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Validation of a Monte Carlo Integral Formulation Applied to Solar Facility Simulations and Use of Sensitivities

The design of solar concentrating systems and receivers requires the spatial distribution of the solar flux on the receiver. This article presents an integral formulation of the optical model for the multiple reflections involved in solar concentrating facilities which is solved by a Monte Carlo Ray-Tracing algorithm that handles complex geometries. An experimental validation of this model is obtained with published results for a Dish configuration. The convergence of the proposed algorithm is studied and found faster than collision-based algorithms. In addition, an example of the use of the sensitivity of the power on a target to the mirror rms-slope is given by treating an inverse-problem consisting in finding the equivalent rms-slope of mirrors that best match the flux map measurements. In large scale solar facilities radiation concentration is performed with reflecting and concentrating optics. The objective is to collect solar energy with a large mirror surface and to concentrate it on a receiver (small with respect to the collecting surface) that converts radiation to medium and high temperature heat (i.e. from 800K to 1300K). Concentrating system and receiver should be designed to meet the required power and efficiency of the solar plant. One of the key characteristics of this design is the spatial distribution of the solar flux on the receiver that varies during the day and with the season during the year. In particular, spillage and receiver thermal stresses depend on the accurate management of the solar flux distribution (flux mapping). The current management tools are computer simulation of the concentrating optics. Garcia et al. [START_REF] Garcia | Codes for solar flux calculation dedicated to central receiver system applications: A comparative review[END_REF] have reviewed different numerical tools used to compute the solar fluxes in central receiver systems.

Today, Monte Carlo Ray-Tracing codes are widely used, among them Soltrace [START_REF] Wendelin | Soltrace: A new optical modeling tool for concentrating solar optics[END_REF] (executable publicly available) and Tonatiuh (open source) [START_REF] Blanco | Preliminary validation of tonatiuh[END_REF] have been designed for simulating solar concentrating systems. They use a Collision-Based Monte Carlo method (CBMC) and the ray-tracing starts from the source. At the beginning, this algorithm requires one test to know whether the ray bundles reach the first mirror and a second test to choose between absorption or reflection at the mirror surface. These two tests are avoided in the proposed algorithm to save computation time and it will also be shown that it improves the convergence. We have used an Integral Formulation Monte Carlo (IFMC) method that was applied in a solar facility by Delatorre and co-workers [START_REF] De La Torre | Calculs de sensibilites par la methode de monte-carlo pour la conception de procedes a energie solaire concentree[END_REF] who chose to start the ray-tracing from the first reflection point on the reflecting surface. This starting point was also used by DLR in the Stral [START_REF] Belhomme | A new fast ray tracing tool for highprecision simulation of heliostat fields[END_REF] ray tracing tool and was different from the classical codes such as Soltrace [START_REF] Wendelin | Soltrace: A new optical modeling tool for concentrating solar optics[END_REF] and Tonatiuh [START_REF] Blanco | Preliminary validation of tonatiuh[END_REF]. In the following, the IFMC method used in a numerical tool called SOLFAST-4D will be derived for the incident flux on a target. This integral formulation is used to improve the algorithm convergence and to serve as a basis for the formulation of sensitivities [START_REF] Delatorre | Monte-carlo advances and concentrated solar applications[END_REF]. An experimental validation of the model and the algorithm is given for the Eurodish facility tested at the French laboratory of Processes, Materials and Solar Energy from the National Center for Scientific Research (PROMES-CNRS) and sensitivity analysis is used to identify the slope errors of the heliostat field and the parabola of the 1 MW-CNRS Solar Furnace at Odeillo (France).

2 The Monte-Carlo Integral Formulation and Sensitivities Monte Carlo Ray-Tracing (MCRT) techniques are used to compute estimates of quantities expressed with highdimensional integrals. Due to the geometry complexity as well as multiple reflections, this technique is well suited for flux map computations in solar facilities. These algorithms were generally introduced in [START_REF] Dunn | Exploring Monte Carlo Methods[END_REF] and applied specifically for solar facilities in [START_REF] De La Torre | Calculs de sensibilites par la methode de monte-carlo pour la conception de procedes a energie solaire concentree[END_REF][START_REF] Delatorre | Monte-carlo advances and concentrated solar applications[END_REF][START_REF] Piaud | Application of monte-carlo sensitivities estimation in solfast-4d[END_REF][START_REF] Roccia | Solfast, a ray-tracing monte-carlo software for solar concentrating facilities[END_REF]. This section presents the model of the radiative transfer problem related to concentrating solar facilities expressed with an integral formulation, to give the probability density functions used by the MCRT algorithm and it is also shown that some derivatives (called sensitivities hereafter) may be computed with the same algorithm as the one used for the main quantity.

