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Abstract. During the last few years, deep supervised learning models
have been shown to achieve state-of-the-art results for Natural Language
Processing tasks. Most of these models are trained by minimizing the
commonly used cross-entropy loss. However, the latter may suffer from
several shortcomings such as sub-optimal generalization and unstable
fine-tuning. Inspired by the recent works on self-supervised contrastive
representation learning, we present SimSCL, a framework for binary
text classification task that relies on two simple concepts: (i) Sampling
positive and negative examples given an anchor by considering that sen-
tences belonging to the same class as the anchor as positive examples
and samples belonging to a different class as negative examples and (ii)
Using a novel fully-supervised contrastive loss that enforces more com-
pact clustering by leveraging label information more effectively. The ex-
perimental results show that our framework outperforms the standard
cross-entropy loss in several benchmark datasets. Further experiments
on Moroccan and Algerian dialects demonstrate that our framework also
works well for under-resource languages.

Keywords: Natural Language Processing · Contrastive Learning · Neu-
ral Network · Supervised Learning.

1 Introduction

Over the last few years, deep supervised learning models have achieved tremen-
dous success in a variety of applications across many disciplines varying from
Computer Vision (CV) and Automatic Speech Recognition (ASR) to Natural
Language Processing (NLP). These models are usually trained by minimizing
the commonly-used cross-entropy (CE) objective function. The basic concept of
CE is simple and intuitive: each class is assigned a target (usually 1-hot) vector.

? Equal contribution
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Despite its popularity, the CE objective loss – the KL-divergence between one-
hot vectors of labels and the distribution of the model’s output logits – suffers
from major robustness issues, which limits its use. In fact, CE suffers from ad-
versarial robustness, as was shown in [1], which demonstrated empirically that
training with a CE loss can cause the representations to spread sparsely over the
representation space during training. Additionally, introducing noisy data seams
to reduce the performance substantially, due to the fact that the cross entropy
loss supposes that all the training labels are true, and neglects the fuzziness of
noisy labels [2].

To overcome the above-mentioned challenges, many successful alternatives
have been proposed to adjust the reference label distribution problems through
label smoothing [3,4], Mixup [5], and knowledge distillation [6]. Recently, con-
trastive learning (CL) algorithms that were developed as estimators of mutual
information, has led to major advances in self-supervised representation learning.
These methods explicitly aim at training an encoder to learn latent representa-
tions of data instances to learn by pulling together representations of augmented
views of the same data example (positive pairs), and pushing away representa-
tions of augmented views of different data examples (negative examples).

(a) SimSCL (b) Cross-Entropy

Fig. 1: T-SNE plots of the learned sentence representations using SimSCL and
Cross-entropy on the SST-2 test set.

Inspired by the recent works on contrastive representation learning strategy,
we introduce SimSCL, a simple supervised contrastive learning framework that
uses a novel contrastive loss for binary classification task by leveraging label
information more effectively. In this work, we consider many positives per an-
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chor, unlike previous works on self-supervised contrastive learning which uses
only a single positive example per anchor, and many negatives. In other words,
the positive points are sampled from the same class as the anchor, instead of
being augmented views of the same anchor, as done in self-supervised learning.
In figure 2, we show how we select positive examples and negative examples for
each class. The use of many positives and many negatives for each anchor in our
framework allows the encoder function to better maximize the inter-class and
minimize the intra-class similarities (learn effective generalizable features) than
the standard framework which relies on the cross-entropy loss using the same
model architecture. In figure 1 we can clearly see that our proposed objective
function enforces more compact clustering of examples within the same class.

The empirical results show that our proposed framework consistently outper-
forms the standard cross-entropy loss using the same model architecture on three
publicly available benchmark SA datasets, namely, Yelp-2, SST-2, and Amazon-
2. Further experiments on Moroccan and Algerian dialects demonstrate that our
framework also works well for under-resource languages.

2 Related Work

Our research builds upon previous works in self-supervised representation learn-
ing, contrastive learning, and supervised learning. Here, we shed light on the
most pertinent papers.

