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Notations

x column vector of components xp, 1 ≤ p ≤ P
s, x, y sources, observations, separator outputs
R number of sources
P number of sensors
T number of observed samples
? convolution
A matrix with components Aij
A, B mixing and separation matrices
G, W , Q global, whitening, and separating unitary matrices
ǧ Fourier transform of g
ŝ estimate of quantity s

px probability density of x
ψ joint score function
ϕi marginal score function of source si
Ex, E{x} mathematical expectation of x
I{y} or I(py) mutual information of y
K{x;y} or K(px; py) Kullback divergence between px and py
H{x} or H{px} Shannon entropy of x
L likelihood
A, B mixing, and separating (non linear) operators
cum{x1, . . . , xP } joint cumulant of variables {x1, . . . , xP }
cumR{y} marginal cumulant of order R of variable y
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QT transposition
QH conjugate transposition
Q∗ complex conjugation
Q† pseudo-inverse
Υ contrast function
R real field
C complex field
Â estimator of mixing matrix
rank{A} rank of matrix A

krank{A} Kruskal’s k-rank of matrix A

diag{A} vector whose components are the diagonal of matrix A

Diag{a} diagonal matrix whose entries are those of vector a
trace{A} trace of matrix A

detA determinant of matrix A

š(ν) Fourier transform of process s(t)
� Kronecker product between matrices
� Khatri-Rao (column-wise Kronecker) product between matrices
� Hadamard (entry-wise) product between arrays
⊗ tensor product
•j contraction over index j
S, G sets

dom f domain of function f
proxA

f (x) proximity operator of function f within the metric induced by A computed at x

ιC indicator function of set C
PC projector on set C
epi f epigraph of function f
argmin

C
f minimum argument of f over set C

argmax
C

f maximum argument of f over set C

sup
C
f supremum of f over set C

inf
C
f infimum of f over set C

∇f gradient of f
∇2f Hessian of f
∂f(u) subdifferential set of f at u
f∗ conjugate of function f
γf Moreau envelope of f of parameter γ
� infimum-convolution
‖ · ‖F Frobenius norm
||| · ||| spectral norm
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6

Tensor decompositions: principles and application to food
sciences

J. Cohen, R. Bro and P. Comon

6.1

Introduction

Most graduate students fear the concept of tensor, as it reminds them of intricate astro-
physics, material science, differential calculus or multilinear algebra formalism. Regard-
ing the fields of signal processing and data science, while it is true that using tensor meth-
ods requires understanding at least linear algebra and convex optimization, which are both
rich applied mathematics domains, the authors believe that most of this fear about tensors
is unjustified in the context of engineering. Indeed, for data scientists, tensors are simply
arrays that may have more than two indices, and most of the discussion in this chapter will
actually be a generalization of well-understood techniques for matrices to such arrays.

Before entering the technical details of tensor algebra and tensor decomposition methods
for analyzing data sets, we shall begin this chapter with a friendly introduction to tensors,
so that the reader can hopefully get rid of any anxiety about tensors.

6.1.1

A simplified definition

Let us start with a definition of what a tensor is, within the scope of this chapter.

DEFINITION 6.1 A (real) tensor T is an element of Rn1×···×nd where ni are integers
greater than or equal to 2. Integer d is called the order of the tensor.

In other words, we consider tensors as arrays containing real numbers, and a dth order
tensor is a real array with exactly d dimensions, which we call modes. This means that
real matrices are second-order tensors, i.e. matrices are tensors with only two modes, while
vectors of Rn are first-order tensors. A third-order tensor is depicted in Figure 6.1. As a
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Figure 6.1 A third-order real tensor is nothing more than a three-way array of size
n1 × n2 × n3, that contains real numbers Ti,j,k at each entry (i, j, k). To rephrase using a
different vocabulary, this real tensor T has three modes of sizes respectively n1, n2 and n3.

side note, there exist definitions of tensors which are much more general than this one, the
most general one in the mathematical sense involving monoidal category theory [1], which
is far outside the scope of this chapter. However, an interested reader may turn to [2, 3, 4]
for other descriptions of tensors.

The study of tensors as a data structure is necessary in many applications where such d-
dimensional arrays emerge as efficient representations for the studied phenomenon. For
instance, it may be that sensors directly output tensors, e.g. a video or a 3D image. It is also
often the case that data are collected along several experimental variables, which become
modes in a measurement tensor. This is the case with fluorescence spectroscopy; see the
end of this introduction for a description of how fluorescence spectroscopy measurements
lead to data being contained naturally in a tensor. Finally, it is sometimes profitable to
augment a dataset to obtain a tensor. An example of such augmentation is obtained from
stacked modified images that are shifted versions of an original one. The obtained data set
is a collection of matrices, i.e. a third-order tensor.

6.1.2

Separability: a key concept for tensor decomposition model

We have defined what a tensor is and how one may end up manipulating such an object.
However, we have yet to define the type of information that we want to extract from
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tensors.

Recalling from Definition 6.1 that modes are the various ways/dimensions of a tensor, this
chapter describes some tools that exploits mode-wise information to explain the content
of a tensor. The main mathematical concept that formalizes this idea of collecting mode-
wise information to describe the whole tensor is “separability”. By definition, a separable
function f(x, y, z) verifies the following equality:

f(x, y, z) = f1(x)f2(y)f3(z) (6.1)

for some functions f1, f2, f3. Of course, very few functions are of this form. A separable
function f is therefore entirely described by a triplet of functions fi, each depending only
on a single variable. Therefore, they are desirable to describe multivariate patterns in an
understandable, mode-wise manner. We shall see how to do that in the following sections.

The link between separable functions and tensors is the following: a tensor can be seen
as an array collecting values of a sampled multivariate function. Indeed, one can always
define a function f(x, y, z) such that

Tijk = f(xi, yj , zk). (6.2)

If this function f is separable as defined in (6.1), then the corresponding tensor has re-
ceived several names, and in particular simple tensor, or decomposable tensor in the early
literature. In the remainder, we shall assume the terminology of separable tensor, which
is more intuitive, and directly related to (6.1). This leads to the following definition:

DEFINITION 6.2 A separable tensor is a tensor from Rn1×n2×n3 whose general term T
verifies the following equality:

Ti,j,k = aibjck (6.3)

where a, b, c are real vectors from respectively Rn1 ,Rn2 ,Rn3 .

Separable tensors are thus a formal description of what was referred in the beginning of
this introduction as “patterns explaining the data across all modes”. We shall see in Section
6.2.2 the definition of tensor rank; it will then be clear that separable tensors are nothing
else but rank-one tensors. Because rank-one tensors make up for only one simple pattern,
a more complex data tensor should be composed of several of them. This is the rationale
under the Canonical Polyadic Decomposition (CPD), which is more formally described
in Section 6.2.2. Taking this reasoning one step further, a tensor decomposition model
always writes a tensor as a sum of separable terms. Therefore, tensor decomposition
models always aim at expressing global information contained in a tensor using mode-
wise descriptors.



Chap. 6: Tensor decompositions – Source Separation in Physical-Chemical Sensing 4

Figure 6.2 Leftmost a fluorescence Excitation-Emission Matrix (EEM) of a single fluorophore,
the amino acid tryptophan, and rightmost a sample containing three different amino acids; each
with a unique contribution (peak) to the EEM. The three amino acids are tryptophan, tyrosine
and phenylalanine. The leftmost matrix is separable up to noise, while the rightmost matrix is a
sum of three separable matrices, also up to noise.

6.1.3

Core aspects of tensor decomposition: the fluorescence spectroscopy example

To conclude this introduction, we explore how fluorescence spectroscopy measurements
can lead to a tensor which has a CPD structure, and how this structure can be exploited
in practice. Further details are provided in Section 6.6 dedicated to applications of tensor
decompositions in food sciences.

Fluorescence spectroscopy takes advantage of the fact that in food sciences, many inter-
esting compounds have their own fluorescent response to stimulation. To be more precise,
these compounds react only in a specific range of stimulation wavelength at various in-
tensities. Fluorophores respond to light excitation by emitting a light that has a spread
spectrum, called the emission spectrum. The emitted intensity consequently depends on
excitation and emission wavelengths.

Given one sample of possible several fluorescent chemicals, and stimulating the sample
with a light of varying wavelengths, a matrix of data is obtained. The two modes of
the matrix are the two experimental variables, i.e. the excitation wavelength λex and
the emission wavelength λem, and the elements of the matrix are the measured intensity
values of the light that the sample outputs. An example is provided in Figure 6.2.

Such a matrix is called a FEEM (Fluorescence Emission Excitation Matrix). Note that
FEEM do not restrict to cases where only one compound is present in the solution. But
in the case of a single fluorophore, the fluorescence phenomenon is separable with respect
to excitation and emission wavelengths and therefore the general term of a FEEM that
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contains the spectra of only one compound can be expressed as follows: Mλex,λem =
aλexbλem , where a is the excitation spectrum, and b is the emission spectrum. In other
words,M is a rank-one matrix, i.e. a rank-one tensor of order 2.

Now suppose that instead of a single sample, one has several samples of the same sin-
gle chemical, but at various concentrations in the solvent. The fluorescence phenomenon
being linear with respect to concentration (using a first order approximation valid at low
concentrations), repeating the above reasoning on each sample yields a separable third-
order tensor T λex,λem,k = aλex

bλem
ck, where k is the sample index and c contains

the relative concentrations with respect to the first sample. In other words, ideally a fluo-
rophore gives a simple, rank-one tensor.

At this stage, the reader can understand why studying tensors models is crucial in fluores-
cence spectroscopy. Indeed, given a tensor T , if an informed user knows that this tensor is
a collection of FEEM measured on solutions containing a single compound, then finding
a, b and c means estimating, from the data tensor, the spectra and concentrations of the
compound. Computing these parameters is typically achieved by solving an optimization
problem, as discussed further in Section 6.5.

Usually, studied samples contain more than one chemical compound. The fluorescence
phenomenon being additive at low concentrations, a tensor obtained by measuring a mix-
ture is the sum of the separable tensors that would be obtained if each compound in the
mixture was measured separately. Using a more technical vocabulary later defined in the
chapter in Section 6.2, we shall see that a tensor of fluorescence spectroscopy measure-
ments follows an approximate CPD model, with as many separable terms as there are
compounds in the mixture. Again, identifying the parameters of this model can be done
by solving an optimization problem, which leads to estimating the various spectra and
relative concentrations in the mixture.

To summarize, we have seen that when studying tensors of fluorescence spectroscopy
measurements, the data are naturally contained in a tensor that can be written as the sum
of a small number of separable (i.e. rank-one) terms. I will be shown later that the CPD is a
source separation technique which extracts on each mode a pre-defined number of sources
from data stored in a tensor. Interestingly, these sources need not be independent in the
statistical sense, as opposed to ICA for instance (see Section 1-3). In that sense, CPD
and other tensor decomposition models are similar to Nonnegative Matrix Factorization,
presented in Chapter 2 of this book.

6.1.4

Structure of the chapter

In the remainder of this chapter, we first define more formally a few tensor decompositions
(including the CPD), and introduce mild conditions that ensure the underlying sources can
be extracted from a tensor, see Section 6.2. In Sections 6.3 and 6.4, we then introduce
the concepts of constrained decomposition and coupled decompositions, which are partic-
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ular tensor-based models inspired from the CP decomposition. actually compute tensor
decompositions. Finally, in Section 6.6, we show in more depth how these methods can
be employed to extract relevant information from various measurement techniques used in
food sciences.

Note From this point onward, for simplicity reasons, we will only work with third-order
tensors. However, all the models introduced after this point can trivially be extended to
higher orders. Third-order tensors are convenient for notations, and are also more common
than tensors of order four and higher in practice.

Other introductions Survey papers have been proposed in the literature, that focus on
various aspects of tensors. If the reader wishes to have other accessible introductions to
tensors before or after reading the remainder of this chapter, we can recommend these
references: [4, 5, 6, 7].

