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Notations

x column vector of components xp, 1 ≤ p ≤ P
s, x, y sources, observations, separator outputs
R number of sources
P number of sensors
T number of observed samples
? convolution
A matrix with components Aij
A,B mixing and separation matrices
G,W ,Q global, whitening, and separating unitary matrices
ǧ Fourier transform of g
ŝ estimate of quantity s
px probability density of x
ψ joint score function
ϕi marginal score function of source si
Ex, E{x} mathematical expectation of x
I{y} or I(py) mutual information of y
K{x;y} or K(px; py) Kullback divergence between px and py
H{x} or H{px} Shannon entropy of x
L likelihood
A, B mixing, and separating (non linear) operators
cum{x1, . . . , xP } joint cumulant of variables {x1, . . . , xP }
cumR{y} marginal cumulant of order R of variable y
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QT transposition
QH conjugate transposition
Q∗ complex conjugation
Q† pseudo-inverse
Υ contrast function
R real field
C complex field
Â estimator of mixing matrix
rank{A} rank of matrixA
krank{A} Kruskal’s k-rank of matrixA
diag{A} vector whose components are the diagonal of matrixA
Diag{a} diagonal matrix whose entries are those of vector a
trace{A} trace of matrixA
detA determinant of matrixA
š(ν) Fourier transform of process s(t)
� Kronecker product between matrices
� Khatri-Rao (column-wise Kronecker) product between matrices
� Hadamard (entry-wise) product between arrays
⊗ tensor product
•j contraction over index j
S , G sets

dom f domain of function f
proxA

f (x) proximity operator of function f within the metric induced byA computed at x
ιC indicator function of set C
PC projector on set C
epi f epigraph of function f
argmin

C
f minimum argument of f over set C

argmax
C

f maximum argument of f over set C

sup
C
f supremum of f over set C

inf
C
f infimum of f over set C

∇f gradient of f
∇2f Hessian of f
∂f(u) subdifferential set of f at u
f∗ conjugate of function f
γf Moreau envelope of f of parameter γ
� infimum-convolution
‖ · ‖F Frobenius norm
||| · ||| spectral norm



Chapter 6

Tensor decompositions:
principles and application to
food sciences
Jérémy Cohen, Rasmus Bro and Pierre Comon

Abstract

Tensors of order d may be seen as arrays of entries indexed by d indices. They natu-
rally appear as data arrays in applications such as chemistry, food science, forensics,
environmental analysis and many other fields. Extracting and visualizing the under-
lying features from tensors is an important source separation problem. This chapter
first describes an important class of data mining methods for tensors, namely low-rank
tensor approximations (CPD, Tucker3) in the case of order d = 3. In such a case, strik-
ing differences already exist compared to low-rank approximations of matrices, which
are tensors of order d = 2. Constrained decompositions and coupled decompositions,
which are important variants of tensor decompositions, are also discussed in details,
along with practical learning algorithms. Finally, tensor decompositions are illustrated
as a tool for source separation in food sciences. In particular fluorescence spectroscopy,
electrophoresis in gel, or chromatography especially coupled with mass spectrometry,
are techniques where tensor decompositions are known to be useful. Some of the many
other source separation problems that may be tackled with tensor decompositions are
briefly discussed in the concluding remarks.

Keywords: Tensor - Canonical Polyadic (CP) decomposition - Candecomp - PARAFAC
- Tucker - Polycyclic Aromatic Hydrocarbons (PAH) - Fluorescence - Elecrophoresis -
Mass spectrogram - Chromatography
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2 Chapter 6

6.1 Introduction

Most graduate students fear the concept of tensor, as it reminds them of intricate astro-
physics, material science, differential calculus or multilinear algebra formalism. Re-
garding the fields of signal processing and data science, while it is true that using tensor
methods requires understanding at least linear algebra and convex optimization, which
are both rich applied mathematics domains, the authors believe that most of this fear
about tensors is unjustified in the context of engineering. Indeed, for data scientists,
tensors are simply arrays that may have more than two indices, and most of the discus-
sion in this chapter will actually be a generalization of well-understood techniques for
matrices to such arrays.

Before entering the technical details of tensor algebra and tensor decomposition meth-
ods for analyzing data sets, we shall begin this chapter with a friendly introduction to
tensors, so that the reader can hopefully get rid of any anxiety about tensors.

6.1.1 A Simplified Definition

Let us start with a definition of what a tensor is, within the scope of this chapter.

DEFINITION 6.1 A (real) tensor T is an element of Rn1×···×nd where ni are integers
greater than or equal to 2. Integer d is called the order of the tensor.

In other words, we consider tensors as arrays containing real numbers, and a d-order
tensor is a real array with exactly d dimensions, which we call modes. This means that
real matrices are second-order tensors, i.e. matrices are tensors with only two modes,
while vectors of Rn are first-order tensors. A third-order tensor is depicted in Fig-
ure 6.1. As a side note, there exist definitions of tensors which are much more general
than this one, the most general one in the mathematical sense involving monoidal cat-
egory theory [1], which is far outside the scope of this chapter. However, an interested
reader may turn to [2, 3, 4] for other descriptions of tensors.

The study of tensors as a data structure is necessary in many applications where such
d-dimensional arrays emerge as efficient representations for the studied phenomenon.
For instance, it may be that sensors directly output tensors, e.g. a video or a 3D image.
It is also often the case that data are collected along several experimental variables,
which become modes in a measurement tensor. This is the case with fluorescence
spectroscopy; see the end of this introduction for a description of how fluorescence
spectroscopy measurements lead to data being contained naturally in a tensor. Finally,
it is sometimes profitable to augment a dataset to obtain a tensor. An example of
such augmentation is obtained by stacking shifted versions of gray-scale images. The
obtained data set is a collection of matrices, i.e. a third-order tensor.
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Figure 6.1: A third-order real tensor is nothing more than a three-way array of size
n1×n2×n3, that contains real numbers Ti,j,k at each entry (i, j, k). To rephrase using
a different vocabulary, this real tensor T has three modes of sizes n1, n2 and n3.

6.1.2 Separability: A Key Concept for Tensor Decomposition Model

We have sketched what a tensor is and how one may end up manipulating such an
object. However, we have yet to define the type of information that we want to extract
from tensors.

Recalling from Definition 6.1 that modes are the various ways/dimensions of a ten-
sor, this chapter describes some tools that exploit mode-wise information to explain
the content of a tensor. The main mathematical concept that formalizes this idea of
collecting mode-wise information to describe the whole tensor is “separability.” By
definition, a separable function f(x, y, z) verifies the following equality:

f(x, y, z) = f1(x)f2(y)f3(z) (6.1)

for some functions f1, f2, f3. Of course, very few functions are of this form. A separa-
ble function f is therefore entirely described by a triplet of functions fi, each depending
only on a single variable. Therefore, they are desirable to describe multivariate patterns
in an understandable, mode-wise manner. We shall see how to do that in Sections 6.2.2
and 6.2.8.

The link between separable functions and tensors is the following: a tensor can be
seen as an array collecting values of a sampled multivariate function. Indeed, one can
always define a function f(x, y, z) such that

Tijk = f(xi, yj , zk). (6.2)
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If this function f is separable as defined in (6.1), then the corresponding tensor has
received several names, and in particular simple tensor, or decomposable tensor in
the early literature. In the remainder, we shall assume the terminology of separable
tensor, which is more intuitive, and directly related to (6.1). This leads to the following
definition:

DEFINITION 6.2 A separable tensor is a tensor from Rn1×n2×n3 whose general term
T verifies the following equality:

Ti,j,k = aibjck (6.3)

where a, b, c are real vectors from Rn1 , Rn2 , and Rn3 .

Separable tensors are thus a formal description of what was referred in the beginning
of this introduction as “patterns explaining the data across all modes.” We shall see in
Section 6.2.2 the definition of tensor rank; it will then be clear that separable tensors
are nothing else but rank-one tensors. Because rank-one tensors make up for only
one simple pattern, a more complex data tensor should be composed of several of
them. This is the rationale under the Canonical Polyadic Decomposition (CPD), which
is more formally described in Section 6.2.2. Taking this reasoning one step further,
a tensor decomposition model always writes a tensor as a sum of separable terms.
Therefore, tensor decomposition models always aim at expressing global information
contained in a tensor using mode-wise descriptors.

6.1.3 The Fluorescence Excitation Emission Matrix (FEEM)

To conclude this introduction, we explore how fluorescence spectroscopy measure-
ments can lead to a tensor which has a CPD structure, and how this structure can be
exploited in practice. Further details are provided in Section 6.6 dedicated to applica-
tions of tensor decompositions in food sciences.

Fluorescence spectroscopy takes advantage of the fact that in food sciences, many in-
teresting compounds have their own fluorescent response to stimulation. To be more
precise, these compounds react only in a specific range of stimulation wavelength at
various intensities. Fluorophores respond to light excitation by emitting a light that has
a spread spectrum, called the emission spectrum. The emitted intensity consequently
depends on excitation and emission wavelengths.

Given one sample of possible several fluorescent chemicals, and stimulating the sample
with a light of varying wavelengths, a matrix of data is obtained. The two modes of the
matrix are the two experimental variables, i.e. the excitation wavelength λex and the
emission wavelength λem, and the elements of the matrix are the measured intensity
values of the light that the sample outputs. An example is provided in Figure 6.2.

Such a matrix is called a FEEM (Fluorescence Emission Excitation Matrix). Note that
FEEM do not restrict to cases where only one compound is present in the solution.
But in the case of a single fluorophore, the fluorescence phenomenon is separable with
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Figure 6.2: (a) A fluorescence Excitation-Emission Matrix (EEM) of a single fluo-
rophore, the amino acid tryptophan; (b) A sample containing three different amino
acids; each with a unique contribution (peak) to the EEM. The three amino acids are
tryptophan, tyrosine and phenylalanine. The (a) matrix is separable up to noise, while
the (b) matrix is a sum of three separable matrices, also up to noise.

respect to excitation and emission wavelengths and therefore the general term of a
FEEM that contains the spectra of only one compound can be expressed as follows:
Mλex,λem

= aλex
bλem

, where a is the excitation spectrum, and b is the emission
spectrum. In other words,M is a rank-one matrix, i.e. a rank-one tensor of order 2.

Now suppose that instead of a single sample, one has several samples of the same single
chemical, but at various concentrations in the solvent. The fluorescence phenomenon
being linear with respect to concentration (using a first order approximation valid at low
concentrations), repeating the above reasoning on each sample yields a separable third-
order tensor T λex,λem,k = aλex

bλem
ck, where k is the sample index and c contains

the relative concentrations with respect to the first sample. In other words, ideally a
fluorophore gives a simple, rank-one tensor.

At this stage, the reader can understand why studying tensors models is crucial in flu-
orescence spectroscopy. Indeed, given a tensor T , if an informed user knows that this
tensor is a collection of FEEM measured on solutions containing a single compound,
then finding a, b and c means estimating, from the data tensor, the spectra and concen-
trations of the compound. Computing these parameters is typically achieved by solving
an optimization problem, as discussed further in Section 6.5.