Monte Carlo Integral Formulation

Throughout this article, the wavelength dependence is dropped, and all the surface optical properties and radiative intensities are assumed independent of wavelength. First, two elementary surfaces (Fig. 1) are considered, dA 1 and dA t , and they are separated by a participating but non-refractive medium (medium with a constant refractive index equal to 1). The elementary surface dA 1 reflects radiation coming from an external source (dA 0 ) towards the elementary target surface dA t . In solar facilities, where the reflections are almost specular, different integral formulations of the incident power on the target have been developed, they consist in starting from the source or from the target. Starting from the source leads to a large probability to not intersect a mirror and starting from the target is even more problematic. When the bundles of rays are sampled from the source too much of them hit the ground without being reflected by a mirror. Alternatively, when the rays are sampled from the target (e.g. uniformly on the target surface and in a solid angle) their paths are followed backwards and too much of them do not reach the source because the incident directions are not accurately know on the target surface so the sampling from the target is very inefficient. Thus, the most appropriate algorithm may be to start the ray tracing at the first reflection point. Indeed, once this point is found by sampling it on the surface of the primary reflectors, it is possible to know on the one hand if the source irradiates this point (no shadowing) and on the other hand if there is also a strong probability to intersect the target or another mirror (e.g. two-reflection optics) if the mirror is oriented properly. In the following, this integral formulation related to a MCRT algorithm using as a starting point the first reflection is given. Because both elementary surfaces are equal, the elementary radiative power d 2 P t reaching dA t and coming from dA 1 within dΩ(ω t ), i.e. Eqn. [START_REF] Garcia | Codes for solar flux calculation dedicated to central receiver system applications: A comparative review[END_REF], is equal to the elementary radiative power leaving dA 1 and transmitted within the elementary solid angle dΩ(ω 1 ) around the ω 1 direction Fig. 1. Target and mirror elementary surfaces with their normals, positions, the ray solid angles and directions and crossing dA t , i.e. Eqn. [START_REF] Garcia | Codes for solar flux calculation dedicated to central receiver system applications: A comparative review[END_REF]. To keep it simple in a first step, only one reflection (mirror) is considered. In addition, absorption and out-scattering have been accounted for, and there is no source (i.e. in-scattering or emission) along the straight path.

d 2 P t = I(r t , -ω t ) n t • ω t dA t (r t ) dΩ(ω t ) (1) = I(r 1 , ω 1 ) exp [-k e 1 ] n 1 • ω 1 dA 1 (r 1 ) dΩ(ω 1 ) (2) with 1 = r t -r 1 and I(r t , -ω t ) = I(r 1 , ω 1 ) exp[-k e 1 ]
since ω t = -ω 1 and the medium is absorbing and scattering (k e is the extinction coefficient). The expression for the radiative intensity reflected by the surface dA 1 is given by:

I(r 1 , ω 1 ) = ∆Ω 0 f r (r 1 , ω 1 |ω 0 ) I(r 1 , -ω 0 ) n 1 • ω 0 dΩ(ω 0 ) (3)
where f r is the Bidirectional Reflectance Distribution Function (BRDF). In this MCRT model, the mirrors are assumed opaque with local normals (waviness and positioning defects) and the BRDF is used to model the specular and offspecular behavior that is responsible for the beam spread. The BRDF model for mirrors requires to be energy conserving and to obey the reciprocity principle [START_REF] Low | Brdf models for accurate and efficient rendering of glossy surfaces[END_REF]. The BRDF is also chosen isotropic, i.e. it is not dependent of the azimuthal angle. Because the beam spread is due to the mirror roughness very close to a smooth surface, the microfacet model of Torrance and Sparrow [START_REF] Torrance | Theory for off-specular reflection from roughened surfaces[END_REF] is used. This model is based on the assumption that the surface consists of a distribution of specular microfacets (see Fig. 2). In addition, instead of sampling the reflected direction (ω 1 ) it is more convenient to sample the local normal, n h = ω 0 + ω 1 , of the microfacet where the ray is specularly reflected (see Fig. 2). The expression of the BRDF is found in three steps. First, the radiative power incident d 3 P i onto a fraction of dA 1 where some microfacets have their normals oriented between Ω(n h ) and Ω(n h ) + dΩ(n h ) is obtained, Eqn. ( 4), with the introduction of the probability density function D(n h ) (the facet nor-Fig. 2. Mirror elementary surface having a microfacetted subsurface mal distribution [START_REF] Oren | Generalization of lambert's reflectance model[END_REF]). Second, expressions are found for the reflected radiative power d 3 P r by specular microfacets , Eqn. ( 5), and the corresponding specularly reflected intensity, Eqn. [START_REF] Delatorre | Monte-carlo advances and concentrated solar applications[END_REF]. Third, the definition of the BRDF is written, Eqn. [START_REF] Dunn | Exploring Monte Carlo Methods[END_REF], and the radiative intensity (dI(r 1 , ω 1 ) = I(r 1 , ω 1 ) for a specular reflection) and the expressions of d 3 P r and d 3 P i are replaced to give Eqn. [START_REF] Piaud | Application of monte-carlo sensitivities estimation in solfast-4d[END_REF].

d 3 P i = I(r 1 , ω 0 ) n 1 • ω 0 D(n h ) dΩ(n h ) dA 1 (r 1 ) dΩ(ω 0 ) (4) 
d 3 P r = ρ(r 1 ) d 3 P i (5) 
I(r 1 , ω 1 ) = d 3 P r n 1 • ω 1 dA 1 (r 1 ) dΩ(ω 1 ) (6) 
f r (r 1 , ω 1 |ω 0 ) = dI(r 1 , ω 1 ) I(r 1 , ω 0 ) n 1 • ω 0 dΩ(ω 0 ) (7) = ρ(r 1 ) D(n h ) dΩ(n h ) n 1 • ω 1 dΩ(ω 1 ) (8) 
where

D(n h ) dΩ(n h ) represents the fraction of dA 1 (r 1 )
where the facet normals are oriented between Ω(n h ) and Ω(n h ) + dΩ(n h ). In addition, ρ(r 1 ) is the specular reflectivity for which we assumed no dependency over the incident direction (unlike Fresnel reflectivity) and Eqn. [START_REF] Belhomme | A new fast ray tracing tool for highprecision simulation of heliostat fields[END_REF] does not include the geometric attenuation of microfacets (blocking, shadowing or multiple reflections between microfacets) because the surface is assumed smooth enough to neglect these effects. Replacing in Eqn. (3) the expression of the BRDF, Eqn. [START_REF] Piaud | Application of monte-carlo sensitivities estimation in solfast-4d[END_REF], and using this expression of the radiative intensity in Eqn. (2), then, integrating over the surface and microfacet normal directions, and generalizing to multiple reflections, the integral formulation of the radiative power incident on the target is given by:

P t = S 1 dA 1 (r 1 ) ∆Ω 0 dΩ(ω 0 ) I(r 1 , -ω 0 ) n 1 • ω 0 H(r 0 ∈ S 0 ) R 1 (9) R i = ∆Ω h (r i ,ω i-1 ) dΩ(n h ) ρ(r i ) D(n h ) exp [-k e i ] H(r i+1 ∈ S R ) R i+1 + H(r i+1 ∈ T ) (10) 
where the global reflective surface is used and called S R = S 1 ∪ ... ∪ S n that represents n reflective surfaces including the primary reflector surface S 1 . Three test functions (H(X))

were introduced which takes the value of one if the condition X is true and zero otherwise. The first test ensures the bundle of rays is not shadowed and reaches the mirror, the second and third tests decide whether after the ith reflection the bundle intersects a reflective surface or the target. If the first or these last 2 tests are false, the Monte Carlo estimate is zero and the ray tracing of the current bundle of rays is terminated.