6.2

Tensor decompositions

6.2.1

Tensor-based method, the matrix case

A convenient way to start addressing the tensor decomposition subject is to look first at
the matrix case. Any matrix M of size n1 × n2 can be written in the canonical basis
as M =

∑
ijMijE(i, j), where E(i, j) is the matrix having only one nonzero entry at

position (i, j). This is a trivial decomposition, which only shows that the linear space of
n1×n2 matrices is of dimension n1n2; it is not so much useful otherwise. In other words,
this trivial element-wise decomposition has n1 n2 parameters (one for each element in the
sum), so it is not parsimonious and is seldom used for extracting information.

Now, looking for more parsimonious representations and bearing in mind the separabil-
ity property emphasized in the introduction, we can decompose a matrix M into a sum
of rank-one terms as M =

∑R
r=1 σrDr, where Dr = urv

T
r are unit-norm rank-one

matrices, i.e., vectors ur and vr are of unit-norm.

Stacking ur and vr vertically in matricesU and V of sizes respectively n1×R and n2×
R, and setting Σ as aR×R diagonal matrix containing the values σr , this decomposition
can be rewritten in compact form as M = UΣV T. The smallest number of rank-one
terms R such that all values σr are non-zeros is called the rank of M (which coincides
with other usual definitions of matrix rank), and this decomposition is called a low-rank
matrix approximation of M if R is smaller than min(n1, n2).
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It can be checked out that such a decomposition exhibits now at most R(n1 + n2 − 1)
degrees of freedom (number of free parameters). Indeed, each rank-one component has
n1 parameters in ur , n2 in vr and one more is σr . However vectors ur and vr are
normalized, removing one degree of freedom in each, meaning a rank-one component has
n1 + n2 − 1 degree of freedom.

The problem is that this decomposition is not unique as soon as R is strictly greater than
one. Uniqueness is a key feature of any learning model as soon as the sought parameters
are to be physically interpreted. For instance, say one wants to interpret parameter matrices
U and V as respectively collections of emission and excitation spectra in fluorescence
spectroscopy. The existence of several solutions prohibits this interpretation, as only one
of the possible solutions may actually correspond to the desired spectra.

To see this lack of uniqueness, consider any orthonormal R×R matrixQ. Then we also
have M = UΣQ(V Q)T. This shows that other decompositions of the form M =
U ′Σ′V ′T hold true, if we define V ′ = V Q, Σ′ the diagonal matrix containing the
norm of each column of UΣQ and U ′ = UΣQΣ′−1. Thus, for ensuring uniqueness,
orthogonality between columns of matrices U and V is generally imposed, which yields
the Singular Value Decomposition (SVD):

Mij =
R∑
r=1

σr UirVjr, such that UTU = In1
and V TV = In2

(6.4)

where Ini is the identity matrix of size ni×ni. The SVD can also be written in a compact
form: M = JΣ;U ,V K := UΣV T, with left orthogonal matrices U and V , and where
Σ is diagonal R × R with positive entries Σrr = σr. As a notation convention, in the
rest of the chapter we prefereably denote orthogonal matrices with letter U and V , and
general matrices with other letters.

Another convenient way to write the SVD is the following

M =
R∑
r=1

σrDr, (6.5)

where Dr are rank-one unit-norm matrices, which are orthogonal to each other. The
SVD is unique if all singular values are distinct. Of course, rank-1 terms in the sum (6.4)
or (6.5) can be permuted, because the sum is commutative. This induces a permutation
among columns of matrices U and V , which can be fixed by sorting singular values in
decreasing order in matrix Σ.

The number of degrees of freedom in the SVD isR(n1+n2−R), which can be compared
to theR(n1+n2−1) degrees of freedom we would have if orthogonality was not imposed.
More precisely, there are n1R − R(R + 1)/2 degrees of freedom in U , n2R − R(R +
1)/2 in V , and R in Σ. The sum of these 3 terms is R(n1 + n2 − R). Indeed, it is
sufficient to think of each column of matrices U and V as normalized and orthogonal
to all previous columns, meaning there are for each matrix

∑R
r=1 r additionally fixed

degrees of freedom. This reduced number of degrees of freedom provides intuition as
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to why SVD is often unique while unconstrained low-rank matrix factorization is not.
Note that imposing nonnegativity in matrix Σ permits to fix sign indeterminacies among
columns ofU and V , but does not reduce the number of degrees of freedom.

6.2.2

Canonical Polyadic Decomposition, PARAFAC/CanDecomp

Let us now define the Canonical Polyadic Decomposition (CPD) as an extension of SVD
for higher-order tensors. In what follows, we will see that for third-order tensors, it is
possible to drop the orthogonality constraint of the SVD and still obtain a unique de-
composition. This makes the CPD appealing in practice for source separation [8], or for
addressing other identification problems [9, 10, 11, 12].

Denote by S a 3-way diagonal array with σr as diagonal entries. For a large enough R, a
n1 × n2 × n3 tensor T with entries Tijk can always be decomposed as:

Tijk =
R∑
r=1

σr AirBjrCkr (6.6)

where factor matrices A, B and C have unit-norm columns, and where weights σr may
be imposed to be real positive. Indeed, just like with matrices, one may write

T =

n1,n2,n3∑
r1,r2,r3

Tr1,r2,r3E(r1, r2, r3) (6.7)

where E(r1, r2, r3)ijk = δi,r1δj,r2δk,r3 is a tensor with zeros everywhere except a one in
position (r1, r2, r3), and δi,r is the Kronecker symbol. Then setting r = (r1, r2, r3) as a
super-index, clearly any tensor T admits a decomposition in separable terms (6.6) as soon
as R is large enough. A first naive upper bound on R is therefore n1n2n3. On the other
hand, since the above decomposition always exists for large enoughR, there always exists
a minimal value of R, which is called the rank of tensor T . It will be denoted rank{T },
as for matrices. Moreover, decomposition (6.6) with minimal number of terms R is the
exact Canonical Polyadic Decomposition(CPD) of tensor T . The exact CPD is therefore
the decomposition of a tensor T into a minimal sum of rank-one tensors. A graphical
representation of the CPD is given in Figure 6.3. This can also be conveniently written as:

T =
R∑
r=1

σrDr (6.8)

with Dr = ar ⊗ br ⊗ cr , where ar (resp. br and cr) denote the unit-norm columns of
matrix factorA (resp. B andC), and ⊗ denotes the outer-product defined as

[a⊗ b⊗ c]ijk = aibjck. (6.9)
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=

T =

+ · · · +

σ1a1 ⊗ b1 ⊗ c1+ · · · + σRaR ⊗ bR ⊗ cR

Figure 6.3 A graphical representation of the CPD. A tensor T is expressed as a minimal sum of
R rank-one tensors, which can themselves be expressed as outer products σrar ⊗ br ⊗ cr.

The notation used is summarized at the beginning of this book. As for the matrix SVD, we
can decide to sort values σr in decreasing order to fix the permutation ambiguity stemming
from addition commutativity; note the similarity with (6.4).

A necessary condition for this decomposition to be unique, up to permutations and signs
ambiguities, is that the number of degrees of freedom in the left hand side of equation (6.6)
be at least as large as that in the right hand side. In general there are n1n2n3 elements
in tensor T , and R(n1 + n2 + n3 + 1) parameters in the CPD with 3R normalization
constraints. In other words, we must have:

n1n2n3 ≥ R(n1 + n2 + n3 − 2) (6.10)

As soon as R < n1n2n3

n1+n2+n3−2 , this necessary condition holds, and it becomes possible
for the CPD to be unique. We shall subsequently see that this condition is not sufficient
to ensure CPD uniqueness, but that for small enough R, the orthogonality constraint is
generally not required to obtain a unique decomposition. This is unlike the matrix case,
where uniqueness cannot be attained without additional constraints except when R = 1.
In addition, condition (6.10) may hold true even if R exceeds min{n1, n2, n3}, which is
not possible under orthogonality constraints. The boundR ≤ n1n2n3/(n1+n2+n3−2),
induced by the counting (6.10) of degrees of freedom, is studied in [13].

Strangely enough, condition (6.10) is not sufficient to guarantee uniqueness of the CPD.
It has been shown that the CPD (6.8) is unique1) provided the rank is not too large [14, 15,
16]. In particular, uniqueness is ensured if:

R ≤ 1

2
(krank{A}+ krank{B}+ krank{C} − 2) (6.11)

In the sufficient condition above, krank{A} denotes Kruskal’s rank2) of matrix A.
Uniqueness of the CPD (6.8) can be ensured under conditions weaker than (6.11); see
the recent paper [17] and references therein.

Equation (6.6) can be seen in many ways, among which two are common for practical use.

1) again, if we refer to (6.6) instead of (6.8), uniqueness is to be understood up to permutation of terms in the
sum; we made the same observation for matrices in Section 6.2.1 about Eq. (6.5).

2) The Kruskal rank of a matrix is the largest number κ such that any subset of κ columns is full rank. Hence
Kruskal’s rank cannot exceed rank. For almost all matrices, Kruskal’s rank is equal to rank.
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• First, it is a tensor factorization model that seeks a small numberR of separable patterns
to describe the data. This point of view is usually used for justifying the use of tensor
decomposition techniques in machine learning as an exploratory technique.

• Second, it is a parameter identification technique where physically meaningful matrices
A,B andC are of interest for a further task. In other words, the CPD may be seen as a
source separation technique. For instance, matrix A may stand for a spectral signature
that enables the identification of the chemical compounds present in a mixture. This
second approach contrasts with the first one since uniqueness here is a key feature for
interpreting the results. It is mostly seen in bio-medical applications (metabolomics,
neuroimaging) or in sensor arrays where the CP decomposition results from a set of
physical equations.

The model is particularly useful when it coincides with the physical model of the data,
because it provides meaningful solutions due to the uniqueness property.

At this stage, it is worth saying a word about terminology. Even if the CP decomposition
has been introduced originally in 1927 by Hitchcock, it has been rediscovered in 1970, by
Harshman and Carroll and Chang. They gave it the name of PARAFAC and CANDECOMP,
respectively. To unify the terminology, Kiers [18] proposed the acronym CP, which can
wisely stand for “CANDECOMP/PARAFAC”, as well as for “Canonical Polyadic”. In the
sequel we shall refer to (6.6) and (6.8) as the exact CP Decomposition (CPD) when R is
indeed minimal and reveals tensor rank. If we assume a multilinear model without column
normalization, then an additional scaling indeterminacy appears:

Tijk =
R∑
r=1

AirBjrCkr, denoted by T = JA,B,CK (6.12)

Such a decomposition without unit-norm constraint is not unique, and contains 2R free
parameters (scaling factors). More precisely, without normalization constraints, the CPD
model features (n1 + n2 + n3)R parameters since each rank-one component involves
three vectors of sizes n1, n2 and n3, and the norms of these vectors may be pulled apart
without modifying the sum of rank-one terms, since

∀µ, λ, ν ∈ R, µa⊗ λb⊗ νc = µλν (a⊗ b⊗ c) . (6.13)

Therefore, only (n1 + n2 + n3 − 2)R parameters can possibly be identified. More
bibliographical pointers to the CPD may be found in [19, 4].

6.2.3

Manipulation of tensors

In the following we introduce some commonly used manipulations of tensors, namely
how to unfold them into matrices or vectors. These manipulations are useful in many
different context, from the derivation of algorithms using linear algebra to programming.
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We also explain how these unfoldings link the outer product with the Kronecker product
of matrices. The Kronecker product of two matrices A ∈ Rn1×n2 and B ∈ Rm1×m2 is
denoted byA�B ∈ Rn1m1×n2m2 and is defined by:

A�B :=


a11B a12B . . . a1n2

B
a21B

...
an11B an1n2

B

 . (6.14)

Vectorization There are a priori a combinatorial number of ways to arbitrarily trans-
form a tensor in Rn1×n2×n3 into a vector in Rn1n2n3 . We refer to such an operator as
a vectorization. However, it is quite clear that an arbitrary, pseudo-random vectorization
will destroy any nice structure that the input tensors might have. In particular, if T fol-
lows a CPD, it is a reasonable ordeal to ask for the vectorized version of it to also satisfy
a similar equation.