Cross entropy is the de facto choice for the loss function in classification
tasks. This prominence is due to many reasons. First, CE has good theoretical
grounding in information theory, which makes it useful for theoretical analysis
of systems [7]. Second, CE loss has been proven to rival many loss function in
large data-sets. However, a number of works have analyzed the shortcomings of
the commonly adapted cross-entropy objective function, showing that it leads to
poor generalization performance due to poor margins, and sensitivity to noisy
labels. Classification models are theoretically evaluated by their ability the sep-
arate classes in the representation space. Separability is also of practical use,
since large margins can make models robust to small perturbations of the input
space and hence, more robust to noise. [1] showed that CE does not maximize
the separating margins between classes, and proposed an alternative that solves
this problem. This phenomenon can be attributed to the leniency of the penal-
ties of the cross entropy when close to the ground truth label (i.e. CE is eager
for the model to be right), and can lead to poor generalization.

Recently, there has been several investigations for the use of contrastive loss
for self-supervised learning. Primarily in the computer vision (CV) field, deep
Contrastive learning has been use to great effect for learning image representa-
tions . For instance, in [8] Hinton and his colleagues propose SimCLR a simple
framework, for learning visual representations without specialized architectures
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Randomly selected
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Fig. 2: Overview of the positive and negative examples construction process

or a memory bank, that generates anchor positive pairs by randomly augment-
ing the same image (e.g. random cropping and Rotation) while anchor-negative
pairs are, from augmented views of different images within the same batch and
minimizing a contrastive loss shown in Eq 1 that makes augmented views of
the same example agree, which were shown to considerably outperform previous
methods for self-supervised and semi-supervised learning on various benchmark
datasets.

Lself
i = −

∑
i∈I

log
exp(zi.zj(i)/τ)∑

a∈A(i) exp(zi.za/τ)
(1)

Where i ∈ I ≡ {1...2N} is the index of an arbitrary augmented sample,
j(i) is the index of the other augmented sample originating from the same
source sample. A(i) ≡ I {i} is the set of all batch samples except the anchor.
P (i) ≡ {p ∈ A(i) : ỹp = ỹi} the set of indices of all positives in the multiviewed
batch distinct from i. We can rewrite the set A(i) as A(i) ≡ P (i) ∪N(i), where
N(i) ≡ {p ∈ A(i) : ỹp 6= ỹi}.

Most similar to our method is the work done by [9], in that paper the au-
thors proposed two variants of a contrastive supervised loss named SupCon (see
Eq2andEq3). SupCon outperforms cross entropy loss and produces state-of-
the-art results on ImageNet using ResNet architecture [10] with four different
implementations of data augmentation.

Lsup
out,i =

∑
i∈I
− 1

|P (i)|
∑

p∈P (i)

log
exp(zi.zp/τ)∑

a∈A(i) exp(zi.za/τ) (2)
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Lsup
in,i =

∑
i∈I
− log

 1

|P (i)|
∑

p∈P (i)

exp(zi.zp/τ)∑
a∈A(i) exp(zi.za/τ)

 (3)

Other researchers have extended these methods to learn representations of
graph structured data [11,12,13,14,15]. For instance, in [15] the authors pro-
posed GraphCL a general framework for learning node representations in a self
supervised manner using a contrastive loss that aims at maximizing the similar-
ity between the representations of two transformations of the same node’s local
sub-graph. In the context of NLP, in [16] Mikolov and his colleagues proposed the
first contrastive-based framework for learning word-level embeddings by using
co- occurring words as positive pairs and k randomly chosen negative samples
words form the corpus as negative pairs. More recently, contrastive learning was
used for sentence-level representations.[17] proposes a self-supervised contrastive
objective by performing both masked language modeling and contrastive learn-
ing to learn a universal sentence representations by training a transformer-based
encoder to minimize the distance between the embeddings of textual segments
randomly sampled from nearby in the same document. More recently, in [18]
the authors proposed a novel loss for fine-tuning that includes a supervised
contrastive learning term [(1 − λ)LCE + λLsup

out ] novel loss that a supervised
contrastive learning objective for fine-tuning transformer-based pre-trained lan-
guage models that improve performance over a strong RoBERTa-Large baseline
on multiple datasets of the GLUE benchmark in the few-shot learning settings.

