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Improvements of the refinement pattern of Adaptive Particle Refinement

The Adaptive Particle Refinement (APR) method results in a coupling between two SPH domains composed by either larger particles (mothers) or smaller particles (daughters). APR is one of the most promising local refinement techniques for SPH. The 2D dam break and shock tube test cases are used for validation purpose, with satisfactory results in comparison with reference solutions. An oscillating 2D channel test case is also simulated. It is found that the APR method has a lack of robustness in Lagrangian simulations of flows going back and forth. The refinement process appears to be particularly sensitive to the pre-existing daughters within the refining mother neighbourhood. The present paper aims to improve the APR method robustness, performing the refinement of a mother regarding its neighbourhood. Therefore, an optimization problem is formulated to determine the accurate amount, positions and variables of the new daughters to create. For the oscillating channel test case, results are compared qualitatively to previous works. The proposed refinement improves the robustness.

I. INTRODUCTION

Smoothed-Particle Hydrodynamics (SPH) simulations often rely on uniform particle distributions and constant particle sizes [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. This leads to larger simulations with many particles and longer run times. As a consequence, local refinement techniques [START_REF] Børve | Regularized smoothed particle hydrodynamics with improved multiresolution handling[END_REF][START_REF] Shibata | The overlapping particle technique for multi-resolution simulation of particle methods[END_REF] have been developped to concentrate fine spatial resolutions in identified areas of interest [START_REF] Feldman | Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems[END_REF][START_REF] Reyes López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF]. One of the most accomplished works is the Adaptive Particle Refinement (APR) method proposed by L. Chiron et al. [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]. The authors have adapted a refinement approach used in meshbased methods to the SPH formalism, by transposing the main concepts of prolongation, restriction and guard cells into the APR. The guard cells act as boundary conditions at the interfaces between two grids of different refinement levels. This results in a coupling between two SPH domains composed by either larger particles (mothers) or smaller particles (daughters).

The present paper aims to improve the APR method robustness. Indeed, it is observed that Lagrangian simulations of flows going back and forth can lead to an over-creation of daughters. To tackle it, it is proposed to adapt the refinement pattern. When a new daughter is created, its variables are initialized in respect of physical properties of conservation [START_REF] Feldman | Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems[END_REF][START_REF] Vacondio | Variable resolution for SPH: a dynamic particle coalescing and splitting scheme[END_REF]. Thus, the initialization of the daughter physical fields depends on the refinement pattern performed [START_REF] Reyes López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF]. Therefore, an optimization problem is formulated to determine the accurate amount, positions and variables of the new daughters to create. This extension yields robustness for the particle refinement.

At first, the governing equations are summarized. The numerical method is then presented, including the basics of the APR technique. Then, an upgrade of its refinement process is proposed. For validation purpose, three benchmark 2D test cases are presented: (i) a classical dam break that validates the implementation. (ii) An Eulerian simulation of a shock tube that is well reproduced in comparison with analytic solution. (iii) A Lagrangian simulation of an oscillating channel that emphasizes the APR limitation. Finally, proposed improvements are presented and applied to the oscillating channel test case.

II. NUMERICAL METHOD

A. Governing Equations

The set of non-linear equations based on the physical principles of conservation of mass and momentum are used to describe the dynamic of water, considered as a weaklycompressible inviscid fluid. Here, following in the footsteps of [START_REF] Pineda | Comparison of numerical results using a barotropic and a non-isentropic EOS in SPH-ALE method[END_REF], they are presented in conservative differential form as

     ∂ρ ∂t + ∇ • (ρv) = 0 , ∂ρv ∂t + ∇ • (ρv ⊗ v) + ∇ • (pI n ) = S , (1) 
where ρ is the density, p the pressure, v the velocity vector, S the vector of external forces, I n the unit tensor with n = 1, 2, 3 denoting the space dimension.

The system is closed with the so-called Tait equation of state [START_REF] Tait | Report on some of the physical properties of fresh water and of sea water[END_REF]:

p(ρ) = ρ 0 c 2 0 γ ρ ρ 0 γ -1 + p 0 , (2) 
where c 0 is the sound speed, γ is taken equal to 7, ρ 0 and p 0 denote the reference density and pressure, respectively. The speed of sound is conveniently reduced to obtain a larger computational timestep.