Taking this into consideration, there are still a few different ways to define a vectorization,
and several co-exist in the literature. We propose to use the row-wise vectorization that
exhibits a nice and simple link between the outer product and the Kronecker product as
shown below. Let T be a n1 × n2 × n3 tensor, we define the row-wise vectorization as
follows:

vec(T )(i−1)n3n2+(j−1)n3+k = Tijk (6.15)

See Figure 6.4 for a graphical explanation of these formulas.

Note that the above definition of the vectorization operator may not coincide with native
implementation in some languages such as MATLAB, which is column-wise, but does
coincide with the memory layout of other languages such as C. More details can be found
in [20].

With the above definitions, we have in particular the property:

vec(a⊗ b⊗ c) = a� b� c (6.16)

which is not enjoyed by most other definitions, where terms need to be permuted. Because
the vectorization operation is trivially linear, we have further that

vec

(
R∑
r=1

σrar ⊗ br ⊗ cr

)
=

R∑
r=1

σrar � br � cr (6.17)

which nicely transposes the CPD to a Kronecker equation.

Furthermore, this Kronecker equation can itself be written in a more compact format,
making use of the Khatri-Rao product. The Khatri-Rao product between two matrices
A = [a1, . . . ,aR] andB = [b1, . . . , bR] is nothing else than a column-wise Kronecker
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a) columnwise vectorization
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b) suggested vectorization

Figure 6.4 The suggested row-wise vectorization reads the entries of the tensor along the last
index in the lexicographic order. This contrasts with the column-wise vectorization which is also
often encountered.

product:

A�B = [a1 � b1 | . . . | aR � bR] =

 A11b1 . . . A1RbR
... . . .

...
An11b1 . . . An1RbR

 (6.18)

Then it is easy to check that

vec

(
R∑
r=1

σrar ⊗ br ⊗ cr

)
= (A�B�C) s (6.19)

with s the vector of length R containing all values σr .

Matricization Similarly to vectorization, to be able to resort to known results borrowed
from linear algebra, we shall sometimes need to store the elements of three-way arrays into
two-way arrays (i.e. matrices). This can be done in various manners, but we shall retain
three of them, namely those having as number of rows one dimension of the original tensor.
The operation transforming a d-way array into a matrix is known as matrix unfolding,
matrix flattening, or matricization [7, 21, 20]. If T is a tensor of dimensions I × J ×K ,
we shall use the following matrix unfoldings T (p) along mode p defined as

T (1) is n1 × n2n3 : T (1)
in = Tijk, with n = k + (j − 1)n2

T (2) is n2 × n3n1 : T (2)
jp = Tijk, with p = k + (i− 1)n3 (6.20)

T (3) is n3 × n1n2 : T (3)
kq = Tijk, with q = j + (i− 1)n1

These unfoldings are illustrated in Figure 6.5. Matricizations along mode p fold the pth
dimension of the tensor on the rows of the matricized tensor. This maps the range of the
tensor on the pth dimension to the column space of the matricized tensor. Again, similarly
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M1 MK

…

T (1) = [M1| . . . |MK ]

T (2) = [N1| . . . |N I ]

T (3) = [NT
1 | . . . |N

T
I ]

N1

NI

...

Figure 6.5 Three unfoldings of tensor T

to the vectorization, tensors are matricized by selecting entries along the deepest index
first. This way, matricizations and vectorizations do not permute the terms from tensor
produts to Kronecker products. Indeed, it holds that

[a⊗ b⊗ c](1)
= a⊗ b� c

[a⊗ b⊗ c](2)
= b⊗ a� c

[a⊗ b⊗ c](3)
= c⊗ a� b

(6.21)

In terms of matrix unfoldings defined in (6.20), using (6.21) and the linearity of the matri-
cization, the CPD can be written in three different ways:

T (1) = US(1)(V �W )T = U diag{s}(V �W )T

T (2) = V S(2)(U �W )T = V diag{s}(U �W )T (6.22)

T (3) = WS(3)(U � V )T = W diag{s}(U �V )T

As a side note, there exist several definitions of tensor-matrix bijective maps in the litera-
ture. What is important is to define the inverse map and related properties consistently.

6.2.3.1 Contractions and CPD

It is convenient to have at our disposal a compact notation to indicate summations on
several indices. We shall assume the notation proposed in [7]:

T = JG;A,B,CK, (6.23)

meaning just that Tijk =
∑
`mnAi`BjmCkn G`mn. Note that another notation has been

proposed in [22] and would be equally meaningful: T = (A,B,C) · G. Some authors
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also write (6.23) as T = (A ⊗ B ⊗ C) · G, which accounts for the fact that T is the
image of G by the multilinear operator defined by A ⊗ B ⊗ C [20]. In the remainder,
only notation (6.23) will be used.

In particular, if we have that Tijk =
∑
r AirBjrCkr , then this could be denoted as T =

JI;A,B,CK, where I is a diagonal 3-way array with ones on its diagonal. In such a
case, one can omit tensor I and just write:

T = JA,B,CK. (6.24)

Note that the CPD (6.6) can thus be written as JS;A,B,CK, where S here de-
notes a diagonal tensor whose entry (q, q, q) equals σq . Moreover, by setting A′ =
[σ1a1, . . . , σRaR], it holds that

JA′,B,CK = JS;A,B,CK. (6.25)

In other words, the CPD may be written in several equivalent notations. In this chapter,
we will use whichever format is more convenient in each situation.

6.2.4

The chain rule

There exist a useful algebra result making use of the compact contraction notation defined
in Section 6.2.3.1. Although it can be proven almost trivially using more general results
from tensor algebra, we shall formulate it and prove it in simple terms.

PROPERTY 6.1 (CHAIN RULE) Given matrices A, B, C and A′, B′ and C ′ that are
compatible for products pairwise, it holds that

JJT ;A,B,CK;A′,B′,C ′K = JT ;A′A,B′B,C ′CK (6.26)

We coin this property the chain rule. To prove this result it is sufficient to show that for
any mode, here arbitrarily the first one,

JJT ;A,B,CK;A′, I, IK = JT ;A′A,B,CK (6.27)

and then apply this partial result sequentially. This partial result is obtained by observing
that

JJT ;A,B,CK;A′, I, IKijk =
∑
l′ A
′
il′
∑
lmnAl′lBjmCknTlmn

=
∑
lmn (

∑
l′ A
′
il′Al′l)BjmCknTlmn

= JT ;A′A,B,CKijk
(6.28)

and since this proof clearly holds for modes 2 and 3 as well by symmetry, we have just
proved Property 6.1.

The chain rule has an important corrolary that we will use throughout the chapter:
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PROPERTY 6.2 Given invertible matrices A,B,C, and two tensors T and G, if the
dimensions are compatible, then

JT ;A,B,CK = G ≡ T = JG;A−1,B−1,C−1K (6.29)

6.2.5

Multilinear Singular Value Decomposition

A second possibility to extend SVD to tensors is to keep orthogonality of factor matrices.
In that case, a n1 × n2 × n3 tensor T is decomposed as:

T = JG;U ,V ,W K (6.30)

where the so-called core tensor G is of size R1 × R2 × R3, smaller than T , that is:
R1 ≤ n1, R2 ≤ n2, R3 ≤ n3, and factor matrices U , V and W have orthogonal
unit-norm columns. This is interesting only if at least one dimension is strictly smaller, or
when the core is sparser, which means that a compression3) has been performed. Again, it
is then clear by just counting degrees of freedom that the diagonal form generally cannot
be imposed4) in G.

In terms of matrix unfoldings defined in (6.20), the multilinear SVD can be written in three
different ways:

T (1) = UG(1)(V ⊗W )T

T (2) = V G(2)(U ⊗W )T (6.31)

T (3) = WG(3)(U ⊗ V )T

Indeed, it can be noticed that the multilinear SVD is nothing more than another decompo-
sition of T into separable terms:

T =

R1,R2,R3∑
lmn

Glmnul ⊗ vm ⊗wn (6.32)

with ul,vm,wn respectively the columns of matrices U ,V ,W . Therefore the unfold-
ings formulas are obtained from (6.21) by linearity. These three writings show that matri-
ces U , V andW are built with the left singular vectors of matrices T (1), T (2) and T (3)

respectively. They can hence be computed by matrix SVDs. Once they are known, the
core tensor can in turn be computed as

G = JT ;UT,V T,W TK (6.33)

3) For the moment, this compression is lossless. Lossy compression will be addressed in Section 6.5.3.1.
4) In fact, tensors that are orthogonally diagonalizable form a very small class, and their rank must be bounded

by all their dimensions.
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using (6.29) of Property 6.2. One defines the multilinear rank as the triplet of minimal
values (R1, R2, R3) such that (6.30) holds exactly. Then it can be shown that

max{R1, R2, R3} ≤ rank{T } ≤ min{R1R2, R2R3, R3R1} (6.34)

Because the multilinear SVD is computed with the help of three SVDs, it enjoys the same
uniqueness conditions. The multilinear SVD has been first suggested by Kroonenberg in
1980 [23], and further studied in 2000 by De Lathauwer in [21] under the name of High-
Order SVD (HOSVD). But the premises of multilinear SVD appeared earlier with the
Tucker3 decomposition, which we address now.

6.2.6

Tucker

Tucker proposed much earlier[24], in 1966, a multilinear decomposition similar to (6.30)
but without orthogonality constraints on factor matrices:

T = JG;A,B,CK (6.35)

The consequence of relaxing all constraints is that this decomposition – often referred
to as Tucker3 – is not unique anymore, even if the size of the core is the same. The 3
in Tucker3 refers to the number of modes that are subspaced in the decomposition. The
Tucker3 decomposition is also often called the Tucker format, by opposition to Tucker
decomposition, because of the uniqueness issue [2]. Tucker3 decomposition formally
encompasses both multilinear SVD and CPD, which appear as constrained versions. Other
constraints such as nonnegativity or sparsity could be thought of and would yield other
decompositions, see Section 6.3.

The particular case when one mode is not reduced in dimension, which amounts to fixing
the factor on that mode to the identity matrix, sayC = I , is sometimes of interest and has
received the name of Tucker2 (since now strict subspaces are defined in only 2 modes). It
can be denoted T = JG;A,B, IK.

6.2.7

PARAFAC2

PARAFAC2 has been introduced in [25, 26]. It differs from the CPD (6.8) by the fact that
a matrix factor, e.g. the first one, may not be the same for each matrix slice. Rather, these
first-mode factors are related by an orthogonal transform:

T = JA(k),B,CK, A(k) = P (k)H, P (k)TP (k) = I, (6.36)

with a slight abuse of notation. In other words, if the data tensor is preprocessed as follows

∀k ≤ n1, T (k, :, :)← P (k)TT (k, :, :) (6.37)
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then it admits the CP decomposition JH,B,CK. Again, this means that PARAFAC2 is
not a sum of separable terms, but becomes one after a linear transformation of each slice in
the tensor. More details on the Parafac2 decomposition, from the coupled decomposition
perspective, are given in Block 6.4.2.

6.2.8

Approximate decomposition

Up to the previous section, we have talked about exact decompositions. For instance,
any tensor can be decomposed exactly as in (6.8). However, an exact representation is
generally not suitable. Indeed, decomposition (6.8) is unique only if the tensor rank is not
too large. On the other hand, (6.8) is exactly verified as long as the rank is large enough,
but uniqueness may not be guaranteed. In fact, in the presence of noise, the minimal
rank for (6.8) to hold may be larger than the Kruskal upper bound [27]. In addition, the
underlying physical model is generally of interest only for a reasonably small value of
R, that for instance may stand for the number of unknown sources in a source separation
problem. For these reasons, a low-rank approximation is needed.

Instead of computing the exact CPD (6.6), a first idea is to minimize the objective

Υ(S,A,B,C) = ‖T −
R∑
r=1

σ(r) a(r)⊗ b(r)⊗ c(r)‖2F (6.38)

for a fixed5) value of R, supposed to be smaller than the rank of T . Also, define the

Frobenius norm for tensors as ‖T‖2F =
n1,n2,n3∑
i,j,k=1

T 2
ijk.

