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Shear-induced glass-to-crystal transition in anisotropic clay-like
suspensions†

Vincent Labalette,ab Alexis Praga,ab Florent Girard,ab Martine Meireles,a Yannick Hallez,a

and Jeffrey F. Morrisc

A new numerical framework based on Stokesian dynamics is used to study a shear-induced glass-to-
crystal transition in suspensions of clay-like anisotropically charged platelets. The structures obtained
in quiescent conditions are in agreement with previous Monte Carlo results: a liquid phase at very
short interaction range (high salt concentration), phase separation and a gel without large scale
density fluctuations at intermediate interaction ranges, and glassy states at very large interaction
ranges. When initially glassy suspensions are sheared, hydrodynamic torques first rotate platelets so
they can reach a transient quasi-nematic disordered state. These orientational correlations permit
to unlock translational degrees of freedom and the platelets then form strings aligned with the
velocity direction and hexagonally packed in the gradient-vorticity plane. Under steady shear, platelet
orientations are correlated but the system is not nematic. After flow cessation and relaxation in
quiescent conditions, positional and orientational order are further improved as the platelet suspension
experiences a transition to a nematic hexagonal crystal. Energy calculations and the existence of
residual stress anisotropy after relaxation show that this final structure is not an equilibrium state
but rather a new ordered, arrested state. The transient, nematic, disordered state induced by
shear immediately after startup and unlocking translational degrees of freedom is thought to be an
initial step that may be generic for other suspensions of strongly anisotropic colloids with important
translation-orientation coupling induced by long-range interactions.

1 Introduction

With the fast progress of colloidal synthesis during the last
decades, producing nanoparticles with well controlled shapes has
been increasingly easy. Assembling or organizing these objects at
the meso-scale opens routes for the design of new materials with
interesting mechanical or optical properties such as, for example,
photonic crystals with useful band gaps in the visible or highly
transparent nano-composite barriers.1–5

Forming 3D colloidal crystals for such applications can already
be quite challenging using spherical particles, but it is even more
so for anisotropic colloids. Indeed, during relaxation in quies-
cent conditions, anisotropic shapes typically favor faster assembly
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processes by increasing the probability of short surface-to-surface
distances compared to a system of spherical particles at the same
volume fraction. This tends to promote increased local disorder
and the stabilization of arrested states, such as glasses or gels.6

Applying an external field to a dynamically arrested system is
not uncommon to overcome this difficulty. Classical examples are
electric, magnetic, or hydrodynamic fields. In the present article,
we present simulations showing how a shear-induced transition
from a glassy state to a nematic crystal state can be triggered in a
suspension of anisotropic nano-platelets reminiscent of Laponite
clay. The expression "nematic crystal" is used here to refer to a
3D solid-like colloidal crystal with additional orientational order
similar to that of a nematic phase.

Shear-induced ordering and shear induced crystallization have
been observed since the 1970s for both colloidal hard spheres
and soft charge-stabilized spheres both under steady and oscil-
latory shear.7–12 Under steady shear, colloidal and non-colloidal
suspensions of nearly hard spheres have been shown to exhibit
shear-ordering above the freezing point, with strong concomitant
changes in the self-diffusivity and relative viscosity.13–16. The or-
dered structures were often hexagonal lattices of strings aligned
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with the flow direction appearing for volume fractions φ larger
than 0.5 and shear-melting at φ > 0.6, but also layers aligned
with the velocity-vorticity plane and sliding one over another,
or bundles aligned with the flow direction.17,18 Shear-ordering
has been observed in Brownian suspensions only for Péclet num-
bers greater than one, which highlights the necessity for hydro-
dynamic forces to overcome thermal forces in order to impose
a new structure. At very high shear rates, hydrodynamic inter-
actions may however introduce chaos in the system again and
ordered structures shear-melt into a liquid-like phase.5,16

Hard sphere suspensions actually order more easily under os-
cillatory shear than under steady shear. They can form different
phases such as strings, stacked layers, face-centered cubic lattices
or hexagonal close-packed lattices.10,19–21 Crystallization occurs
in oscillatory shear when the strain amplitude is above the yield
strain.20 Shear-induced structures are stable after flow cessation
in suspensions initially in a glassy state, and not in suspensions
initially in a liquid state.10,17,19 Indeed, an initial arrested state
ensures that colloidal interactions are strong enough to overcome
the disordering introduced by thermal fluctuations in quiescent
conditions.

Although suspensions of hard spheres have been more exten-
sively studied, other types of soft or anisotropic particles can be
ordered by applying a shear flow. Elastic particles,22 microgels,23

droplets,24,25 star polymers,26 or charge stabilized colloids27–29

have been ordered using shear flows with the appearance of crys-
tal, layered, or string phases. Once again, if initially jammed,
these soft systems can form crystalline structures under steady
and oscillatory shear that persist after flow cessation.22,30

Nano-particles with anisotropic shape or interactions are of
special interest first because they are ubiquitous in nature, some
members of this family being proteins, viruses, or mineral col-
loids, and second because their anisotropy can be used to tai-
lor new useful mechanical or optical suspension properties.
Anisotropic particles can arrange themselves at rest following
many ordered structures including those mentioned above and
many others inaccessible to uniform spheres, like nematic states,
plastic crystals, columnar phases, or empty liquids, among other
examples.31–39 Anisotropic colloids generally exhibit a greater
sensitivity to shear than spheres. For example, homonuclear
dicolloids (dumbbells) can exhibit a transition from a layered
structure without positional and orientational order at rest to
what would be consistent with a plastic crystal at moderate shear
rates.40 Even a weak anisotropy has a significant impact on phase
transitions.39

As we are most interested here by systems with shear-induced
structures stable after flow cessation, focus will be put on ini-
tially arrested disordered anisotropic suspensions. Glassy states
exist in two versions in suspensions of non-spherical particles due
to the additional rotational degrees of freedom: plastic glasses
have localized centers of mass and free rotations, and double
glasses have both translational and orientational degrees of free-
dom frozen.41,42 The yielding of such states when shear is ap-
plied is thus quite complex and depends on the particle geometry.
For example, yielding is a two-step process for uniaxial particles
with low aspect ratio, with rotations unlocked first and trans-

lations following. However, it is a one-step process for slightly
more anisotropic particles due to the strong translation-rotation
coupling.42–44 The cage escape mechanism for uniaxial particles
with larger, but still modest (in the range 2-4), aspect ratios has
been shown to be associated more to center of mass motion than
to rotation, qualitatively in line with Onsager’s excluded volume
mechanism for the nematic liquid crystal transition for long and
thin particles.42

In this article, we report on a glass-to-nematic crystal transi-
tion observed in simulations of anisotropic platelet suspensions.
Considering the important role of hydrodynamic interactions in
the shear-ordering process, and in order to measure the me-
chanical response of the suspension during transitions, we use
an extension of Accelerated Stokesian Dynamics (ASD) to re-
solve many-body hydrodynamic interactions in a suspension of
anisotropic colloids. The no less important electrostatic interac-
tions between colloidal platelets are accounted for using a site
model with charge renormalization.

As an example of platelet suspension, we choose a model sys-
tem resembling the Laponite clay as closely as possible. Clays are
widely used in the industry as texturing agents, in particular be-
cause of their capacity to confer a pasty consistence to a complex
fluid at very low volume fraction. For this reason, the clay family
has been studied experimentally extensively, and in particular the
Laponite type which is a synthetic clay quite simpler than natural
ones in many regards. It is rather monodisperse, with a smaller
aspect ratio, and with a well documented chemistry. Although
many Monte Carlo and Brownian dynamics simulations have been
undertaken so far, mainly in quiescent conditions, we believe this
work to be a first attempt at including both many-body hydro-
dynamics and surface charge renormalization in simulations of
sheared clay-like suspensions.