3 The proposed method

The main goal of the proposed framework is to learn representations by training
an encoder network via a novel fully-supervised contrastive loss for classifica-
tion task. The objective function is meant to capture the similarities between
sentences of the same class while distancing the representations of sentences be-
longing to different classes.

First, we tackle one of the most crucial steps in any contrastive learning
framework, namely, creating positive samples. In self-supervised, the common
way for creating these positive samples is using various data augmentation strate-
gies such as rotations and cropping in computer vision domain. Nevertheless,
directly grafting the way of generating augmented views from the image domain
is infeasible, since arbitrarily altering a sentence may change its semantics and
thus its sentiment. To address this issue, we consider that sentences of the same
sentiment are positive examples of each other. In figure 2, we show how we select
positive examples and negative examples for each class.
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3.1 Inter-class and Intra-class Distances

We first set up notation and describe the proposed framework for classification
tasks that will be essential for the analysis. Let D = {(xi, yi)}i be the dataset,
where xi represent the ith sentence of the dataset and yi is its label. Let Skl =
{(xki , yki)|yki = ykj ,∀i 6= j; 0 ≤ i ≤ l} denote the set of all sentences belonging
to the same class within the corpus with l being the max-length of the sentences.
Let Bk ∼ Skl be a mini-batch of randomly sampled examples from the same
class. Let fw(.) denotes the encoder operator where the sub-index w refers to
the weights of the encoders to be learnt. Let Hk = fw(Bk) ∈ RN×d be the highest
level l2 normalized representation of the encoder where N is the batch size and
d is the dimension of the embedding vector. The jth row of Hk corresponds to

the embedding h
(l)
j of sentence k. Mathematically, this can be presented as

Hk =


h>1
h>2
...

h>|Bk|

 ∈ RN×d

3.2 Contrastive objective function

Now that we have all the mathematical notions needed, we proceed with the
formulation of the objective function of the proposed contrastive learning frame-
work:

V(C1,C1) = H1H
>
1 = fw(B1)× fw(B1)> ∈ RN1×N1 (4)

V(C2,C2) = H2H
>
2 = fw(B2)× fw(B2)> ∈ RN2×N2 (5)

U(C1,C2) = H1H
>
2 = fw(B1)× fw(B2)> ∈ RN1×N2 (6)

U(C2,C1) = H2H
>
1 = fw(B2)× fw(B1)> ∈ RN2×N1 (7)

Where, B1 ∼ S1l and B2 ∼ S2l . V(C1,C1) and V(C2,C2) are the distances be-
tween the positive examples, which should be minimized by the objective (inter-
class similarity), and V(C1,C2) and V(C2,C1) are the distance between the repre-
sentation of each batch and the representation of the other batch, which should
be maximized (intra-class similarity).

Finally, we concatenate the V(C1,C1) with V(C2,C2) inter-class matrices, and
U(C1,C2) with U(C2,C1) intra-class:

V =

[
V(C1,C1)

V(C2,C2)

]
U =

[
U(C1,C2)

U(C2,C1)

]
In order to overcame the mismatching dimension of V(C1,C1) with V(C2,C2)

and that of U(C1,C2) with U(C2,C1) we adjust the matrix of the lowest dimension
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(column space) to be equal to that of the highest one by adding zeros.

given the previous calculations, we formulate our supervised contrastive ob-
jective that we call Lsup

concat as follows:

Lsup
concat = − 1

N

N∑
i=1

log


1

NC(i)−1
∑NC(i)

j=1,j 6=i exp(Vij/τ)

1
NC(i)−1

∑NC(i)

j=1,j 6=i exp(Vij/τ) + 1
N

C(i)

∑N
C(i)

j=1 exp(Uij/τ)


(8)

where, N = NC(i) + N
C(i)

, NC(i) is the number of elements of the same class

as example i and N(i) the number of the elements of the other class, τ ∈ R+

is a scalar temperature parameter, Vi and Ui are the ith elements of V and U
respectively.