Usually, studied samples contain more than one chemical compound. The fluorescence
phenomenon being additive at low concentrations, a tensor obtained by measuring a
mixture is the sum of the separable tensors that would be obtained if each compound in
the mixture was measured separately. Using a more technical vocabulary later defined
in the chapter in Section 6.2, we shall see that a tensor of fluorescence spectroscopy
measurements follows an approximate CPD model, with as many separable terms as
there are compounds in the mixture. Again, identifying the parameters of this model
can be done by solving an optimization problem, which leads to estimating the various
spectra and relative concentrations in the mixture.

To summarize, we have seen that when studying tensors of fluorescence spectroscopy
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measurements, the data are naturally contained in a tensor that can be written as the
sum of a small number of separable (i.e. rank-one) terms. It will be shown later that
the CPD is a source separation technique which extracts on each mode a pre-defined
number of sources from data stored in a tensor. Interestingly, these sources do not
need to be independent in the statistical sense, as opposed to ICA for instance (see
Section 1.3). In that sense, CPD and other tensor decomposition models are similar to
Nonnegative Matrix Factorization, presented in Chapter 3 of this book.

6.1.4 Structure of the Chapter

In the remainder of this chapter, we first define more formally a few tensor decompo-
sitions (including the CPD), and introduce mild conditions that ensure the underlying
sources can be extracted from a tensor, see Section 6.2. In Sections 6.3 and 6.4, we
then introduce the concepts of constrained decomposition and coupled decompositions,
which are particular tensor-based models inspired from the CPD. actually compute ten-
sor decompositions. Finally, in Section 6.6, we show in more depth how these methods
can be employed to extract relevant information from various measurement techniques
used in food sciences.

6.1.5 Note

For simplicity reasons, we will only work with third-order tensors. However, all the
models introduced after this point can trivially be extended to higher orders. Third-
order tensors are convenient for notations, and are also more common than tensors of
order four and higher in practice.

6.1.6 Other Introductions

Survey papers have been proposed in the literature, that focus on various aspects of
tensors. If the reader wishes to have other accessible introductions to tensors before or
after reading the remainder of this chapter, we can recommend these references: [4, 5,
6, 7].

6.2 Tensor Decompositions

6.2.1 Tensor-Based Method, the Matrix Case

A convenient way to start addressing the tensor decomposition subject is to look first
at the matrix case. Any matrix M of size n1 × n2 can be written in the canonical
basis as M =

∑
ijMijE(i, j), where E(i, j) is the matrix having only one nonzero

entry at position (i, j). This is a trivial decomposition, which only shows that the linear
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space of n1 × n2 matrices is of dimension n1n2; it is not so much useful otherwise.
In other words, this trivial element-wise decomposition has n1 n2 parameters (one for
each element in the sum), so it is not parsimonious and is seldom used for extracting
information.

Now, looking for more parsimonious representations and bearing in mind the separa-
bility property emphasized in the introduction, we can decompose a matrix M into
a sum of rank-one terms as M =

∑R
r=1 σrDr, where Dr = urv

T
r are unit-norm

rank-one matrices, i.e., vectors ur and vr are of unit-norm.

Stacking ur and vr vertically in matrices U and V of sizes respectively n1 × R and
n2 × R, and setting Σ as a R × R diagonal matrix containing the values σr, this
decomposition can be rewritten in compact form as M = UΣV T. The smallest
number of rank-one terms R such that all values σr are non-zeros is called the rank of
M , andM is referred to as a low-rank matrix if R is smaller than min(n1, n2).

It can be checked out that such a decomposition exhibits now at most R(n1 + n2 − 1)
degrees of freedom (number of free parameters). Indeed, each rank-one component
has n1 parameters in ur, n2 in vr and one more is σr. However vectors ur and vr are
normalized, removing one degree of freedom in each, meaning a rank-one component
has n1 + n2 − 1 degree of freedom.

The problem is that this decomposition is not unique as soon as R is strictly greater
than one. Uniqueness is a key feature of any learning model as soon as the sought
parameters must be physically interpreted. For instance, say one wants to interpret
parameter matrices U and V as respectively collections of emission and excitation
spectra in fluorescence spectroscopy. The existence of several solutions prohibits this
interpretation, as only one of the possible solutions may actually correspond to the
desired spectra.

To see this lack of uniqueness, consider any orthonormalR×RmatrixQ. Then we also
have M = UΣQ(V Q)T. This shows that other decompositions of the form M =
U ′Σ′V ′T hold true, if we define V ′ = V Q, Σ′ the diagonal matrix containing the
norm of each column ofUΣQ andU ′ = UΣQΣ′−1. Thus, for ensuring uniqueness,
orthogonality between columns of matrices U and V is generally imposed, which
yields the Singular Value Decomposition (SVD):

Mij =

R∑
r=1

σr UirVjr, such that UTU = In1
and V TV = In2

(6.4)

where Ini is the identity matrix of size ni × ni. The SVD can also be written in a
compact form: M = JΣ;U ,V K := UΣV T, with left orthogonal matrices U and
V , and where Σ is diagonal R × R with positive entries Σrr = σr. As a notation
convention, in the rest of the chapter we prefereably denote orthogonal matrices with
letters U and V , and general matrices with other letters.



8 Chapter 6

Another convenient way to write the SVD is the following

M =

R∑
r=1

σrDr, (6.5)

where Dr are rank-one unit-norm matrices, which are orthogonal to each other. The
SVD is unique if all singular values are distinct. Of course, rank-1 terms in the sum
(6.4) or (6.5) can be permuted, because the sum is commutative. This induces a per-
mutation among columns of matricesU and V , which can be fixed by sorting singular
values in decreasing order in matrix Σ.

The number of degrees of freedom in the SVD is R(n1 + n2 − R), which can be
compared to the R(n1 + n2 − 1) degrees of freedom we would have if orthogonality
was not imposed. More precisely, there are n1R − R(R + 1)/2 degrees of freedom
in U , n2R − R(R + 1)/2 in V , and R in Σ. The sum of these 3 terms is R(n1 +
n2 − R). Indeed, it is sufficient to think of each column of matrices U and V as
normalized and orthogonal to all previous columns, meaning there are for each matrix∑R
r=1 r additionally fixed degrees of freedom. This reduced number of degrees of

freedom provides intuition as to why SVD is often unique while unconstrained low-
rank matrix factorization is not. Note that imposing nonnegativity in matrix Σ permits
to fix sign indeterminacies among columns ofU andV , but does not reduce the number
of degrees of freedom.

6.2.2 Canonical Polyadic Decomposition, PARAFAC/CanDecomp

Let us now define the Canonical Polyadic Decomposition (CPD) as an extension of
SVD for higher-order tensors. In what follows, we will see that for third-order tensors,
it is possible to drop the orthogonality constraint of the SVD and still obtain a unique
decomposition. This makes the CPD appealing in practice for source separation [8], or
for addressing other identification problems [9, 10, 11, 12].

Denote by S a 3-way diagonal array with σr as diagonal entries. For a large enough
R, a n1 × n2 × n3 tensor T with entries Tijk can always be decomposed as:

Tijk =

R∑
r=1

σr AirBjrCkr (6.6)

where factor matrices A, B and C have unit-norm columns, and where weights σr
may be imposed to be real positive. Indeed, just like with matrices, one may write

T =

n1,n2,n3∑
r1,r2,r3

Tr1,r2,r3E(r1, r2, r3) (6.7)

where E(r1, r2, r3)ijk = δi,r1δj,r2δk,r3 is a tensor with zeros everywhere except a one
in position (r1, r2, r3), and δi,r is the Kronecker symbol. Clearly any tensor T admits a
decomposition in separable terms (6.6) as soon asR is large enough. A first naive upper
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bound on R is therefore n1n2n3. On the other hand, since the above decomposition
always exists for large enough R, there always exists a minimal value of R, which is
called the rank of tensor T . It will be denoted rank{T }, as for matrices. Moreover,
decomposition (6.6) with minimal number of terms R is the exact Canonical Polyadic
Decomposition (CPD) of tensor T . The exact CPD is therefore the decomposition of
a tensor T into a minimal sum of rank-one tensors. A graphical representation of the
CPD is given in Figure 6.3. This can also be conveniently written as:

T =

R∑
r=1

σrDr (6.8)

with Dr = ar ⊗ br ⊗ cr, where ar (resp. br and cr) denote the unit-norm columns of
matrix factorA (resp. B and C), and ⊗ denotes the outer-product defined as

[a⊗ b⊗ c]ijk = aibjck. (6.9)

The notation used is summarized in Page iv. As for the matrix SVD, we can decide
to sort values σr in decreasing order to fix the permutation ambiguity stemming from
addition commutativity; note the similarity with (6.4).

A necessary condition for this decomposition to be unique, up to permutations and
signs ambiguities, is that the number of degrees of freedom in the left hand side of
equation (6.6) be at least as large as that in the right hand side. In general there are
n1n2n3 elements in tensor T , and R(n1 + n2 + n3 + 1) parameters in the CPD with
3R normalization constraints. In other words, we must have:

n1n2n3 ≥ R(n1 + n2 + n3 − 2) (6.10)

As soon as R < n1n2n3

n1+n2+n3−2 , this necessary condition holds, and it becomes possible
for the CPD to be unique. We shall subsequently see that this condition is not sufficient
to ensure CPD uniqueness, but that for small enough R, the orthogonality constraint
is generally not required to obtain a unique decomposition. This is unlike the matrix
case, where uniqueness cannot be attained without additional constraints except when
R = 1. In addition, condition (6.10) may hold true even ifR exceeds min{n1, n2, n3},
which is not possible under orthogonality constraints. The bound R ≤ n1n2n3/(n1 +
n2 +n3−2), induced by the counting (6.10) of degrees of freedom, is studied in [13].

Strangely enough, condition (6.10) is not sufficient to guarantee uniqueness of the
CPD. It has been shown that the CPD (6.8) is unique1 provided the rank is not too
large [14, 15, 16]. In particular, uniqueness is ensured if:

R ≤ 1

2
(krank{A}+ krank{B}+ krank{C} − 2) (6.11)

1Again, if we refer to (6.6) instead of (6.8), uniqueness is to be understood up to permutation of terms in
the sum; we made the same observation for matrices in Section 6.2.1 about Eq. (6.5).
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=

T =

+ · · · +

σ1a1 ⊗ b1 ⊗ c1+ · · · + σRaR ⊗ bR ⊗ cR

Figure 6.3: A graphical representation of the CPD. A tensor T is expressed as a min-
imal sum of R rank-one tensors, which can themselves be expressed as outer products
σrar ⊗ br ⊗ cr.

In the sufficient condition above, krank{A} denotes Kruskal rank2 of matrixA. Unique-
ness of the CPD (6.8) can be ensured under conditions weaker than (6.11); see the
recent paper [17] and references therein.

Equation (6.6) can be seen in many ways, among which two are common for a practical
use.