In this paper, the numerical method is first presented. The
structure of a suspension of clay-like platelets in quiescent condi-
tions is then reported as a function of volume fraction and electro-
static interaction range. The shear-ordering of an initially glassy
sample is then demonstrated and the mechanisms at play during
the phase transition are discussed. In particular, it will be shown
that a transition from a glassy state to a nematic crystalline or-
der can be obtained in a two-step process with shear providing
incomplete ordering at first, and with subsequent relaxation in
quiescent conditions to reach the crystal in a second stage.

2 Simulation method

Simulating rigorously a flowing suspension of anisotropic charged
colloids at finite density is a formidable task owing to the geomet-
rical complexity and to the many-body nature of hydrodynamic
and electrostatic interactions. More tractable simulations can be
envisaged if some aspects of the problem can be coarse-grained
while keeping the essential physics. The next two sections detail
the numerical strategies used to compute many-body hydrody-
namic interactions and to coarse-grain electrostatic interactions
while still accounting for charge renormalization and respecting
the reduced temperature of a realistic Laponite system.
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2.1 Hydrodynamics

The simulation technique used in this work is based on the
Accelerated Stokesian Dynamics (ASD) method for Brownian
suspensions of spheres. In brief, because the Reynolds and
Stokes numbers are small in a colloidal suspension, the transla-
tional/rotational velocity of each sphere UsUsUs is related to the Brow-
nian and colloidal interaction forces (also including the torques,
in a compact notation) Fb

sFb
sFb
s and F p

sF p
sF p
s and to the stresslets SsSsSs they

experience by the overdamped Langevin equation

−RRR ·
[

UsUsUs−u∞
su∞
su∞
s

−E∞E∞E∞

]
+

[
Fb

sFb
sFb
s +F p

sF p
sF p
s

−XsXsXsF
p

sF p
sF p
s

]
=

[
000
SsSsSs

]
, (1)

where XsXsXs is the generalized configuration vector of the spheres,
u∞

su∞
su∞
s is the velocity of the imposed background shear flow at the

center of each sphere, E∞E∞E∞ is its associated rate of strain, and

RRR =

[
RFURFURFU RFERFERFE

RSURSURSU RSERSERSE

]
(2)

is a grand resistance matrix giving the hydrodynamic forces,
torques ("F" subscript representing the combined force/torque)
and stresslets ("S" subscripts) exerted on the spheres as a function
of the background flow and of the flow perturbations associated
to motion of the spheres ("U" and "E" subscripts). In essence, the
core of the ASD method is to solve (1) self-consistently and with-
out inverting the large resistance matrix so the solution UsUsUs and
the configurations obtained by solving dXsXsXs/dt = ẊsXsXs =UsUsUs are such
that the fluctuation-dissipation theorem is respected. ASD can be
considered as an extension of Brownian dynamics in which many-
body hydrodynamic interactions are accounted for consistently.
More details are given in the original articles.45,46

This method cannot be used directly to simulate suspensions
of plate-like colloids because the resistance functions for interac-
tions of particles are available only for spheres and certain ellip-
soids.47 In this work, anisotropic colloids are thus coarse-grained
as non-deformable clusters of spheres (see Fig. 1). The motion
of each individual sphere is obtained by solving (1) combined
with rigid body constraints for the spheres belonging to the same
cluster.48–50 Denoting UcUcUc the translational/rotational velocities of
clusters with configuration XcXcXc and u∞

cu∞
cu∞
c the translational/rotational

background flow velocity at the center of the cluster, the con-
straints can be written

UsUsUs−u∞
su∞
su∞
s =ΣΣΣ

T · (UcUcUc−u∞
cu∞
cu∞
c )−

[
E∞E∞E∞ · (XsXsXs−XcXcXc)

000

]
, (3)

where ΣΣΣ
T is obtained by assembling the smaller tensors relating

the velocity of each sphere s to that of the cluster it belongs to c

ΣΣΣ
T
s∈cs∈cs∈c =



1 0 0 0 (XsXsXs−XcXcXc)3 −(XsXsXs−XcXcXc)2

0 1 0 −(XsXsXs−XcXcXc)3 0 (XsXsXs−XcXcXc)1

0 0 1 (XsXsXs−XcXcXc)2 −(XsXsXs−XcXcXc)1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

(4)

Fig. 1 Coarse-grained anisotropic plate-like colloid with aspect ratio 7.3
(AR7). The thickness is h = 2a with a the radius of the spheres and
the diameter D = 2R corresponds to 7 spheres plus 6 small gaps of 0.05a
between them. Blue and white spheres carry partial effective charges
Zrime and Zfacee, respectively.

The forces/torques exerted on clusters are related to the
forces/torques exerted on the spheres by

FcFcFc =ΣΣΣ ·FsFsFs. (5)

Using (3) in (1) and multiplying the first line of this equation
by ΣΣΣ yields the evolution equation relating the cluster transla-
tional/angular velocity UcUcUc to the forces exerted on each sphere in
the suspension

−Rc
FURc
FURc
FU · (UcUcUc−u∞

cu∞
cu∞
c )+ΣΣΣ ·RFURFURFU ·E∞E∞E∞ · (XsXsXs−XcXcXc)

+ΣΣΣ ·RFERFERFE : E∞E∞E∞ +ΣΣΣ · (Fb
sFb
sFb
s +F p

sF p
sF p
s ) = 000,

(6)

where Rc
FURc
FURc
FU =ΣΣΣ ·RFURFURFU ·ΣΣΣT appears as a resistance tensor associated

to the hydrodynamic interactions between clusters. This equation
is solved in a manner similar to that used for ASD for spheres after
Rc

FURc
FURc
FU has been computed. Additional details can be found in Refs.

48–51.

Note that it is also possible to force an almost rigid body motion
by linking spheres belonging to the same platelet with springs.
This choice was used by Kawabata et al. to simulate the struc-
ture of a plate-like particle suspension under shear by solving the
Navier-Stokes equation directly and coupling it to a discrete ele-
ment method for the particles.52

2.2 Electrostatics

The structure and dynamics of colloidal suspensions strongly de-
pend on electrostatic interactions. Here, the effect of anisotropic
interactions is introduced by ascribing different partial charges to
the individual spheres making up the plate-like particles.

For the model plate-like particles with aspect ratio 7.3 (AR7)
used in this work, 18 spheres are located on the "rim" and carry
Zrim positive charges each, and 19 spheres are considered to con-
stitute the "faces" and carry Zface negative charges each. Electro-
static interactions between two platelets i and j are then modelled
using a sum of hard-sphere Yukawa potentials

Fc,i jFc,i jFc,i j = ∑
k∈i

∑
l∈ j

ZkZl lBkT
[

ea

1+κa

]2
e−κrkl

1+κrkl

r2
kl

r̂̂r̂r, (7)
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Fig. 2 Symbols: "exact" interaction forces computed by solving the
3D Poisson-Boltzmann equation for Laponite platelets for κ−1 = 1 nm.
Lines: force model (7) obtained by optimization of Zrim and Zface. d is
the distance of closest approach between platelets. Colors on the platelet
images are color maps of the electrostatic potential field.

where Zk and Zl are either Zface or Zrim depending on the positions
of spheres k and l, lB = e2/4πεkT is the Bjerrum length, e is the
unit charge, kT is the thermal energy, κ−1 is a screening length,
rkl is the distance between the centers of spheres k and l belonging
to platelets i and j respectively, and r̂̂r̂r is the unit vector along this
line.

The Yukawa form and the additivity approximation are, in prin-
ciple, valid only for weak charges and large separation distances.
However, this has been shown to be a reliable form for more con-
centrated suspensions and strongly charged particles provided the
charges and the screening length are suitably redefined. This pro-
cedure known as charge renormalization can be performed using
different strategies.53–58 Here, the effective partial charges Zface
and Zrim to be used in model (7) are fixed so the resulting scaled
force magnitude FcR/kT is equal to the one that would be applied
on Laponite platelets at the same separation distance. This con-
straint ensures that the force balance between electrostatic and
thermal effects is the same in the model AR7 suspension and in a
Laponite suspension. Formulated differently, the reduced tem-
perature T ∗ = kT/FcR is the same in both suspensions. More
precisely, T ∗ is matched between Laponite and AR7 models in
face-face and face-rim interaction configurations simultaneously.
The former is important for glassy suspensions dominated by the
strong net charge provided by faces and the latter is the major
attractive interaction configuration typical of the House of Cards
(HoC, see Fig. 4) structure often reported for clay gels.