B. SPH-ALE formalism

The Arbitrary Lagrange Euler (ALE) formalism is based on a conservative formulation, where the frame of reference follows an arbitrary transport velocity v 0 . Using the conservative formulation of Eq. ( 1)-( 2) written in ALE form and following Vila's work [START_REF] Vila | On particle weighted methods and smooth particle hydrodynamics[END_REF] who adapted the Godunov's scheme to SPH-ALE formulation, we obtain the resulting system of equations [START_REF] Marongiu | Méthode numérique lagrangienne pour la simulation d'écoulements à surface libre : application aux turbines Pelton[END_REF] (without boundary terms),

                                             dx i dt = v 0 ,i , dω i dt = 2ω i j∈Di ω j (v 0 ,ij -v 0 ,i ) • ∇ i W ij , d dt (ω i ρ i ) = -2ω i j∈Di ω j ρ E,ij (v E,ij -v 0 ,ij ) • ∇ i W ij , d dt (ω i ρ i v i ) = ω i S i -2ω i j∈Di ω j [p i I n + ρ E,ij v E,ij ⊗ (v E,ij -v 0 ,ij )] ∇ i W ij . (3) 
The first two equations are due to the ALE formalism. They evolve the position x i and the volume ω i of the particle i. In the last two equations, the index E implies a decentered numerical quantity computed at the middle point between a line that connects two particles i and j. The notation W ij denotes the smoothing kernel function, with h the so-called smoothing length. In this work, a Wendland function C 4 and a third order explicit Runge-Kutta time integrator are used. The particle size ∆x defines an average spacing between the particles and so the number of calculation points in the computational domain.

Like most authors a constant ratio h/∆x = 1.2 is kept, which works well in practice.

C. Adaptive Particle Refinement (APR) technique

L. Chiron et al. [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF] have adapted the AMR refinement approach used in mesh-based methods to the SPH formalism, by transposing the main concepts of prolongation, restriction and guard cells into the APR. The resulting method is illustrated Fig. 1 in 2D for two discretization levels.

The Level 0 is discretized with mothers, while the tesselation of Level 1 is done by daughters. For the sake of W ij operator robustness in Eq. ( 3), the smoothing length ratio between adjacent particles is limited by 3%. Otherwise, partial reflections of acoustic waves occur at the coarse/fine interfaces [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. Hence, guard particles are used not to deal with direct mother-daughter SPH interactions, while updating their temporal derivatives. In Level 0, the kernel function support of SPH mothers (denoted by blue dots) are completed with guard mothers (denoted by blue crosses). The restriction refers to extrapolating the SPH daugher properties to the guard mothers. The conservative variables of the guard mothers are calculated by Shepard interpolation [START_REF] Shepard | A two-dimensional interpolation function for irregularly-spaced data[END_REF] applied to SPH particles (denoted by dots). In particular, guard mothers in Level 1 are transported following the interpolated velocity field received. Conversely, guard daughters (depicted by red crosses) are created in Transition 0-1 to complete the kernel function support of SPH daughters (depicted by red dots) located in Level 1. The prolongation is the opposite process of restriction. The fields of the guard daughters are defined by applying Shepard interpolation to the SPH particles. This results in a coupling between two SPH domains composed by either SPH mothers or SPH daughters, where guard particles act as boundary conditions. The APR region is defined as the area where daughters are required, i.e. Transition 0-1 ∪ Level 1. It thus gathers two zones, namely the transition zone (Transition 0-1) and the refined zone (Level 1). The daughters going out of the APR region are deleted at the boundary between Level 0 and Transition 0-1. Therefore, the number of daughters is non-constant, unlike the amount of mothers.