Unfortunately, the low-rank tensor approximation problem is generally ill-posed for ten-
sors (if R > 1 and d > 2) [22, 28]. More precisely, a minimizer of (6.38) may not
exist. This is in contrast with matrices, for which a low-rank approximation can be eas-
ily computed by truncating the SVD [29]. Some solutions for this are discussed in the
Section 6.3 relative to constrained decompositions. However, in practice, this fact is of-
ten overlooked. Section 6.5 details how to compute an approximate CPD by tentatively
solving optimization problems similar to minimizing (6.38).

5) The problem of chosing the appropriate rank to obtain a meaningful approximation is application-dependent
and typically very intricate. As detailed in Section 6.5.1.2, deflation strategies should not be employed in the
general case.
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6.3

Constraints in decompositions

Although tensor decomposition techniques have proven useful in a wide range of applica-
tions, they are seldom used as a black box model. Rather, problem-specific constraints are
often applied on the factors of the decomposition. There are several main reasons to apply
constraints to a tensor decomposition model [19]:

• Despite the identifiability properties of tensor decompositions, the computed parameters
may not fulfill key properties of the sought factors, therefore hindering interpretability of
the results. Imposing constraints, for instance non-negativity, may ensure interpretable
results are obtained.

• When the parameters of a tensor decomposition model are not identifiable, constraints
can restore identifiability e.g. by reducing the size of the search space.

• The underlying optimization problem of low-rank approximations can be shown to have
a solution in the presence of constraints, while it may not in the general case as explained
in Section 6.2.8.

• Estimation performance is increased in a noisy scenario.

Below, some of the most widely used constrained tensor decomposition models are intro-
duced. Many constrained models are however not discussed here, since their derivation is
either straightforward or of relatively lesser importance in source separation applications.

Among others, the following constraints have been explored in the literature: nonnega-
tivity [30, 31, 32], orthogonality [33, 34, 35, 36, 31, 37], smoothness [38, 39, 40, 41],
unimodality [30], simplex or sum to one [19, 42], dictionary and sparsity [43, 44, 45, 46],
coherence constraints to ensure existence of approximation [47]. Some of these constraints
will be developed in subsequent paragraphs.

6.3.1

Non-negativity

When dealing with data acquired by measuring physical properties of natural processes,
such as fluorescence or reflectance measurements, one of the most widely encountered a
priori information available on the model parameters is nonnegativity. Indeed, parameters
related to many types of spectra or concentrations must be nonnegative by definition, and
cannot be easily interpreted if they are partially negative.

Of course, nonnegativity constraints may be applied in any tensor decomposition model,
but in this section we focus on the CPD, which is by far the most studied nonnegative
tensor decomposition model. At the end of this section, we discuss briefly the nonnegative
Tucker decomposition.
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6.3.1.1 Nonnegative CPD

Formally, a nonnegative CPD is derived as follows:

T = JA,B,CK and A � 0,B � 0,C � 0 (6.39)

where the inequality signs � are to be understood entry-wise. Clearly, without noise or
modeling error, nonnegative factors imply nonnegative tensor data6) T , but a nonnegative
tensor could be written as a CPD model with negative entries in factor matrices. There-
fore, it may occur that the rank of a tensor, which is the minimal number of columns
in unconstrained factor matrices, is strictly smaller than the nonnegative rank, which
is the minimal number of columns in nonnegative factor matrices and will be denoted
rank+{T}. A simple example of discrepancy7) between rank and nonnegative rank is
obtained by considering the following tensor (written slice-wise):

T =

[
1 1 1 1
1 1 1 0

]
(6.40)

which has rank 2, but nonnegative rank 3. Indeed,

T =

[
1
1

]
⊗
[

1
1

]
⊗
[

1
1

]
+

[
0
1

]
⊗
[

0
1

]
⊗
[

0
−1

]
(6.41)

shows that rank{T } ≤ 2 (while it is clear that rank{T } > 1). However it can be
shown8) that there exists no way to write T as the sum of two rank-one tensors with
nonnegative entries so that rank{T }+ > 2, and

T =

[
1
1

]
⊗
[

1
1

]
⊗
[

1
0

]
+

[
1
1

]
⊗
[

1
0

]
⊗
[

0
1

]
+

[
1
0

]
⊗
[

1
1

]
⊗
[

0
1

]
.

(6.42)

is a rank 3 nonnegative CPD of T .

Therefore, although the parameters of the PARAFAC model are identifiable, adding non-
negativity constraints may change the solution to the decomposition problem entirely. It
has been shown recently however that in a generic case, i.e. choosing a nonnegative tensor
at random, nonnegative rank and the usual tensor rank match [48].

As stated earlier, nonnegativity constraints are also important to make the approximation
problem well posed. Indeed, nonnegativity constraints prevent components cancellation

6) In practice negative entries may appear in these tensors because of measurement error, which does not in
principle prevent from fitting an approximate nonnegative CPD.

7) Note that this discrepancy also exists for nonnegative matrices [4]: nonnegative rank can be strictly larger than
rank. Nonnegative matrices are used in Chapter 2.

8) In a nutshell, any rank-one term in a nonnegative decomposition of T must have a zero in the second entry of
one of the vector component, e.g. A2r = 0. However the second row, column and fiber of T are nonzero

(they are all equal to
[

1
0

]
). It can be observed that at least three rank-one terms are required to place these

nonzero elements.
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referred to as “degeneracy” [49, 50, 51, 52] by bounding the set of admissible parameters
[31]. More precisely, under nonnegativity constraints, the cost function (6.38) becomes
coercive9) and one can define a compact ball, possibly very large, within which the cost
is upper-bounded. Because this cost is continuous in all parameters, it must reach its
minimum value within that ball. In contrast, without nonnegativity constraints, rank-one
components can cancel out while growing to infinity so that such a compact ball may not
exist.

In addition, nonnegativity can guarantee uniqueness of the best low-rank approxima-
tion [32], and even the uniqueness of the CPD of the best low nonnegative rank approxi-
mate [48]. For these reasons, nonnegativity should be imposed each time it has a physical
justification [31, 41, 53, 54, 55, 56, 57].

6.3.1.2 Nonnegative Tucker decomposition

Nonnegativity constraints have also been extensively used along with the Tucker model
introduced in Section 6.2.6:

T = JG;U ,V ,W K and U � 0,V � 0,W � 0,G � 0. (6.43)

Similarly to nonnegative matrix factorization, adding nonnegativity constraints in the
Tucker model, one hoped to obtain a uniquely defined tensor decomposition [58].

The field of applying constraints on Tucker models was pioneered by Smilde and Kiers in
a series of papers [59, 60, 61]. They realized that it was mostly necessary to add several
constraints such as nonnegativity, forcing core elements to zero in order to obtain identified
models.

But in fact, little is known on that topic. It has been shown that in the restrictive case
when the dimensions R1, R2, R3 in the nonnegative Tucker decomposition match the
nonnegative ranks of the factors U ,V ,W and the nonnegative ranks of the unfoldings,
the uniqueness of the nonnegative Tucker model is equivalent to the uniqueness of three
nonnegative matrix factorizations of each unfolding of the tensor, which is a difficult con-
dition to satisfy [62]. Therefore, the nonnegative Tucker decomposition does not ship
with powerful uniqueness properties. Nonetheless it can still prove useful as a nonlinear
dimensionality reduction technique.

A control on the sparseness of factor matrices can be introduced, e.g. thanks to a `1 norm
penalty, as for nonnegative matrices [63]. The advantage is that it empirically leads to a
unique solution, namely the sparsest [64, 65].

If an alternating algorithm is used, a proximal term can be inserted to guarantee local
convergence [66], see Section 6.5.

9) the cost grows to infinity in all directions of the parameter space.
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6.3.2

Block Decompositions

In some applications, like fluorescence spectroscopy where components have the same
concentration over all experiments, or like multipath propagation in antenna array pro-
cessing, it may happen that one factor matrix in the CPD has collinear columns, which
prevents CP uniqueness since one of the Kruskal’s rank is then equal to 1 in (6.11). More
precisely, let D a tensor written as:

D = a⊗ b1 ⊗ c1 + a⊗ b2 ⊗ c2, (6.44)

then D can be equivalently written as a so-called Block Term Decomposition (or BTD in
short) [67, 68, 69] by factorizing component a:

D = a⊗ (b1 ⊗ c1 + b2 ⊗ c2) = a⊗BCT (6.45)

A sum of terms similar to equation (6.45) leads to a decompostion of the form:

T =
R∑
r=1

ar ⊗BrC
T
r , (6.46)

where matricesBr andCr are of respective sizes n2×Lr and n3×Lr for a n1×n2×n3

tensor T . Consequently, the number R of terms in such a BTD can be much smaller than
tensor rank. Simultaneous to the discovery of block-term decomposition, model (6.46)
was investigated under the name PARALIND [67], and the two names still coexist today.

Because of the relationship between equations (6.44) and (6.45), block-term decomposi-
tion is in fact a constrained CPD with colinear columns in one factor. It is to be noted
that we refer here to a specific kind of block-term decomposition [69, 9, 70], but other
more involved models were introduced in [68], which do not relate directly to CPD with
collinear columns in factors.

An intrinsic property of block-term decompositions is that a rotation ambiguity is intro-
duced in each block, since for any invertible matrix P , BCT = BPP−1CT . Unique-
ness of the products BrC

T
r as well as uniqueness of factor A have been studied in the

literature, [71, 17, 72].

In spirit, constraining the block-term decomposition model could be a solution to remove
the rotational ambiguity of the blocks. To that end, sparsity-constrained block-term de-
composition and coupled block-term decomposition have been studied [73, 70]. The cou-
pling is however not as flexible as in [74]. Some authors have also developed a PARAFAC2
block-term decomposition [75].

Application-wise, the block-term decomposition has been used mainly for biomedical im-
age processing to detect epileptic seizures [76, 77].
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6.3.3

Structured Factors

6.3.3.1 Re-parameterization

As discussed above, a versatile way to impose constraints in a tensor decomposition model
is to constrain the factors directly. For instance for nonnegativity constraints, factors are
required to have only nonnegative entries. This can be efficiently imposed by merely
parameterizing entries as squares [78]. It is also possible to impose more complicated
constraints via parameterization.

First, a parametric model may be used to describe one or several factors. For instance,
factor A in a CPD may be a sinusoidal function so that Air = sin(2iπρ + rφ) and
the new parameter set becomes ρ, φ [10]. Such parameterizations have been studied in
the literature in the context of array processing, where factors are well represented by
exponential maps [9, 11]. Damped exponentials also have been used to model factor
matrices [12]. Exponential decay also appears in early literature of Chemometrics [79].

Second, a basis of representation may be provided in a matrix format, and the constrained
factors are then represented by coefficients in a new feature space. For instance, both
nonnegativity and smoothness may be imposed on factor matrixA by fixing a family of B-
splinesD of size n1×R1 for some small integerR1 as described in [38], and impose that
A = DAc. B-splines are piece-wise polynomial functions that are zero valued outside a
given interval. Therefore, imposing A to live in the (nonnegative) span of D necessarily
implies that it is nonnegative, and smooth as a sum of polynomials. Such splines bases are
widely used in psychometrics, where factors in the CPD are heavily constrained by user
prior knowledge [80].

Interestingly, if such a matrixD is provided as a priori information, and thatR1 is smaller
than R, then provided the columns of D are free, a compression similar to the Tucker
compression discussed in Section 6.5.3.1 can be done using the QR decomposition of
matrixD [38].

6.3.3.2 Dictionary constraints

An important issue in source separation is the identification, or labeling, of the outputs.
This can be done for instance by comparing the output factors with a library, also called
a dictionary, of reference factors, like reference emission and excitation spectra of some
well-known chemical compounds. However, if all chemical compounds are known in ad-
vance, it is also possible to exploit this dictionary inside the source separation algorithm to
produce labeled outputs and improve identification accuracy. This dictionary may be very
large and very redundant, since the source may be characterized by a family of correlated
reference spectra.