These two equations define the basis of the Monte Carlo algorithm implemented in the software called SOLFAST-4D. This algorithm consists in starting by sampling a first reflection point on the primary reflector surface (S 1 ), then sampling an incoming radiation direction (with accounting for possible shadowing) and following the bundles of rays along its path (with possible multiple reflections and blocking) until they reach or not the target surface (T ). The equation for the radiative power incident on the target Eqn. ( 9) includes a test for the possible shadowing of the complex geometry and a recursive term including all reflections that is given in Eqn. [START_REF] Low | Brdf models for accurate and efficient rendering of glossy surfaces[END_REF] for reflection i.

Monte Carlo Algorithm with Important Sampling

To improve the convergence of the Monte Carlo algorithm, an important sampling method [START_REF] Dunn | Exploring Monte Carlo Methods[END_REF] is used to compute the target total radiative heat flux (Eqns. ( 9)-( 10)). Probability density functions (pdfs) are then added to sample: (1) a point on the primary reflector surface p S R , (2) an incident solar radiation direction p Ω 0 , and (3) a microfacet normal p N h . Introducing the pdfs in Eqns. ( 9)-( 10) and regrouping the terms in a Monte Carlo weight (w i ), the expression of P t becomes:

P t = S 1 p S 1 (r 1 ) dA 1 (r 1 ) ∆Ω 0 p Ω 0 (ω 0 ) dΩ(ω 0 ) H(r 0 ∈ S 0 ) R 1 (11) R i = ∆Ω h p N h (n h ) dΩ(n h (r i )) H(r i+1 ∈ S R ) R i+1 + H(r i+1 ∈ T ) w i (12) w i = I(r 1 , -ω 0 ) n 1 • ω 0 p S 1 (r 1 ) p Ω 0 (ω 0 ) i ∏ j=1 ρ(r j ) D(n h ) p N h (n h ) exp [-k e j ] (13) 
with j = r j+1 -r j . The choices for the pdfs are arbitrary but are guided by physical significance:

p S 1 (r 1 ) = 1 S 1 dA 1 (r 1 ) = 1 S 1 (14) 
p Ω 0 (ω 0 ) = 1

∆Ω 0 |n 0 • ω 0 |dΩ(ω 0 ) = 2 π(1 -cos 2θ 0 ) (15) 
p N h (n h ) = D(n h ) (16) 
D(n h ) = exp -tan 2 α 2 σ 2 2 πσ 2 cos 3 α 1 -exp -tan 2 α max 2 σ 2 , ∀ α ∈ [0; α max ] (17) 
α max (ω i-1 ) = π 4 - π 2 cos -1 (n R • ω i-1 ) (18) 
p N h (n h )dΩ(n h ) = p β dβ p α dα ( 19 
)
p β = 1 2π (20) 
p α = 2π sin(α) D(n h ) (21) 
with θ 0 the apparent radius of the sun, α is the angle between the local microfacet normal and the incident direction. The pdf of the facet normal distribution is split into two pdfs (Eqn. ( 19)), one for the zenith angle α = cos -1 (n R • n h ) and one for the azimuth angle β. The angle α max is a truncature of the α-domain to prevent any reflection below the mirror surface. According to these choices, the sampling of the primary reflection point is uniform on the surface S 1 (Eqn. ( 14)). The sampling over the sun directions is based on the definition of the Direct Normal Irradiance (DNI, Eqn. ( 22)) assuming a constant radiative intensity over the source solid angle (pillbox model). The sampling for the reflection direction is done according to a Gaussian form of the microfacet slope distribution. One advantageous property of the Gaussian slope distribution function is its relationship with random surface roughness, σ = √ 2σ rms /l c , where l c is the correlation length and σ rms is the root-mean-square of the surface heights.

Replacing the pdf expressions given by Eqns.( 14)-( 17) and using the definition of the DNI, the expression of the Monte Carlo weight is simplified to:

DNI(r 1 ) = ∆Ω 0 |n 0 • ω 0 |I(r 1 , -ω 0 ) dΩ(ω 0 ) = 2 I(r 1 ) π(1 -cos 2θ 0 ) (22) 
w i = DNI(r 1 ) n 1 • ω 0 S 1 i ∏ j=1 ρ(r j ) exp [-k e j ] (23) 
The integral formulation of P t is now established and derivatives of this quantity may be expressed and computed with a MCRT algorithm.

