

Cryogenic CMOS electronics is still an active research area as enabling circuit performance 

improvements in terms of operation speed, turn-on behaviour, thermal noise reduction, punch-

through current decrease… [1-5]. Cryoelectronics finds application in high speed classical 

computing, sensing and detection, space electronics and more recently on readout CMOS for 

quantum computing [6,7]. In this context, the subthreshold swing, SS=dVg/dLn(Id), Vg being the 

gate voltage, is a key parameter measuring the turn-on capability of the MOSFET. Recently, it has 

been shown that the saturation of the subthreshold swing at cryogenic temperatures could originate 

from an exponential tail of states at the 2D subband edge [8,9].  

In this work, we first propose a comprehensive analysis of the MOSFET subthreshold swing for 

a single 2D subband with exponential band tail of states, and, we derive a compact analytical 

expression for the subthreshold swing as a function of temperature, well accounting for both its 

cryogenic temperature saturation and classical higher temperature increase. Moreover, we 

generalize the subthreshold swing derivation to the more realistic case where the drain current is 

calculated from the conductivity function (and not simply from the carrier DOS) within the Kubo-

Greenwood formalism.  

 

2. Modelling of MOSFET Subthreshold swing  

2.1. Carrier density approach 

First, following [8,9], we assume that the drain current Id is proportional to the inversion layer 

carrier density n and that the carrier mobility is a constant, such that SSdVg/dLn(Id)=dVg/dLn(n).  

As is usual, the 2D carrier density n is calculated using the Fermi-Dirac statistics as: 
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where f(E,Ef)=1/[1+e
(E-Ef)/kT

) is the Fermi-Dirac function, Ef the Fermi level, T the temperature and 

k the Boltzmann constant. For a 2D subband, the energy density of states (DOS) N(E,E) with 

exponential band tail  (see Fig. 1) can be equated to: 
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with E the band tail extension, A2D=g.md*/(.hb) the 2D density of states with g the subband 

degeneracy factor, md* the DOS effective mass and hb reduced the Planck’s constant. Note that, 

contrary to [9, Eq. 1], Eqs (1-2) well account also for the states situated above the band edge (here 

Ec=0). Note also that this exponential band tail finds its origin in potential-fluctuation-induced 

disorder with transport taking place by percolation [10]. 
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Fig. 1. 2D subband density of states with exponential tail (E=0 corresponds to band edge Ec, 

E=3meV). 

 

In weak inversion (WI), where the subthreshold swing is evaluated, the carrier density can be 

neglected in the MOS gate charge conservation equation, such that, 
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where Qd is the depletion charge, Vs the surface potential, Vfb the flat band voltage, V0 channel 

Fermi potential, Cox the gate oxide capacitance and Cit=q.Nit the interface trap capacitance. Since, 

the Fermi level Ef varies linearly with Vs, the subthreshold swing can be derived as, 
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Using Eqs (1) and (3) yields for the subthreshold swing the general expression, 
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where Cd=dQd/dVs is the depletion capacitance (or without loss of generality the coupling 

capacitance between the inversion channel and the body contact for FDSOI structure i.e. 

Cd=Csi.Cbox/(Cbox+Csi), Csi being the silicon film capacitance and Cbox the back oxide capacitance). 

Then, it is easy to show from Eq. (5) that, in weak inversion where n<<kT.A2D  (10
10

/cm
2
 at 

T=4.2K, here n=10
7
/cm

2
), the subthreshold swing reduces respectively to, 
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for degenerate statistics when T<<TS (with kTS=E) and to, 
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for Boltzmann’s statistics when T>>TS. 

Typical variations of SS with temperature are illustrated in Fig. 2, showing the saturation at low 

temperature (T<TS) and the Boltzmann linear trend at high temperature (T>TS). This behavior 

simply means that, at high temperature (T>TS), the band tail has a negligible influence on the whole 

DOS, whereas, at low temperature (T<TS), the band tail dominates the DOS in the carrier density 

calculation with degenerate statistics. 

As can be seen from Fig. 2 and as suggested from Eqs (6), these variations with temperature of 

the subthreshold swing can be very well fitted by the empirical closed-form expression given by Eq. 

(7): 
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where  is a smoothing parameter (here 0.1).  

 

Fig. 2. Temperature dependence of subthreshold swing with temperature for various band tail width 

as given by Eq. (5) (red solid line) and analytical model of Eq. (7) (blue dashed line). 

Cox+Cd+Cit)/Cox=1.06. 

 

To underline the usefulness of Eq. (7), we have fitted the experimental results of SS(T) taken 

from Refs [8,9] and extracted the band tail extension temperature TS as shown in Fig. 3. Depending 

on technology, this temperature lies typically in the range 30K to 50K. 
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Fig. 3. Temperature dependence of subthreshold swing SS(T) as obtained from experiment 

(symbols) and modeling (solid line, Eq. 7) (Data from Refs [8,9], (Cox+Cd+Cit)/Cox=1.06). 