The refinement process involves initializing the variables (position, mass, etc.) of the new daughters, while preserving mass and momentum [START_REF] Feldman | Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems[END_REF]. A mother is split into M daughters, in accordance with the cartesian pattern proposed by Reyes López et al. [START_REF] Reyes López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF]. A mother that is refining is then called splitting mother. For two-dimensionnal simulations, a splitting mother is refined into four daughters (M = 4) placed at the corner of the splitting-mother-centered square. At the end of the refinement process, the spacing between daughters is ∆x d = ε∆x m , where ∆x m is the initial spacing between mothers. The smoothing length of a new daughter is then defined regarding the smoothing length of its splitting mother, as h d = αh m . In what follows, the separation parameter ε = 0.5 and the smoothing ratio α = 0.5 are considered. Furthermore, the mass of each daughter (m d ) d≤M is calculated as a fraction of the splitting mother mass m m , using:

m d = λ d m m , where M d=1 λ d = 1 . (4) 
According to Vacondio et al. [START_REF] Vacondio | Variable resolution for SPH: a dynamic particle coalescing and splitting scheme[END_REF], the determination of the mass repartition (λ d ) d≤M relies on a minimization problem solving.

The APR technique has been implemented on ASPHODEL, the solver developed within the Research & Development Department of ANDRITZ Hydro. Its implementation is slightly at variance with the APR technique, as presented. Firstly, a mother-to-daughter volume repartition is here studied, contrary to Eq. ( 4) where the mass is distributed. The repartition (λ d ) d≤M is thus applied for the guard daughter volume initialization, whereas the density is interpolated over the SPH particles. Secondly, following Reyes López et al. [START_REF] Reyes López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF], an equirepartition of the volume is used.

∀d ≤ M, λ d = λ[M ] = 1/M . (5) 
Hence, for simplicity, the determination of the volume distribution (λ d ) d≤M does not rely on a minimization problem solving. Thirdly, the properties of the guard particles are calculated by either Moving Least Squares (MLS) method if the correction matrice is well-conditioned, or Shepard interpolation otherwise [START_REF] Renaut | Toward a higher order SPH-ALE method based on Moving Least Squares method[END_REF]. That method is of order 1, which means exact for the constant functions. The use of MLS method leads to a higher order interpolation, but it proves to be unstable when the correction matrice is ill-conditioned. Lastly, the transition zone width is set twice as long as the maximal smoothing length of a mother. Pragmatically, this width ensures the completeness of kernel function support for the SPH particles.

III. NUMERICAL VALIDATIONS FOR INVISCID FLOW

For a stress testing of the APR technique as implementated in ASPHODEL, three benchmark test cases in 2D are presented: (i) a Lagrangian simulation of a dam break, (ii) an Eulerian simulation of a shock tube, and (iii) a Lagrangian simulation of an oscillating channel. The numerical results are compared with the available analytical and numerical solutions.

A. Dam Break

The dam break flow is a typical free surface problem often used as a benchmark for SPH implementations. For the setup of this test case, refer to L. Chiron et al. [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF]. For validation purpose, the APR technique (as implemented on ASPHODEL) results are presented Fig. 2 These results are quite the same, but ASPHODEL simulation proves to be more dissipative because of the different solvers considered. In particular, the method proposed here differs from [START_REF] Chiron | Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations[END_REF] in that the Riemann-SPH scheme is performed with mass fluxes and is written in an ALE-form. For what matters in the present paper, the ASPHODEL-APR implementation is not an issue, because the differences observed between the two simulation results are due to other considerations.

B. Shock Tube

Eulerian simulations only evolve steady particles (v 0 = 0). The daughters are created once, at the initialization. The tesselation of the transition zone is thus fixed.

Let us consider a 1 m long shock tube with a discontinuity at x = 0.00 m separating two liquid states. Tab. I shows the initial left and right data states. The constant values for the Tait EOS are c 0 = 1466 m/s, γ = 7, ρ 0 = 1000 kg/m 3 and p 0 = 0 Pa . 

C. Oscillating Channel

Lagrangian simulations evolve particles moving at the fluid velocity (v 0 = v). Mothers periodically go back and forth in the APR region. Therefore, some daughters are regularly either created or deleted at the boundary between Level 0 and Transition 0-1. The transition zone is thus dynamically tesselated.

As depicted Fig. 4, the domain of this test case consists of a rectangular channel full of water horizontally animated The evolution of the amount of daughters in the refined zone is presented Fig. 5. The fully-refined solution (∆x m = 2.5 mm) shows a number of daughters roughly constant in the interest region. The low-amplitude oscillation observed is mostly due to particles moving in and out of that region. To the contrary, this quantity diverges quickly for the simulation performing APR. This simulation crashes only between oscillations 1 and 2, while the fully-refined solution can last ten times as long.