The Monte Carlo Algorithm for Sensitivity Analysis

Estimating sensitivities by a Monte-Carlo algorithm is best done by formulating a Monte-Carlo algorithm for the sensitivity [START_REF] Delatorre | Monte-carlo advances and concentrated solar applications[END_REF][START_REF] De Lataillade | Monte carlo method and sensitivities estimations[END_REF]. The objective of this section is to show that the integral formulation may be used to compute a sensitivity to some parameters by using the same algorithm developed in the previous section. The advantage is that the same samplings are used in both algorithms (for the main quantity, P t , and for the sensitivities) and consequently there is no computation cost related to the sensitivity estimation. This methodology may be useful for some optimization and inverse methods when they require the computation of both quantities (P t and some derivatives if a Jacobian matrix is used). When a Monte Carlo algorithm is used to calculate the main quantity (e.g. P t ), the computation of its sensitivity to some parameter (noted π), ∂ π P t , by a finite difference method, may lead to great uncertainty due to the confidence interval associated with the Monte Carlo estimate [START_REF] Piaud | Application of monte-carlo sensitivities estimation in solfast-4d[END_REF][START_REF] Roccia | Solfast, a ray-tracing monte-carlo software for solar concentrating facilities[END_REF]. The basic idea is to derive the integral formulation of sensitivity on the basis of the integral formulation of the main quantity. Let us consider Eqns. ( 11)-( 13) to find the expression of the sensitivity of the target irradiance, ∂ σ P t , to the BRDF parameter σ.This sensitivity is formally obtained by derivation of Eq.( 11):

∂ σ P t = S 1 p S 1 (r 1 ) dA 1 (r 1 ) ∆Ω 0 p Ω 0 (ω 0 ) dΩ(ω 0 ) H(r 0 ∈ S 0 ) R 1,σ (24) R i,σ = 2π 0 p β (β) dβ α max 0 p α (α) dα H(r i+1 ∈ S R ) R i+1,σ + H(r i+1 ∈ T ) w i,σ (25) w i,σ = w i i ∑ j=1 ∂ σ p α (α j ) p α (α j ) = w i i ∑ j=1 1 σ 2 (3σ 2 -1) tan α + σ 2 tan α -tan 3 α (26)
Thus, because this expression of the derivative has the same form as the main quantity (P t ), the sensitivity may be estimated with the same Monte Carlo algorithm by using the ray paths generated previously when computing P t but replacing the weight function w i by w i,σ . It should be noted that when the parameter appears in the limits of the integral no systematic procedures are available to deal with this type of sensitivities [START_REF] Roger | Monte carlo estimates of domaindeformation sensitivities[END_REF]. In addition, this expression for the sensitivity (Eqns. ( 24)-( 26)) is valid only for mirrors having all the same expression of the facet normal distribution and sharing also the same parameters σ(r j ) = σ. Concerning the sensitivity ∂ ρ P t the expressions of Eqns. ( 25) and ( 24) are still valid and the Monte Carlo weight becomes w i,ρ = w i /ρ i . The sensitivity of P t to the mirrors reflectivity follows the same type of assumptions: each mirror should have the same reflectivity ρ(r j ) = ρ. The MCRT model used in SOLFAST-4D is used to compute the solar concentrated flux incident on a target in the focal volume of the Eurodish concentrator installed at the PROMES-CNRS laboratory (see Fig. 3). The results of the simulation will be compared to measured distribution of concentrated solar fluxes [START_REF] Reinalter | Detailed performance analysis of a 10kw dishstirling system[END_REF]. 