Reference interaction force profiles have first been computed
using the Laponite geometry and surface charge distribution. Two
flat, cylindrical particles with radius R = 15 nm and thickness
h = 1 nm were fixed in a large domain in face-face or face-rim
configuration (see Fig. 2). They carried 70 positive charges along
the rim and 350 negative charges on each face. These charges
were smoothed as uniform surface charge densities σ on the cor-
responding faces. The non-linear Poisson-Boltzmann (PB) and

Laplace equations (using ∆ = ∇ ·∇){
∆ψ = κ2

r sinhψ

∆ψs = 0
(8)

were solved in the fluid and solid phases, respectively, to obtain
the electrostatic potential fields ψ and ψs scaled by kT/e. In (8),
κr =

√
8πlBnr is an inverse screening length involving the salt den-

sity nr at a point where ψ = 0. The coupling between these equa-
tions is enforced on the surface of the particles through the Gauss
condition

(εEEE− ε
sEsEsEs) ·nnn = σ (9)

where E(s)E(s)E(s) is the electric field computed from ψ(s) and nnn is the unit
vector normal to the surface of the colloids. The excess osmotic
stress tensor

τττ =−2nrkT (coshψ−1)III + ε

[
EEE⊗EEE− 1

2
EEE2III
]
, (10)

is then used to obtain the force exerted on colloids of surface S

FcFcFc =
∫

S
τττ ·nnndS. (11)

The numerical solution of the boundary value problem (8)-(9)
and the integration (11) were performed with a level-set method
described in Refs. 59–61. These calculations can be undertaken
at high surface charge density because the non-linear PB equation
is solved. The limitations are those of the PB theory: results are
valid only in the weak electrostatic coupling limit and when the
finite size of ions is unimportant. In practice (but this is not a
rigorous rule) these conditions are often met in suspensions with
monovalent ions at concentrations lower than 0.1 M.

The face-face and face-rim scaled force profiles obtained from
these simulations are then fitted simultaneously with model (7)
by adjusting the effective partial charges (see Fig. 2). Values
Zface = −15.39 and Zrim = 5.96 were found for κ−1 = 1 nm. The
total net charge is thus −185e. In principle, effective charges
depend on the screening length but they were kept constant
throughout this work for simplicity.

3 Quiescent Structure
In the weak electrostatic coupling limit, the quiescent structure
of anisotropic platelet suspensions is determined by four dimen-
sionless parameters, namely the volume fraction φ , the aspect
ratio (AR) of platelets D/h, the inverse electrostatic interaction
range κD, and the reduced temperature T ∗. As detailed in the
previous section, the aspect ratio and T ∗ have been fixed with
the aim of obtaining a coarse-grained model of platelets as close
as possible to Laponite. Hence the phase diagram of AR7 sus-
pensions (D/h ' 7) is presented in the (φ ,κD) plane in Fig. 3a.∗

The different structures that have been observed under quiescent
conditions are detailed shortly hereafter.

For interaction ranges large compared to the mean inter-

∗Note that the volume fraction of a suspension of coarse grained platelets is defined
throughout this paper as the volume of the spheres constituting the platelets divided
by the total volume of the simulation box.
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(a) A Repulsive glass, B Phase separation, C Equilibrium gel, D Liquid-like structure.
Red star: non-connected glass (Fig. 3c); blue triangles: bonded glass with particles
in contact with OC configurations; red square: structure with particles mainly in OC
configuration (Fig. 3d); green diamonds: particles in both OC and HoC configu-
rations; purple crosses: HoC configurations (Fig. 3e 3f); black circles: liquid-like
phase (Fig. 3g).

(b) Initial spatial configuration. (c) κD = 1.46. Wigner glass (red
star in Fig. 3a, region A).

(d) κD = 7.3. Mainly OC (red
square in Fig. 3a, region B).

(e) κD = 14.6. Mainly HoC (purple
cross in Fig. 3a, region B).

(f) κD = 29.2. Mainly HoC (purple
cross in Fig. 3a, region B).

(g) κD = 73. Liquid-like structure
(black circle in Fig. 3a, region D).

Fig. 3 "Phase diagram" of a suspension of AR7 particles (a) and struc-
tures at φ = 0.05 and different interaction ranges (b)-(g). Non-bonded
platelets appear in white and platelets sharing some bonds are represented
with a unique non-white color.

Fig. 4 Sketches of the house-of-card (HoC, left) and overlapping coin
(OC, right) local configurations.

particle distance, i.e. in the electrostatically concentrated regime,
the incoherent intermediate scattering function remains very high
at all times (F > 0.96), indicating strongly arrested states and the
short-time diffusion coefficients Ds remain quite high and inde-
pendent of aging time tw (see Fig. 3 and 4 in SI). This signature
is very reminiscent of the "rattling in the cage", and therefore sys-
tems in region A in Fig. 3a are classified as glassy. Examining the
details of the microstructure reveals the existence of two types
of glasses. At low volume fraction, the structure is a classical
Wigner glass with no inter-particle contact. Particles are trapped
in electrostatic cages by the repulsive long-range interactions due
to their large negative net charge (Fig. 3c). At sufficient volume
fractions, the suspension is still globally repulsive (see osmotic
pressure and structure factors in Fig. 5 and 6 in SI) but some
platelets are close enough for face-rim attractions to rotate them
and generate some bonds. Examining radial and angular distri-
bution functions (Fig. 9 and 10 in SI) reveals that these bonds are
mainly of the overlapping coin type (OC, see Fig. 4 for a sketch).
In these physico-chemical conditions, the edge-face attractions
are thus likely to reduce the overall osmotic pressure significantly
compared to a system with the same geometry but without charge
anisotropy. These two types of glasses are very reminiscent of the
non-bonded and bonded glasses identified by Zaccarelli and Poon
for dense suspensions of spheres with short-range attractions.62

For the present anisotropic platelets, the short-range character of
attractions is due to the large charge anisotropy that makes inter-
actions repulsive if platelets are too far away. Note that the large
ranges of interactions necessary to obtain glasses in the present
simulations cannot be reached in aqueous Laponite suspensions,
even after deionization, due to the presence of a significant con-
centration of free counterions. Other solvents like DMSO can be
used to obtain large enough interaction ranges.

In the electrostatically dilute case (κD > 40 here), short range
interactions are unable to hinder the thermal motion of platelets
significantly and a fluid-like phase is observed as expected (see
radial and angular distribution function in Fig. 19 in SI). Platelets
are rather randomly oriented and they do not bond within the
simulation time as revealed by their white color in Fig. 3g. Note
that van der Waals forces not included here will often have an
important role for these high-salt conditions and that aggregation
is likely to occur in practice.63

The influence of the charge anisotropy of the platelets is most
important at intermediate interaction ranges. For 5 < κD < 40, an
aggregated structure is always obtained (see the light-blue net-
work in Fig. 3d– 3f). The short-time diffusion coefficients are