Too many daughters have been created here. What only matters for APR refinement process triggering, is the geometric criterium. Consequently, a mother is split into M daughters regardless of its neighbourhood. In test cases studied so far, this neighbourhood is empty of associated daughters. In this context, the refinement process proned by L. Chiron et al.

[2] seems suitable. Nevertheless the emptiness of a refining mother neighbourhood is not an all-purpose statement, as depicted in the presented oscillating channel counterexample.

IV. REFINEMENT PATTERN IMPROVEMENTS

Previous section shows that Lagrangian simulations of flows going back and forth can lead to an over-creation of daughters. To tackle it, it is proposed to adapt the refinement pattern with regard to the splitting mother neighbourhood. Thus, a Mdaughter creation is not mandatory. For example, the suitable refinement of a splitting mother surrounded by M -1 preexisting daughters should only result in the creation of one additional daughter.

Once created, the daughters move and do not fit the cartesian pattern anymore. In addition, any daughter-to-mother connectivity is lost. Re-defining one is paramount to make a suitable refinement. Therefore, the pre-existing daughters located in the transition zone are associated to the nearest mother. Regarding the properties of the pre-existing daughters, thus associated to a splitting mother, an optimization problem is formulated to determine the accurate amount, positions and variables of the additional daughter to create.

A. Identification of the Pre-Existing Daughters

For any splitting mother, the number and layout of its potential pre-existing daughters have to be determined. On the one hand, the number of pre-existing daughters associated to a splitting mother gives the number of additional daughters to create. To find out the number of pre-existing daughters associated to one splitting mother, a daughter-to-mother connectivity has to be set. However, some daughters may have been carried away from their splitting mother. For this reason, the pre-existing daughters located in the transition zone, within the radius of a SPH mother, are associated to the nearest mother. Hence, each guard daughter is associated to, at most, one SPH mother. Nevertheless, more than M daughters can be associated to one mother. To limit to M the number of preexisting daughters associated to one splitting mother, the most distant associated daughters from the mother are superfluous and so are deleted.

On the other hand, the pre-existing daughter layout shall be useful for the positionning of the additional daughters. To describe it in 2D, the numbering convention presented Fig. 6 is set. As depicted, the M = 4 daughters of the pattern are numbered from one at the top left corner, to four at the bottom right corner.

B. Positioning of the Additional Daughters

To determine the suitable position of the additional daughters in 2D, geometrical considerations only involving the preexisting daughters and associated mother layout are made to maximize the area of the quadrilateral whose vertices are the M = 4 daughters. According to the routine presented, a splitting mother f m can only be associated with zero to four pre-existing daughters. Without loss of generality, Fig. 6, 7 and 8 present an exhaustive disjunction of the possible subcases, namely (P i ) 0≤i≤4 . The sub-problem P i consists in the positioning of 0 ≤ i ≤ 4 additional daughters (p j ) |j|∝i , knowing the position of 0 ≤ 4 -i ≤ 4 pre-existing daughters (f j ) |j|∝4-i . Each subcase is studied independently, which results in several optimization problem formulations admitting a unique solution. The resulting problem gradually becomes more global as the number of additional daughters grows. For an effective numerical implementation, each analytic solution has been computed. Firstly, without any additional daughter to be inserted, the sub-problem P 0 is trivial.

Secondly, let us consider without loss of generality the sub-problem P 1 , depicted Fig. 6, that consists in positioning the additional daughter p 1 . Let us draw two intersecting circles having radii C 12 and C 13 , with centers the pre-existing daughters numbered f 2 and f 3 respectively. The additional daughter is then inserted at the most distant intersection to the pre-existing daughter numbered f 4 . Therefore, the subproblem P 1 can be formulated as

E 1 [C A , C B ] =    P ∈ R 2 ,    --→ f 2 P = C A , --→ f 3 P = C B . .    , (6) 
P 1 [C 12 , C 13 ] = F ∈ R 2 , F = arg max p1∈E1[C12, C13]
A 1 (p 1 ) . , [START_REF] Renaut | Toward a higher order SPH-ALE method based on Moving Least Squares method[END_REF] where A 1 (p 1 ) is the area of the quadrilateral whose vertices are the daughters numbered p 1 , f 2 , f 3 and f 4 . Operating under the assumption of two intersecting circles, the sub-problem P 1 admits an unique solution f 1 . Thirdly, let us insert two additional daughters, knowing the position of two pre-existing daughters. Fig. 7 shows that subproblem P 2 can be split into two different configurations. The two additional daughters can either form a diagonal (subproblem P 21 ) or a side (sub-problem P 22 ) of the quadrilateral whose vertices are the daughters. On the one hand, the sub-problem P 21 can be solved by considering twice the previous sub-problem P 1 , i.e.