Formally, given a dictionary D, one wants to select columns of, say, factor A in the
columns of D, so that A = D (:,K) for an index set K of size R. Such a combina-
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torial formulation was introduced in [46], but a former formulation using row-sparsity
constraints can be found in [45]. Along with improving identification performances, dic-
tionary constraints also make the low-rank approximation well-posed, similarly to non-
negativity constraints.

Two related problems remain open. First, when no library is provided a priori, how can a
dictionary be learned from a set of tensors? Second, if a provided dictionary is not exactly
adapted to the data at hand, what distance would best describe the discrepancy between
the constrained factor matrix and the provided dictionary?

Note that important work has also been done about tensor dictionary learning, mostly
focussing on learning a dictionary from a matrix data set that has a tensor structure. The
problem of dictionary learning is, as of now, unrelated to what has been presented above
and has yet found no application in chemometrics that we know of, but an interested reader
can refer to [43, 44, 81].

6.4

Coupled decompositions

One of the reasons why tensors have gained importance in signal processing is that the
complexity and variety of sensors has skyrocketed in the recent years. On the other hand,
most well-studied data analysis tools, for instance Principal Component Analysis, Factor
Analysis, linear regression and sparse regression, are designed for two-way arrays. From
a practical point of view, this means that only a relationship between two experimental
parameters (e.g. time, wavelength) can be inferred. Nowadays multiple such parameters
are involved in the measurement process, and one possible way to deal with this fact is
to build matrices of data by stacking such parameters, thus overlooking the real intricate
relationship between all sets of experimental parameters. PARAFAC, and other previously
described models, does mine relationships between all experimental parameters through a
collection of separable patterns.

An interesting way to understand the CP decomposition is to cast it as a simultaneous
low-rank matrix decomposition of a collection of matrices with equality constraint on the
mixing matrices as detailed in Section 6.4.1 below. This is also in line with how Richard
Harshman developed the PARAFAC model based on the principle of parallel proportional
profiles [82]. Thus the CPD is a reasonable tool for data fusion, i.e. the joint analysis of
multiple data sets. However, it is clear that previously presented models may not be used
to tackle any data fusion problem, since the separability assumption may be too strong to
describe stacked heterogeneous data sets. Even if that was not the case, data sizes may be
completely different due to varying sampling rates among sensors and experiments, and
stacking would then not be feasible naively.

This section introduces a general framework for designing tensor decomposition models
in a broad context of data fusion. Regression models between multiple blocks of variables
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will not be addressed here. Our main goal here is not to collect all existing tensor models
that account for some specific types of fusion, but rather to give a taste of how to implement
peculiar knowledge on the relationship between sources into a decomposition model.

Note that because of the wide range of problems that can be coined as data fusion, there
exist numerous a priori unrelated models in chemometrics alone designed to address either
multimodality or subject variability that we will not address in this chapter.

6.4.1

Exact coupled decomposition, a first approach

Let us first illustrate these concepts on a simple data fusion model, namely the exact cou-
pled decomposition. Suppose data from N sensors are collected in the form of N tensors
T n of order 3, with one shared experimental parameter. The exact coupled decomposition
model supposes that each tensor shares at least one factor with all the others. If exactly
one is shared, then for all n in [1, N ],

T n = JA,Bn,CnK + En, (6.47)

where En is a noise tensor, and A is the shared factor. Note that we have assumed, to
simplify, that the shared experimental parameter’s sampling rate is the same for each data
set, which is not necessarily true in practice [74].

Although coupled tensor factorization stems from well established concepts such as
canonical-correlation analysis [83] and although data fusion with tensors was previously
studied in chemometrics [84, 85], exact coupled decomposition was formally introduced
much later [6, 74]. Exact coupled decomposition has been used in many application
domains such as metabolomics [86] or recommender systems [87].

Exact coupled decomposition is not only a useful data mining tool, but is also the link be-
tween matrix factorization models and tensor decomposition. The PARAFAC model may
indeed be cast as an exactly coupled matrix factorization model: let Mk be a collection
of n3 matrices of size n1 × n2 such that Mk = ADkB

T where A, B are respectively
n1 × R and n2 × R matrices, and Dk is a R × R diagonal matrix of weights. Then the
tensor T obtained by stacking matricesMk along a third mode, i.e.

T (:, :, k) = ADkB
T (6.48)

follows a PARAFAC model

T = JA,B,CK (6.49)

where C = [diag(D1), . . . , diag(DK))]. This can be easily checked by looking at the
expanded formula

Tijk =
R∑
r=1

AirDkrrBjr =
R∑
r=1

AirBjrCkr (6.50)
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In other words, computing the CPD of a three-way array is equivalent to finding the com-
mon factorization of a collection of matrices with individual component weights, or again
to compute the exact coupled decomposition of matrices where all factors are coupled.

Writing an approximation problem for exact coupled decomposition is straightforward
(but its solution may raise difficulties, as pointed out in Section 6.2.8). In the presence of
i.i.d. Gaussian noise of variance σn on each entry of the tensor T n, the data distribution
p(T n|A,Bn,Cn) is Gaussian and therefore the maximum likelihood estimator of all
factors is given by the following optimization problem:

argmax
A,Bn,Cn

log p(T n|A,Bn,Cn) = argmin
A,Bn,Cn

N∑
n=1

1

σ2
n

‖T n − JA,Bn,CnK‖2F .

(6.51)

Many different optimization algorithms may be used to compute the exact coupled model,
which are derived from either alternating least squares or all-at-once descent algorithms
introduced in Section 6.5.1.1. Important contributions to the identifiability of the param-
eters of the exact coupled tensor decomposition model have been made by Sørensen et.
al. [71].

This exact coupling model is however nowhere near satisfying in most practical scenarios.
In fact, realistic problems are more complicated and may feature:

• different tensor sizes on the shared mode,

• more complex variation slice-wise of the coupled factors,

• a stochastic coupling relationship.

To extend the ideas presented above and allow for customization of coupled multiway
decomposition models, a more flexible framework than exact coupled decomposition is
therefore needed.

6.4.2

A general framework for data fusion in tensor decompositions

As illustrated above, most data fusion methods for source separation make the assumption
that a subset of parameters are linked. Describing how these parameters are linked is
therefore the cornerstone of designing data fusion models. Understanding how to design
tensor data fusion models is essential for linking various existing tensor decomposition
models together. As an example, Box 6.4.2 shows how the PARAFAC2 model described
in Section 6.2.7 can be written as a coupled matrix factorization model, shedding light on
the link between PARAFAC and PARAFAC2.



Chap. 6: Tensor decompositions – Source Separation in Physical-Chemical Sensing 26

Block 1: PARAFAC2 as a flexible tensor coupled decomposition

Suppose a collection of n3 matrices Mk of sizes n1 × n2 is to be jointly factorized using a
coupled model, using a single coupled mode. Using above notations, this can be formalized as
such:

Mk = ADkB
T
k (6.52)

which can be rearranged into

M =
[

M1 . . . Mn3

]
= A

[
D1B1 . . . Dn3Bn3

]
= AB̄T (6.53)

by stacking “horizontally” matrices Mk (resp. matrices DkBk) into a large n1×n2n3 matrix
M (resp. a large R × JK matrix B̄T). Therefore, if matrices Bk share no relationship, the
coupled model is simply equivalent to a large low-rank matrix factorization. On the other hand,
equality between matrices Bk would yield the PARAFAC model as shown in equation (6.48).
An intermediate constraint may therefore be sought, so that factors Bk are all related but not
equal. The PARAFAC2 model suggests to fix the inner-products BT

k Bk across k. This yields
the following flexible matrix coupling model:

Mk = ADkB
T
k and Bk = PkE (6.54)

where matrices Pk are J × R left-orthogonal matrices, i.e. P T
k Pk = IR, and E is a common

R × R Grammian matrix (A Grammian matrix is a symmetric matrix containing all pairwise
scalar products between several vectors.). In other words, MkPk = ADkE

T, which is noth-
ing more than a CPD.

A convenient way to formalize more general relationships between parameter sets in mul-
tiway array decompositions is to resort to a Bayesian probabilistic formulation. In a
Bayesian framework, decomposing multiple tensors {T n}n≤N means finding the param-
eters {θn}n≤N so that the probability p(θ1, . . . ,θN ,T 1, . . . ,TN ) is maximized over
{θn}n≤N . As shown in [74], to rewrite this criterion in a useful form, the following
hypothesis is required:

H1: Conditional independence of the data. The data arrays T n are statistically
independent when conditioned by their decomposition parameters θn. This means that
knowing the factors of a decomposition for T n, this tensor can be fully reconstructed,
without using the other data sets.

Hypothesis H1 is a technical assumption, and can be assumed to be true in most prac-
tical data fusion problems. Moreover, to provide a good Bayesian model for the cou-
pled data sets, it is also necessary to know the joint densities of the coupled parameters
p(θ1, . . . , θN ), as well as the likelihood functions p(T n|θn), which contain the decompo-
sition model for each data set. Under H1 and given the likelihoods and the joint probability
of the coupled parameters, the logarithm of the Maximum A Posteriori estimator is given
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by

argmax
θn

N∑
n=1

log (p(Tn|θn)) + log (p(θ1, . . . , θN )) (6.55)

which can be used as the cost function in an optimization problem, see Section 6.5. In the
vast majority of coupled decomposition problems, some blocks of parameters should be
coupled, and some should not. For the latter, it is possible to marginalize their contribution
to the joint distribution, so that only the joint distribution of the coupled parameters is used
in (6.55).

Let us instantiate (6.55) with a simple demonstrative example. If each T n follows a CPD
model with Gaussian Noise of i.i.d. noise of variance σ2

n, and if column-wise normalized
factorsCn are coupled through the following model:

Cn = C∗ + Γn (6.56)

for a latent variable matrixC∗, and a zero-mean Gaussian noise Γn whose entries have a
variance σCn

2, then equation (6.55) becomes

argmin
An,Bn,Cn,C∗

N∑
n=1

1

σ2
n

∥∥∥T n − JAn,Bn,CnK
∥∥∥2

F
+

1

σCn
2
‖Cn −C∗‖2F (6.57)

whereCn are normalized column-wise.

Note that a latent shared factor matrix C∗ is added to the set of parameters. This was
done by supposing the joint probability of the coupled parameters is known conditionally
to a latent variable θ∗, for which a non-informative prior is used. Then using the Bayes
law, equation (6.57) is obtained from (6.55). Also note that the normalization is important,
since all factors Cn should relate to one matrix C∗ with a given error measured by σCn ,
and this coupling relationship is not invariant by scaling.

This flexible exact coupling example is simply meant for illustrating how a coupled de-
composition model can be designed. In some practical cases, the probabilistic framework
may be dropped and instead, and a deterministic coupling model can be used. All the
examples of data fusion models described in the next subsection are indeed based on a de-
terministic description of the relationship between a subset of the decomposition variables.
However, it should be borne in mind that, using a probabilistic framework, the modeling
possibilities are much wider.

6.4.3

Examples of coupled decomposition models

In what follows, we introduce coupled decomposition models that can be encountered in
chemometrics. For most of them, solving the underlying optimization problem is non
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trivial, but an interested reader can refer to the original publications for more details on
this subject. To this list, one should add the PARAFAC2 model described in Section 6.2.7
and in Box 6.4.2.

6.4.3.1 Advanced Coupled Matrix Tensor Factorization

Advanced coupled matrix tensor factorization [88] was designed to adapt exactly coupled
decomposition (6.47) for situations when only a portion of the components of the coupled
factorA are shared across the data sets (thus the “advanced” adjective).

A naive way to design a so-called partially coupled decomposition model is to fix manually
the subset of coupled columns of factorsAn, such that

An = [A |Anc
n ] (6.58)

where matrix A contains the shared components, matrices Anc
n the uncoupled ones, and

the concatenation is horizontal. However, such a formulation suggests that the number of
coupled components is known in advance, which may not be the case. Moreover, a specific
ordering of the components is imposed which can bring some permutation problems in the
decomposition algorithm.