Description of the Optical Measurements

The Eurodish has a complete mirror area of 53.1m 2 and the focal plane is located at z = 4.553m from the dish center (z = 0). The flux distribution measurements were done at two locations, at the focal plane and at a distance of 120mm behind it (z = 4.673m). The two flux measurements are presented in Figs. 4 and 5 [START_REF] Reinalter | Detailed performance analysis of a 10kw dishstirling system[END_REF]. These flux distributions show a Gaussian-like distribution at the focal plane (with peak flux of 9305kW /m 2 , Fig. 4) but behind the focal some zones appear with the highest peak (1583kW /m 2 , Fig. 5) in the upper part, slightly to the left. To measure the surface waviness, a color target was set close to the dish focus and measurements [START_REF] Reinalter | Detailed performance analysis of a 10kw dishstirling system[END_REF] were made at a distance of 150m from the dish center. The target was located at z = 4.520m and two pictures were recorded: one with horizontal target stripes and one with vertical ones. Because of practical availability, the observation distance was too short leading to missing data in the outer circular zone of the parabola and the target was in the shade causing low color contrast which again leads to some areas with no information. Only 71.4% of the parabola area was evaluated. Radial and tangential slope errors (waviness) measurements are shown in Fig. 6 and Fig. 7. The slope data highlight the surface deformation of the parabola which present mainly two defects: some rings of positive and negative radial slope errors (Fig. 6), and a V-shape of each triangular segment (Fig. 7). The slope error data were used as input parameters de- scribing the local normal of the Eurodish parabola to simulate the distribution of concentrated solar fluxes for two plane locations (z = 4.553m and z = 4.673m). A DNI of 1000W /m 2 and a reflectivity of 94% were used. A Gaussian BRDF was assumed with σ =1mrad. The known slope data corresponding to 71% of the total surface were used and for the zone with missing data the local normal is considered the ideal one of the equivalent parabolic surface with a focal length of 4.553m. The comparison of simulated and measured concentrated solar fluxes (Fig. 4 vs. Fig. 8 and Fig. 5 vs. Fig. 9) show that the shapes of flux distributions are very similar. For the plane z = 4.673, the simulation reproduces three peaks (Fig. 9) with correct locations. The values of the maximum peak fluxes and their locations on the target are given in Tab. 1 for comparison and validation. For the flux distribution at the focal plane, z = 4.553m (Fig. 4 vs. Fig. 8), the simulated maximum flux is about 18% higher than the experimental one and its location is about one centimeter The flux discrepancy could be due to uncertainty associated with the experimental flux mapping device and to the missing slope error data at the edge which were replaced by ideal surface leading to compute a maximized peak flux at the focal point. The peak flux location error could be due to pointing errors of the dish but it is likely to be due to different structure deformations of the Eurodish associated with different elevations when the flux mapping and the color target measurements were done. For the plane z = 4.673, the simulated maximum flux is about 16% lower than the experimental one and its location is about one centimeter downleft. The origins of the discrepancies were mentioned previously and are mainly due to the missing slope error data and the structure deformation. As a result of the comparisons, and considering the experimental uncertainties, we assume the MCRT algorithm in SOLFAST-4D validated in a solar facility. It is able to reproduce the flux distribution shape, the total flux and the peak flux values to within a 18% confidence interval. It is not possible yet to associate an accurate confidence interval of this numerical tool unless the experimental tools are improved and the experiments are repeated. In addition, previous code comparisons with Tonatiuh and Soltrace were real-ized in [START_REF] Piaud | Application of monte-carlo sensitivities estimation in solfast-4d[END_REF][START_REF] Roccia | Solfast, a ray-tracing monte-carlo software for solar concentrating facilities[END_REF] and they closely match.These codes were also experimentally validated, thus it brings confidence to assume this algorithm as validated.