E 21 = E 1 [C 12 , C 13 ] × E 1 [C 42 , C 43 ] . (8) 
Consequently, the sub-problem P 21 can be formulated as

P 21 [C 12 , C 13 , C 42 , C 43 ] =    (F 1 , F 4 ) ∈ R 2 × R 2 , (F 1 , F 4 ) = arg max (p1, p4)∈E21 A 21 (p 1 , p 4 ) .    , (9) 
where A 21 (p 1 , p 4 ) is the area of the quadrilateral whose vertices are the daughters numbered p 1 , f 2 , f 3 and p 4 . Operating under the assumptions of intersecting circles, the sub-problem P 21 admits an unique solution (f 1 , f 4 ) that respects the chosen numbering convention. On the other hand, the sub-problem P 22 can be formulated as the generalization of Eq. ( 6) and ( 7), i.e.

E 2 [C 12 , C 13 , C 34 ] =          (P 1 , P 3 ) ∈ R 2 × R 2 ,          --→ f 2 P 1 = C 12 , ---→ P 3 P 1 = C 13 , --→ f 4 P 3 = C 34 . .          , (10) 
P 22 [C 12 , C 13 , C 34 ] =    (F 1 , F 3 ) ∈ R 2 × R 2 , (F 1 , F 3 ) = arg max (p1, p3)∈E2 A 22 (p 1 , p 3 ) .    , (11) 
where A 22 (p 1 p 3 ) is the area of the quadrilateral whose vertices are the daughters numbered p 1 , f 2 , p 3 and f 4 . Analogously, operating under the assumption of two intersecting circles guarantees that the sub-problem P 22 admits an unique solution (f 1 , f 3 ) that respects the chosen numbering convention. Fourthly, without loss of generality, let us depict the subproblem P 3 as illustrated Fig. 8. It results in a generalization of the sub-problem P 2 , because there is one more additional daughter to put. The extra degree of freedom to fix is the rotation around the pre-existing daughter f 4 . Thanks to an analogous reasoning for sub-problems P 2 and P 3 , a quadrilateral that has a maximal area is expected. Such a quadrilateral is inscribed in a circle. Let I be its center. In this context, minimizing the distance between I and the associated mother f m is a possibility to fix the last degree of freedom. Consequently, let us formulate the sub-problem P 3 as follows.

E 3 [C 12 , C 13 , C 24 , C 34 ] =                P 1 , P 2 , P 3 ∈ R 2 ,                ---→ P 2 P 1 = C 12 , ---→ P 3 P 1 = C 13 , --→ f 4 P 2 = C 24 , --→ f 4 P 3 = C 34 . .                , (12) 
F 3 [C 12 , C 13 , C 24 , C 34 ] =    G 1 , G 2 , G 3 ∈R 2 , (G 1 , G 2 , G 3 ) = arg max (p1, p2, p3)∈E3 A 3 (p 1 , p 2 , p 3 ) .    , (13) 
P 3 [C 12 , C 13 , C 24 , C 34 ] =      F 1 , F 2 , F 3 ∈ R 2 , (F 1 , F 2 , F 3 ) = arg min (g1, g2, g3)∈F3 1 2 --→ If m 2 .      , (14) 
where A 3 (p 1 , p 2 , p 3 ) is the area of the quadrilateral whose vertices are the daughters numbered p 1 , p 2 , p 3 and f 4 . Again, operating under the assumption of two intersecting circles having radii C 12 and C 13 , guarantees that the sub-problem P 3 admits an unique solution (f 1 , f 2 , f 3 ) that respects the chosen numbering convention. Lastly, the solution to the sub-problem P 4 is the cartesian pattern depicted in [START_REF] Reyes López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF].