• First, it is a tensor factorization model that seeks a small number R of separable
patterns to describe the data. This point of view is usually used for justifying the
use of tensor decomposition techniques in machine learning as an exploratory
technique.

• Second, it is a parameter identification technique where physically meaningful
matrices A,B and C are of interest for a further task. In other words, the CPD
may be seen as a source separation technique. For instance, matrixA may stand
for a spectral signature that enables the identification of the chemical compounds
present in a mixture. This second approach contrasts with the first one since
uniqueness here is a key feature for interpreting the results. It is mostly seen
in bio-medical applications (metabolomics, neuroimaging) or in sensor arrays
where the CP decomposition results from a set of physical equations.

The model is particularly useful when it coincides with the physical model of the data,
because it provides meaningful solutions due to the uniqueness property.

At this stage, it is worth saying a word about terminology. Even if the CP decomposi-
tion has been introduced originally in 1927 by Hitchcock [18], it has been rediscovered
in 1970, by Harshman [19] and Carroll and Chang [20]. They gave it the name of
PARAFAC and CANDECOMP, respectively. To unify the terminology, Kiers [21] pro-
posed the acronym CP, which can wisely stand for “CANDECOMP/PARAFAC”, as well
as for “Canonical Polyadic”. In the sequel we shall refer to (6.6) and (6.8) as the exact
CP Decomposition (CPD) when R is indeed minimal and reveals tensor rank. If we
assume a multilinear model without column normalization, then an additional scaling

2The Kruskal rank of a matrix is the largest number κ such that any subset of κ columns is full rank.
Hence Kruskal rank cannot exceed rank. For almost all matrices, Kruskal rank is equal to rank.
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indeterminacy appears:

Tijk =

R∑
r=1

AirBjrCkr, denoted by T = JA,B,CK (6.12)

Such a decomposition without unit-norm constraint is not unique, and contains 2R
free parameters (scaling factors). More precisely, without normalization constraints,
the CPD model features (n1 + n2 + n3)R parameters since each rank-one component
involves three vectors of sizes n1, n2 and n3, and the norms of these vectors may be
pulled apart without modifying the sum of rank-one terms, since

∀µ, λ, ν ∈ R, µa⊗ λb⊗ νc = µλν (a⊗ b⊗ c) . (6.13)

Therefore, only (n1 + n2 + n3 − 2)R parameters can possibly be identified. More
bibliographical pointers to the CPD may be found in [22, 4].

6.2.3 Manipulation of Tensors

In the following we introduce some commonly used manipulations of tensors, namely
how to unfold them into matrices or vectors. These manipulations are useful in many
different context, from the derivation of algorithms using linear algebra to program-
ming. We also explain how these unfoldings link the outer product with the Kro-
necker product of matrices. The Kronecker product of two matrices A ∈ Rn1×n2 and
B ∈ Rm1×m2 is denoted byA�B ∈ Rn1m1×n2m2 and is defined by:

A�B :=


a11B a12B . . . a1n2B
a21B

...
an11B an1n2

B

 . (6.14)

Vectorization There are a priori a combinatorial number of ways to arbitrarily trans-
form a tensor in Rn1×n2×n3 into a vector in Rn1n2n3 . We refer to such an operator as a
vectorization. However, it is quite clear that an arbitrary, pseudo-random vectorization
will destroy any nice structure that the input tensors might have. In particular, if T
follows a CPD, it is a reasonable ordeal to ask for the vectorized version of it to also
satisfy a similar equation.

Taking this into consideration, there are still a few different ways to define a vectoriza-
tion, and several co-exist in the literature. We propose to use the row-wise vectoriza-
tion that exhibits a nice and simple link between the outer product and the Kronecker
product as shown below. Let T be a n1 × n2 × n3 tensor, we define the row-wise
vectorization as follows:

vec(T )(i−1)n3n2+(j−1)n3+k = Tijk (6.15)
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a) columnwise vectorization
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b) suggested vectorization

Figure 6.4: The suggested row-wise vectorization (b) reads the entries of the tensor
along the last index in the lexicographic order. This contrasts with the column-wise
vectorization (a) which is also often encountered.

See Figure 6.4 for a graphical explanation of these formulas.

Note that the above definition of the vectorization operator may not coincide with native
implementation in some languages such as MATLAB, which is column-wise, but does
coincide with the memory layout of other languages such as C. More details can be
found in [23].

With the above definitions, we have in particular the property:

vec(a⊗ b⊗ c) = a� b� c (6.16)

which is not enjoyed by most other definitions, where terms need to be permuted.
Because the vectorization operation is trivially linear, we have further that

vec

(
R∑
r=1

σrar ⊗ br ⊗ cr

)
=

R∑
r=1

σrar � br � cr (6.17)

which nicely transposes the CPD to a Kronecker equation.

Furthermore, this Kronecker equation can itself be written in a more compact format,
making use of the Khatri-Rao product. The Khatri-Rao product between two matrices
A = [a1, . . . ,aR] andB = [b1, . . . , bR] is nothing else than a column-wise Kronecker
product:

A�B = [a1 � b1 | . . . | aR � bR] =

 A11b1 . . . A1RbR
... . . .

...
An11b1 . . . An1RbR

 (6.18)

Then it is easy to check that

vec

(
R∑
r=1

σrar ⊗ br ⊗ cr

)
= (A�B�C) s (6.19)
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M1 MK

…

T (1) = [M1| . . . |MK ]

T (2) = [N1| . . . |N I ]

T (3) = [NT
1 | . . . |N

T
I ]

N1

NI

...

Figure 6.5: Three unfoldings of tensor T

with s the vector of length R containing all values σr.

Matricization Similarly to vectorization, to be able to resort to known results bor-
rowed from linear algebra, we shall sometimes need to store the elements of three-way
arrays into two-way arrays (i.e. matrices). This can be done in various manners, but we
shall retain three of them, namely those having as number of rows one dimension of
the original tensor. The operation transforming a d-way array into a matrix is known
as matrix unfolding, matrix flattening, or matricization [7, 24, 23]. If T is a tensor of
dimensions n1 × n2 × n3, we shall use the following matrix unfoldings T (p) along
mode p defined as

T (1) is n1 × n2n3 : T (1)
in = Tijk, with n = k + (j − 1)n2

T (2) is n2 × n3n1 : T (2)
jp = Tijk, with p = k + (i− 1)n3 (6.20)

T (3) is n3 × n1n2 : T (3)
kq = Tijk, with q = j + (i− 1)n1

These unfoldings are illustrated in Figure 6.5. Matricizations along mode p fold the pth
dimension of the tensor on the rows of the matricized tensor. This maps the range of the
tensor on the pth dimension to the column space of the matricized tensor. Again, simi-
larly to the vectorization, tensors are matricized by selecting entries along the deepest
index first. This way, matricizations and vectorizations do not permute the terms from
tensor produts to Kronecker products. Indeed, it holds that

[a⊗ b⊗ c](1)
= a⊗ b� c

[a⊗ b⊗ c](2)
= b⊗ a� c

[a⊗ b⊗ c](3)
= c⊗ a� b

(6.21)

In terms of matrix unfoldings defined in (6.20), using (6.21) and the linearity of the
matricization, the CPD can be written in three different ways:
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T (1) = US(1)(V �W )T = U diag{s}(V �W )T

T (2) = V S(2)(U �W )T = V diag{s}(U �W )T (6.22)
T (3) = WS(3)(U � V )T = W diag{s}(U �V )T

As a side note, there exist several definitions of tensor-matrix bijective maps in the
literature. What is important is to define the inverse map and related properties consis-
tently.

6.2.3.1 Contractions and CPD

It is convenient to have at our disposal a compact notation to indicate summations on
several indices. We shall assume the notation proposed in [7]:

T = JG;A,B,CK, (6.23)

meaning just that Tijk =
∑
`mnAi`BjmCkn G`mn. Note that another notation has

been proposed in [25] and would be equally meaningful: T = (A,B,C) · G. Some
authors also write (6.23) as T = (A ⊗B ⊗ C) · G, which accounts for the fact that
T is the image of G by the multilinear operator defined by A ⊗B ⊗ C [23]. In the
remainder, only notation (6.23) will be used.

In particular, if we have that Tijk =
∑
r AirBjrCkr, then this could be denoted as

T = JI;A,B,CK, where I is a diagonal 3-way array with ones on its diagonal. In
such a case, one can omit tensor I and just write:

T = JA,B,CK. (6.24)

Note that the CPD (6.6) can thus be written as JS;A,B,CK, where S here denotes a
diagonal tensor whose entry (q, q, q) equals σq . Moreover, by settingA′ = [σ1a1, . . . , σRaR],
it holds that

JA′,B,CK = JS;A,B,CK. (6.25)

In other words, the CPD may be written in several equivalent notations. In this chapter,
we will use whichever format is more convenient in each situation.

6.2.4 The Chain Rule

There exist a useful algebra result making use of the compact contraction notation de-
fined in Section 6.2.3.1. Although it can be proven almost trivially using more general
results from tensor algebra, we shall formulate it and prove it in simple terms.

PROPERTY 6.1 (CHAIN RULE) Given matricesA,B,C andA′,B′ andC ′ that are
compatible for products pairwise, it holds that

JJT ;A,B,CK;A′,B′,C ′K = JT ;A′A,B′B,C ′CK (6.26)
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We coin this property the chain rule. To prove this result it is sufficient to show that for
any mode, here arbitrarily the first one,

JJT ;A,B,CK;A′, I, IK = JT ;A′A,B,CK (6.27)

and then apply this partial result sequentially. This partial result is obtained by observ-
ing that

JJT ;A,B,CK;A′, I, IKijk =
∑
l′ A
′
il′
∑
lmnAl′lBjmCknTlmn

=
∑
lmn (

∑
l′ A
′
il′Al′l)BjmCknTlmn

= JT ;A′A,B,CKijk
(6.28)

and since this proof clearly holds for modes 2 and 3 as well by symmetry, we have just
proved Property 6.1.

The chain rule has an important corrolary that we will use throughout the chapter:

PROPERTY 6.2 Given invertible matrices A,B,C, and two tensors T and G, if the
dimensions are compatible, then

JT ;A,B,CK = G ⇔ T = JG;A−1,B−1,C−1K (6.29)

6.2.5 Multilinear Singular Value Decomposition

A second possibility to extend SVD to tensors is to keep orthogonality of factor matri-
ces. In that case, a n1 × n2 × n3 tensor T is decomposed as:

T = JG;U ,V ,W K (6.30)

where the so-called core tensor G is of size R1 × R2 × R3, smaller than T , that is:
R1 ≤ n1, R2 ≤ n2, R3 ≤ n3, and factor matrices U , V andW have orthogonal unit-
norm columns. This is interesting only if at least one dimension is strictly smaller, or
when the core is sparser, which means that a compression3 has been performed. Again,
it is then clear by just counting degrees of freedom that the diagonal form generally
cannot be imposed4 in G.