Advanced coupled matrix tensor factorization proceeds differently. It makes use of a spar-
sity constraint on the norms of the components (recall formulation (6.25)), to impose this
partial coupling, solving the following optimization problem10):

argmin
A,Bn,Cn,Sn

‖T n − JSn;A,Bn,CnK‖2F + λ
n3∑
n=1

‖Diag(Sn)‖1

+ α
R∑
r=1

[
(‖ar‖22 − 1)2 +

n3∑
n=1

(‖bnr‖22 − 1)2 + (‖cnr‖22 − 1)2

]
(6.59)

where Sn are diagonal tensors containing the values σnr of the components intensities
for each tensor T n with n ≤ n3, while λ and α are hyperparameters tuned by the user.
By forcing normalization of the factor matrices, the components amplitude stored in Sn
truly reflect the importance of component r in data block n. If a component ar in the
shared matrix A should not be used in data block T n, then the score of that component
in the decomposition of this data block σnr may be set to zero. This motivates the use of
a sparsity inducing metric such as the `1 norm on the entries of the diagonal tensors Sn.

Advanced coupled matrix tensor factorization has been used successfully in metabolomics
and brain imaging [89, 90].

On the theoretical side, the uniqueness of partially exactly coupled decompositions has
been studied in the case of matrix-tensor coupled decompositions [91]. Partial coupling
is shown to reduce rotational ambiguities in the matrix decomposition without completely

10) the original publication gave a slightly different optimization problem featuring a relaxation of the `1 norm.
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negating it. Furthermore, the presence of constraints, in particular nonnegativity con-
straints, may further improve the identification properties of the partially coupled matrix-
tensor models.

6.4.3.2 Shift PARAFAC and others

When dealing with several data sets acquired in similar experimental conditions, it is nat-
ural to assume that in the presence of time measurements, some delay is to be accounted
for across the various data sets. But such delays may actually depend on the source index,
if some variability occurs in the behavior of each source along the various measurements.
Modeling and estimating this delay is partially what the PARAFAC2 model described
above does, but in a fairly general manner.

In 2003, Harshman [92] introduced a more specific modeling of component shifts in a
collection of coupled low rank data matrices. This model, coined as Shift-PARAFAC,
may be cast in the coupled decomposition framework as follows:

[Cn]k,r = [C∗]k+τn,r (6.60)

supposing the coupled factor is C and the amount of shift is proportional to the sampling
rate. It is also possible to design an arbitrary shift amount, i.e. not an increment of the
indices, by resorting to interpolation between the latent factor and its shifted instances. The
computation of the Shift PARAFAC model can be done rather efficiently by resorting to
the Fourier transformation of the data [93], since a shift in time domain becomes a product
in Fourier domain. The Shift-PARAFAC model has been used mainly to decompose FMRI
data [93], so as to account for variations in the activation profiles of brain sources.

It is worth noting that a few other similar relationships have been explored in the literature.
In particular, distortions due to time contraction or dilatation are discussed in the Warped
Factor Analysis model [94, 95]. Also, both Shift-PARAFAC and Warped Factor Analysis
differ from data alignment approaches like Ico-shift [96, 97] which preprocess the data to
remove any delay among the related data slices. Indeed, if only the data slices are shifted,
then implicitly all the components are supposed to have the same delays.

6.4.3.3 GSVD

The Generalized Singular Value Decomposition model has been proposed by Van Loan
[98] as a generalization of the SVD to more than a single matrix. It was one of the first
attempts at defining a joint diagonalization technique. Its main usage in source separa-
tion has been for genomics, where GSVD has been applied notably by Alter et. al. to
discriminate cancerous DNA from sane DNA [99].

GSVD resembles an exactly (i.e. without noise) coupled decomposition of two matrices:

M1 = U1Σ1V
T

M2 = U2Σ2V
T (6.61)



Chap. 6: Tensor decompositions – Source Separation in Physical-Chemical Sensing 30

but with orthogonality constraints imposed on the non-coupled matrices Un. Note that
without such constraints, computing the exact coupled decomposition of a collection of
matrices amounts to a single matrix factorization of the stacked matricesMn, which does
not admit an essentially unique solution.

On the other hand, the parameters of the GSVD are identifiable, and a closed-form al-
gorithm is available to compute it when the data are not corrupted by noise. For these
reasons, GSVD can be used as an exploratory model, in a similar spirit as Principal Com-
ponent Analysis, rather than being cast as a physical modeling of the two data sets.

Notably, GSVD was also extended to deal with multiple data matrices [100], and with two
coupled third-order tensors [101]. In both cases, the relationship with coupled models is
not as straightforward.

6.5

Algorithms

This section aims at giving a short overview of simple and well-understood optimization
algorithms that are known to work for computing tensor decomposition models. As a
warning to already informed readers however, research on optimization techniques for
tensor decompositions is extremely prolific, and surveying all the available methods while
discussing their pros and cons would require another book in itself. Therefore only our un-
derstanding of mainstream approaches are described below. On the other hand, to readers
who simply want to make use of well-designed toolboxes for source separation problems
can turn to the following programs:

• Tensor toolbox11): this open-source toolbox features a particular care to processing and
storaging large sparse tensors, and implements several basic tensor routines. It can
therefore also be used as a backend onto which building one’s own code.

• N-way toolbox12): a simple yet comprehensive open-source toolbox implementing the
Alternating Least Squares to compute both nonnegative and unconstrained CP, as well
other related regression models and the PARAFAC2 decomposition.

• Tensorly13): a tensor decomposition collaborative open-source toolbox in Python that
mimics the scikit-learn syntax. It supports the use of several backends such as numpy
or pytorch, and is geared towards machine learning applications.

• Tensorlab14): a well maintained open-source toolbox, which can identify many of the
well-known tensor models, including CPD, block-term decomposition, exact and flex-

11) https://www.tensortoolbox.org/
12) http://www.models.life.ku.dk/nwaytoolbox
13) http://tensorly.org/
14) https://www.tensorlab.net/
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ible joint decompositions as well as imposing various constraints on the factors. It is
based on a nonlinear least squares solver and develops its own syntax.

• PLS-Toolbox15): A very comprehensive, open-source (and commercial) toolbox for
general chemometric modelling. It includes tools for CPD, Tucker and PARAFAC2
including various constrained versions. It also includes older direct methods for CPD
modelling based on generalized eigenvalue decomposition such as the generalized rank
annihilation method.

Again, many other toolboxes exist. Several lists updated regularly are available online16).
Some original codes can also be found on authors’ home pages17), but are generally not
part of a toolbox.

6.5.1

Unconstrained tensor decomposition

Among all tensor decomposition models, the most studied by far in terms of optimiza-
tion strategies is the CPD. In the unconstrained case, both iterative and direct algorithms
have been designed in the literature, leading to a wide variety of possible algorithms to
choose from. Iterative methods are however the most common choice for approximate
decompositions, and are therefore the main focus of this section.

6.5.1.1 Iterative algorithms for approximate CPD

Let T ∈ Rn1×n2×n3 , and consider the following cost function18):

Υ(A,B,C) = ‖T − JA,B,CK ‖2F . (6.62)

The minimization of objective (6.62) is the problem we end up with, if we want to find
the maximum likelihood estimates of factor matrices (A,B,C), when the data follow a
rank-R PARAFAC model corrupted by an additive isotropic Gaussian noise. Equivalently,
the solution to (6.62) is the best rank-R approximation of T when it exists.

Since no closed form solution for the minimum of (6.62) is known in the general case,
iterative methods rely on the following strategy:

• Provide an initial guess for factorsA,B andC.

• Fix a subset (possibly empty) of the parameters and update the others.

• Stop when convergence is reached.

15) www.eigenvector.com
16) www.tensorworld.org/toolboxes/, https://tensornetwork.org/software/
17) See for instance the tensor package at www.gipsa-lab.grenoble-

inp.fr/ pierre.comon/TensorPackage/tensorPackage.html.
18) This section is written for third-order tensors without loss of generality
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The main difference between various iterative methods is therefore the choice of fixed
parameters and the update strategy.

Gradient computation Most iterative strategies make use of the gradient of (6.62) for
the update rule. The gradient of (6.62) is as follows:

∂Υ
2∂A = −T(1) (B�C) +A

(
BTB�CTC

)
∂Υ

2∂B = −T(2) (A�C) +B
(
ATA�CTC

)
∂Υ

2∂C = −T(3) (A�B) +C
(
ATA�BTB

) (6.63)

To derive these gradients easily, one may resort to the matricized versions of the
PARAFAC model. Indeed, since the Frobenius norm acts entry-wise, the cost (6.62)
is equivalent rewritten as

Υ(A,B,C) = ‖T(1) −A(B�C)T ‖2F . (6.64)

The gradient of this cost function with respect toA is given by

(
−T(1) +A (B�C)

T
)

(B�C) . (6.65)

At this stage, with some formula manipulation, one may not that for any indexes r and q
in [1, R],[

(B�C)T (B�C)
]
rq

= (br � cr)
T (bq � cq) = (bTr bq)(c

T
r cq). (6.66)

Therefore the second term in the gradient simplifies into BTB�CTC, which has a
much lower computational complexity for small R since it is computed by multiplying an
ni ×R matrix with its transpose, plus a few R×R element-wise products.

Then the bottleneck in the gradient computation is the matrix product T(1) (B�C),
sometimes called Matricized Tensor Times Khatri Rao Product (MTTKRP), which has
a naive complexity of O(Rn1n2n3) since it is computed as the matrix product of a
n1 × n2n3 matrix with a n2n3 ×R matrix. The fast implementation of this costly prod-
uct, and in general of tensor contractions, is the topic of many recent researches in high
performance computing [102, 103, 104, 105, 106, 107].

Alternating least squares The workhorse algorithm for identifying the PARAFAC mod-
el is the Alternating Least Squares algorithm. It is very easy to implement, and although
several other algorithms are more reliable, ALS still performs reasonably well in some
cases. In its most simple form, ALS also features no parameter tuning. However, it fails to
deliver in difficult scenarios, such as in the presence of near-colinear dependency among
the factors’s columns or rank under- (or over-) estimation. Notably, ALS is a particular
case of the nonlinear block Gauss-Seidel method for solving nonlinear systems. It can be
adapted to tackle very large data sets [108] and coupled decompositions [74].
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The core principle of ALS is to minimize (6.62) with respect to each factor while the
others remain fixed. Since PARAFAC is a multilinear model, it is linear with respect to
each such block of parameters, and therefore the optimal solution with respect to only
one block is known in closed form. Skipping the technical conditions for the existence of
such a closed form solution, one may simply set the gradients (6.63) to zero to obtain the
sequential update rules for the ALS. For instance, the estimate Â of matrixA is given by

Â =
(
T(1) (B�C)

)(
BTB � CTC

)−1
. (6.67)

A pseudo-code for ALS is given in Algorithm 1. The stopping conditions can be a fixed
number of iterations, the relative decrease of Υ across successive iterations reaching a
threshold, or any arbitrary condition that fits the needs of a particular application. Also,
the inverse in the factor updates does not need to be explicitly computed. Rather, the
least squares update can be computed by solving the linear system obtained by setting the
gradients in (6.63) to zero.

Algorithm 1 A squeleton of the Altenating Least Squares algorithm

Input: Data tensor T , Initial valuesA(0),B(0),C(0)

Set k = 0
while stopping condition is not met do

A(k+1) =
(
T(1)

(
B(k)�C(k)

))(
B(k)TB(k) � C(k)TC(k)

)−1

B(k+1) =
(
T(2)

(
A(k+1)�C(k)

))(
A(k+1)TA(k+1) � C(k)TC(k)

)−1

C(k+1) =
(
T(3)

(
A(k+1)�B(k+1)

))(
A(k+1)TA(k+1) � B(k+1)TB(k+1)

)−1

Increment k = k+1
end while
Output: Final estimatesA(k),B(k),C(k)

Importantly, ALS iterates of the objective function always converges since the cost func-
tion decreases at each iteration and is bounded by below. However, this does not garantee
that factors (A,B,C) converge; if they do, the obtained solution is not either guaranteed
to be a local minimum. For this to be true in the framework of local convergence19), some
reasonable technical conditions on the Hessian matrix of Υ should be met [109], which
sadly can hardly be checked in practice. Global convergence to a local minimum is also
subject to theoretical technical conditions [110]. Further, in some pathological cases, the
convergence speed of ALS can be sub-linear [110], a fact observed in difficult decompo-
sition problems [111].