All in all, existence and uniqueness of the solution of each possible subcase (P i ) 0≤i≤4 stands under the assumption of two intersecting circles having radii C 12 and C 13 , with centers the (pre-existing or not) daughters numbered f 2 and f 3 respectively. To satisfy it, a reliable choice of the unknown C ij parameters has to be made depending on the configuration (i.e. the pre-existing daughter relative distances). Pragmatically, they have been defined constant, as follows.

∀(i, j), C ij = ε∆x m , ( 15 
)
where ε is the APR separation parameter and ∆x m is the initial spacing between mothers. In particular, the unique solution of the sub-problem P 3 for C 12 = C 13 = C 24 = C 34 = ε∆x m is the cartesian pattern. Numerically, the choice made guarantees that any sub-problem here considered admits an unique solution that respects the chosen numbering convention. Theoretically, however, it is not an all-purpose statement.

C. Initialization of the Additional Daughter Variables

The chosen refinement process involves refining a mother f m into M finer particles. In case of D pre-existing daughters associated to f m , the presented correction prones to only create M -D additional daughters. When a new particle is created, its variables (pressure, velocity, etc.) must be initialized with regard to the conservation principles.

The volume of an additional daughter is initiated as a fraction λ[M, D] of its associated mother volume, regarding the potential pre-existing daughter masses (m d ) d≤D . The repartition parameter λ[M, D] is defined as follows.

λ[M, D] ((m d ) d ) = 1 M -D 1 -d m d m m . (16) 
Noticeably, as suggested by Reyes López et al. [START_REF] Reyes López | Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations[END_REF], considering D = 0 pre-existing daughters in Eq. ( 16) guarantees an equirepartition. Furthermore, two SPH particles having more than a 3% relative volume difference can not interact directly for the sake of robustness [START_REF] Oger | SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms[END_REF]. Without any caution on the volume evolution between two discretization levels, however, enforcing the repartition given Eq. ( 16) can involve additional daughters surpassing that 3% limit. In that situation, the volume of an additional daughter is initiated as a fraction 1/M of the volume of its associated mother. Although mathematically unproved, this is very convenient.

V. VALIDATION

The aim of this section is to show the capabilities of the corrected APR technique to simulate the oscillating channel.

A. Oscillating Channel Performed with only Guard Daughters

At first, all the daughters are guard particles in order to only focus on the refinement pattern influence. Level 1 is reduced to nil, and Transition 0-1 zone covers length L b .

Fig. 9 presents the evolution of the number of daughters in the interest region. As depicted, the amount of daughters diverges using the APR approach (red curve). That simulation can last as long as the numerical reference (blue curve), because all the daughters are guard particles. Furthermore, the gap between these two curves grows slower than studied before on Fig. 5. Assumingly, the amount of new daughters to create is not the only factor of the divergence noticed Fig. 5. To the contrary, the comparison between the APR with proposed refinement (green curve) and the reference fully-refined solution (blue curve) shows good agreement. Consequently, the refinement pattern correction proposed introduces a consistant amount of daughters. 

B. Oscillating Channel Performed with SPH Daughters

Now, the daughters in solutions performing APR are activated. The evolution of the amount of daughters is given Fig. 10. In comparison with the previous APR approach (red curve), that leads to simulation crash before the second oscillation of the pistons, the proposed refinement (green curve) improves significantly the situation. Nevertheless the divergence is not tamed efficiently, despite the refinement pattern improvements proposed. The gap between the proposed refinement and the fully-refined solution (blue curve) spreads until the simulation crash.

As depicted Fig. 11, the SPH daughter distribution eventually realizes a non-uniform tesselation of the refined zone. That layout results in non-physical areas either under-populated (holes) or over-populated (clusters), weakening the simulation accuracy until its crash. In comparison with the previous APR approach, the improvements made allow to delay the occurance but not to prevent it. In addition, according to Fig. 10, the number of daughters near-before the APR corrected simulation crash (green curve) is abnormally high in respect with the reference solution (blue curve). However, this is not catched on Fig. 9 where there are only guard daughters. Contrary to the SPH daughters, the guard daughters can not adjust their relative positions. Assumingly, the divergence observed Fig. 10 may be due to a gradual dispersion error increase as daughters go back and forth between the transition and the refined zones, until the simulation crash.