Journal Name, [year], [vol.],1–18 | 5



decreasing with aging time (Fig. 13 in SI), indicating a progres-
sive strengthening of bonds. The osmotic pressure is either very
low at κD = 7.3 or oscillating around zero for larger interaction
ranges as a result of the combined action of electrostatic attrac-
tions and hard core exclusion (Fig. 5 in SI). These systems are
therefore attractive and aging. There is no global orientational
order, as indicated by the nematic order parameter that is below
0.25. In the dilute region B, the structure factor keeps increas-
ing with time at small wavevector q (corresponding to large-scale
structure) whereas it saturates in the more concentrated region C
(see Fig. 12 in SI). Region B therefore corresponds to phase sepa-
ration, while region C is a percolated gel phase without large scale
density fluctuations at least on the time scale of the simulations.
The same behavior was observed by Ruzicka et al. in Laponite
suspensions.64 The transition is found here at φ ' 0.08 whereas
for Laponite is was found around φ ' 0.004. The comparison may
be clearer using an effective volume fraction φeff in which the
effective volume of each platelet is assumed to be a sphere of ra-
dius R+ κ−1. In the experiments, the B-C transition is around
φeff ' 2.2 and in the present simulations it is somewhere between
0.5 and 2. In both cases this transition appears when φeff is close
to 1, which is the critical volume fraction above which double lay-
ers overlap in the randomized structure at initial time so aggre-
gation can take place almost instantaneously, without significant
particle diffusion. In this case, structural arrest occurs rapidly,
such that the structure factor appears to be independent of time.
On the other hand, at φeff < 1 particles have time to diffuse be-
fore attractive electrostatic interactions trigger aggregation. This
takes place on considerably longer time scales and leads to the
growth of (eventually percolated) aggregates, with an associated
increase of the structure factor at low q with time. Within the per-
colated regions B and C, the most frequent platelet arrangement
is found to be the HoC configuration that has been classically re-
ported for clays. Near the limit with glasses (κD ' 4.5), some
OC (overlapping coin) configurations are mixed with HoC at high
volume fraction, and these can even be the only type of contact at
low volume fraction (Fig. 3d). These microstructural details can
be verified with the radial and angular correlation functions and
with the bond angle distribution reported in Fig. 14, 15, 17 and
18 in SI). The main parameters used to understand the nature
and the microstructure of phases A, B, C, and D are summarized
in Table 1.

The structures obtained without shear flow are in good agree-
ment with those found in previous experimental and numerical
studies. Ruzicka and coworkers considered plate-like colloids
with a purely attractive force model.64 They also detected two
types of attractive systems with either phase separation at low
density or equilibrium gel (or empty liquid) at high density. In
their MC simulations of anisotropically charged platelets, Del-
horme et al. reported attractive systems ("cluster fluid" and gel)
at intermediate interaction range with a transition from OC dom-
inated contacts to HoC dominated contacts when increasing the
volume fraction.65 They did not observe a glass as they did not
consider very long range interactions. One phase observed by
these authors and absent here is the liquid crystalline smectic B
phase. In their work, it is obtained at high charge anisotropy

and in a limited region of interaction range and volume fraction.
Further comments on this phase will be proposed hereafter. Or-
dered suspensions of plate-like particles such as columnar phases,
or BCC or hexagonal crystals, have been reported at volume frac-
tions higher than those investigated here by Delhorme et al.66

with anisotropically charged clay-like platelets, and in purely re-
pulsive nanodisk suspensions by Jabbari et al.35,36. Crystalline
order has not been observed at the moderate volume fractions
considered here in quiescent conditions, but a glass-to-crystal
transition can be triggered by application of shear as shown in
the next section.

4 Shear-induced ordering
The strength of a shear flow is characterized by the shear rate
γ̇, with the associated time scale γ̇−1. Brownian motion is char-
acterized by a pair relative diffusion coefficient 2D0 where D0 =

kT/6πη0a is the single particle self-diffusion coefficient at infinite
dilution. A time scale associated to Brownian motion can thus be
defined as τB = a2/2D0. The ratio of this Brownian time scale and
the shear time scale defines the Péclet number Pe = 3πη0a3γ̇/kT .
Denoting as FE the order of magnitude of electrostatic forces, a
time scale for migration due to these forces is τE = η0R2/FE . We
thus also introduce a Mason number Ma = η0R2γ̇/FE as the ratio
of the electrostatic migration time scale and the shear time scale.
In what follows Ma = 1 and Pe� 1 when shear is applied, unless
specified otherwise.

Shear has been applied to all the structures presented in the
previous section. It has been applied in particular to the gel state
most often observed in rheology experiments involving clay sus-
pensions. When subject to a shear flow, these percolated struc-
tures are increasingly broken and eroded as the shear rate in-
creases. The classical shear-thinning and thixotropic behavior
well known for clay suspensions has been observed in the present
simulations but it will be the subject of another article. Here
we rather focus on the observation of shear-ordering for initially
glassy suspensions. Therefore, in the next two sections, we report
the structure evolution during shear and after flow cessation for
an AR7 platelet suspension at φ = 0.05 and κD = 1.46.

4.1 Shear period

Shear-induced ordering has been evidenced using the following
simulation protocol. A first reference simulation without shear is
performed for more than 80 units of Brownian time τB, until an
arrested state is reached (green curve in Fig. 5 and Fig4Green
movie in SI). In the second simulation, a first relaxation period
in quiescent conditions is imposed for 25τB in order to obtain the
glassy state. At this point, this simulation is identical to the first
one. Then shear is applied for 30 units of time γ̇−1 (blue curve in
Fig. 5), and after the shear period the suspension is left to relax
again in quiescent conditions for 30 additional units of time τB,
until a new arrested state is reached. The last relaxation period
will be referred to as the recovery period. A movie (Fig4Blue)
of this relaxation/shear/recovery sequence corresponding to the
blue curve in Fig. 5 is provided in SI.

Throughout this article, shear is applied at Pe� 1 so the flow-
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observable region A region B region C region D
Ds(tw) constant and high ↘ with tw ↘ with tw not measured

Osmotic pressure high,↗ with φ ' 0 ' 0 ' 0
S(q→ 0) stable ↗ with tw stable stable

bonds no bonds or a few clusters percolation percolation no bonds
structure homogeneous heterogeneous homogeneous homogeneous and g(r)' 1

Table 1 Main structural and dynamical parameters used to characterize phases A, B C, and D in Fig. 3a. Ds(tw) denotes the aging time dependence
of the short-time diffusion coefficient. S(q→ 0) represents the low wavenumber limit of the structure factor.
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Fig. 5 Main figure: evolution of the nematic order parameter Snem in
quiescent conditions following shear-induced ordering (blue line) or with-
out shear-induced ordering (green dashed line). Inset: evolution of Snem
during shear. Shear is applied at Pe� 1 so the duration of the shear
period is virtually zero on the scale of the main figure.

ing state is governed solely by hydrodynamic and electrostatic
effects and can be described in terms of Ma only, neglecting Brow-
nian motion. Shear-induced ordering has been observed for sim-
ulations at Ma = 1/4, 1, and 4, and not in simulations at Ma = 100
or Ma→ ∞ (zero charge).

The nematic order parameter Snem provided as a function of
time in Fig. 5 is already a good evidence of shear-induced order-
ing. It is the largest eigenvalue of the ordering tensor

Qi j =
1
2
〈3nin j−δi j〉, (12)

where brackets denote a particle average and nnn is the unit vector
normal to each platelet. Snem is comprised between 0 for random
orientations and 1 for perfectly aligned platelets. In the glassy
state considered here, Snem is never larger than about 0.5 with-
out shear. Immediately after the application of shear, it increases
sharply as the flow tilts every platelet and then it relaxes progres-
sively to a value of 0.5, similar to the non-sheared suspension. At
this point, it seems shear did not help to structure the suspen-
sion. However, Snem increases again just after flow cessation to
reach a value larger than 0.8 indicating the appearance of signifi-
cant nematic order. The mechanisms behind this intriguing tran-
sition are detailed hereafter, in particular how the shear-induced
incomplete correlations can unlock crystallization in the recovery
period.

Fig. 6 Sketch introducing the (x,y,z) frame, the (x,y′,z′) frame, and the
angle θx given the projection n⊥n⊥n⊥ of a vector nnn on the (x,y) plane. Indices
1, 2, and 3 will be used for directions x, y, and z, respectively.