An important tweak on ALS, that often improves its convergence speed drastically, is
to extrapolate factor estimates using current and previous estimates. This extrapolation

19) local convergence means convergence if the starting point of the algorithm is in the neighborhood some local
minimum.
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procedure is standard in optimization [112], and is often called ’Line Search’ in the ten-
sor community. The practical speed up makes it a nice feature of a good ALS imple-
mentation [19, 111, 113, 114]. Note that extrapolation may lead to increasing the cost
function at some iterations, and the so-called restart strategy that discard steps increas-
ing the cost is the key to obtain an efficient acceleration in some of the works mentioned
above [113, 114].

First and second order descent algorithms All-at-once gradient-based methods are
also a great choice for computing an unconstrained PARAFAC model. First, for first-order
methods (based solely on the gradient for finding a descent direction), the complexity per
iteration is the same as the ALS. Second, all the knowledge on descent methods applied
to non-convex problems may be put to profit, in particular through convergence results
or stochastic approaches for handling very large data sets [115]. Third, missing data can
be dealt with using a mask of weights on the data, which is not feasible using the ALS
algorithm. Since large data sets with a lot of missing data are common in machine learning,
all-at-once descent algorithms have notably been preponderant in this context [116, 117].

There is no particular practical difficulty to computing a PARAFAC decomposition using
well-known descent algorithms such as gradient descent, non-linear conjugate gradient
descent [118] or Gauss-Newton once gradients (6.63) have been computed. However,
some parameters such as the step size need to be tuned, which makes the ALS a simpler
choice for novice users. On the other hand, for high precision works or difficult scenarios,
resorting to second-order methods promoted to solve nonlinear least squares problems,
like the Levenberg Marquardt algorithm [111] can prove rewarding. Indeed, the Jacobian
matrix has a particular structure that can be used to speed-up the – otherwise time de-
manding – Hessian computation. Moreover, second-order methods have guaranteed local
convergence at quadratic speed.

Normalization Normalizing the columns in the CPD is not always mandatory in prac-
tice, but it has two advantages: (i) it avoids scaling indeterminacies, and (ii) it helps avoid-
ing very small/large values in the factors, thus improving numerical stability as well as
providing interpretable results.

6.5.1.2 Deflation and N-PLS

Up to now, we supposed that the number of terms R in the decomposition is known.
In practice this is rarely the case, but finding the optimal R has proven to be a difficult
problem, mainly because contrarily to matrices, best fitting models with adjacent rank
values may have no relationship. The procedure consisting of computing R successive
rank-1 approximations with the goal of obtaining a rank-R approximation is often referred
to as deflation. This idea works for matrices, by subtracting the best rank-1 approximation
at each iteration. But the reader should pay attention to the fact that this does not work
for tensors, since subtracting the best rank-1 approximation generally does not reduce its
rank [119, 120, 121]. Also note that it does not work either for matrices in R+ because
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of lack of stability by subtraction. Therefore, a naive strategy is to test several ranks
and pick the one that works the best, but other methods have been proposed for specific
applications [122, 123, 124].

Another way to perform deflation to compute approximate CPD is by means of the N-PLS.
Let us first describe what Partial Least Squares (PLS) is.

Given a n×pmatrixX and a n×1 data vector y, the goal of PLS is to find the part ŷ of y
that is related toX in the form ŷ = X b. The classical solution to finding this regression
vector is well-known and given by b = (XTX)−1XTy. However, it is not desired to
compute this expression: first, it can be computationally prohibitive, and second, matrix
X can be ill-conditioned (e.g. if columns are close to collinear).

Partial least Squares regression (PLS) aims at computing an approximation of b and ŷ
by delivering at each iteration k the loading that provides a score vector with the highest
possible cross-covariance with y (or the residual part of y). It is robust with respect to
ill-conditioning.

It turns out that the PLS iterations perform nothing else but the minimization of the objec-
tive ‖y −Xb‖2 by the conjugate gradient algorithm20) [125]. In fact, PLS yields at each
iteration k the projection of b onto the subspace spanned by the k dominant eigenvectors
of matrix (XTX). Hence, it can be stopped before convergence, and can output at any
time an approximation of the best regression.

The multi-linear partial least squares regression, also known as N -way PLS regression, is
an extension of the two-way PLS regression [126]. It is based on sequentially extracting
rank-one tensors from a given tensor T and a given vector y. The first rank one tensor has
the property that the mode one component vector has maximal covariance with the vector
similar sized, y, to be predicted. Subsequently T and y are orthogonalized with the mode
one vector, and a new rank-one tensor is determined from the residual data. The process is
repeated as long as new components improve the predictions, which is usually determined
through cross-validation or similar tests. Note that in the algorithm described in [126],
the rank-one approximation of a tensor is computed via two rank-one approximations of
matrices, which is possible by breaking the role symmetry of the three modes.

6.5.1.3 Exact decomposition methods

Another line of research on decomposition algorithms is to find exact decomposition algo-
rithms, such that the remaining error in equation (6.62) is zero. Of course one can resort
to the iterative methods described above. But in the noiseless case, there is no need to in-
troduce a statistical framework, and therefore algebraic methods, that are not theoretically
robust to noise, can provide fast and reliable solutions. Because in source separation, such
exact decomposition problems have a relatively smaller importance, we shall here only
provide a few references that an interested reader can refer to, e.g. [127, 128, 129, 130], or

20) This has been proved in exact arithmetic, i.e. if there are no rounding errors.
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in the world of chemistry [131, 132, 133, 134]. In particular, in the absence of noise, only
two matrix slices need to be used to compute a matrix factor of the CPD [135, 136].

6.5.2

Constrained tensor decomposition

Although unconstrained tensor decomposition algorithms are today quite well understood,
constrained tensor decomposition algorithms on the other hand have been an important
research theme over the last decades. It is practically impossible to summarize all the
works on this topic in one section. For instance, the sole case of nonnegative matrix
factorization, which is a second order constrained tensor factorization problem, has been
discussed in the entire Chapter ??. Therefore, in this section, we shall simply sketch the
research directions that have been pursued.

6.5.2.1 Constrained Least Squares

A first approach to constrained tensor decomposition is to modify the ALS algorithm pre-
sented in Section 6.5.1.1 to impose the constraints on the decomposition factors. Since
ALS relies on solving least squares problems alternatively, this approach boils down to
solving constrained least squares problems.

For nonnegativity constraints, various efficient algorithms are available. The first nonneg-
ative least squares algorithm appeared in [137, 138], and made use of an active set strategy.
It has been adapted to compute the nonnegative CPD in [139]. More recent techniques em-
ploy exact block coordinate descent, using the observation that nonnegative least squares
can be solved exactly by clipping to zero for one-dimensional data [140]. These approach-
es have been respectively used by Bro et.al. and Phan et.al. for computing nonnegative
CPD, with a computational load comparable to the unconstrained CPD [139, 41].

To tackle a wider set of constraints, such as sparsity, it was suggested in [117] to solve
each constrained least squares problems successively for each factor using a splitting of
variables and a primal dual algorithm, namely the Alternating Direction Method of Mul-
tipliers (ADMM). The advantage of ADMM in this context, on top of the variety of is
problems it can tackle, is parallelism.

6.5.2.2 Projected gradient and all-at-once proximal methods

Similarly to the unconstrained case, constrained tensor decompositions can be tackled
using variants of gradient descent for constrained problems. The goal here is not to give
a full description of constrained convex optimization, but in a nutshell, constrained first
order methods are based on projection operators. Namely, after a gradient step has been
performed, the parameters are updated by projecting them onto the set of constraints.
Another solution is to add a penalization term in the objective function to promote the
constraint. Projected gradient and penalized approaches can be studied and improved
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under the hood of proximal operators, see Chapter 3 for more details on these optimization
techniques and Chapter 2 for their application in the context of NMF.

Various first order methods have been used to compute the CPD, including penalized gra-
dient [141] or proximal gradient [142]. Second order methods, relying on an estimation
of the curvature of the cost function using second order derivatives, have been extensive-
ly used in conjunction with projection or penalization to be used in the Tensorlab tool-
box [143].

6.5.2.3 Parametric approaches

In the particular case of nonnegativity, instead of explicitly imposing the constraint on
the factors, several authors have suggested to parameterize the variables, for instance as
squares, so that the nonnegativity constraints are implicitly imposed; see e.g. [141, 78].
Actually, parametric approaches are a convenient way to handle structured factors in tensor
decompositions, both with respect to formalism and optimization [144]. Notably, this kind
of approach is used in several packages including the TensorPackage and Tensorlab. See
page 30 for links. See also [57] for a unit-norm parameterization.

6.5.3

Handling large data sets

All the algorithms we presented above make the implicit assumption that the data set
can fit into the computer memory, so that any data point can be accessed easily. However,
when dealing with very large tensors, this may not be the case. Historically, a compression
method coined as the Tucker compression, introduced below, served as both an acceler-
ation method and a storage technique. It may however not be computable in reasonable
time.

To cope with very large data sets, several strategies have been explored in the literature,
such as sketching or randomized sampling [108]. However, this rapidly evolving topic is
out of the scope of this chapter.

6.5.3.1 Multilinear SVD Compression

Given a large tensor T of size n1 × n2 × n3 following an unconstrained unknown
PARAFAC model of small rank R, computing the CP decomposition may prove quite
computationally time consumming. On the other hand, since the tensor is explained by a
relatively small number of parameters, in fact by R(n1 + n2 + n3 − 2) parameters, it
should be possible to reduce the data set to a more essential one, that can be stored and
manipulated instead of the whole tensor.

Finding tensor representations for efficient storage or fast computation of decomposition
models is actually a very active field of research, with representations such as the hierarchi-
cal decomposition or the tensor train format, see [145] and references therein. However
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in the context of source separation, and in particular in chemometrics, the most widely
used representation method for storage and fast decompositions is the so-called Tucker
compression or multilinear SVD compression, which is described in Section 6.2.5. Thus
in what follows, we only describe this usual compression method, keeping in mind that
newer approaches vastly widen the following discussion.

The idea behind multilinear SVD compression is to use the information that the rank of
the tensor approximating the data is small with respect to its dimensions. Then because
multilinear ranks, i.e. the ranks of the unfoldings, are always smaller or equal to the
tensor rank, the approximate tensor must have small multilinear ranks as well. Therefore,
using a truncated singular value decomposition of each unfolding as a way to compute
approximate multilinear SVD21), a basis for each mode is obtained which can be used to
project the data tensor onto a feature space of lower dimensions.

Formally, if a CPDT = JA,B,CK is sought, first a multilinear SVDT = JG;U ,V ,W K
is computed whereU ,V andW are left orthogonal matrices of respective sizes n1×R1,
n2 × R2 and n3 × R3, and the compressed dimensions Ri are larger than or equal to R.
Then, using Property 6.2,

G = JT ;UTA,V TB,W TCK := JAc,Bc,CcK, (6.68)

which is nothing more than a CPD of the smallerR1×R2×R3 tensor G. Once that CPD
is computed, the original CPD of the larger tensor T can be recovered byA = UAc and
similarly on other modes.

In practice, given a large tensor T for which multiple approximate PARAFAC models
of various ranks are to be computed, it is sufficient to compute the multilinear SVD of
T with reasonably small multilinear ranks, which outputs matrices U ,V and W . Then
after computing the compressed core tensor Ĝ once, Ĝ becomes the new data set, to be
decomposed using any PARAFAC model with compressed factors Ac, Bc and Cc of
small sizesRi×R. Tensor T can also be stored with small loss using its multilinear SVD
compression, while using a PARAFAC model often leads to a more lossy compression.