Note that, by minimizing the proposed supervised contrastive loss Lsup
concat,

the encoder operator adjust its weights so that representation of sentences with
same class label are close to each other (high values for [Vi]i=1,2...), while rep-
resentation of sentences belonging to different classes are far from each other
(low values for [Ui]i=1,2...). Moreover, in contrast to self-supervised learning, our
objective function trains the model by exploiting multiple positive examples,
resulting in more compact clustering of the embedding space.

It is worth pointing out that our loss is generic, i.e, it can be used for any
binary classification problem. In this paper, we only use it for text binary classi-
fication task, leaving its exploration for other classification tasks as future work.

4 Main Results

4.1 Datasets

We evaluate the effectiveness of the proposed losses on three popular datasets
namely, SST-2, Yelp-2, and Amazon-2, used for benchmarking state-of-the-art
sentiment classification learning methods. We also tested our proposed objective
function for two other low-resource languages datasets namely, the Moroccan
Sentiment Analysis Corpus (MSAC) and the Algerian Sentiment Analysis Cor-
pus (ASAC). MSAC is a multi-domain dataset containing sentences from sport,
social and politics domains. ASAC is an Algerian Sentiment Analysis Corpus, it
is our own dataset that we collected and annotated taking advantage of the data
available on Youtube video comments. The problem was how to extract from
Youtube, only the comments concerning the Algerian dialect. As there is no
standard method for this problem, we opted for the approach we had proposed
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in a previous work [19]. We collected data on YouTube, by selecting several hash-
tags or keywords used mainly by Algerians. Subsequently, all the data collected
was checked and filtered and those which were not Algerian, they were excluded
from the corpus. Then, we manually annotated all the comments by assigning
each sentence its polarity (we didn’t take into consideration neutral sentences).
The constructed corpus, written in Arabic and Latin characters, is made up
of 3976 positive comments and 4443 negative comments 3. We summarize each
dataset in Table 1.

Table 1: dataset statistics

Dataset #Train #Dev #Test #Classes

SST-2 60k 3.5k 3.5k 2

Yelp-P 600k 50k 38k 2

Amazon-P 3M 600k 400k 2

MSAC 1.6k 0.2k 0.2k 2

ASAC 6.8k 0.8k 0.8 2

4.2 Training Details

Our framework allows various choices of the network architecture without any
constraints. However, since the aim of this work is to compare different loss
functions on the same model architecture, we opt for simplicity and adopt the
commonly used BiLSTM-based encoder.

For SST-2, Yelp-2, and Amazon-2 datsets, Lsup
concat was trained for 60 epochs

using Adam optimizer with learning rate of 0.001 [20]. We initialize the input
layer of the encoder with Glove pre-trained word representations of size 300 [21].
we use an encoder function of 3 hidden layers, a hidden units of 512, and a batch
size of 800. We apply dropout of 0.5 on each layer. Note that the CE loss is eval-
uated by increasing the mini-batch size up to 1000. However, the best results
are obtained using a batch size of 500.

For ASAC and MSAC datsets, similarly, the supervised Lsup
concat was trained

for 15 epochs using Adam optimized with a learning rate of 0.003. However, for
these datasets, we use an encoder with 1 hidden layer due to the number of
examples that we have in the datasets, a hidden units of 128, and a batch size
of 200. We apply dropout of 0.1. Similarly, we the CE is trained for a batch size
up to 400, but the best results are obtained using a batch size of 64.

3 This corpus will be made public
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Following common practice, we opt for a linear evaluation of the learned sen-
tence representations. More precisely, we use the learnt representations to train
a logistic regression model to solve the text classification task. In practice, the
evaluation process was performed using both a linear, and non-linear (ReLU ac-
tivation) classifier. However, better results were obtained by the latter, achieving
an average performance gain of 2% across all datasets.

4.3 Classification Accuracy

Here, we report the obtained results using Lsup
concat in different settings on 5

benchmark datasets, and those obtained by the CE and SupCon [9] losses. The
results are given in terms of accuracy score measured on the same balanced test
set.