The lack of any positional ordering before shear is applied can
be verified in Fig. 7a and 8a, while a very distinctive positional
order is observed at the end of the period of shear (see Figs. 7b
and 8b). From a quick look at the snapshots in Fig. 7b, the most
striking feature is the appearance of a tilted hexagonal pattern
in the gradient-vorticity plane. The tilt angle appears in order
to accommodate the imposed periodic boundary conditions. To
analyse this structure, a frame (x,y′,z′) based on the symmetry
axes of the hexagonal pattern is introduced. It is obtained with a
15◦ rotation of the (x,y,z) frame around the x axis (see Fig. 7b).

A statistical characterization of the structure under steady
shear is presented in Fig. 8b. The hexagonal structure in
the gradient-vorticity plane is indeed confirmed with very clear
Bragg-like spots at distances 2.2R and 2.2R

√
3 (see Fig. 8b-

center). Because strings at different y positions advance at dif-
ferent velocities in the shear flow, there are no positional corre-
lations in the x direction across different strings as indicated by
the white strips at z′ = 2.2R in Fig. 8b-right and at y′ = 2.2R

√
3

in Fig. 8b-left. Positional correlations do exist within one string
though, as revealed by the spots at y = y′ = 0 in 8b-left. The two
x-separations with highest probability correspond to spots 2 and
5 and are associated to distances 2R and 4R in the flow direc-
tion. They correspond to just-touching platelets, e.g. those in
green in Fig. 7b. For these specific locations, colloids are ori-
ented according to two almost equally preferred relative angles
of about 5◦ and 60◦ (Fig. 9a). Two touching platelets slightly fa-
vor the 60◦ configuration (spot 2) and two platelets in the same
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(a) Structure after relaxation in quiescent conditions only (green curve in 5
at t > 80).

(b) Structure at the end of the period of shear (inset of Fig. 5 at γ̇t > 20).

(c) Structure after relaxation in quiescent conditions following a period of
shear (blue curve in 5 at t > 80).

Fig. 7 Microstructure seen in the x− y (velocity-gradient, left) and y− z
(gradient-vorticity, right) planes. The tilted (x,y′,z′) frame is indicated in
7b and 7c. Non-bonded platelets appear in white and platelets sharing
some bonds are represented with a unique non-white color.

string but separated by a third platelet slightly favor the 5◦ con-
figuration (spot 5). The other most probable distances along the
x direction are given by spots 1 and 4 in Fig. 8b-left., with corre-
sponding distances 1.6R and 3.2R. For these platelets, the relative
angle distribution function is sharply peaked about 0◦ (Fig. 9a).
This corresponds to parallel platelets locked in OC configuration
in strings, for instance the light blue one visible at the bottom of
Fig. 7b. Spot 3 involves a distance of 2.6R and no particular angu-
lar correlation (data not reported). It is believed to be associated
with defects. So to summarize, within one string two consecutive
platelets are most of the time just touching and have a relative
angle of 60 degrees. A less frequent configuration also exists,
namely a string of parallel platelets in overlapping coin configu-
ration. These two types of configurations can be easily observed
in the Fig4Blue movie provided in SI.

Although positional correlations in the x direction are not ob-
served between different strings, some strong orientational corre-
lations are found: platelets arrange either at 10◦ or at 60◦ with
equal probability as shown in Fig. 9b. At first, the 60◦ angle
might be thought to be an effect of electrostatic rim-face attrac-
tions similar to what leads to the HoC configuration, but the fact
that this angle disappears immediately after flow cessation clearly
indicates that it is induced at least partly by hydrodynamic inter-
actions. The 10◦ preferred relative angle can be the signature of
either (i) correlations between the OC strings mentioned above
and other disconnected strings or (ii) a sort of slightly degener-
ate 0◦ configuration. Indeed, long range face-face electrostatic
repulsions actually favor a nematic state as will be shown here-
after, but a perfect 0◦ angle between two neighbouring platelets
could be prevented by local, less intense, rim-rim repulsions in
this dense system.

Besides the two-platelet orientational correlations commented
above, the one-platelet orientation probability is also of interest.
One effect of the shear flow is to bring almost every platelet nor-
mal vector near the gradient-vorticity plane. Therefore, platelet
orientations can be described quite well with the angle θx =

atan2(ny′/nz′) between 0◦ and 180◦, the nematic state correspond-
ing to θx = π/2. Due to the symmetries of the system, considering
the [0,π/2] range is enough. The probability P(θx) of observing
a platelet with orientation θx is reported in Fig. 10. At the end
of the first relaxation period in quiescent conditions (Snem ' 0.4
at t = 25τB in Fig. 5), a broad distribution of angles is observed
with most platelets between 60◦ and 90◦. At the end of the pe-
riod of shear described above (Snem ' 0.5 at γ̇t = 30 in the inset
of Fig. 5), the angle distribution shows a sharp peak between 80◦

and 90◦ and a wider peak around 30◦. This is consistent with the
60◦ relative angle between two platelets mentioned above. This
figure reveals that although the global nematic order is not really
high under shear, the suspension is actually very orientationnally
ordered.

Ordering induced by shear has been demonstrated above, but
at this point the ordered structure is not perfect. Positional cor-
relations in the gradient-vorticity plane and along each string are
obtained, but there are no positional correlations across different
strings and the structure is not nematic. Quite strikingly, the next
section will reveal that this puzzling structure evolves towards a
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(a) Structure after relaxation in quiescent conditions only (green curve in 5 at t > 80).
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(b) Structure at the end of the period of shear (inset of Fig. 5 at γ̇t > 20).
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(c) Structure after relaxation in quiescent conditions following a period of shear (blue curve in 5 at t > 80).

Fig. 8 Radial distribution function x− y′ (left), y′− z′ (center), and x− z′ (right) planes. The (x,y′,z′) frame is defined as explained in the text. The
y′− z′ plane is the gradient-vorticity plane.
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Fig. 9 Probability of relative angles between platelets at the end of the period of shear (γ̇t = 30 in the inset of Fig.5). The relative angle between two
platelets with unit normal vectors nnn and mmm is arccos(nnn ·mmm).
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Fig. 10 Probability of orientation angle θx at the end of the first relaxation
period in quiescent conditions (t/τB = 25 in Fig. 5), at the end of the
period of shear (γ̇t = 30 in the inset of Fig. 5), and after full relaxation
after flow cessation (t/τB = 80 in Fig. 5). Arrows describe the chronology
of the distribution evolution.

nematic hexagonal crystal after flow cessation.

4.2 Relaxation after shear

The structure obtained after flow cessation and after subsequent
relaxation at quiescent conditions is shown in Fig. 8c. The hexag-
onal structure in the gradient-vorticity plane remains unchanged
(8c-center). The white strips in g(r) that were observed under
shear at y′ = ±2.2R

√
3 in the x− y′ plane are replaced by clear

spots (8c-left) and those at z′ = ±2.2R in the (x,z′) plane now
contain intense spots at (x,z′) = (0,±2.2R) and fainter ones at
(±2R,±2.2R) (see Fig. 8c-right). The flowing hexagonal struc-
ture of strings thus evolves into a hexagonal crystal after flow
cessation.

Concerning orientational order, a first look at the snapshot in
Fig. 7c or at the Fig4Blue movie in SI reveals the existence of
two regions. In the larger one, outside the red triangle in Fig. 7c,
an almost perfect alignment of the director of the platelets along
the y′ direction is observed after flow cessation. In the smaller
region identified by the red triangle, the suspension is crystalline
but flow-induced orientational correlations could not relax com-
pletely. As a result, the volume-averaged nematic order parame-
ter in the simulation domain is only 0.8 in Fig. 5.

