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Abstract

Assessing and shaping the effects of artificial intelligence (AI) and machine learning (ML) on climate
change mitigation demands a concerted effort across research, policy, and industry. However, there is
great uncertainty regarding how ML may affect present and future greenhouse gas (GHG) emissions. This
is owed in part to insufficient characterization of the different mechanisms through which such emissions
impacts may occur, posing difficulties in measuring and forecasting them. We therefore introduce a
systematic framework for describing ML’s effects on GHG emissions, comprising three categories: (A)
compute-related impacts, (B) immediate impacts of applying ML, and (C) system-level impacts. Using
this framework, we assess and prioritize research and data needs for impact assessment and scenario
analysis, and identify important policy levers.

Introduction
As artificial intelligence (AI) and in particular machine learning (ML) are increasingly deployed across society
[1], there has been a surge in interest in understanding the effects ML may have on climate action [2–4]. To
explicitly and consistently account for ML in long-term climate and energy projections, and in the design of
appropriate policies, the research community needs to develop a holistic and operational understanding of the
different ways in which ML can positively and negatively impact climate change mitigation and adaptation
strategies. In particular, those impacts that are easiest to measure are likely not those with the largest effects.
This can lead to challenges in terms of estimating macro-scale effects, picking up on underlying dynamics and
trends, and prioritizing actions to align ML with climate strategies. To aid in addressing these challenges,
we present a systematic framework (Figure 1) for categorizing the different kinds of impacts of ML on
global greenhouse gas (GHG) emissions — through compute-related impacts, the immediate impacts of ML
applications, and the system-level changes ML induces.
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Figure 1: A framework for assessing the greenhouse gas (GHG) emissions impacts of machine learning.
We distinguish between three categories (A, B, and C) with different kinds of potential emissions impacts,
estimation uncertainties, and associated decarbonization levers. Green denotes effects relating to reductions
in GHG emissions, and magenta to increases in emissions.
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Recent work has discussed different aspects relating to this framework, describing applications of ML for
tackling climate change [5], applications of ML that increase emissions [6, 7], and the energy consumption
of ML through software and hardware [7–9]. A few pieces have engaged with both the positive and negative
effects of ML on the climate [2, 3, 10–14], but no work has explicitly provided an overview of the different
mechanisms by which ML may impact emissions. By presenting a unified framework of these mechanisms,
we intend to provide a starting point for research, policy-making, and organizational action aiming to better
align ML with climate change strategies.

Related literature on assessing the impacts of information and communications technologies (ICT) has
often distinguished between the energy- and hardware-related GHG emissions of ICT (“direct” impacts) and
the emissions impacts of ICT’s applications (“indirect” impacts) [15–17]. Our framework in Figure 1 similarly
distinguishes between the compute-related GHG emissions of ML, and the emissions reductions and increases
resulting from applications of ML. Considering that ML encompasses a particularly novel and transformative
set of software and analytics approaches with nuanced downstream effects, our framework covers three main
aspects. The first involves the GHG emissions resulting from compute, caused by both the electricity used for
ML computations and the embodied emissions associated with computing hardware. The second involves the
“immediate” GHG emissions effects tied to the short-term outcomes of applications of ML. The third involves
the structural or “system-level” GHG effects induced by these applications. Drawing a clear line between
these latter two application-level effects is rather difficult, with different classifications available throughout
the literature (see, e.g., Horner et al. [16]); our distinction is adapted from Hilty and Aebischer [15], and,
while imperfect, is important for framing the discussion of ML’s overall impacts and associated levers. We
report quantitative assessments where available and where we believe these assessments are representative,
and we discuss the current state of research on impact assessment. We then use our framework to propose
a roadmap for assessing and forecasting impacts, and discuss approaches for shaping the impacts of ML.
In terms of scope, our framework predominantly focuses on algorithm-related impacts, and omits impacts
relating to data collection and management, ICT, and digitalization more broadly [2, 16, 18–20].

Compute-related impacts
In order to assess direct compute-related impacts, we take two different perspectives. The first is a bottom-
up perspective aimed at assessing the energy use of individual ML models, capturing aspects of the use,
development, and design of these models. The second is a top-down perspective aimed at estimating the
total global GHG emissions associated with ML workloads, capturing both the sourcing of the electricity
used to power computations as well as embodied emissions from materials extraction and manufacturing.