In terms of matrix unfoldings defined in (6.20), the multilinear SVD can be written in
three different ways:

T (1) = UG(1)(V ⊗W )T

T (2) = V G(2)(U ⊗W )T (6.31)
T (3) = WG(3)(U ⊗ V )T

3For the moment, this compression is lossless. Lossy compression will be addressed in Section 6.5.3.1.
4In fact, tensors that are orthogonally diagonalizable form a very small class, and their rank must be

bounded by all their dimensions.
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Indeed, it can be noticed that the multilinear SVD is nothing more than another decom-
position of T into separable terms:

T =

R1,R2,R3∑
lmn

Glmnul ⊗ vm ⊗wn (6.32)

with ul,vm,wn respectively the columns of matrices U ,V ,W . Therefore the un-
foldings formulas are obtained from (6.21) by linearity. These three writings show that
matrices U , V and W are built with the left singular vectors of matrices T (1), T (2)

and T (3) respectively. They can hence be computed by matrix SVDs. Once they are
known, the core tensor can in turn be computed as

G = JT ;UT,V T,W TK (6.33)

using (6.29) of Property 6.2. One defines the multilinear rank as the triplet of minimal
values (R1, R2, R3) such that (6.30) holds exactly. Then it can be shown that

max{R1, R2, R3} ≤ rank{T } ≤ min{R1R2, R2R3, R3R1} (6.34)

Because the multilinear SVD is computed with the help of three SVDs, it enjoys the
same uniqueness conditions. The multilinear SVD has been first suggested by Kroo-
nenberg in 1980 [26], and further studied in 2000 by De Lathauwer in [24] under the
name of High-Order SVD (HOSVD). But the premises of multilinear SVD appeared
earlier with the Tucker3 decomposition, which we address now.

6.2.6 Tucker

Tucker proposed much earlier [27], in 1966, a multilinear decomposition similar to
(6.30) but without orthogonality constraints on factor matrices:

T = JG;A,B,CK (6.35)

The consequence of relaxing all constraints is that this decomposition – often referred
to as Tucker3 – is not unique anymore, even if the size of the core is the same. The
3 in Tucker3 refers to the number of modes that are subspaced in the decomposition.
The Tucker3 decomposition is also often called the Tucker format, by opposition to
Tucker decomposition, because of the uniqueness issue [2]. Tucker3 decomposition
formally encompasses both multilinear SVD and CPD, which appear as constrained
versions. Other constraints such as nonnegativity or sparsity could be thought of and
would yield other decompositions, see Section 6.3.

The particular case when one mode is not reduced in dimension, which amounts to
fixing the factor on that mode to the identity matrix, say C = I , is sometimes of
interest and has received the name of Tucker2 (since now strict subspaces are defined
in only 2 modes). It can be denoted T = JG;A,B, IK.
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6.2.7 PARAFAC2

PARAFAC2 has been introduced in [28, 29]. It differs from the CPD (6.8) by the fact
that a matrix factor, e.g. the first one, may not be the same for each matrix slice. Rather,
these first-mode factors are related by an orthogonal transform:

T = JA(k),B,CK, A(k) = P (k)H, P (k)TP (k) = I, (6.36)

with a slight abuse of notation. In other words, if the data tensor is preprocessed as
follows

∀k ≤ n1, T (k, :, :)← P (k)TT (k, :, :) (6.37)

then it admits the CP decomposition JH,B,CK. Again, this means that PARAFAC2
is not a sum of separable terms, but becomes one after a linear transformation of each
slice in the tensor. More details on the Parafac2 decomposition, from the coupled
decomposition perspective, are given in a Block in Subsection 6.4.2.

6.2.8 Approximate Decomposition

Up to now, we have talked about exact decompositions. For instance, any tensor can
be decomposed exactly as in (6.8). However, an exact representation is generally not
suitable. Indeed, decomposition (6.8) is unique only if the tensor rank is not too large.
On the other hand, (6.8) is exactly verified as long as the rank is large enough, but
uniqueness may not be guaranteed. In fact, in the presence of noise, the minimal rank
for (6.8) to hold may be larger than the Kruskal upper bound [30]. In addition, the un-
derlying physical model is generally of interest only for a reasonably small value of R,
that for instance may stand for the number of unknown sources in a source separation
problem. For these reasons, a low-rank approximation is needed.

Instead of computing the exact CPD (6.6), a first idea is to minimize the objective

Υ(S,A,B,C) = ‖T −
R∑
r=1

σ(r) a(r)⊗ b(r)⊗ c(r)‖2F (6.38)

for a fixed5 value of R, supposed to be smaller than the rank of T . Also, define the

Frobenius norm for tensors as ‖T‖2F =
n1,n2,n3∑
i,j,k=1

T 2
ijk.

Unfortunately, the low-rank tensor approximation problem is generally ill-posed for
tensors (if R > 1 and d > 2) [25, 31]. More precisely, a minimizer of (6.38) may
not exist. This is in contrast with matrices, for which a low-rank approximation can be
easily computed by truncating the SVD [32]. Some solutions for this are discussed in
Section 6.3 relative to constrained decompositions. However, in practice, this fact is of-
ten overlooked. Section 6.5 details how to compute an approximate CPD by tentatively
solving optimization problems similar to minimizing (6.38).

5The problem of chosing the appropriate rank to obtain a meaningful approximation is application-
dependent and typically very intricate. As detailed in Section 6.5.1.2, deflation strategies should not be
employed in the general case.
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6.3 Constraints in Decompositions

Although tensor decomposition techniques have proven useful in a wide range of ap-
plications, they are seldom used as a black box model. Rather, problem-specific con-
straints are often applied on the factors of the decomposition. There are several main
reasons to apply constraints to a tensor decomposition model [22]:

• Despite the identifiability properties of tensor decompositions, the computed pa-
rameters may not fulfill key properties of the sought factors, therefore hindering
interpretability of the results. Imposing constraints, for instance nonnegativity,
may ensure interpretable results are obtained.

• When the parameters of a tensor decomposition model are not identifiable, con-
straints can restore identifiability e.g. by reducing the size of the search space.

• The underlying optimization problem of low-rank approximations can be shown
to have a solution in the presence of constraints, while it may not in the general
case as explained in Section 6.2.8.

• Estimation performance is increased in a noisy scenario.

Below, some of the most widely used constrained tensor decomposition models are in-
troduced. Many constrained models are however not discussed here, since their deriva-
tion is either straightforward or of relatively lesser importance in source separation
applications.

Among others, the following constraints have been explored in the literature: nonneg-
ativity [33, 34, 35], orthogonality [36, 37, 38, 39, 34, 40], smoothness [41, 42, 43, 44],
unimodality [33], simplex or sum to one [22, 45], dictionary and sparsity [46, 47, 48,
49], coherence constraints to ensure existence of approximation [50]. Some of these
constraints will be developed in subsequent paragraphs.

6.3.1 Nonnegativity

When dealing with data acquired by measuring physical properties of natural processes,
such as fluorescence or reflectance measurements, one of the most widely encountered
a priori information available on the model parameters is nonnegativity. Indeed, pa-
rameters related to many types of spectra or concentrations must be nonnegative by
definition, and cannot be easily interpreted if they are partially negative.

Of course, nonnegativity constraints may be applied in any tensor decomposition model,
but in this section we focus on the CPD, which is by far the most studied nonnegative
tensor decomposition model. At the end of this section, we discuss briefly the nonneg-
ative Tucker decomposition.
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6.3.1.1 Nonnegative CPD

Formally, a nonnegative CPD is derived as follows:

T = JA,B,CK and A � 0,B � 0,C � 0 (6.39)

where the inequality signs � are to be understood entry-wise. Clearly, without noise
nor modeling error, nonnegative factors imply nonnegative tensor data6 T , but a non-
negative tensor could be written as a CPD model with negative entries in factor matri-
ces. Therefore, it may occur that the rank of a tensor, which is the minimal number of
columns in unconstrained factor matrices, is strictly smaller than the nonnegative rank,
which is the minimal number of columns in nonnegative factor matrices and will be
denoted rank+{T}. A simple example of discrepancy7 between rank and nonnegative
rank is obtained by considering the following tensor (written slice-wise):

T =

[
1 1 1 1
1 1 1 0

]
(6.40)

which has rank 2, but nonnegative rank 3. Indeed,

T =

[
1
1

]
⊗
[

1
1

]
⊗
[

1
1

]
+

[
0
1

]
⊗
[

0
1

]
⊗
[

0
−1

]
(6.41)

shows that rank{T } ≤ 2 (while it is clear that rank{T } > 1). However it can be
shown8 that there exists no way to write T as the sum of two rank-one tensors with
nonnegative entries so that rank{T }+ > 2, and

T =

[
1
1

]
⊗
[

1
1

]
⊗
[

1
0

]
+

[
1
1

]
⊗
[

1
0

]
⊗
[

0
1

]
+

[
1
0

]
⊗
[

1
1

]
⊗
[

0
1

]
.

(6.42)
is a rank 3 nonnegative CPD of T .

Therefore, although the parameters of the PARAFAC model are identifiable, adding
nonnegativity constraints may change the solution to the decomposition problem en-
tirely. It has been shown recently however that in a generic case, i.e. choosing a
nonnegative tensor at random, nonnegative rank and the usual tensor rank match [51].

As stated earlier, nonnegativity constraints are also important to make the approxi-
mation problem well posed. Indeed, nonnegativity constraints prevent components
cancelation referred to as “degeneracy” [52, 53, 54, 55] by bounding the set of ad-
missible parameters [34]. More precisely, under nonnegativity constraints, the cost

6In practice negative entries may appear in these tensors because of measurement error, which does not
in principle prevent from fitting an approximate nonnegative CPD.

7Note that this discrepancy also exists for nonnegative matrices [4]: nonnegative rank can be strictly
larger than rank. Nonnegative matrices are used in Chapter 3

8In a nutshell, any rank-one term in a nonnegative decomposition of T must have a zero in the second
entry of one of the vector component, e.g. A2r = 0. However the second row, column and fiber of T are

nonzero (they are all equal to
[

1
0

]
). It can be observed that at least three rank-one terms are required to

place these nonzero elements.
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function (6.38) becomes coercive9 and one can define a compact ball, possibly very
large, within which the cost is upper-bounded. Because this cost is continuous in all
parameters, it must reach its minimum value within that ball. In contrast, without non-
negativity constraints, rank-one components can cancel out while growing to infinity
so that such a compact ball may not exist.

In addition, nonnegativity can guarantee uniqueness of the best low-rank approxima-
tion [35], and even the uniqueness of the CPD of the best low nonnegative rank ap-
proximate [51]. For these reasons, nonnegativity should be imposed each time it has a
physical justification [34, 44, 56, 57, 58, 59, 60].

6.3.1.2 Nonnegative Tucker Decomposition

Nonnegativity constraints have also been extensively used along with the Tucker model
introduced in Section 6.2.6:

T = JG;U ,V ,W K and U � 0,V � 0,W � 0,G � 0. (6.43)

Similar to nonnegative matrix factorization, by adding nonnegativity constraints in the
Tucker model, one hopes to obtain a uniquely defined tensor decomposition [61].