 

2.2. Conductivity approach 

In section 2.1, we assumed that the drain current was proportional to the carrier density. 

Actually, this assumption is simplistic and certainly not valid at low temperature when the statistics 

becomes degenerate. In this case, the transport in the 2D subband inversion layer could be rather 

evaluated using the Kubo-Greenwood formalism [11,12]. In general, the macroscopic sheet 

conductivity is thus given by [11,12]: 
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where E(E) is the energy conductivity function, which is related to the mobility function by the 

Cohen’s formula [13], 
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If we assume that the mobility function is constant, µ(E)=µ0, and that the density of states 

features an exponential tail as given by Eq. (2), the conductivity function can thus be obtained after 

integration of Eq. (9) in the form, 
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In this situation, it should be noted that the conductivity function of Eq. (10) plays the role of the 

density of states of Eq. (2) in the carrier density approach. As can be seen in Fig. 4, it exhibits an 

exponential tail as a function of energy associated to that of the band density of states below the 

band edge (E<0). Note also that, as is usual, E(E) increases with energy above the band edge due 

to the increase of the carrier kinetic energy [11,12,14]. 

For a MOSFET and within the gradual channel approximation, the drain current constant along 

the channel reads Id=W.(T,Ef).(dEf/dx)/q, such that after integration over space x between source 

and drain, one gets, 
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yielding after some manipulation, 
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where EfS and EfD=EfS-qVd are the Fermi level at source and drain, respectively, and Vd the drain 

voltage. 

Proceeding as in section 2.1 for Eqs (3)-(5), one obtains for the subthreshold swing in weak 

inversion, 
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Note the similarity between Eq. (5) and Eq. (13) for the subthreshold swing. In the saturation 

region of weak inversion i.e. when Vd>>kTS/q or Vd>>kT/q, the drain terms in Eqs (12) and (13) is 

cancelling out such that the subthreshold swing reduces to, 
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In this situation, the conductivity function lies in the band tail, so that, 

EE
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02 ...),( , and thus is proportional to N(E,E), implying perfect equivalence 
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between Eq. (5) and Eq. (14) for the subthreshold swing. However, note that this is only true 

because a constant mobility function µ(E)=µ0 has been assumed. In general, there is no reason for 

the mobility function to be constant with energy, especially in the band tail where activated 

transport in localized states might occur as discussed in [11,15]. Therefore, Eq. (13) should 

constitute the most general expression for the subthreshold swing in a MOSFET. As for Eq. (5), it 

can be very well fitted by the analytical formula of Eq. (7), enabling the extraction of TS from the 

SS cryogenic saturation level, (kTS/q).(Cox+Cd+Cit)/Cox), and, by turn, E the band tail extension in 

terms of conductivity function and not necessarily in terms of density of states.  

Fig. 5 compares the temperature dependence of the subthreshold swing as given by the carrier 

density approach (Eq. (5)) and the conductivity approach (Eq. (13)) calculated with the same band 

tail extension (here E=5meV i.e. TS60K). As already mentioned above, in this case, the two 

approaches are perfectly equivalent and give the same result. Indeed, in the case where the band tail 

extension for the conductivity function were different from that of the DOS, the curves would be 

distinct. Nevertheless, it is worth mentioning that, in practice, since the SS is measured from the 

drain current variation, it means that the extracted band tail does correspond to that of the 

conductivity function. The band tail extension for the DOS could only be extracted from the direct 

measurement of the carrier density (e.g. from integration of gate-to-channel capacitance vs Vg) as a 

function of gate voltage in weak inversion. But, this type of capacitive measurements should not 

have the sufficient dynamic range to extract precisely the band tail extension from the derivative of 

n(Vg) curves.  

 

Fig. 4. Conductivity function E(E) with exponential tail (E=0 corresponds to band edge, 

E=3meV, µ0=1000cm
2
/Vs). 
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Fig. 5. Temperature dependence of subthreshold swing with temperature as given by carrier density 

approach Eq. (5) (red solid line) and conductivity approach Eq. (13) (blue dashed line) using the 

same band tail width E=5meV. 

 

3. Conclusion 

We have first proposed a comprehensive analysis of the MOSFET subthreshold swing for a 2D 

subband with exponential band tail of states. We then derived a compact analytical expression for 

the subthreshold swing as a function of temperature, which well accounts for both its cryogenic 

temperature saturation and classical higher temperature increase. Moreover, we have generalized 

the subthreshold swing calculation to the more realistic situation where the transport and, by turn, 

the MOSFET drain current should be evaluated from the conductivity function (and not simply 

from the carrier DOS) within the Kubo-Greenwood formalism. 
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