ML model development and deployment

Creating and running an ML model uses computing power and therefore energy, with the amount varying
dramatically between different algorithms and different stages in the ML model life cycle. While many
models used in practice are relatively small and can be trained and run on a laptop (such as linear classifiers
or decision trees), state-of-the art performance on more complex tasks is often achieved with very large
models, typically using deep learning. The size of the largest deep learning models (measured in number of
parameters), and likely the size of the average model, is growing rapidly, leading to much larger demand for
computing resources [21–23].

To illustrate how ML models differ so drastically in the energy they consume and better understand
approaches to reduce their energy consumption, it is necessary to take a deeper dive into the life cycle stages
of an ML model: model inference (or use), model training, and model development and tuning. Model
inference describes the stage where the model is in use in the world: for instance, given new inputs, such as
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images, it labels those inputs (e.g., identifies whether an image is of a cat or a dog) according to a function
that it has learned. The goal of the model training stage is to learn the underlying function that, e.g., maps
from inputs to labels, by analyzing a dataset to choose a set of parameters that define the function. During
model development and tuning, a researcher will typically train many different model variants on different
datasets, in order to devise a variant that works best in the given problem setting.

Figure 2 (“Bottom-up”) provides a schematic overview of relative energy requirements and frequency
of each stage of the ML model life cycle. Model inference is the least energy-intensive process in the ML
model life cycle, but it is likely to occur the most frequently. For instance, classifying toxic comments
[24, 25] or the contents of images [26] on social media requires little power each time a model is used,
but may be used on the order of billions of times a day. Also larger models, such as Google’s machine
translation system, may process more than 100 billion words per day [27]. Those computing requirements
may add up: Amazon estimates that up to 90% of financial costs for ML workloads in production are due
to inference [28] (similar numbers for energy consumption are not available and this ratio might not be the
same for energy). The training stage may require many passes over the dataset, often denoted as epochs,
with each epoch performing full model inference on each example, as well as computing updates to correct
the model’s prediction for future iterations. In the case of deep learning, for example, this means that each
epoch typically requires about three times as much computation as inference itself [29]. Training an ML
model is thus more energy-intensive than using it, but is done much less frequently. Hazelwood et al. [25]
report that ML models in Facebook’s datacenters are re-trained anywhere from hourly to multi-monthly.
The most energy-intensive stage of the ML model life cycle is model development, which requires training
many different models. Modern ML models that use neural networks are particularly energy-intensive in
the development phase as they have many more possible model configurations than their predecessors, and
it is not well understood how those configurations should be set to perform well on a given dataset, except
through trial and error experimentation and validation (hyperparameter search), often involving thousands
of training runs. For instance, the GHG emissions associated with developing certain large, cutting-edge
models can be comparable to, e.g., the lifetime carbon emissions of a car [8], though such computationally
intensive processes are performed rarely and by the fewest entities.

The computational requirements of ML models are often described in FLOPs: FLoating point OPerations,
or the number of additions and multiplications of scalar values required to obtain a result. The precise
mapping from FLOPs to energy draw is hardware- and algorithm-dependent, but more FLOPs generally
correspond to higher energy use. ResNet-50 [30], a popular deep learning model for image classification,
requires about 4 billion FLOPs (and 65 milliseconds) to map a 224x224 pixel input image to a label, with
an error rate of 24.6% [31]. A less computationally efficient version, ResNet-152, requires about 11 billion
FLOPs (and 150 milliseconds) per image, and obtains only a slightly better error rate of 23.0%. This
case illustrates a trade-off in energy efficient ML: Is it worth the more than 2.5x increase in FLOPs, and
corresponding energy, to reduce the error rate by 1.6%? Will the benefits outweigh the costs from both an
emissions and a broader societal perspective [32]?

Software tools for measuring ML model energy use [33] and carbon emissions [34, 35] are already available,
metrics for reporting model accuracy as a function of computational budget have been proposed [36, 37], and
benchmarks measuring training and inference efficiency have been established [38, 39]. Yet, such reporting
is still not standard for researchers and ML software maintainers. Standardized reporting is essential for
including efficiency considerations during model development and for making energy consumption a criterion
when choosing between different ML approaches in practice.

As larger neural network models have become more prominent in certain areas of machine learning,
research into improving the efficiency of ML models has started to increase [26, 40–45], and now also discusses
implications of compressing models on broader performance characteristics [46]. However, the vast majority
of ML research and development still focuses on improving model accuracy, rather than balancing accuracy
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and energy efficiency [9].