The field of applying constraints on Tucker models was pioneered by Smilde and Kiers
in a series of papers [62, 63, 64]. They realized that it was mostly necessary to add
several constraints such as nonnegativity, forcing core elements to zero in order to
obtain identified models.

But in fact, little is known on that topic. It has been shown that in the restrictive case
when the dimensions R1, R2, R3 in the nonnegative Tucker decomposition match the
nonnegative ranks of the factorsU ,V ,W and the nonnegative ranks of the unfoldings,
the uniqueness of the nonnegative Tucker model is equivalent to the uniqueness of three
nonnegative matrix factorizations of each unfolding of the tensor, which is a difficult
condition to satisfy [65]. Therefore, the nonnegative Tucker decomposition does not
ship with powerful uniqueness properties. Nonetheless it can still prove useful as a
nonlinear dimensionality reduction technique.

A control on the sparseness of factor matrices can be introduced, e.g. thanks to a `1
norm penalty, as for nonnegative matrices [66]. The advantage is that it empirically
leads to a unique solution, namely the sparsest [67, 68].

If an alternating algorithm is used, a proximal term can be inserted to guarantee local
convergence [69], see Section 6.5.

6.3.2 Block Decompositions

In some applications, like fluorescence spectroscopy where components have the same
concentration over all experiments, or like multipath propagation in antenna array pro-

9the cost grows to infinity in all directions of the parameter space.
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cessing, it may happen that one factor matrix in the CPD has collinear columns, which
prevents CP uniqueness since one of the Kruskal rank is then equal to 1 in (6.11). More
precisely, let D a tensor written as:

D = a⊗ b1 ⊗ c1 + a⊗ b2 ⊗ c2, (6.44)

then D can be equivalently written as a so-called Block Term Decomposition (or BTD
in short) [70, 71, 72] by factorizing component a:

D = a⊗ (b1 ⊗ c1 + b2 ⊗ c2) = a⊗BCT (6.45)

A sum of terms similar to equation (6.45) leads to a decompostion of the form:

T =

R∑
r=1

ar ⊗BrC
T
r , (6.46)

where matrices Br and Cr are of respective sizes n2 × Lr and n3 × Lr for a n1 ×
n2 × n3 tensor T . Consequently, the number R of terms in such a BTD can be much
smaller than tensor rank. Simultaneous to the discovery of block-term decomposition,
model (6.46) was investigated under the name PARALIND [70], and the two names
still coexist today.

Because of the relationship between equations (6.44) and (6.45), block-term decompo-
sition is in fact a constrained CPD with colinear columns in one factor. It is to be noted
that we refer here to a specific kind of block-term decomposition [72, 9, 73], but other
more involved models were introduced in [71], which do not relate directly to CPD
with collinear columns in factors.

An intrinsic property of block-term decompositions is that a rotation ambiguity is in-
troduced in each block, since for any invertible matrix P , BCT = BPP−1CT . The
uniqueness of the products BrC

T
r as well as the uniqueness of factor A have been

studied in the literature [74, 17, 75].

In spirit, constraining the block-term decomposition model could be a solution to re-
move the rotational ambiguity of the blocks. To that end, sparsity-constrained block-
term decomposition and coupled block-term decomposition have been studied [76, 73].
The coupling is however not as flexible as in [77]. Some authors have also developed
a PARAFAC2 block-term decomposition [78].

Application-wise, the block-term decomposition has been used for biomedical image
processing to detect epileptic seizures [79, 80], but also for hyperspectral unmixing,
among others.

6.3.3 Structured Factors

6.3.3.1 Re-parameterization

As discussed above, a versatile way to impose constraints in a tensor decomposition
model is to constrain the factors directly. For instance for nonnegativity constraints,



22 Chapter 6

factors are required to have only nonnegative entries. This can be efficiently imposed
by merely parameterizing entries as squares [81]. It is also possible to impose more
complicated constraints via parameterization.

First, a parametric model may be used to describe one or several factors. For instance,
the factorA in a CPD may be a sinusoidal function so that Air = sin(2iπρ+ rφ) and
the new parameter set becomes ρ, φ [10]. Such parameterizations have been studied in
the literature in the context of array processing, where factors are well represented by
exponential maps [9, 11]. Damped exponentials also have been used to model factor
matrices [12]. An exponential decay also appears in early literature of chemometrics
[82].

Second, a basis of representation may be provided in a matrix format, and the con-
strained factors are then represented by coefficients in a new feature space. For in-
stance, both nonnegativity and smoothness may be imposed on factor matrix A by
fixing a family of B-splinesD of size n1 ×R1 for some small integer R1 as described
in [41], and impose that A = DAc. B-splines are piece-wise polynomial functions
that are zero valued outside a given interval. Therefore, imposingA to live in the (non-
negative) span of D necessarily implies that it is nonnegative and smooth as a sum of
polynomials. Such splines bases are widely used in psychometrics, where factors in
the CPD are heavily constrained by user prior knowledge [83].

Interestingly, if such a matrix D is provided as a priori information, and that R1 is
smaller than R, then provided the columns of D are free, a compression similar to the
Tucker compression discussed in Section 6.5.3.1 can be done using the QR decompo-
sition of matrixD [41].

6.3.3.2 Dictionary Constraints

An important issue in source separation is the identification, or labeling, of the out-
puts. This can be done for instance by comparing the output factors with a library, also
called a dictionary, of reference factors, like reference emission and excitation spectra
of some well-known chemical compounds. However, if all chemical compounds are
known in advance, it is also possible to exploit this dictionary inside the source sepa-
ration algorithm to produce labeled outputs and improve identification accuracy. This
dictionary may be very large and very redundant, since the source may be characterized
by a family of correlated reference spectra.

Formally, given a dictionary D, one wants to select columns of, say, factor A in the
columns of D, so that A = D (:,K) for an index set K of size R. Such a combina-
torial formulation was introduced in [49], but a former formulation using row-sparsity
constraints can be found in [48]. Along with improving identification performances,
dictionary constraints also make the low-rank approximation well-posed, similar to
nonnegativity constraints.

Two related problems remain open. First, when no library is provided a priori, how can
a dictionary be learned from a set of tensors? Second, if a provided dictionary is not
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exactly adapted to the data at hand, what distance would best describe the discrepancy
between the constrained factor matrix and the provided dictionary?

Note that important works have also been done about tensor dictionary learning, mostly
focusing on learning a dictionary from a matrix data set that has a tensor structure. The
problem of dictionary learning is, as of now, unrelated to what has been presented
above and has yet found no application in chemometrics that we know of, but an inter-
ested reader can refer to [46, 47, 84].

6.4 Coupled Decompositions

One of the reasons why tensors have gained importance in signal processing is that the
complexity and variety of sensors has skyrocketed in the recent years. On the other
hand, most well-studied data analysis tools, for instance Principal Component Analy-
sis, Factor Analysis, linear regression and sparse regression, are designed for two-way
arrays. From a practical point of view, this means that only a relationship between
two experimental parameters (e.g. time, wavelength) can be inferred. Nowadays mul-
tiple such parameters are involved in the measurement process, and one possible way
to deal with this fact is to build matrices of data by stacking such parameters, thus
overlooking the real intricate relationship between all sets of experimental parameters.
PARAFAC, and other previously described models, does mine relationships between
all experimental parameters through a collection of separable patterns.

An interesting way to understand the CP decomposition is to cast it as a simultaneous
low-rank matrix decomposition of a collection of matrices with equality constraint on
the mixing matrices as detailed in Section 6.4.1. This is also in line with how Richard
Harshman developed the PARAFAC model based on the principle of parallel propor-
tional profiles [85]. Thus the CPD is a reasonable tool for data fusion, i.e. the joint
analysis of multiple data sets. However, it is clear that previously presented models
may not be used to tackle any data fusion problem, since the separability assumption
may be too strong to describe stacked heterogeneous data sets. Even if that was not
the case, data sizes may be completely different due to varying sampling rates among
sensors and experiments, and stacking would then not be feasible naively.

This section introduces a general framework for designing tensor decomposition mod-
els in a broad context of data fusion. Regression models between multiple blocks of
variables will not be addressed here. Our main goal here is not to collect all existing
tensor models that account for some specific types of fusion, but rather to give a taste
of how to implement peculiar knowledge on the relationship between sources into a
decomposition model.

Note that because of the wide range of problems that can be coined as data fusion, there
exist numerous a priori unrelated models in chemometrics alone designed to address
either multimodality or subject variability that we will not address in this chapter.
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6.4.1 Exact Coupled Decomposition, a First Approach

Let us first illustrate these concepts on a simple data fusion model, namely the exact
coupled decomposition. Suppose data from N sensors are collected in the form of N
tensors T n of order 3, with one shared experimental parameter. The exact coupled
decomposition model supposes that each tensor shares at least one factor with all the
others. If exactly one is shared, then for all n in [1, N ],

T n = JA,Bn,CnK + En, (6.47)

where En is a noise tensor and A is the shared factor. Note that we have assumed, to
simplify, that the shared experimental parameter’s sampling rate is the same for each
data set, which is not necessarily true in practice [77].

Although coupled tensor factorization stems from established concepts such as canonical-
correlation analysis [86] and although data fusion with tensors was previously studied
in chemometrics [87, 88], exact coupled decomposition was formally introduced much
later [6, 77]. Exact coupled decomposition has been used in many application domains
such as metabolomics [89] or recommender systems [90].

Exact coupled decomposition is not only a useful data mining tool, but is also the link
between matrix factorization models and tensor decomposition. The PARAFAC model
may indeed be cast as an exactly coupled matrix factorization model: let Mk be a
collection of n3 matrices of size n1 × n2 such that Mk = ADkB

T where A, B are
respectively n1 × R and n2 × R matrices, and Dk is a R × R diagonal matrix of
weights. Then the tensor T obtained by stacking matricesMk along a third mode, i.e.

T (:, :, k) = ADkB
T (6.48)

follows a PARAFAC model
T = JA,B,CK (6.49)

where C = [diag(D1), . . . , diag(DK))]. This can be easily checked by looking at the
expanded formula

Tijk =

R∑
r=1

AirDkrrBjr =

R∑
r=1

AirBjrCkr (6.50)

In other words, computing the CPD of a three-way array is equivalent to finding the
common factorization of a collection of matrices with individual component weights,
or again to compute the exact coupled decomposition of matrices where all factors are
coupled.

Writing an approximation problem for exact coupled decomposition is straightforward
(but its solution may raise difficulties, as pointed out in Section 6.2.8). In the presence
of i.i.d. Gaussian noise of variance σn on each entry of the tensor T n, the data distri-
bution p(T n|A,Bn,Cn) is Gaussian and therefore the maximum likelihood estimator
of all factors is given by the following optimization problem:

max
A,Bn,Cn

log p(T n|A,Bn,Cn) = min
A,Bn,Cn

N∑
n=1

1

σ2
n

‖T n − JA,Bn,CnK‖2F . (6.51)
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Many different optimization algorithms may be used to compute the exact coupled
model, which are derived from either alternating least squares or all-at-once descent
algorithms introduced in Section 6.5.1.1. Important contributions to the identifiability
of the parameters of the exact coupled tensor decomposition model have been made by
Sørensen [74].