The one-platelet orientation probability at the end of the re-
covery period now shows a largely dominating peak for angles
between 75◦ and 90◦. The secondary peak at 30◦ that was ob-
served under shear is much smaller and around 40◦ after flow
cessation. More specifically, the two-platelet relative orientations
of particles within the same string no longer show the peak at 60◦

anymore. The preferred orientation is now clearly lower than 10◦

(see the evolution of curves for spot 2 and 5 between Fig. 9a and
11a). The string locked with OC contacts also survives flow ces-
sation (spots 1 and 4 in the same figure). Platelets belonging to
the same string thus share a common orientation vector. The pic-
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Fig. 11 Probability of relative angles between platelets after flow cessa-
tion and relaxation in quiescent conditions (t/τB = 80 in Fig. 5).

ture is slightly more complicated in the gradient-vorticity plane.
A relative angle of 10◦ is slightly preferred overall, after flow ces-
sation, and clearly preferred for spot 3, i.e. for platelets sharing
the same plane. There are, however, still a fair number of 50−60◦

relative angles between platelets belonging to different y′ planes.
They correspond to the small contribution to P(θx) around 40◦ in
Fig. 10, and are associated to the non-nematic region in the red
triangle in Fig. 7c.

To our knowledge, obtaining order by relaxation from a flow-
ing system has only been reported by Butera and coworkers67 for
a suspensions of charged colloidal spheres at φ = 0.48. They sus-
pected that this transition was made possible by a certain degree
of latent order in the flowing suspension although they could not
detect it in their SANS measurements, and thus the mechanism
behind the transition was not elucidated. A direct comparison of
the present simulations with their results is impossible because
our colloidal system is quite different from theirs but, in the fol-
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Fig. 12 Interaction energy change ∆V (scaled by kT ) for a shift of one
platelet in the crystal phase.
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Fig. 13 Energy map for a rotation around x or z′ of one platelet in the
crystal phase.

lowing, we will confirm the speculation of the influence of latent
order at least qualitatively and give a detailed description of the
transition mechanisms for the present anisotropic system.

The evolution of the shear-induced structure after flow cessa-
tion can be discussed in the light of the few interaction energy
calculations described hereafter. A perfect hexagonal crystalline
phase corresponding to the radial distribution function reported
in Fig. 8c and with the director of every platelet aligned along y′

is now considered as a reference state. The map of the interaction
energy change ∆V associated to a shift of the central platelet in
directions y′ or z′ is computed with model (7) and reported in Fig.
12. It confirms that the hexagonal crystalline positional order is
indeed an energy minimum.

The effect of a rotation of this platelet either around the x axis
or around the z′ axis is reported in Fig. 13. Rotations around
x show that the perfect nematic state is only a local minimum,
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and that a 60◦ angle of one platelet with respect to a perfectly
nematic surrounding is slightly preferred. The energy barrier be-
tween these two minima is however less than 2kT so one can
expect both of them to be encountered. This explains the pre-
ferred angles reported in Fig. 11 with two main peaks around 10
and 50−60 degrees. However, it does not really explain why the
nematic order increases after flow cessation. Indeed, the shear
flow imposes frequent 60◦ configurations (Fig. 9 and snapshot
7b) and if they are energy minima the strong increase of nematic
order after flow cessation reported in Fig. 5 should not have been
observed. The dependence of the energy profile in Fig. 9 to small
modifications of the reference state has thus been tested (results
not reported here) and they reveal that if one or two neighbours
of the central platelet are rotated around x by 60◦ as would be
found at the boundary of the red triangle in Fig. 7c-right, the
energy profile of Fig. 13 can show a global minimum at θx = 0.
This means that it is probably unlikely to have large domains with
perfect nematic state. Rather, some defects are necessary to pro-
mote alignment in their surrounding. Unfortunately, the size of
the simulated domain is not large enough to confirm this specu-
lation. This question deserves further investigation.

Trial rotations around z′ show that the perfect nematic state
θ ′z = 0 is actually also a local minimum. A platelet with a director
close to the x direction (θz′ = 90◦) in a crystal with the normal of
every other platelet along y′ actually involves less energy. It can
be understood as the latter configuration involves more face-rim
attractions. However, as discussed above, the shear flow tends to
first align every platelet with a normal close to y (θz′ = 90◦) as
shown by the overshoot of Snem in the inset of Fig. 5. Platelets
are then largely expected to remain in this local minimum as the
energy barrier to escape it is more than 20kT . The hexagonal crys-
tal with significant nematic order that was obtained after shear
is thus actually not an equilibrium structure. It corresponds to
a local energy minimum, or arrested state, whose accessibility
is determined by the hydrodynamic effects experienced during
the shear phase: the hexagonal crystal pattern is imprinted by
the hexagonal array of strings due to the flow-induced symmetry
breaking, and the cage escape in the initial glassy state is made
possible by the application of large hydrodynamic forces at Pe and
Ma greater than unity.

At this point it is worth discussing similar structures observed
previously. A hexagonal crystal has been mentioned only in the
Monte Carlo simulations of Jabbari et al.35,36 to our knowledge.
In their work, platelets are infinitely thin and purely repulsive but
it may not be an issue because the glass to crystal transition is ob-
tained in a relatively dilute system with long-range interactions.
Their hexagonal crystal is observed around κD = 2, which is close
to the value of 1.46 used here. In their equilibrium simulations,
it appears at dimensionless densities ρ∗ above about 6 whereas
here ρ∗ = 1. At lower densities (ρ∗ < 4.5) they report an isotropic
fluid with very large relaxation times, similar to the glassy state
considered here as initial condition, and a columnar hexagonal
phase with liquid-like order within each column (4.5 < ρ∗ < 6).
So it appears that the application of shear allows a shift of the
isotropic to hexagonal crystal transition towards lower densities.
The usual mechanistic picture is that shear forces bring energy

to the system so platelets can escape the electrostatic cages of
the initially isotropic phase. Here, without refuting this idea, it
seems that this first results from a hydrodynamic torque that tilts
all the platelets in a similar direction, which unlocks translational
degrees of freedom.

Note that in their MC simulations Jabbari et al.35,36 used sim-
ulated annealing to remove dependence on initial conditions at
the densities leading to the hexagonal crystal. This procedure can
also be seen as a means to inject energy in the system in order
to escape the initially isotropic phase, but this is in the form of a
thermal energy rather than a coherent action like that of shear.
Interestingly, we notice the existence of the same hexagonal crys-
tal in the simulations of Jabbari et al. and in the present work
although charge anisotropy was not considered in Jabbari’s work.
It indicates that this anisotropy is not an essential ingredient of
the isotropic to crystal transition. This is not totally surprising
as the initial state is already defined by the strong, long-range
repulsions due to the net charge of the platelets.

Experimentally, a smectic B structure sharing some fea-
tures with a hexagonal crystal has been observed for gibbsite
platelets suspended in DMSO, a solvent allowing very low ionic
strengths.68 In such a structure, hexagonal crystalline order is
observed inside smectic layers but no order exists across differ-
ent layers and the platelet directors are oriented along the nor-
mal of the layers. A difference between the present results and
the smectic B phase is that here the platelet directors are within
the hexagonal layers. Other than that, the physico-chemical con-
ditions investigated in Ref. 68 were quite similar to the present
ones: long range repulsive interactions with κD ' 2 and volume
fraction around 0.05. On a side note, these authors imposed an
initial prolonged mechanical stirring to the samples in order to
verify that the system was not kinetically arrested. Therefore it
seems possible that their smectic B phase could be obtained with
the help of shear induced ordering as in the present work. The
reason why they didn’t obtain a 3D crystal as here is unclear. It
may be due to unavoidable platelet polydispersity, an important
difference between simulations and experiments that would pre-
vent correlation between layers.

A smectic B phase has also been observed in Monte Carlo sim-
ulations by Delhorme et al. for similar physico-chemical condi-
tions.65 In this work, platelets within layers were however locked
in OC configuration. This difference is likely to be due to the
attractive face-rim interactions present in these simulations and
absent in gibbsite systems. In the present work, the small aspect
ratio of platelets is thought to be the reason for the absence of
charge anisotropy effects during the crystal formation.

To conclude, it has been shown that in the present clay-like
model system the sequence of shear and relaxation in quiescent
conditions can trigger a glass-to-nematic-crystal transition. This
transition is rather complex as is takes place in two distinct stages.
First a hexagonal array of flowing strings is formed under shear,
with positional order inside each string but no correlations across
different strings in the flow direction. Under flow, only partial
orientational order is observed. It is only after relaxation in quies-
cent conditions that the string structure shifts to form a hexagonal
crystal and the orientational correlations increase until a nematic
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state is obtained.