Computing infrastructure

The global ICT sector — consisting of all data centers, data transmission networks, and connected devices
— accounted for around 700 MtCO2e in 2020, equivalent to around 1.4% of global GHG emissions [47, 48].
Around two-thirds of the sector’s emissions come from operational energy use, with the remainder resulting
from materials extraction, manufacturing, transportation, and end-of-life [48].

Only a fraction of emissions from the ICT sector is attributable to AI and ML (Figure 2 “Top-Down”),
but its exact share is not known due to challenges in boundary definition and a lack of data and established
methodology. Based on the limited information available, we estimate that the majority of ML-related
workloads today are likely taking place in cloud and hyperscale data centers, with a smaller share occurring
on distributed devices such as personal computers. Cloud and hyperscale data centers account for 0.1-0.2%
of global GHG emissions [49–51], and it is likely that less than a quarter of their workloads and traffic are
currently ML-related based on estimates for Infrastructure-as-a-Service and Platform-as-a-Service [52] and
IP traffic related to big data [53]. Over the coming years, edge devices such as smartphones are also expected
to handle an increasing volume of inference tasks to reduce latency and dependence on network connectivity
[54], with uncertain effects on overall energy use and emissions.

While the amount of compute needed for each of the largest ML training runs is growing rapidly [22], it is
uncertain how quickly overall ML-related energy use in data centers is increasing. For example, Facebook’s
overall data center energy use increased rapidly over the past few years (+40% per year) [55] while compute
demand for ML training (e.g., +150% per year [56]) and inference (e.g., +105% per year [57]) have grown
even faster. At the same time, by some measures, Facebook’s operational GHG footprint (accounting for
renewable energy purchases) halved between 2015 and 2019 [55] due in part to energy efficiency improvements
and increased renewable electricity procurement.

Energy efficiency has played a central role in limiting data center energy demand growth more generally.
Between 2010 and 2018, global data center energy use rose by only 6%, despite a 550% increase in workloads
and compute instances [49]. The rapid growth in demand for data center services has been offset by efficiency
improvements in servers, storage, networking, and infrastructure, as well as a shift away from smaller, less
efficient data centers to large cloud and hyperscale data centers [18, 58], which have higher virtualization,
more efficient cooling, and greater use of specialized “AI accelerator” hardware such as application-specific
integrated circuits (ASICs) and graphics processing units (GPUs). For instance, a 2017 study found that
Google’s custom ASIC, the Tensor Processing Unit (TPU), was on average 30-80 times more energy efficient
than a contemporary CPUs or GPUs [59]. However, the use of GPUs and ASICs for ML applications could
drastically increase the power density of data center racks, which may in turn require liquid cooling technolo-
gies and increase water use. Although energy use across all data centers has been flat over the past decade,
energy use by large data centers has grown by around 20% annually, and this trend is expected to continue
[50]. Limiting overall data center energy demand growth over the next decade will therefore require even
stronger energy efficiency improvements. For instance, operators can increase utilization and virtualization
to maximize the energy efficiency of existing hardware and infrastructure, while replacing hardware when
advisable from a life cycle perspective with the most efficient option. Companies and governments will also
need to invest in research, development, and demonstration (RD&D) for efficient next-generation computing
and communications technologies [49].

Some of the largest data center operators are now purchasing as much renewable electricity as they
consume on a global annual basis [50], however, this does not guarantee that their data centers are actually
fully powered by renewable sources all the time. More ambitious approaches to low-carbon electricity include
shifting flexible workloads to times of the day (or locations) with higher shares of renewables generation [60]
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Figure 2: Compute-related global greenhouse gas (GHG) emissions impacts of machine learning (ML).
The information and communications technology (ICT) sector accounts for around 1.4% of GHG emissions
today, of which ML likely accounts for a small but unknown share (indicated by shading). Compute-
related impacts of ML can be assessed from both top-down and bottom-up perspectives. Top-down: The
majority of ML-related GHG emissions likely come from compute loads in large data centers, with a smaller
share from distributed compute (e.g., personal computers, smartphones); these GHG emissions result from
both operational energy use from computation and from other phases of the hardware life cycle (including
embodied emissions). Bottom-up: The amount of energy needed for an ML model throughout different stages
of the model life cycle differs based on problem setting and usage patterns.

and replacing on-site diesel generators with battery storage.
Computing hardware and infrastructure is also responsible for “embodied” emissions from raw materials

extraction and manufacturing as well as emissions from transportation and end-of-life. For decentralized
computing (e.g., desktops, laptops, smartphones), embodied emissions account for 40-80% of devices’ life
cycle GHG emissions, while for data centers this is typically less than 10% [48, 61–63]. Servers in large
data centers are typically replaced every 3-4 years, which can result in higher operational efficiency [49, 64];
however, shorter lifespans could also increase the share of life cycle emissions from manufacturing, which
can be mitigated by reusing servers and equipment (such as older GPUs for inference). As data centers
become increasingly efficient and powered by clean electricity, the relative importance of emissions from
non-operational life cycle phases will grow – particularly embodied emissions in computing hardware and
data center building construction [65].