As a side note, very few works study efficient compression and acceleration techniques in
the presence of constraints. In our opinion, this topic is a promising line of research. Early
works have been proposed for nonnegative CPD [55].

Structured decompositions Another strategy to accelerate tensor decomposition algo-
rithms is to simply write tensor T as a structured tensor using any tensor decomposition
model, for instance T = JG;U ,V ,W K. Using such structure leads to faster computa-
tions and lowers the memory requirements just like the Tucker compression. For instance,
using again MLSVD, gradient (6.63) with respect toA is written as

∂Υ

2∂A
= −UG(1)

(
V TB�W TC

)
+A

(
BTB�CTC

)
(6.69)

21) As explained in [21], the solution obtained by SVDs would not be optimal in a noisy setting. Nevertheless,
this truncation procedure is generally broadly sufficient as a preprocessing before computing the exact CPD.
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and the data-factors product, which is the bottleneck, has now a reduced complexity if U
has fewer columns than rows.

The computation speed-up is similar but smaller than using Tucker compression, however
the structured approximation technique extends trivially to any constrained decomposition
of T which makes it attractive in practice [144].

Other cost functions for fitting the CPD As a last remark, it often occurs that the
discrepancy between the data tensor T and the CPD is not efficiently measured by the
Frobenius norm. In fact, a wide variety of distances may be used to fit a CPD, which may
be obtained by taking the log-likelihood of the data distribution.

Despite the large choice of distance, there is a trick to easily obtain the gradient of a cost
function written as

f ◦ g(T ,A,B,C) = f(T − JA,B,CK) (6.70)

Indeed, the following chain rule may be used [146]:

∂f◦g
∂A (T ,A,B,C) = −∇f (T − JA,B,CK) (B�C)
∂f◦g
∂B (T ,A,B,C) = −∇f (T − JA,B,CK) (A�C)
∂f◦g
∂C (T ,A,B,C) = −∇f (T − JA,B,CK) (A�B)

(6.71)

which is nothing more than the usual composition chain rule (f ◦g)′(x) = f ′(g(x))g′(x)
extended to vector valued functions. Note that for f set to the Frobenius norm, equa-
tion (6.71) recovers the gradients shown in (6.63) since∇‖ ‖2F (x) = 2x.

More techniques can be found in the literature [146] which tackle the gradient computation
for more general cost functions to fit the CPD.

6.6

Applications

6.6.1

Preprocessing

Before analyzing data sets, it is often necessary or beneficial to preprocess data. This goes
for multi-way data as well. And essentially, the preprocessing is not much different from
normal matrix data. The reader is therefore referred to the literature for classical prepro-
cessing such as scatter correction of infrared spectral data [147], baselining of Raman data
[148], removal of Raman and Rayleigh scattering effects before analyzing fluorescence
[56], normalization of e.g. omics data [149], etc. One aspect though merits some special
attention.
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Centering and scaling are perhaps the most often used preprocessing methods both for
matrix and tensor data. In matrix data analysis there are certain traditional approaches
for centering and scaling and those approaches actually help making sure that the pre-
processing achieves what is expceted. In tensor analysis, it is slightly more complicated
mainly because there are few traditions. Richard Harshman has written an excellent de-
scription of the common pitfalls in centering and scaling [150, 151]. Centering often
serves two separate and independent purposes; to remove offsets in data and to make sure
that the components are centered e.g. for subsequent regression problems. Not all types
of centering will achieve these two goals. Imagine as an example, that a tensor follows
a three-component CPD model plus an offset. Such data cannot be modelled by a three-
component CPD model directly. Rather, a four-component model would be able to model
the data. Upon centering, it is expected that the rank four data will now be rank three
meaning that the offset information has been removed. Subtracting e.g. the overall av-
erage of the data would not have that effect [151]. It can be shown that only centering
across one mode will be able to remove offsets. Centering across one mode means that
the average of each column/row/tube is subtracted from that column/row/tube. Any other
centering will introduce artefacts in the data that must then also be modelled. Likewise
for scaling. Tensor data has to be scaled within a mode. That means that each slab of a
three-way array has to be scaled by the same scalar. As for centering, scaling differently
than within a mode will increase the rank artificially.

6.6.2

Fluorescence

In fluorescence excitation emission spectroscopy, each sample is excited at K excitation
wavelengths and the emission subsequently measured at J emission wavelengths. Hence,
for I samples an I×J×K tensor T is obtained. If the samples contain, sayR, chemical
compounds that fluoresce, then the rank of the tensor should be R under ideal conditions
up to the noise of the measurements. That is, if the sample is fairly dilute and does not
contain an excessive number of other chromophores that absorbs significantly [152, 19].
In practice, such data may contain artefacts that need to be handled before a chemically
meaningful CPD model can be fitted. If the absorbance of the sample is too high, there
may be inner filter effects that distort the signal. There are several methods available for
correcting for this either explicitly or implicitly [153, 154, 155].

In addition to inner filter effects, it is common that FEEMs will have significant variation
caused by Raman and Rayleigh scattering [154]. The Raman scattering is often of mod-
erate size and for many applications, it can be removed by simply subtracting an FEEM
of the solvent from each FEEM. The Rayleigh scattering (Figure 6.6) cannot be handled
this way so usually those areas are removed by replacing the measurements with missing
values or interpolating [156, 155].

The sample shown in Figure 6.7 comes from a dataset of 27 samples all containing varying
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Figure 6.6 A fluorescence excitation emission matrix (FEEM). Areas marked with red lines
represent Rayleigh scattering.

concentrations of the four fluorophores Hydroquinone, Tryptophan, Phenylalanine, and
Dopa. Since there are four chemical compounds, it is expected that a four-component
CPD model would provide an adequate model of the data.

Indeed, a four-component CPD model has a so-called core consistency of 88% indicating
a valid model [122]. However, several aspects seem suspicious. First of all, it seems that
there may be problems with local minima. Refitting the model ten times, the fit varies be-
tween three distinct values: 99.8% variation explained, 96.6% and 95.5%. Only the best
fitting of those qualifies for being the actual CPD model so the others have to be disre-
garded. Normally, local minima are not a huge problem for datasets that follow the CPD
models well, but in this case where there is both a large amount of missing data and some
outliers present, the algorithm apparently struggles. Investigating residuals and parame-
ters, four outlying samples are identified and removed. The main reason for the outlying
behavior is that the concentrations are quite high. Upon removing the four samples, a four-
component model has a core consistency of 100%. Normally, it is advised to use models
with the highest number of components with a sufficiently high core consistency [122].

It was investigated if the model was more stable and robust when using nonnegativity
constraints. Some of the estimated fluorescence spectra in the unconstrained model were
slightly negative. Not enough to be a significant issue, but oftentimes, imposing non-
negativity can also stabilize the model with respect to numerical problems. Indeed, a four-
component model with nonnegativity on all parameters did not show any local minima and
had a perfect core consistency. Furthermore, the estimated emission and excitation spectra
looked very similar to what would be expected from prior knowledge. The five-component
model has a low core consistency and some of the emission components come out identi-
cal which is not chemically meaningful. Hence, the four-component model seems a good
candidate.
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Figure 6.7 The same FEEM as in Figure 1 after removal of Rayleigh scattering. Some traces of
Raman scattering are visible.

To verify the model, we perform a splithalf analysis where the data is split in two parts in
the sample mode [157]. A four-component CPD model is fitted to the first 13 samples and
independently to the last 14 samples. If the model is correctly specified the components
should be the same in the two models. In Figure 6.8, the results of the two models are
shown together with the overall model. As can be seen, the four estimated emission (top)
and excitation (bottom) spectra are almost exactly identical even though they are estimated
from different sample sets. This is a very convincing diagnostic for assessing the validity
of the model

As a final illustration of the ability to uncover the underlying chemistry, the scores are
plotted in Figure 6.9. Each score is plotted against the known actual concentration of
the corresponding chemical in each sample. As can be seen, the model is capable of
recovering the concentrations up to a scaling; hence estimating the relative concentration
of each compound.

6.6.3

Chromatography

Gas Chromatograpy with Mass Spectrometric detection (GC-MS) is a very common tool
in analytical chemistry e.g. for measuring hormones in food products, flavor compounds
in wines or proteins in blood. In simpler cases, there is little need for much data analysis as
the whole purpose of the chromatography is to ensure that different chemical constituents
come out at different times. However as shown in Figure 6.10, sometimes the peaks of
different chemicals are overlapping. Ideally, each chemical would be a baseline-resolved
Gaussian curve but when compounds overlap, the traditional approaches for handling the
data often fail.
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Figure 6.8 The results of split-half analysis.please fix

For ideal chromatographic data, fitting a CPD model would allow to resolve overlapping
data. Each CPD component would consist of a component in the elution mode giving the
elution profile and in the spectral mode giving the pure mass spectrum of each analyte.
The sample mode would then give the relative concentration of each chemical in each
sample/experiment [158, 159]. However, the CPD model requires that the elution profile
of each chemical compound keeps the same shape across different samples. This is almost
never the case in chromatography. Due to retention time shifts, the elution profile will
change slightly from sample to sample. This is also evident in Figure 6.10, where the peak
at approximately time 21.7 minutes varies. Further, there are a number of minor peaks
around 21.8-22 minutes and it is difficult to discern exactly how many.

The PARAFAC2 model has been shown repeatedly to provide a good model for chro-
matographic data and fitting the model to interval indicated in Figure 6.10; it turns out that
there are as many as seven components needed for describing the data. In Figure 6.11, the
elution mode components are shown. There are 44 samples in the dataset, hence there are
44 versions of each elution profile.

6.6.4

Other applications

Tensor analysis has a long history in chemistry and there are many diverse fields of ap-
plications as also evidenced in older reviews [160]. The applications can be divided into
typical groups. The first group is consisting of applications where hard modeling such as
Beer’s law is used to identify chemical information like pure spectra and concentrations.
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Figure 6.9 The four score vectors of a CPD model plotted against the corresponding actual
concentrations.

This can be used for untargeted approaches where many chemicals are being estimated at
the same time [161] or in targeted approaches where one or a few compounds needs to
be quantified [162]. The models used are mostly CPD and PARAFAC2 but also some-
times alternatives such as restricted Tucker3 models [163] or methods based on rank an-
nihilation [164, 165, 166, 167, 168]. Especially CPD is useful e.g. for high-resolution
nuclear magnetic resonance [169, 170, 171, 172, 173] as well as low-resolution magnet-
ic resonance [174, 175]. Traditionally, CPD and variants have also been popular within
electroencephalography [176, 177, 178]. For more exploratory purposes, it is common
to use the Tucker3 model often followed by some types of rotations of either the core
or the component matrices [33, 59]. Examples often come from environmental analy-
sis [179, 180, 181] but variants of CPD are also used [182, 183]. Sensory profiling is a
common approach for understanding human perception e.g. in food analysis. The tradi-
tional sensory profiling data is a three-way structure consisting of a number of assessors
assessing a number of items with respect to a number of attributes. The data can be ana-
lyzed with both CPD and Tucker3, but the Tucker2 model is often preferred because the
extended core array allows meaningful interactions between components [184]. In batch
process monitoring or multivariate statistical process monitoring in general, the aim is
to understand and operate production processes. In early days, both Tucker, CPD and
even PARAFAC2 models were investigated [185, 186]. Nowadays though, the three-way
data is often unfolded and analyzed as matrix data to better handle the complex dynam-
ics that such data have. A third type of problem that occurs quite often in the chemical
sciences is regression, which is also referred to as multivariate calibration. The classi-
cal problem is to replace a tedious and costly reference method with a prediction based
on some more easily available data. The most popular algorithm for this is multi-way
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Figure 6.10 Example of a set of samples measured by GC-MS. The mass spectrum is summed
at each time point so that the measurements of each sample becomes a vector called a TIC –
Total Ion Current chromatogram. In the dark part, a time interval with overlapping peaks is
shown.

partial least squares regression [187], which has been used for a multitude of problems
[188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 171, 198, 199]. An interesting al-
ternative is the method SCREAM that combines the regression with the more flexible
PARAFAC2 model [200].
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