As mentioned in the introduction, yielding of a suspension has
been shown to be a one step process for significantly anisotropic
rod-like particles due to the strong translation-rotation cou-
pling.42–44 In the present system of disk-like particles, positional
and orientational degrees of freedom are also strongly coupled.
More than just a way to provide energy to the system, the shear
flow seems to be the key to ordering by first imposing a strong
tumbling motion to every platelet in the suspension (see the peak
of Snem in the inset of Fig. 5), which tends to align more or less all
platelet directors with the gradient direction and thus to weaken
the local disorder thought to be at the origin of the initial ar-
rested state. In this transient partially nematic glassy state, cen-
ters of mass can once again rearrange, which leads to the string
phase with partial orientational order. As long as the suspension
is under flow, no cross-correlation in the x direction can appear
between strings flowing at different velocities so the suspension
can only crystallize in the gradient-vorticity plane. During the re-
laxation period, the 3D crystal is sufficiently close to the string
phase in terms of energy to be reached with the help of thermal
fluctuations, and this completely ordered structure leaves more
free volume to each platelet which in turns facilitates rotations to
form the nematic state. To summarize, shear first forces partial
orientational correlations, which unlocks translational degrees of
freedom to obtain a partially ordered structure, and subsequent
relaxation in quiescent conditions permits to achieve positional
order, which in turn unlocks orientational ordering.

In the next section, the mechanical response of the glassy sus-
pension to the startup shear flow sheds some light on the mecha-
nisms at play during the shear-induced glass-to-crystal transition.

5 Mechanical response of the suspension during
shear

The instantaneous mechanical response of the suspension to start-
up shear and to flow cessation is examined in terms of normal and
shear stresses in the next two sections.

5.1 Normal stresses

Let us first consider the one component model (OCM) electro-
static stress defined here as

Σ
OCM
i j =− 1

V ∑
col

XciFc j, (13)

where V is the volume of the suspension and the sum runs over all
platelets. This is not the complete osmotic stress as the ideal part
and a contribution from small ions are missing but it gives a good
overview of the effect of interparticle forces on the stress evolu-
tion during startup shear and the glass-to-crystal transition. The
evolution of the OCM pressure defined as POCM =−tr(ΣOCMΣOCM

ΣOCM)/3 is
reported in Fig. 14. During the first period without shear flow,
a classical transient is observed for the first 10 units of time τB,
followed by a stationary regime. When shear is applied, the pres-
sure drops significantly in less than one unit of strain and then
fluctuates around a constant value during the flow (inset of Fig.
14). Upon flow cessation, the pressure increases again during

0 20 40 60 80
t/τB

0.74

0.76

0.78

0.80

0.82

P
a

2
/F

E

without shear

with shear applied at t/τB = 25

0 25γ̇t

0.76

0.78

Fig. 14 Evolution of the electrostatic OCM pressure with (blue lines)
or without (green dashed lines) shear-induced ordering. Main figure:
quiescent conditions. Inset: during shear.

a new transient of about 10 units of time but it settles at a value
smaller than the one obtained in the initial glassy state. Koumakis
and coworkers already noted a tendency of suspensions to reach
a shear-induced structure lowering stresses.69 This global evolu-
tion confirms that shear helped to trigger a transition towards a
new state with lower energy, although there is no proof this is
a global energy minimum. It also shows that the restructuration
under shear happens quite fast, here for a strain of 0.4. This is
the deformation required to break one electrostatic cage in this
initially positionally isotropic state. Hence the present crystal for-
mation involves a modification of the initial structure only at short
distances. An elastic to viscous transition of various deionized
clay suspensions, including Laponite, at a small critical strain be-
tween 0.07 and 0.4 has already been reported and seems to be
a fairly generic feature.70–72 In an initially nematic Gibbsite sus-
pension in glycerol, Lettinga and coworkers also observed this
elastic to viscous transition and associated the elastic response to
the tilting of the platelets directors.73,74

Forcing a structural transition with shear is somewhat spe-
cific as it breaks some symmetries of the initial state, unlike an
isotropic compression. Here we can observe that this symme-
try breaking is imprinted in the final structure by examining the
three normal electrostatic OCM stresses reported in Fig. 15. Be-
fore applying shear, these stresses should be isotropic. The weak
residual anisotropy remaining at the end of the initial relaxation
period is due to the non-perfectly isotropic initial configuration
and the non-ergodicity of the suspension. When shear is applied,
directions 1, 2, and 3 are no longer equivalent and the flow im-
poses its own stress anisotropy after a few units of strain (inset
of Fig. 15). Indeed, the initially smaller Σ22 becomes larger than
Σ33 during this period of shear. Moreover, the stress anisotropy is
enhanced. Interestingly, this anisotropy is enhanced again after
flow cessation and remains imprinted in the final relaxed crystal
(blue curves in the main figure 15). The absence of relaxation of
the suspension towards an isotropic stress state after flow cessa-
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figure: quiescent conditions. Inset: during shear.

tion means that this suspension possesses a yield stress with an
amplitude larger than the residual stress anisotropy.

Further analysis of stress anisotropy is possible by examining
the normal stress differences (NSD) N1 = Σ11 − Σ22 and N2 =

Σ22−Σ33 during shear (Fig. 16). During the first unit of strain, the
hydrodynamic contribution to N1 is slightly positive and the elec-
trostatic contribution exhibits a strong positive overshoot. Con-
sidering the initial fairly isotropic glassy configuration, the de-
formation induced by the shear flow is expected to momentarily
increase the packing in the y direction after one unit of strain,
and as a consequence reduce the packing in the x direction at the
same time. As the present system is essentially repulsive, reduc-
ing inter-particle distances in the y direction is immediately trans-
lated into an increased compression in the y direction. Similarly,
the x compression is reduced due to increased average separa-
tions in the x direction. This yields a positive electrostatic first
normal stress difference. This effect is similar to the Reynolds
dilatancy mechanism for hard spheres, but is obtained for soft in-
teractions here. After a few units of strain the string structure is
attained and the stress distribution changes again. The dominant
compression of electrostatic nature is now in the flow direction
(Fig. 15) and it is responsible for the negative electrostatic con-
tribution to N1 at long times (see Fig. 16). This dominant x-wise
compression is believed to be due to the small distances of closest
approach between platelets in the x (string) direction that induce
important rim-rim repulsions. Since strings are compressed in the
x direction, a stabilization mechanism is required to prevent their
bending or destruction. The stabilization could be of electrostatic
origin, or it could be a hydrodynamic effect. Indeed, the long-
time hydrodynamic contribution to N1 is positive, which could
be due to the flow between strings sliding at different velocities.
During shear flow, hydrodynamic interactions could stabilize the
alignment of the strings along the x direction. However the sta-
bility of the crystal after flow cessation, with even increased NSD,

Fig. 16 Evolution of the hydrodynamic (h superscript) and electrostatic
(ES superscript) contributions to the first and second normal stress dif-
ferences during shear. The Brownian component is negligible.

seems to indicate that hydrodynamic interactions are not essen-
tial for the stabilization of the structure. A side-by-side preferred
organization of clay platelets has been discussed by Kleshchanock
et al. to explain the formation of the smectic B phase in their
experiments.68 They invoked two hypotheses, namely the lower
energy involved in rim-rim interactions compared to face-face in-
teractions, which would promote small distances between rims,
and a reduced local screening length between two close rims due
to the enhanced counterion concentration there. Due to the elec-
trostatic model employed here, the screening length is imposed
and identical throughout the simulation domain so the second
hypothesis is ruled out.

The hydrodynamic contribution to N2 is too close to zero for
its sign to be commented, and NES

2 is still evolving at the end
of the shear period. So apart from noting that the electrostatic
contribution to N2 is largely dominating, we do not feel much
more can be said.