Immediate application impacts
The broad applicability of ML algorithms means that they can be used both in applications that alleviate
bottlenecks in addressing climate change, and in applications that may counteract climate action. In Rolnick
et al. [5], we describe a number of settings in which ML can enable or accelerate climate change mitigation and
adaptation strategies. As shown in Figure 3, these applications span areas such as energy, transportation,
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Figure 3: Immediate application impacts of machine learning (ML). ML applications are grouped by their
functional role (left) and the associated greenhouse gas emissions impacts (right). ML can both reduce
emissions (indicated in green) and increase emissions (red on bottom right). This figure differentiates ML
applications for addressing climate change in more detail based on the findings in Rolnick et al. [5]; however,
the net effect of those applications addressing climate change vs. those accelerating emissions-intensive
industries is unclear.

and land use. For example, via data mining and remote sensing, ML can be used to translate raw data
such as text documents or satellite imagery into usable insights for RD&D, policy-making, and systems
planning – e.g., by tracking GHG emissions, fusing datasets, or gathering information on building efficiency
characteristics. By accelerating the search for experimental parameters in scientific discovery, ML can help in
designing next-generation batteries and solar cells. By learning from time series, ML can forecast renewable
power production, crop yields, and transportation demands. By controlling and improving the operational
efficiency of complex systems, e.g., industrial heating and cooling systems, ML can help to save resources
and energy. ML can also be used to speed up time-intensive physics-based simulations, e.g., for urban
planning or climate modeling. Predictive maintenance approaches leveraging ML can also help climate
change mitigation if they are applied to low-carbon systems, where they can improve efficiency, reduce costs,
and build resilience.

While ML is often seen as a “futuristic” technology, most of these applications are possible with current
ML techniques, and many are already being deployed [1, 5]. In addition, areas of cutting-edge ML research
such as interpretable and probabilistic machine learning [66, 67], physics-integrated machine learning [68],
and transfer learning [69] can both enable new applications and better support integration within existing
systems. In order to support the development and deployment of this kind of work, it will be crucial
to facilitate interdisciplinary and applied research via science policy, advance the technological readiness of
applications through RD&D programs, and adapt current regulatory environments to mitigate bottlenecks to
deployment in relevant sectors and industries. This includes targeted funding and research programs, testbeds
and demonstration projects, public procurement programs, and relevant data management initiatives.

As a general-purpose tool, ML has also been applied in ways that may make climate goals harder to
achieve. One such effect is when ML is used to decrease the cost of emissions-intensive activities, thereby
potentially increasing their consumption. For example, ML can accelerate oil and gas exploration and
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extraction by decreasing production costs and boosting reserves [6], which could in turn lead to greater
use of fossil fuels. Likewise, ML is used in the “Internet of Cows” to help manage livestock at scale [70],
which can increase cattle-farming, an activity already responsible for an estimated 15% of GHG emissions
[71]. Sometimes, essentially the same ML algorithm has the potential to be used both in ways that help
climate action and in ways that hinder it. For example, an optimization algorithm that aims to minimize
energy consumption (e.g., reduce the amount of transportation fuel used) would use essentially the same
methodology as one that minimizes total cost, but the latter could potentially increase energy consumption
if other cost aspects (e.g., labor costs) dominate. A potential approach to reduce or avoid the emissions
increases associated with such applications is to require ML solutions providers to account for and report
the emissions impacts of the applications they support, even if only at the level of order-of-magnitude or
qualitative assessments where more detailed numbers are infeasible to obtain.