Table 2: Linear evaluation of representations with different projection heads g(·)
(Accuracy). The representation h (before projection) is 512-dimensional (%).

Dataset \Projection Identity Linear Non-linear

SST-2 93.40 93.60 94.15

Yelp-2 95.13 95.31 95.45

Amazone-2 93.23 93.61 94.71

MSAC 78.48 79.33 80.10

ASAC 79.73 80.91 82.63

Following common practice, we first study the importance of adding a projec-
tion head that maps representations to the space where supervised contrastive
loss is applied. Similar to we tested three different MLP architecture: (1) identity
mapping; (2) linear projection z = g(h) = W (1)h ∈ R512 ; (3) non-linear pro-
jection with one additional hidden layer as used by several previous approaches
z = g(h) = W (2)ReLU(W (1)h) ∈ R512. Similar to what have found in previous
works, we observe that a non-linear is better than linear and identity functions
for projection head (See table 2). Note that, the projection head network is used
only in the contrastive training phase, however, we discard it at the fine-tuning
and inference phases.

For the evaluation performance, we tested our supervised representation for
transfer learning in two settings: (1) the (non-linear) classifier is trained on top
of the frozen representation (transfer learning); (2) we train the classifier, where
we allow all weights to be adjusted during training (fine-tuned). It is clear from
the table 3 that the learnt representations by our loss function are useful for the
downstream tasks without adjusting them. In this paper, we provide the results
that we obtained with the transfer learning strategy.
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Table 3: Comparison of transfer learning and fine-tuning performance (Accu-
racy).

Dataset Transfer learning Fine-tuned

SST-2 94.05 94.15

Yelp-2 95.53 95.45

Amazone-2 94.71 94.58

MSAC 80.10 78.21

ASAC 82.63 82.16

Table 4: Performance Results (%)

Classification Accuracy Results

Dataset CE SupCon (Lsup
out ) SimSCL (Lsup

concat)

SST-2 91.28 93.53 94.15

Yelp-2 92.12 94.84 95.45

Amazon-2 92.94 93.98 94.71

MSAC 72.51 78.33 80.10

ASAC 78.70 82.11 82.63

Table 4 shows the obtained results of biLSTM-based model using our Lsup
concat

objective function on the previously described datasets; and those obtained by
the cross-entropy and SupCon losses. The results are given in terms of accuracy
score measured on the same balanced test set. It is clear that in all cases, our
framework provides better performance; the gain in performance is significant.
Indeed, SimSCL leads to a 4.7% improvement of accuracy on SST-2, 3.6% im-
provement on Yelp-2, 5% improvement on Amazon, 3.9% improvement on ASAC,
and 7.6% improvement on MSAC compared to CE loss. The large performance
gap for MSAC dataset demonstrates that cross-entropy struggles with separat-
ing classes when dealing with small datasets. Furthermore, the results for MSAC
and ASAC prove that our framework is very promising for under-resourced lan-
guages, which makes it advantageous over more sophisticated models such as
transform-based models (e.g, BERT, RoBERT), which cannot be used for these
languages due to the large amount of data needed for pre-training. Moreover,
our experiments showed that CE overfits the MSAC dataset very quickly, with
a training accuracy of 96% and only 72% accuracy on test. The overfitting prob-
lem cannot be explained by the large number of parameters of the biLTSM,
since SimSCL-Obj also uses biLTSM (i.e, the same number of parameters as
CE). Indeed, the problem can be explained by the fact that CE learns very poor
margins between the two classes. Finally, it is worth pointing out that, similar
to the cross-entropy loss, our loss function is robust to weights initialization.
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5 Conclusion & future work

In this paper, we presented SimSCL, a simple supervised contrastive learning
framework for training deep neural network for the binary classification task
using a novel loss function. The latter is based on inter-class similarities (to be
maximized), and intra-class similarities (to be minimized). We demonstrated,
empirically, that SimSCL separates the two classes better than the encoder based
on the classical cross-entropy and the SupCon losses. In the future, we plan to
extend our method to other domains, such as computer vision, and graph neural
network.
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