5.2 Shear stress

The time evolution of the shear stress Σ12 during the shear period
is reported in Fig. 17. It indicates a fairly stable hydrodynamic
contribution but a strongly varying electrostatic contribution. The
strong overshoot during the first strain unit is associated to the
cage breaking event described above. After a transient of about
10 units of strain, the electrostatic contribution to the viscosity is
stabilized around a value about half the hydrodynamic contribu-
tion for Ma = 1. Results not presented here show that the electro-
static contribution dominates only for Ma < 1. Strong oscillations
are observed at all times, with a period of one strain unit. They
correspond to cage hopping events when strings slide one over
another.

Two useful quantities characteristic of the mechanical behavior
of the suspension can be extracted from the time-dependent shear
stress response. At long times, the steady shear relative viscosity
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Fig. 17 Evolution of the shear stress during the period of shear.

is obtained as the plateau value of Σ12/η0γ̇. At short times, the
shear modulus G′ can be measured from the initial slope of Σ12

for small deformations (see inset of Fig. 17). The influence of
the ratio of hydrodynamic and electrostatic forces Ma on these
values is reported in Figs. 18 and 19. Two regimes dominated by
electrostatic or hydrodynamic effects can be observed for Ma <

1 and Ma� 1, respectively. For Ma� 1 the viscosity becomes
progressively independent of the value of Ma. This is expected
as it corresponds to a situation where the weight of electrostatic
forces is negligible compared to the contribution of hydrodynamic
interactions. So the viscosity asymptotes towards its value for
hard platelet suspensions. For Ma < 1, the relative viscosity is
well described by the scaling ηr ∼ Ma−0.9. Although this is only
based on two points here, such a power law is also observed in
the experimental results of Paineau and coworkers75 for strongly
deionized suspensions of different smectite clays at the volume
fractions for which a significant yield stress is observed (see inset
of Fig. 18). Such a good agreement is interesting, and the power
law may be generic, as the aspect ratio of these clays is at least
one order of magnitude larger than the one of the present AR7
model platelets.

The shear modulus of the initially glassy suspension is reported
in Fig. 19. It is well described by the scaling G′ ∼ Ma−1, which
can be rationalized as follows. The suspensions considered here
are rather hydrodynamically dilute because the volume fraction
is only 0.05 but they are electrostatically very concentrated due
to the long range electrostatic interactions. This explains the ob-
servation of a hydrodynamic viscosity ηh fairly independent of
strain, more precisely of the details of the microstructure, in the
insets of Fig. 17 and 19. At short times and for Ma < O(1), the
strain-dependent part of the shear stress response is dominated
by the electrostatic contribution to the stress ηES, which is inde-
pendent of γ̇ and can be expected to scale linearly with strain and
equilibrium pressure scale, i.e. as γFE/R2. Hence in the present
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Fig. 18 Steady shear viscosity as a function of Ma. The error bar scale
is the standard deviation of the small viscosity oscillations around the
average viscosity value (see Fig. 17). (κD = 1.46,φ = 0.05) Inset: exper-
imental results from Fig. 5 of Ref. 72 obtained for different deionized
smectite aqueous suspensions and for the largest volume fractions. Fol-
lowing the notations of Ref. 72, blue: SBId-1 S3; red: SAz-1 S2; green:
SWy-2 S2; orange: Milos S2.
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glassy suspensions

Σ12(γ̇t� 1)' η
h
0 γ̇ +α

FE

R2 γ̇t (14)

where ηh
0 ' 0.3 here and α is a constant of order 1. The scaled

shear modulus is thus

G′

η0γ̇
∼ FE

η0γ̇R2 = Ma−1. (15)

The mechanical response of sheared platelet suspensions with
long range interactions can then be summarized as follows. For
strains smaller than about one, the response of initially glassy
suspensions is mainly elastic and associated to the strong repul-
sive electrostatic interactions. The shear stress and the first nor-
mal stress difference both exhibit a positive overshoot due to a
first cage breaking event. The scaled shear modulus evolves as
Ma−1 for Ma < 1, confirming the strong prevalence of electro-
static repulsions at short time/strain. After a few units of strain,
the hexagonal array of platelet strings is formed and is stable un-
der steady shear. At small Ma, the steady shear viscosity is found
to scale as Ma−0.9, in line with what can be observed on different
smectite clay suspensions. The total normal stress differences un-
der steady shear are too noisy in order to comment on their sign.
However, it appears clearly that the hydrodynamic component of
N1 is positive whereas its electrostatic component is negative. The
latter indicates the existence of strongly repulsive electrostatic
forces between platelets within each string under flow. These
forces are likely to be due to the reduced inter-particle distances
within one string. As the stress anisotropy is maintained upon
flow cessation, the stabilization of strings is also an electrostatic
effect. A possible explanation is that a small motion of a platelet
in a direction transverse to a string might require too much en-
ergy as face-face interactions will be triggered in response to this
motion, in contrast to the weaker rim-rim interactions within one
string.

6 Conclusions
Relaxed (equilibrium or arrested) states of platelet suspensions
and their response to a shear flow have been investigated numer-
ically with Accelerated Stokesian Dynamics. The present platelets
were designed as anisotropic model particles with features close
to those of clay colloids. The charge anisotropy of platelets has
been prescribed carefully with a renormalization procedure en-
forcing the same reduced temperature as Laponite particles. The
phase diagram was consistent with previous works on model clay-
like objects and experimental studies on Laponite. A bonded and
non-bonded glasses, and different percolated structures including
equilibrium gels were observed at intermediate and long ranges
of interaction.

When submitted to a shear flow, glassy suspensions are first
partially ordered: strings aligned with the flow direction and
hexagonally arranged in the gradient-vorticity plane are formed
and orientational correlations develop with preferential relative
angles of 10◦ or 60◦ between platelets. During this shear phase,
the mechanical response of the suspension is strongly dominated
by electrostatic stresses. Just after the startup of shear, the shear

modulus is observed to be proportional to the electrostatic force
scale and the shear stress and first normal stress difference both
exhibit positive overshoots typical of dense repulsive systems.
This transient stage lasts for about one unit of strain and is thus
associated to the first cage breaking events. Under steady shear,
the relative viscosity of the strings phase is observed to vary as
Ma−0.9, or γ̇−0.9, as in experiments performed on various deion-
ized smectite clay suspensions by Paineau and coworkers.72

After flow cessation, the shear induced positional order is im-
proved while platelets increase their orientational order. The re-
sulting structure is a hexagonal crystal with smectic orientational
order that keeps a memory of the stress anisotropy introduced
during the shear period. Moreover, energy calculations show that
this final structure does not correspond to a global energy min-
imum. This is thus a new arrested state with strong order im-
printed by the shear flow.

The simulations presented here are among the first ones to per-
mit a simultaneous examination of structure and mechanical re-
sponse, including the important hydrodynamic response, on the
time scale of the glass-to-crystal transition in anisotropic suspen-
sions. They revealed in particular that positional and orienta-
tional order are not obtained simultaneously due to shear. Rather,
shear first tilts platelets in a more or less common direction, which
unlocks translational degrees of freedom. Then, a hexagonal ar-
ray of strings is formed with strong order along each string but not
across different strings. This is a structure that seems to minimize
stresses under flow. When the suspension is brought back to rest,
positional and orientational correlations evolve again so the struc-
ture reaches a local energy minimum. During this relaxation pe-
riod, shear-induced increased positional correlations are thought
to favor the propagation of orientational order throughout the
suspension. The glass-to-crystal transition mechanism uncovered
here may be quite generic for other colloids with significant geo-
metric anisotropy and that exhibit strong translation-orientation
coupling due to long range anisotropic repulsive interactions.

Here we investigated only short time microstructure dynam-
ics to elucidate the mechanisms behind a shear-induced glass-
to-crystal transition. If the maximum time scale reachable with
Stokesian Dynamics could be increased, an interesting extension
to this work would be to examine the influence of hydrodynam-
ics in long time aging and structure-property relationships as re-
cently done experimentally on attraction-driven glasses.76
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