The total immediate impact of ML applications on GHG emissions is extremely difficult to estimate
due to the lack of data on the deployment rate of ML, the diversity of application areas, and the lack of
procedures to appropriately attribute emissions effects to the use of ML algorithms. While there exist some
scientific reviews within isolated fields or sectors, the only attempts to provide overall numbers are from ML
solutions providers in the private sector [72–74] (in particular, these studies are not peer-reviewed and do
not disclose all methodology). We also note that ML can be used with the motivation to elevate the profile
of sustainability-related activities in corporations in a way that could provide a false impression of overall
organizational sustainability [10].

System-level impacts
While the previous section describes ML applications that are directly beneficial or detrimental to climate
change mitigation, many societal ML applications may not have clear immediate impacts on climate change.
However, many of these applications can have broader societal implications beyond their immediate impact,
and these system-level effects can influence GHG emissions both positively and negatively. Though these
kinds of impacts may be hard to quantify, they have the potential to outweigh immediate application impacts
and are extremely important to consider when evaluating ML use cases.

One pathway to system-level impacts occurs when ML enables changes to a technology that in turn affect
the ways in which that technology is used. For example, rebound effects can occur when ML increases the
efficiency of a service. While improved efficiency may result in lower GHG emissions per use, a decrease
in cost may lead to increased consumption of the same or another good. This can eat into GHG benefits
from efficiency gains or even counteract them [75]. Such rebound effects can be direct, for example by
allowing a manufacturing plant to use ML-enabled efficiency gains to increase production of the same goods,
thereby (partially) negating emissions savings. Even larger impacts can be expected from more structural
types of rebound effects [10], which occur for example with ML-enabled autonomous driving. Specifically,
autonomous vehicles can improve fuel efficiency, but they may also lead to higher rates of individualized
vehicle travel, potentially increasing overall energy use and emissions if autonomous vehicles are not shared
and/or electrified [76–79].

Given ML’s role as an accelerator of technological development, it may also induce path dependencies
that affect climate change mitigation. For instance, the phenomenon of “lock-in” refers to a scenario where
a particular technology reaches market first and prevents competitors from entering the market [80]. De-
pending on how it is applied, ML may end up entrenching the role of a potentially inferior technology in a
way that prevents other, e.g., low-carbon technologies, from entering the market. For example, the adoption
of autonomous vehicles may ingrain the role of trucks and private cars as the dominant means for trans-
portation, instead of enabling infrastructure and space for less emissions-intensive rail, public transit, and
micromobility options [77]. On the other hand, ML may help break path-dependency effects or create a
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first-mover advantage for a technology that is beneficial for the climate. The potential effects of ML on such
path-dependencies in the context of climate change mitigation should be carefully analyzed.

Another avenue to system-level impact occurs when ML technologies influence broader lifestyle changes
across society, for example by changing the demand for goods and services. A likely negative example here
is in advertising, where ML algorithms such as recommender systems can be used to increase consumption
of goods and services with embodied GHG emissions. Given that ML is fueled by data, its use could also
incentivize increasingly large data infrastructures, which can come with their own carbon footprint and
systemic implications. Various other paradigm-changing applications of ML have highly unclear effects from
a climate perspective – for example, in automatic translation tools, virtual assistants, and augmented/virtual
reality.

These examples demonstrate how important it is to assess the impacts of an ML application at the
system level, rather than only estimate marginal effects, and to design public policy to shape system effects.
Such policy levers include requiring climate impacts to be considered within regulations surrounding ML-
driven emerging technologies [81], and implementing carbon pricing or other mechanisms to incentivize GHG
emissions reductions and avoid rebound effects when ML is applied for efficiency.

A roadmap for assessing and forecasting impacts
Above, we have discussed the extent to which it is currently possible to estimate the GHG emissions as-
sociated with ML. However, holistic and realistic predictions of ML’s impact across several areas of our
framework will require new reporting standards, more data collection, novel measurement methodologies,
and new approaches for developing forecasts and scenarios. Moreover, given the heterogeneous nature of
the capabilities and impacts of different digitalization technologies, ML and other forms of data analytics
warrant separate consideration within impact assessment frameworks for digital technologies. Such efforts
could, for example, build upon and extend existing methods and standards for life-cycle assessment of ICT
(e.g., [82, 83]) to devise approaches that take that heterogeneity into account. We call on the academic fields
of life-cycle analysis, industrial ecology, and others to actively grapple with this task, and have designed the
framework provided in this paper (Figure 1) to lay the groundwork for such methodological development.