Convergence Improvements

The main difference between the CBMC algorithm implemented in Soltrace and Tonatiuh and the IFMC implemented in SOLFAST is the source sampling method. The source is represented by a plane normal to the sun direction ω 0 bounding all the objects of the scene. So the first step of the algorithm is the sampling of a position on the source plane. A second difference concerns the treatment of the reflectivity: a Russian roulette is used whereas in the present algorithm the weight of the reflected ray is multiplied by the reflectivity. These two differences limit CBMC algorithms to produce a Monte-Carlo realization to have only two weights: 0 and DNI/S 0 for the rays reaching the target. Despite these algorithm differences, as the physical models (reflection model) are identical, the algorithm must converges toward the same value. A major advantage of the Monte-Carlo method is its ability, using standard deviation, to compare objectively the performance of the algorithm independently of the Ray-Tracing acceleration techniques. A comparison of the Monte-Carlo algorithm convergence was done between Tonatiuh (version 1.2.5), Soltrace (version 2011.7.5) and SOLFAST-4D for a simplified representation of the THEMIS solar tower (Targassonne, France) [START_REF] Roccia | Solfast, a ray-tracing monte-carlo software for solar concentrating facilities[END_REF]. Each of the 115 heliostats is composed with a single 7.5m × 7.5m square mirror. The reflectivity is set to 0.94 and the reflection is specular (no slope or optical errors). The simulation was done for the March 21 st at solar noon. The Figure 10 presents the flux received by the target and the Monte-Carlo standard deviation with respect to the number of realizations. These results show that the IFMC algorithm implemented in SOLFAST-4D improves standard deviation by a 9.25 factor versus Tonatiuh and a 17 factor versus Soltrace for a typical central receiver solar facility configuration. Regarding the number of realizations required to reach a given standard deviation target, SOLFAST needs about 85 times less realizations than Tonatiuh and 289 times less realizations than Soltrace. As the ultimate performance measurement is running time, they were measured on an Intel Core i7 Q720 both for a given number of rays (10 6 ) and for a given standard deviation target (500W ) using the simplified THEMIS model introduced above (see Tab. 2). As a result SOLFAST-4D takes benefit from using the RayBooster technology for Ray-Tracing computations [START_REF] Roccia | Hybrid cpu/gpu kd-tree construction for versatile ray tracing[END_REF], and the gap between SOLFAST-4D and Tonatiuh or Soltrace is enlarged when the comparison criteria is the running time required to achieve a given accuracy (Tab. 2).

Application of Sensitivities

An application of the sensitivity calculations is presented that performs an optimization of rms-slope parameters of one heliostat and the corresponding portion of the parabola at the 1 MW-CNRS Solar Furnace of Odeillo (PROMES-CNRS), where two reflections are involved (see This solar facility involves 63 heliostats with flat mirrors (45m 2 each) positioned on terraces to reflect the solar rays parallel to the optical axis of the parabola (54m × 40m) which are then focused. The objective is to determine the equivalent rms-slope of one heliostat and the portion of the parabola where the rays are reflected. The rms-slope, σ HP , is shared by the microfacet slope distribution functions of the mirrors constituting the heliostat and the corresponding portion of the parabola. This study presents the method and the results only for one heliostat, but, to simulate the complete solar furnace this technique has been repeated for each heliostat and portion of the parabola. The reflectivity of the he-liostat ρ(r 1 ) and parabola ρ(r 2 ) mirrors was measured with a portable specular reflectometer (D&S Company, Model 15R-USB). For one heliostat, a picture was recorded of the flux distribution incident on a diffuse surface located at the focal point of the parabola. In addition, the ray-tracing simulation allows comparing the measurements with the simulations to identify the equivalent rms-slope of the mirror microfacets, σ HP . The optimization problem consists in finding the parameter σ HP shared by the heliostat and the portion of the parabola involved in the measurement, such as it produces a simulated flux map that best matches the experimental flux map in the same configuration. To solve this nonlinear least-square problem, a Trust-Region-Reflective algorithm was used [START_REF] Coleman | An interior, trust region approach for nonlinear minimization subject to bounds[END_REF] with a Jacobian matrix computed with the sensitivities computed by Eqns. ( 24)-(26) to minimize the cost function χ 2 (σ HP ) defined by: χ 2 (σ HP ) = where Pt,i is the measured flux density of the pixel number i for the reference heliostat and where P t,i (σ HP ) is the simulated flux density of the corresponding ith pixel. The simulated flux map was obtained with 20.10 6 bundle of rays. The flux map was measured on a 50 × 60cm 2 target surface and simulated on a similar target with square pixels of half a centimeter (for each side). Identification of σ HP was iteratively determined with the Matlab software (using the lsqnonlin function in the Optimization Toolbox). An initial value σ HP,0 was set to 0.1mrad and the flux map P t,i (σ HP ) with its sensitivities ∂ σ HP P t were computed at each iteration of the optimization method. The result was obtained after 16 iterations toward σ HP = 1.31mrad. A comparison of the measured flux distribution with the simulated one obtained with the optimized rms-slope is given in Fig. 12. Fig. 12. Comparison of the measured and the optimized flux distributions; Iso-lines of non-dimensional flux on the target The integral formulation Monte Carlo method with important sampling is used to compute the incident power on a target in a concentrating solar facility. The Monte Carlo weight is derived and the main assumptions about the surface reflectivity and the microfacet model are highlighted. A comparison of the simulated results for a Dish configuration with published experimental data is used to validate the optical model. Based on this experimental validation, this numerical ray-tracing tool is found suitable to be applied in solar facilities to compute solar power distributions. In addition, the integral formulation of the incident power is used to compute its sensitivity to the rms-slope and reflectivity when all the reflecting surfaces share the same values of these parameters. Then, as an example of sensitivity use, an identification of the mirrors equivalent microfacet rms-slope is conducted in the 1 MW-CNRS Solar Furnace by comparing measurement data and simulation results. The algorithm is compared to Tonatiuh and Soltrace and a convergence improvement study is given which strengthens the choice made to sample the first intersection point instead of sampling the ray coming from the source.