VI. CONCLUSION

A novel refinement process was presented in this paper to improve the APR method robustness in two-dimensional Lagrangian simulations of flows going back and forth. No obstacle has been identified for its successful adaptation in three space dimensions. The results show that the proposed correction is more stable than the original APR method for simulating such cases. In particular, it successfully addresses the daughter creation-deletion issue. Unfortunately, the suggested improvements are still not sufficient to fully guarantee robustness. 
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 1 Fig. 1. Schematic of the Adaptive Particle Refinement (APR) technique with two discretization levels: SPH/SPH coupling between coarse (Level 0 ∪ Transition 0-1) and fine (Level 1) resolutions, interacting indirectly through non-material guard particles.

  in comparison with L. Chiron et al. simulations.

Fig. 2 .

 2 Fig. 2. Dam break test case. Numerical results at t = 1.05 s for APR. Pressure field comparison between ASPHODEL (on the left) and L. Chiron et al. simulations (on the right) [2].

  At t = 0.0 s both fluids are instantaneously in contact. The exact solution consists in two shock waves: a shock travelling to the right at 1827 m/s (i.e. Mach number of 1.25), and a shock travelling to the left at 1788 m/s (i.e. Mach number of 0.91). As numerical references, two uniformly-distributed SPH simulations are performed, namely: (N) a uniform coarse ∆x m = 5.0 mm discretization resolution and (4N) a uniform fine ∆x d = 2.5 mm discretization resolution. Lastly, (APR) is the numerical result of the APR technique simulation with a refined zone starting at x = 0.05 m and overlaping all the right part of the tube. Fig. 3 shows the total pressure profile along the x-axis at time t = 4.0 10 -5 s, once the shock travelling to the right has crossed the (APR) refined area boarder. The total pressure profile, position and stiffness of the shock wave predicted by classical SPH solutions (N and 4N) and APR-SPH simulation show good agreement in accordance to the exact solution.

Fig. 3 .

 3 Fig. 3. Shock tube test case. Total pressure profile at t = 4.0 10 -5 s for the exact solution (black solid line), the fully refined solution (blue plus), the solution without (green square) and with APR (red cross). The refined zone is delimited by a blue dashed line.

Fig. 4 .

 4 Fig. 4. Oscillating channel test case. Schematic of the problem geometry.

Fig. 5 .

 5 Fig. 5. Illustration of the over-creation of daughters in the refined zone of an oscillating 2D channel. Comparison of the solution performing APR (red) to the reference fully-refined solution (blue).

Fig. 6 .

 6 Fig. 6. Illustration of the possible subcases P 0 and P 1 of the global 2D positioning problem. The additional daughter is put according to the preexisting daughter positions. The sub-problem P i consists in the positioning of 0 ≤ i ≤ 4 additional daughters, knowing the position of 0 ≤ 4 -i ≤ 4 pre-existing daughters.

Fig. 7 .

 7 Fig. 7. Illustration of the possible subcase P 2 of the global 2D positioning problem, which consists in the positioning of two additional daughters, knowing the position of two pre-existing daughters. The two additional daughters can either form a diagonal (see P 21 ) or a side (see P 22 ).

Fig. 8 .

 8 Fig. 8. Illustration of the possible subcases P 3 and P 4 of the global 2D positioning problem.

Fig. 9 .

 9 Fig. 9. Illustration of the number of daughters evolution in the interest region located inside an oscillating 2D channel. Comparison of the solutions performing APR without (red) and with (green) the refinement pattern correction, to the reference fully-refined solution (blue). The daughters in solutions performing APR are not activated in order to focus on the refinement pattern influence on the amount of daughters.

Fig. 10 .

 10 Fig. 10. Illustration of the number of daughters evolution in the refined zone of an oscillating 2D channel. Comparison of the solutions performing APR without (red) and with (green) the refinement pattern correction, to the reference fully-refined solution (blue). The daughters in solutions performing APR are activated.

Fig. 11 .

 11 Fig. 11. Oscillating channel test case. Visualisation at crash of holes and clusters located in the refined zone.
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