To estimate compute-related impacts (Category A of our framework), better access to information will be
central. For example, while it is relatively straightforward to estimate the compute-related GHG emissions
resulting from individual runs of AI systems, the usage patterns in practice are typically opaque. Practitioners
could disclose relevant information such as specifics on computing power needed for system development,
training, fine-tuning, and inference at appropriate temporal resolutions, as well as information about the
type, time, and location of computing infrastructure used. Also informative are specifics about the model
type and size; training requirements for model development (or pre-trained models used); frequency of
training, re-training, and fine-tuning; and average number of inference uses per unit of time. From a top-
down perspective, another important datapoint is the share of the total compute load in data centers that
can be attributed to ML, ideally distinguished by the relevant model life-cycle stages. This information
would allow for a top-down estimate of global compute-related impacts and underlying dynamics, but is
currently not made public by data center operators.

There are currently limited quantitative estimates available about the immediate impacts of ML appli-
cations (Category B). The lack of established methodology poses a central bottleneck here. Research and
practice need to establish how to estimate the marginal and counterfactual benefit that ML could have if
introduced in established processes, including distinguishing between use cases that would not exist without
ML vs. those where ML provides improvements to an existing use case. For such efforts, it will be important
to develop a more fine-grained taxonomy of ML systems and application areas, that can help to generalize
beyond single case studies and also help stakeholders weigh costs and benefits of new projects a priori. Espe-
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cially regarding ML application effects, also obtaining better data will be difficult yet crucial, considering the
potentially large magnitude and uncertainty around those developments. To estimate impacts more broadly
and systematically, reviewing, synthesizing, and generalizing case studies will be important, and where data
cannot be easily obtained, approaches such as stakeholder surveys or expert elicitation might help to fill
gaps.

Perhaps the most important yet most difficult to assess are the system-level impacts (Category C). ML is a
fast-growing enabling technology that has the potential to affect present and future societal and technological
trajectories and thus needs to be appropriately accounted for in forecasting and scenario analysis. ML
can influence many input factors of climate and energy system models, such as efficiency, production and
consumption rates, learning rates, resource constraints, financial assumptions, etc., which makes ML a
“wild card” that could introduce large transformations in different ways. How to appropriately factor that
uncertainty into climate and energy system models is yet to be established. Importantly, ML builds on digital
infrastructure, yet the impact assessment of digitalization is itself at an early stage (especially when it comes
to estimating the impacts of how digital technologies are applied) [82, 83]. Energy and climate models,
such as energy system models developed by the International Energy Agency (IEA) and U.S. Information
Administration (EIA) or the Shared Socioeconomic Pathways used for the IPCC, generally do not explicitly
or systematically account for digitalization, let alone the effects introduced by ML. One exception is perhaps
the inclusion of autonomous vehicles in scenarios, e.g. by the EIA [79]. Our framework can be used as a
starting point, and is sufficiently general to provide a comprehensive framing for incorporating current and
future ML effects within scenario analysis.

Approaches for aligning ML with climate change mitigation
Given ML’s multi-faceted relationship with climate change, many different kinds of approaches from the
public and private sectors are needed to shape its impacts. This will require progress in both climate policy
and AI policy, coupled with algorithmic and hardware innovation and the development of adequate impact
assessment methodologies. Table 1 provides an overview of a number of these strategies.

While not addressing ML explicitly, general climate policy approaches, such as carbon pricing, may be
effective in driving the development and use of ML in a manner that is aligned with climate change mitigation.
Science policy approaches that foster low-carbon technologies may also facilitate uses of ML that enable or
improve these technologies (though they may not necessarily address ML-specific barriers).

To address more technology-specific opportunities and risks, it will be important for climate change to
become a major consideration within AI innovation and deployment policies. This includes (a) promoting the
research, development, and deployment of ML applications that are beneficial to the climate, (b) requiring
transparency and accountability for those use cases that could increase emissions or otherwise counteract
climate change goals, as well as on computational energy use, and (c) employing climate-cognizant technology
assessment for ML use cases that are not traditionally within the realm of climate policy, but where decisions
today may have large implications for future climate impacts. Many of the associated policy approaches in
Table 1 can be developed and implemented starting today.

Further, mandating emissions measurement and reporting for ML use cases – considering the impacts of
both compute and applications – can enable these emissions to be regulated via climate policy approaches,
and further shape the design of targeted policies. Such reporting requirements, however, need to be carefully
designed based on what is feasible to estimate given the state of the measurement research and bureaucratic
burden, based on an understanding of where top-down measurement might suffice to inform regulatory ap-
proaches, and with an eye towards preventing strategic behavior such as the “hiding” of emissions in cloud
compute servers [84]. Climate-related reporting for ML-based systems can potentially be more easily imple-
mented where other AI reporting requirements are planned or in place (such as proposed in the EU [85]).
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Table 1: Levers to reduce the greenhouse gas (GHG) emissions impacts associated with machine learning
(ML) compute and applications.