This exact coupling model is however nowhere near satisfying in most practical sce-
narios. In fact, realistic problems are more complicated and may feature:

• different tensor sizes on the shared mode,

• more complex variation slice-wise of the coupled factors,

• a stochastic coupling relationship.

To extend the ideas presented above and allow for customization of coupled multiway
decomposition models, a more flexible framework than exact coupled decomposition
is therefore needed, as elaborated now.

6.4.2 A General Framework for Data Fusion in Tensor Decompo-
sitions

As illustrated above, most data fusion methods for source separation make the assump-
tion that a subset of parameters are linked. Describing how these parameters are linked
is therefore the cornerstone of designing data fusion models. Understanding how to
design tensor data fusion models is essential for linking various existing tensor de-
composition models together. As an example, the block shown next shows how the
PARAFAC2 model described in Section 6.2.7 can be written as a coupled matrix fac-
torization model, shedding light on the link between PARAFAC and PARAFAC2.
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Block 1: PARAFAC2 as a flexible tensor coupled decomposition

Suppose a collection of n3 matrices Mk of sizes n1 × n2 is to be jointly
factorized using a coupled model, using a single coupled mode. Using above
notations, this can be formalized as such:

Mk = ADkB
T
k (6.52)

which can be rearranged into

M =
[
M1 . . . Mn3

]
= A

[
D1B1 . . . Dn3

Bn3

]
= AB̄T

(6.53)
by stacking “horizontally” matrices Mk (resp. matrices DkBk) into a large
n1 × n2n3 matrix M (resp. a large R × JK matrix B̄T). Therefore, if
matrices Bk share no relationship, the coupled model is simply equivalent to
a large low-rank matrix factorization. On the other hand, equality between
matrices Bk would yield the PARAFAC model as shown in equation (6.48).
An intermediate constraint may therefore be sought, so that factors Bk are
all related but not equal. The PARAFAC2 model suggests to fix the inner-
products BT

kBk across k. This yields the following flexible matrix coupling
model:

Mk = ADkB
T
k and Bk = PkE (6.54)

where matrices Pk are J ×R left-orthogonal matrices, i.e. P T
k Pk = IR, and

E is a common R×R Grammian matrix (a Grammian matrix is a symmetric
matrix containing all pairwise scalar products between several vectors). In
other words,MkPk = ADkE

T, which is nothing more than a CPD.

A convenient way to formalize more general relationships between parameter sets in
multiway array decompositions is to resort to a Bayesian probabilistic formulation. In
a Bayesian framework, decomposing multiple tensors {T n}n≤N means finding the pa-
rameters {θn}n≤N so that the probability p(θ1, . . . ,θN ,T 1, . . . ,TN ) is maximized
over {θn}n≤N . As shown in [77], to rewrite this criterion in a useful form, the follow-
ing hypothesis is required:

H1: Conditional independence of the data. The data arrays T n are statistically in-
dependent conditionally to their decomposition parameters θn. This means that know-
ing the factors of a decomposition for T n, this tensor can be fully reconstructed, with-
out using the other data sets.

Hypothesis H1 is a technical assumption and can be assumed to be true in most prac-
tical data fusion problems. Moreover, to provide a Bayesian model for the coupled
data sets, it is also necessary to know the joint densities of the coupled parameters
p(θ1, . . . , θN ), as well as the likelihood functions p(T n|θn), which contain the de-
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composition model for each data set. Under H1 and given the likelihoods and the joint
probability of the coupled parameters, deriving the Maximum A Posteriori (MAP) es-
timator boils down to maximizing the log-posterior, i.e.:

θMAP = argmax
θn

N∑
n=1

log (p(Tn|θn)) + log (p(θ1, . . . , θN )) (6.55)

which can be used as the cost function in an optimization problem, see Section 6.5.
In the vast majority of coupled decomposition problems, some blocks of parameters
should be coupled, and some should not. For the latter, it is possible to marginalize their
contribution to the joint distribution, so that only the joint distribution of the coupled
parameters is used in (6.55).

Let us instantiate (6.55) with a simple demonstrative example. If each T n follows a
CPD model with Gaussian Noise of i.i.d. noise of variance σ2

n, and if column-wise
normalized factors Cn are coupled through the following model:

Cn = C∗ + Γn (6.56)

for a latent variable matrixC∗, and a zero-mean Gaussian noise Γn whose entries have
a variance σ2

Cn
, then Eq. (6.55) becomes

argmin
An,Bn,Cn,C∗

N∑
n=1

1

σ2
n

∥∥∥T n − JAn,Bn,CnK
∥∥∥2

F
+

1

σ2
Cn

‖Cn −C∗‖2F (6.57)

where Cn are normalized column-wise.

Note that a latent shared factor matrix C∗ is added to the set of parameters. This was
done by supposing the joint probability of the coupled parameters is known condition-
ally to a latent variable θ∗, for which a non-informative prior is used. Then using the
Bayes law, Eq. (6.57) is obtained from (6.55). Also note that the normalization is im-
portant, since all factorsCn should relate to one matrixC∗ with a given error measured
by σCn

, and this coupling relationship is not invariant by scaling.

This flexible exact coupling example is simply meant for illustrating how a coupled de-
composition model can be designed. In some practical cases, the probabilistic frame-
work may be dropped and instead, and a deterministic coupling model can be used. All
the examples of data fusion models described in Subsection 6.4.3 are indeed based on
a deterministic description of the relationship between a subset of the decomposition
variables. However, it should be borne in mind that, using a probabilistic framework,
the modeling possibilities are much wider.

6.4.3 Examples of Coupled Decomposition Models

In what follows, we introduce coupled decomposition models that can be encountered
in chemometrics. For most of them, solving the underlying optimization problem is non
trivial, but an interested reader can refer to the original publications for more details on
this subject. To this list, one should add the PARAFAC2 model described in Section
6.2.7 and in a block Page 26.
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6.4.3.1 Advanced Coupled Matrix Tensor Factorization

Advanced coupled matrix tensor factorization [91] was designed to adapt exactly cou-
pled decomposition (6.47) for situations when only a portion of the components of the
coupled factorA are shared across the data sets (thus the “advanced” adjective).

A naive way to design a so-called partially coupled decomposition model is to fix
manually the subset of coupled columns of factorsAn, such that

An = [A |Anc
n ] (6.58)

where matrix A contains the shared components, matrices Anc
n the uncoupled ones,

and the concatenation is horizontal. However, such a formulation suggests that the
number of coupled components is known in advance, which may not be the case.
Moreover, a specific ordering of the components is imposed which can bring some
permutation problems in the decomposition algorithm.

Advanced coupled matrix tensor factorization proceeds differently. It makes use of
a sparsity constraint on the norms of the components (recall formulation (6.25)), to
impose this partial coupling, solving the following optimization problem10:

argmin
A,Bn,Cn,Sn

‖T n − JSn;A,Bn,CnK‖2F + λ

n3∑
n=1

‖Diag(Sn)‖1

+ α

R∑
r=1

[
(‖ar‖22 − 1)2 +

n3∑
n=1

(‖bnr‖22 − 1)2 + (‖cnr‖22 − 1)2

]
(6.59)

where Sn are diagonal tensors containing the values σnr of the components intensities
for each tensor T n with n ≤ n3, while λ and α are hyperparameters tuned by the
user. By forcing normalization of the factor matrices, the components amplitude stored
in Sn truly reflect the importance of component r in data block n. If a component
ar in the shared matrix A should not be used in data block T n, then the score of
that component in the decomposition of this data block σnr may be set to zero. This
motivates the use of a sparsity-inducing penalization such as the `1 norm on the entries
of the diagonal tensors Sn.

Advanced coupled matrix tensor factorization has been used successfully in meta-
bolomics and brain imaging [89, 92].

On the theoretical side, the uniqueness of partially exact coupled decompositions has
been studied in the case of matrix-tensor coupled decompositions [93]. Partial cou-
pling is shown to reduce rotational ambiguities in the matrix decomposition without
completely negating it. Furthermore, the presence of constraints, in particular non-
negativity constraints, may further improve the identification properties of the partially
coupled matrix-tensor models.

10the original publication gave a slightly different optimization problem featuring a relaxation of the `1
norm.
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6.4.3.2 Shift PARAFAC and Others

When dealing with several data sets acquired in similar experimental conditions, it
is natural to assume that in the presence of time measurements, some delay is to be
accounted for across the various data sets. But such delays may actually depend on the
source index, if some variability occurs in the behavior of each source along the various
measurements. Modeling and estimating this delay is partially what the PARAFAC2
model described above does, but in a fairly general manner.

In 2003, Harshman [94] introduced a more specific modeling of component shifts in a
collection of coupled low rank data matrices. This model, coined as Shift-PARAFAC,
may be cast in the coupled decomposition framework as follows:

[Cn]k,r = [C∗]k+τn,r (6.60)

supposing the coupled factor is C and the amount of shift is proportional to the sam-
pling rate. It is also possible to design an arbitrary shift amount, i.e. not an increment
of the indices, by resorting to interpolation between the latent factor and its shifted in-
stances. The computation of the Shift PARAFAC model can be done rather efficiently
by resorting to the Fourier transform of the data [95], since a shift in time domain be-
comes a product in the Fourier domain. The Shift-PARAFAC model has been used
mainly to decompose fMRI data [95], so as to account for variations in the activation
profiles of brain sources.

It is worth noting that a few other similar relationships have been explored in the lit-
erature. In particular, distortions due to time contraction or dilatation are discussed in
the Warped Factor Analysis model [96, 97]. Also, both Shift-PARAFAC and Warped
Factor Analysis differ from data alignment approaches like Ico-shift [98, 99] which
preprocess the data to remove any delay among the related data slices. Indeed, if only
the data slices are shifted, then implicitly all the components are supposed to have the
same delays.

6.4.3.3 GSVD

The Generalized Singular Value Decomposition model has been proposed by Van Loan
[100] as a generalization of the SVD to more than a single matrix. It was one of the
first attempts at defining a joint diagonalization technique. Its main usage in source
separation has been for genomics, where GSVD has been applied notably by Alter to
discriminate cancerous DNA from sane DNA [101].

GSVD resembles an exactly (i.e. without noise) coupled decomposition of two matri-
ces:

M1 = U1Σ1V
T

M2 = U2Σ2V
T (6.61)

but with orthogonality constraints imposed on the non-coupled matricesUn. Note that
without such constraints, computing the exact coupled decomposition of a collection
of matrices amounts to a single matrix factorization of the stacked matricesMn, which
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does not admit a unique solution (up to scaling and permutation). This is in contrast
with non-orthogonal Joint Approximate Diagonalization of matrices; see [102] and
references therein.

On the other hand, the parameters of the GSVD are identifiable, and a closed-form
solution is available to compute it when the data are not corrupted by noise. For these
reasons, GSVD can be used as an exploratory model, in a similar spirit as Principal
Component Analysis, rather than being cast as a physical modeling of the two data
sets.