Nomenclature A area, m 2 D 2 wmicrofacet i incident radiation i index j index R reflectors p pixels r reflected radiation t target 1

 221 distribution function of surface normals distance, m f r bidirectional reflectance distribution function, sr -1 H test function * Corresponding Author. I radiative intensity, W /m 2 sr k e extinction coefficient, m -1 . l c correlation length, m N integer number n normal vector P simulated power incident on a surface, W P measured power incident on a surface, W p probability density function r position vector S group of reflecting surfaces, m 2 T target surface, m Monte Carlo weight z distance, m Greek Symbols α zenith angle for microfacets, rd β azimuth angle, rd θ zenith angle, rd ρ reflectivity σ rms root-mean-square of surface heights, m σ root-mean-square of microfacet slopes, rd χ 2 cost function to minimize Ω solid angle ω direction vector Subscripts 0 source or initial value 1 first reflection HP Heliostat-Parabola h Introduction
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Fig. 3 .

 3 Fig. 3. CAD view of the EuroDish in SOLFAST and some green ray paths toward the target

Fig. 4 .Fig. 5 .

 45 Fig. 4. Measured normalized flux distribution at the focal plane (z = 4.553m) for the Eurodish, normalized to 1000W /m 2 and 94% reflectivity (data from [15])

Fig. 6 .

 6 Fig.6. Slope errors (mrad) in the radial direction (positive = tilted to the center; data from[START_REF] Reinalter | Detailed performance analysis of a 10kw dishstirling system[END_REF])

Fig. 7 .

 7 Fig. 7. Slope errors (mrad) in the tangential direction (positive = tilted clockwise; data from [15])

Fig. 8 .

 8 Fig. 8. Simulated normalized flux distribution at the focal plane (z = 4.553m) for the Eurodish

Fig. 9 .

 9 Fig. 9. Simulated normalized flux distribution at z = 4.673m for the Eurodish

Fig. 10 .

 10 Fig. 10. Flux on Themis target in function of the number of MC realizations. Two sets of curves are plotted: flux + standard deviation and flux -standard deviation

Fig. 11 .

 11 Fig. 11. 3D rendering of samples of ray paths used for the optimization study at the 1 MW-CNRS Solar Furnace in Odeillo

Table 1 .

 1 Comparison of peak fluxes and their locations

		Position (x;y) Flux
		[cm]	[kW /m 2 ]
	Measurement z = 4.553m (18;20)	9305
	Simulation z = 4.553m	(19;19)	10961
	Measurement z = 4.673m (19;25)	1583
	Simulation z = 4.673m	(18;24)	1331

Table 2 .

 2 Computation time in sec. for 1 million MC ray bundles and time needed to reach a 500W standard deviation

	Objective	SOLFAST-4D Tonatiuh Soltrace
	10 6 MC Rays 3.6	8	11
	σ P t = 500W	1.2	241	497
	Fig. 11).