LeYer t\pe CompXte-related (algorithm, infrastrXctXre) Application-related (immediate, s\stemic)

PXblic sector

Economic
instrXments

Ɣ Implement economy-wide or sector-specific carbon pricing to incentivize emissions reductions and mitigate rebound
effects

Research,
deYelopment &
demonstration
(RD&D)

Ɣ SXSSRUW UeVeaUch iQ eQeUg\-efficieQW ML
Ɣ SXSSRUW RD&D iQ eQeUg\-efficieQW, VSeciaOi]ed, aQd

ORZ-UeVRXUce haUdZaUe
Ɣ SXSSRUW RD&D iQ daWa ceQWeU RSeUaWiRQaO efficieQc\

Ɣ SXSSRUW iQWeUdiVciSOiQaU\ aQd aSSOied ML UeVeaUch fRU
cOiPaWe-UeOeYaQW aSSOicaWiRQV Rf ML

◐ PURYide PechaQiVPV WR adYaQce Whe WechQRORgicaO
UeadiQeVV Rf cOiPaWe-beQeficiaO AI aSSOicaWiRQV (e.g.
WeVWbedV, dePRQVWUaWiRQ SURjecWV, SXbOic SURcXUePeQW
SURgUaPV)

RegXlation ż EPSOR\ a cOiPaWe-cRgQi]aQW WechQRORg\ aVVeVVPeQW OeQV ZiWhiQ AI VWUaWegieV aQd ZheQ UegXOaWiQg ML-dUiYeQ ePeUgiQg
WechQRORgieV

Ɣ Implement clean electricity mandates (e.g., low-carbon
portfolio standards)

Ɣ IPSOePeQW efficieQc\ VWaQdaUdV fRU daWa ceQWeU haUdZaUe
aQd iQfUaVWUXcWXUe

Ɣ Employ regulatory approaches to constrain
sector-specific GHG emissions

◐ RedXce deSOR\PeQW baUUieUV iQ UeOeYaQW VecWRUV aQd
iQdXVWUieV fRU AI aSSOicaWiRQV WhaW aUe beQeficiaO WR Whe
cOiPaWe

Best practices
and standards

◐ DeYeORS iQWeURSeUabiOiW\ VWaQdaUdV fRU cRPPeUciaO ML aSSURacheV WR SUeYeQW ORcN-iQ WR SaUWicXOaU VROXWiRQV SURYideUV
aQd faciOiWaWe a deceQWUaOi]ed VROXWiRQV SURYideU VSace

Ɣ DeYeORS aQd iPSOePeQW VWaQdaUdi]ed PeWUicV fRU
eYaOXaWiQg PRdeO efficac\ WhaW iQcOXde eQeUg\ efficieQc\

Ɣ IPSOePeQW daWa gRYeUQaQce VWaQdaUdV WhaW VSXU
iPSacWfXO ZRUN aQd aUe PiQdfXO Rf SUiYac\ aQd
RZQeUVhiS

Ɣ ReTXiUe PeaQiQgfXO ciYic aQd VWaNehROdeU eQgagePeQW
iQ VcRSiQg, deYeORSiQg, aQd deSOR\iQg ML-dUiYeQ
SURjecWV

ż DeYeORS beVW SUacWiceV aQd V\VWePaWic aSSURacheV WR
Zeigh beQefiWV aQd cRVWV fRU ML aSSOicaWiRQV

Monitoring and
reporting

◐ DeYeORS PeaVXUePeQW PeWhRdRORgieV aQd gXidaQce WR eVWiPaWe aQd UeSRUW ML-UeOaWed GHG ePiVViRQV
◐ MaQdaWe aSSURSUiaWe Oife-c\cOe WUaQVSaUeQc\ aQd UeSRUWiQg Rf GHG ePiVViRQV fRU ML XVe caVeV, iQcOXdiQg bRWh cRPSXWe

aQd aSSOicaWiRQ-UeOaWed iPSacWV

Capacit\-bXilding ◐ BXiOd iQ-hRXVe SXbOic-VecWRU caSaciW\ iQ ML WR faciOiWaWe gRYeUQaQce aQd deSOR\PeQW
Ɣ PURPRWe ML edXcaWiRQ aQd OiWeUac\ aPRQg cOiPaWe-UeOeYaQW eQWiWieV aQd iQ Whe SXbOic VecWRU