Notably, GSVD was also extended to deal with multiple data matrices [103], and with
two coupled third-order tensors [104]. In both cases, the relationship with coupled
models is not as straightforward.

6.5 Algorithms

This section aims at giving a short overview of simple and well-understood optimiza-
tion algorithms that are known to work for computing tensor decomposition models.
As a warning to informed readers however, research on optimization techniques for
tensor decompositions is extremely prolific, and surveying all the available methods
while discussing their pros and cons would require another book in itself. Therefore
only our understanding of mainstream approaches is described below. On the other
hand, to readers who simply want to make use of well-designed toolboxes for source
separation problems can turn to the following programs:

• Tensor toolbox11 (Matlab): this open-source toolbox features a particular care
to processing and storaging large sparse tensors, and implements several basic
tensor routines. It can therefore also be used as a backend onto which building
one’s own code.

• N-way toolbox12 (Matlab): a simple yet comprehensive open-source toolbox
implementing the Alternating Least Squares to compute both nonnegative and
unconstrained CP, as well other related regression models and the PARAFAC2
decomposition.

• Tensorly13 (Python): a tensor decomposition collaborative open-source toolbox
that mimics the scikit-learn syntax. It supports the use of several backends such
as numpy or pytorch, and is geared toward machine learning applications.

• Tensorlab14 (Matlab): a toolbox, which can identify many of the well-known
tensor models, including CPD, block-term decomposition, some joint decompo-
sitions, as well as imposing various constraints on the factors. It is based on a
nonlinear least squares solver and develops its own syntax.

11www.tensortoolbox.org/
12www.models.life.ku.dk/nwaytoolbox
13tensorly.org/
14www.tensorlab.net/
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• PLS Toolbox15 (Matlab): A very comprehensive, open-source (and commercial)
toolbox for general chemometric modeling. It includes tools for CPD, Tucker
and PARAFAC2 including various constrained versions. It also includes older
direct methods for CPD modeling based on generalized eigenvalue decomposi-
tion such as the generalized rank annihilation method.

Again, many other toolboxes exist. Several lists updated regularly are available on-
line.16 Some original codes can also be found on authors’ home pages, but are gener-
ally not part of a toolbox; see for instance the TensorPackage.17

6.5.1 Unconstrained Tensor Decomposition

Among all tensor decomposition models, the most studied by far in terms of opti-
mization strategies is the CPD. In the unconstrained case, both iterative and direct
algorithms have been designed in the literature, leading to a wide variety of possible
algorithms to choose from. Iterative methods are however the most common choice for
approximate decompositions and are therefore the main focus of this section.

6.5.1.1 Iterative Algorithms for Approximate CPD

Let T ∈ Rn1×n2×n3 , and consider the following cost function18:

Υ(A,B,C) = ‖T − JA,B,CK ‖2F . (6.62)

The minimization of objective (6.62) is the problem we end up with, if we want to
find the maximum likelihood estimates of factor matrices (A,B,C), when the data
follow a rank-R PARAFAC model corrupted by an additive isotropic Gaussian noise.
Equivalently, the solution to (6.62) is the best rank-R approximation of T when it
exists.

Since no closed form solution for the minimum of (6.62) is known in the general case,
iterative methods rely on the following strategy:

• Provide an initial guess for factorsA,B and C.

• Fix a subset (possibly empty) of the parameters and update the others.

• Stop when convergence is reached.

The main difference between various iterative methods is therefore the choice of fixed
parameters and the update strategy.

15www.eigenvector.com
16www.tensorworld.org/toolboxes/, tensornetwork.org/software/
17www.gipsa-lab.grenoble-inp.fr/∼pierre.comon/TensorPackage/tensorPackage.html
18This section is written for third-order tensors without loss of generality
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Gradient Computation Most iterative strategies make use of the gradient of (6.62)
for the update rule. The gradient of (6.62) is as follows19:

∂Υ
2∂A = −T(1) (B�C) +A

(
BTB�CTC

)
∂Υ

2∂B = −T(2) (A�C) +B
(
ATA�CTC

)
∂Υ

2∂C = −T(3) (A�B) +C
(
ATA�BTB

) (6.63)

To derive these gradients easily, one may resort to the matricized versions of the
PARAFAC model. Indeed, since the Frobenius norm acts entry-wise, the cost (6.62) is
equivalently rewritten as

Υ(A,B,C) = ‖T(1) −A(B�C)T ‖2F . (6.64)

The gradient of this cost function with respect toA is given by

(
−T(1) +A (B�C)

T
)

(B�C) . (6.65)

At this stage, with some formula manipulation, one may note that for any indices r and
q in [1, R],[

(B�C)T (B�C)
]
rq

= (br � cr)
T (bq � cq) = (bTr bq)(c

T
r cq). (6.66)

Therefore the second term in the gradient simplifies into BTB�CTC, which has a
much lower computational complexity for small R since it is computed by multiplying
an ni ×R matrix with its transpose, plus a few R×R element-wise products.

Then the bottleneck in the gradient computation is the matrix product T(1) (B�C),
sometimes called Matricized Tensor Times Khatri Rao Product (MTTKRP), which has
a naive complexity of O(Rn1n2n3) since it is computed as the matrix product of a
n1 × n2n3 matrix with a n2n3 × R matrix. The fast implementation of this costly
product, and in general of tensor contractions, is the topic of many recent researches in
high performance computing [105, 106, 107, 108, 109, 110].

Alternating least squares The workhorse algorithm for identifying the PARAFAC
model is the Alternating Least Squares algorithm. It is very easy to implement, and al-
though several other algorithms are more reliable, ALS still performs reasonably well
in some cases. In its most simple form, ALS also features no parameter tuning. How-
ever, it fails to deliver in difficult scenarios, such as in the presence of near-colinear
dependency among the factor’s columns or rank under- (or over-) estimation. No-
tably, ALS is a particular case of the nonlinear block Gauss-Seidel method for solving
nonlinear systems. It can be adapted to tackle very large data sets [111] and coupled
decompositions [77].

The core principle of ALS is to minimize (6.62) with respect to each factor while the
others remain fixed. Since PARAFAC is a multilinear model, it is linear with respect to

19The gradient w.r.t. a matrix is understood entry-wise.
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each such block of parameters, and therefore the optimal solution with respect to one
block only is known in closed form. Skipping the technical conditions for the existence
of such a closed form solution, one may simply set the gradients (6.63) to zero to obtain
the sequential update rules for the ALS. For instance, the estimate Â of matrix A is
given by

Â =
(
T(1) (B�C)

) (
BTB � CTC

)−1
. (6.67)

A pseudo-code for ALS is given in Algorithm 1. The stopping conditions can be a fixed
number of iterations, the relative decrease of Υ across successive iterations reaching a
threshold, or any arbitrary condition that fits the needs of a particular application. Also,
the inverse in the factor updates does not need to be explicitly computed. Rather, the
least squares update can be computed by solving the linear system obtained by setting
the gradients in (6.63) to zero.

Algorithm 1 A squeleton of the Alternating Least Squares algorithm

Input: Data tensor T , Initial valuesA(0),B(0),C(0)

Set k = 0
while stopping condition is not met do

A(k+1) =
(
T(1)

(
B(k)�C(k)

) )(
B(k)TB(k) � C(k)TC(k)

)−1

B(k+1) =
(
T(2)

(
A(k+1)�C(k)

) )(
A(k+1)TA(k+1) � C(k)TC(k)

)−1

C(k+1) =
(
T(3)

(
A(k+1)�B(k+1)

) )(
A(k+1)TA(k+1) � B(k+1)TB(k+1)

)−1

Increment k = k+1
end while
Output: Final estimatesA(k),B(k),C(k)

Importantly, ALS iterates of the objective function always converge since the cost func-
tion decreases at each iteration and is bounded below. However, this does not guarantee
that iterates (A(k),B(k),C(k)) converge; if they do, the obtained solution is not either
guaranteed to be a local minimum. For this to be true in the framework of local con-
vergence,20 some reasonable technical conditions on the Hessian matrix of Υ should
be met [112], which sadly can hardly be checked in practice. Global convergence to
a local minimum is also subject to theoretical technical conditions [113]. Further, in
some pathological cases, the convergence speed of ALS can be sub-linear [113], a fact
observed in difficult decomposition problems [114].

An important tweak on ALS, that often improves its convergence speed drastically, is
to extrapolate factor estimates using current and previous estimates. This extrapolation
procedure is standard in optimization [115], and is often called “Line Search” in the
tensor community. The practical speed up makes it a nice feature of a good ALS
implementation [22, 114, 116, 117, 54]. Note that extrapolation may lead to increasing

20Local convergence means convergence if the starting point of the algorithm is in the neighborhood some
local minimum.
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the cost function at some iterations, and the so-called restart strategy that discards steps
increasing the cost is the key to obtain an efficient acceleration in some of the works
mentioned above [116, 117].

First and second order descent algorithms All-at-once gradient-based methods are
also a great choice for computing an unconstrained PARAFAC model. First, for first-
order methods (based solely on the gradient for finding a descent direction), the com-
plexity per iteration is the same as the ALS. Second, all the knowledge on descent
methods applied to non-convex problems may be put to profit, in particular through
convergence results or stochastic approaches for handling very large data sets [118].
Third, missing data can be dealt with using a mask of weights on the data, which is
not feasible using the ALS algorithm. Since large data sets with a lot of missing data
are common in machine learning, all-at-once descent algorithms have notably been
preponderant in this context [119, 120].

There is no particular practical difficulty to computing a PARAFAC decomposition
using well-known descent algorithms such as gradient descent, non-linear conjugate
gradient descent [121] or Gauss-Newton once gradients (6.63) have been computed.
However, some parameters such as the step size need to be tuned, which makes the
ALS a simpler choice for novice users. On the other hand, for high precision works
or difficult scenarios, resorting to second-order methods promoted to solve nonlinear
least squares problems, like the Levenberg Marquardt algorithm [?, 114] can prove
rewarding. Indeed, the Jacobian matrix has a particular structure that can be used to
speed-up the – otherwise time demanding – Hessian computation. Moreover, second-
order methods have a guaranteed local convergence at quadratic speed.

Normalization Normalizing the columns in the CPD at each iteration is not always
mandatory in practice, but it has two advantages: (i) it avoids scaling indeterminacies,
and (ii) it helps avoid very small/large values in the factors, thus improving numerical
stability as well as providing interpretable results. In practice since the CPD is scale-
invariant, in the ALS Algorithm 1, one may normalize the columns of all factors at
each inner iteration after the C matrix update and pull the product of these norms in
one of the factors.

6.5.1.2 Deflation and N-PLS

Up to now, we supposed that the number of terms R in the decomposition is known.
In practice this is rarely the case, but finding the optimal R has proven to be a difficult
problem, mainly because contrary to matrices, best fitting models with adjacent rank
values may have no relationship. The procedure consisting of computing R succes-
sive rank-1 approximations with the goal of obtaining a rank-R approximation is often
referred to as deflation. This idea works for matrices, by subtracting the best rank-1
approximation at each iteration. But the reader should pay attention to the fact that this
does not work for tensors, since subtracting the best rank-1 approximation generally
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does not reduce its rank [122, 123, 124]. Also note that it does not work either for
matrices in R+ because of lack of stability by subtraction. Therefore, a naive strategy
is to test several ranks and pick the one that works the best, but other methods have
been proposed for specific applications [125, 126, 127].