◐ IQceQWiYi]e ML ZRUNfRUce VhifWV WRZaUdV
cOiPaWe-RUieQWed eQWiWieV (e.g., Yia SOacePeQW
SURgUaPV)

PriYate sector

Corporate climate
action

◐ AdRSW RUgaQi]aWiRQaO caUbRQ SUiciQg VWUaWegieV WhaW accRXQW fRU bRWh cRPSXWe- aQd aSSOicaWiRQ-UeOaWed ePiVViRQV (e.g.,
ScRSe 1, 2, aQd 3 ePiVViRQV, iQcOXdiQg fURP cORXd cRPSXWe, aV ZeOO aV fURP SURdXcWV aQd VeUYiceV)

Ɣ RedXce ZaVWefXO PRdeO Ue-WUaiQiQg aQd e[ecXWiRQ
Ɣ MaNe eQeUg\ efficieQc\ a ceQWUaO cUiWeUiRQ iQ eYaOXaWiQg

PRdeO efficac\
Ɣ RedXce GHG ePiVViRQV acURVV VXSSO\ chaiQV aQd

SURdXcW Oife c\cOe (iQcOXdiQg ePbRdied ePiVViRQV)
Ɣ Ma[iPi]e eQeUg\ efficieQc\ iQ daWa ceQWeUV aQd VXSSRUW

UeOaWed RD&D
Ɣ ShifW cRPSXWe ORad WR geRgUaShieV aQd WiPeV ZiWh ORZeU

caUbRQ-iQWeQViW\ Rf Whe gUid
Ɣ PXUchaVe ORZ-caUbRQ eOecWUiciW\ aQd iQYeVW iQ eQeUg\

WechQRORgieV WR decaUbRQi]e Whe gUid
ż DeYeORS VWaQdaUdi]ed ML SOaWfRUPV WR faciOiWaWe UaSid

cRPSaQ\-Zide adRSWiRQ Rf eQeUg\ efficieQc\
iPSURYePeQWV

Ɣ AdjXVW bXViQeVV PRdeOV WR aYRid ML aSSOicaWiRQV WhaW
dUiYe GHG ePiVViRQV iQcUeaVeV

Ɣ EQcRXUage ML aSSOicaWiRQV WhaW dUiYe GHG ePiVViRQV
UedXcWiRQV

◐ MeaVXUe aQd eQgage iQ YROXQWaU\ UeSRUWiQg Rf Whe
ePiVViRQV iPSacWV Rf ML SURdXcWV aQd VeUYiceV

Legend
Ɣ PROicieV WhaW aUe Uead\ WR iPSOePeQW RU aOUead\ e[iVW
◐ PROicieV WhaW caQ be deYeORSed WRda\

ż MRUe aQaO\ViV Qeeded WR deYeORS SROicieV
General climate policy levers
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Lastly, we note that ML expertise today is often concentrated among a limited set of actors, raising
potential challenges with respect to the governance and implementation of ML in the context of climate
change. For instance, the use of ML in certain contexts may yield or exacerbate societal inequities, e.g.,
by widening the digital divide [32, 86], through algorithmic bias [87], or by shifting power from public to
large private entities by virtue of who controls relevant data or intellectual capital. Strategies to address
such gaps include strengthening small and medium-sized ML solutions providers, developing incentives such
as placement programs and dedicated education to shift the ML workforce towards public and climate-
relevant entities, developing interoperability standards to prevent lock-in to particular solutions providers,
and developing best practices for when state-of-the-art ML models vs. other (simpler) alternatives should be
used. Developing meaningful civic engagement processes for the scoping, design, and deployment of projects
(and associated data collection and provision efforts) will also be critical to ensuring that ML approaches
are both effective and avoid potential pitfalls [88].

ML’s ultimate effect on the climate is far from predestined, and societal decisions will play a large role
in shaping its overall impacts. This will require a holistic portfolio of approaches across policy, industry,
and academia to incentivize uses of ML that support climate change strategies while mitigating the impacts
of use cases that may counteract climate change goals. Most importantly, society cannot wait to act: with
the rapidly growing prevalence of ML and the increasing urgency of climate change, now presents a critical
window of opportunity to shape ML’s impacts for decades to come.
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