Another way to perform deflation is by means of the N-PLS. Let us first describe what
Partial Least Squares (PLS) is, i.e. for N = 2.

Given a n × p matrix X and a n × 1 data vector y, the goal of PLS is to find the part
ŷ of y that is related to X in the form ŷ = X b. The classical solution to finding
this regression vector is well known and given by b = (XTX)−1XTy. However, it is
not desired to compute this expression: first, it can be computationally prohibitive, and
second, matrixX can be ill-conditioned (e.g. if columns are close to collinear).

PLS aims at computing an approximation of weight b and regression ŷ by delivering at
each iteration k the loading that provides a score vector with the highest possible cross-
covariance with y (or the residual part of y). It is robust with respect to ill-conditioning.
One nice implementation of PLS is the LSQR bidagonalization algorithm [128], which
minimizes the objective ‖y − Xb‖2 by the conjugate gradient algorithm.21 In fact,
PLS yields at each iteration k the projection of b onto the subspace spanned by the k
dominant eigenvectors of matrix (XTX). Hence, it can be stopped before convergence
and can output at any time an approximation of the best regression.

The multi-linear partial least squares regression, also known asN -way PLS regression,
is an extension of the two-way PLS regression described above [129]. It is based on
sequentially extracting rank-one tensors from a given tensor T and a given vector y.
For instance in trilinear PLS, T is I × J × K and y is a vector of size I [130]. The
first rank one tensor has the property that the mode one component vector has maximal
covariance with vector y, to be predicted. More precisely, (i) a J ×K projected ma-
trix is computed Bk = T k •1 yk, and two weight vectors (vk,wk) are computed as
the dominant singular vectors of Bk; then (ii) a deflation is performed by subtraction
yk+1 = yk − t with t = T k •2 vk •3wk, and T k+1 = T k − t⊗ vk ⊗wk.

The process is repeated as long as new components improve the predictions, which is
usually determined through cross-validation or similar tests. Note that in the algorithm
described in [129], the rank-one approximation of a tensor is computed via two rank-
one approximations of matrices, which is possible by breaking the role symmetry of
the three modes.

6.5.1.3 Exact Decomposition Methods

Another line of research on decomposition algorithms is to find exact decomposition
algorithms, such that the remaining error in Eq. (6.62) is zero. Of course one can resort
to the iterative methods described above. But in the noiseless case, there is no need

21This has been proved in exact arithmetic, i.e. if there are no rounding errors.
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to introduce a statistical framework, and therefore algebraic methods, that are not the-
oretically robust to noise, can provide fast and reliable solutions. Because in source
separation, such exact decomposition problems have a relatively smaller importance,
we shall here only provide a few references that an interested reader can refer to, e.g.
[131, 132, 133, 134, 135], or in the world of chemistry [136, 137, 138, 139]. In par-
ticular, in the absence of noise, only two matrix slices need to be used to compute a
matrix factor of the CPD [140, 141].

6.5.2 Constrained Tensor Decomposition

Although unconstrained tensor decomposition algorithms are today quite well under-
stood, constrained tensor decomposition algorithms on the other hand have been an
important research theme over the last decades. It is practically impossible to summa-
rize all the works on this topic in one section. For instance, the sole case of nonnegative
matrix factorization, which is a second-order constrained tensor factorization problem,
has been discussed in the entire Chapter 3. Therefore, in this section, we shall simply
sketch the research directions that have been pursued.

6.5.2.1 Constrained Least Squares

A first approach to constrained tensor decomposition is to modify the ALS algorithm
presented in Section 6.5.1.1 to impose the constraints on the decomposition factors.
Since ALS relies on solving least squares problems alternatively, this approach boils
down to solving constrained least squares problems.

For nonnegativity constraints, various efficient algorithms are available. The first non-
negative least squares algorithm appeared in [142, 143] and made use of an active set
strategy. It has been adapted to compute the nonnegative CPD in [144]. More recent
techniques employ exact block coordinate descent, using the observation that nonneg-
ative least squares can be solved exactly by clipping to zero for one-dimensional data
[145]. These approaches have been used by Bro and Phan and coworkers for com-
puting nonnegative CPD, with a computational load comparable to the unconstrained
CPD, respectively [144, 44].

To tackle a wider set of constraints, such as sparsity, it was suggested in [120] to solve
each constrained least squares problem successively for each factor using a splitting
of variables and a primal dual algorithm, namely the Alternating Direction Method of
Multipliers (ADMM). The advantage of ADMM in this context, on top of the variety
of problems it can tackle, is parallelism.

6.5.2.2 Projected Gradient and All-at-Once Proximal Methods

Similar to the unconstrained case, constrained tensor decompositions can be tackled
using variants of gradient descent for constrained problems. The goal here is not to
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give a full description of constrained convex optimization, but in a nutshell, constrained
first-order methods are based on projection operators. Namely, after a gradient step
has been performed, the parameters are updated by projecting them onto the set of
constraints. Another solution is to add a penalization term in the objective function to
promote the constraint. Projected gradient and penalized approaches can be studied
and improved under the hood of proximal operators, see Chapter 2 for more details
on these optimization techniques and Chapter 3 for their application in the context of
NMF.

Various first-order methods have been used to compute the CPD, including penalized
gradient [146] or proximal gradient [147]. Second-order methods, relying on an esti-
mation of the curvature of the cost function using second-order derivatives, have been
extensively used in conjunction with projection or penalization to be used in the Ten-
sorlab toolbox [148].

6.5.2.3 Parametric Approaches

In the particular case of nonnegativity, instead of explicitly imposing the constraint on
the factors, several authors have suggested to parameterize the variables, for instance as
squares, so that the nonnegativity constraints are implicitly imposed; see e.g. [146, 81].
Actually, parametric approaches are a convenient way to handle structured factors in
tensor decompositions, both with respect to formalism and optimization [149]. No-
tably, this kind of approach is used in several packages including TensorPackage and
Tensorlab. See page 30 for links. See also [60] for a unit-norm parameterization.

6.5.3 Handling Large Data Sets

All the algorithms we presented above make the implicit assumption that the data set
can fit into the computer memory, so that any data point can be accessed easily. How-
ever, when dealing with very large tensors, this may not be the case. Historically, a
compression method coined as the Tucker compression, introduced below, served as
both an acceleration method and a storage technique. It may however not be com-
putable in reasonable time.

To cope with very large data sets, several strategies have been explored in the literature,
such as sketching or randomized sampling [111]. However, this rapidly evolving topic
is out of the scope of this chapter.

6.5.3.1 Multilinear SVD Compression

Given a large tensor T of size n1 × n2 × n3 following an unconstrained unknown
PARAFAC model of small rank R, computing the CP decomposition may prove quite
time consuming. On the other hand, since the tensor is explained by a relatively small
number of parameters, in fact byR(n1 +n2 +n3−2) parameters, it should be possible
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to reduce the data set to a more essential one, that can be stored and manipulated instead
of the whole tensor.

Finding tensor representations for efficient storage or fast computation of decomposi-
tion models is actually a very active field of research, with representations such as the
hierarchical decomposition or the tensor train format, see [150] and references therein.
However in the context of source separation, and in particular in chemometrics, the
most widely used representation method for storage and fast decompositions is the
so-called Tucker compression or multilinear SVD compression, which is described in
Section 6.2.5. Thus in what follows, we only describe this usual compression method,
keeping in mind that newer approaches vastly widen the following discussion.

The idea behind multilinear SVD compression is to use the information that the rank
of the tensor approximating the data is small with respect to its dimensions. Then
because multilinear ranks, i.e. the ranks of the unfoldings, are always smaller than or
equal to the tensor rank, the approximate tensor must have small multilinear ranks as
well. Therefore, using a truncated singular value decomposition of each unfolding as
a way to compute approximate multilinear SVD22, a basis for each mode is obtained
which can be used to project the data tensor onto a feature space of lower dimensions.

Formally, if a CPD T = JA,B,CK is sought, first a multilinear SVD T = JG;U ,V ,W K
is computed where U ,V and W are left orthogonal matrices of respective sizes n1 ×
R1, n2 ×R2 and n3 ×R3, and the compressed dimensions Ri are larger than or equal
to R. Then, using Property 6.2,

G = JT ;UTA,V TB,W TCK := JAc,Bc,CcK, (6.68)

which is nothing more than a CPD of the smaller R1 × R2 × R3 tensor G. Once
that CPD is computed, the original CPD of the larger tensor T can be recovered by
A = UAc and similarly on other modes.

In practice, given a large tensor T for which multiple approximate PARAFAC models
of various ranks are to be computed, it is sufficient to compute the multilinear SVD
of T with reasonably small multilinear ranks, which outputs matrices U ,V and W .
Then after computing the compressed core tensor Ĝ once, Ĝ becomes the new data
set, to be decomposed using any PARAFAC model with compressed factors Ac, Bc

and Cc of small sizes Ri × R. Tensor T can also be stored with small loss using its
multilinear SVD compression, while using a PARAFAC model often leads to a more
lossy compression. In practice, it is always recommended to compress the tensor to be
decomposed [114].

As a side note, very few works study efficient compression and acceleration techniques
in the presence of constraints. In our opinion, this topic is a promising line of research.
Early works have been proposed for nonnegative CPD [58].

22As explained in [24], the solution obtained by SVDs would not be optimal in a noisy setting. Neverthe-
less, this truncation procedure is generally broadly sufficient as a preprocessing before computing the exact
CPD.
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Structured decompositions Another strategy to accelerate tensor decomposition al-
gorithms is to simply write tensor T as a structured tensor using any tensor decom-
position model, for instance T = JG;U ,V ,W K. Using such structure leads to faster
computations and lowers the memory requirements just like the Tucker compression.
For instance, using again Multilinear SVD, gradient (6.63) with respect toA is written
as

∂Υ

2∂A
= −UG(1)

(
V TB�W TC

)
+A

(
BTB�CTC

)
(6.69)

and the data-factors product, which is the bottleneck, has now a reduced complexity if
U has fewer columns than rows.

The computation speed-up is similar but smaller than using Tucker compression how-
ever, the structured approximation technique extends trivially to any constrained de-
composition of T which makes it attractive in practice [149].

Other cost functions for fitting the CPD As a last remark, it often occurs that the
discrepancy between the data tensor T and the CPD is not efficiently measured by the
Frobenius norm. In fact, a wide variety of distances may be used to fit a CPD, which
may be obtained by taking the log-likelihood of the data.

Despite the large choice of distance, there is a trick to easily obtain the gradient of a
cost function written as

f ◦ g(T ,A,B,C) = f(T − JA,B,CK) (6.70)

Indeed, the following chain rule may be used [151]:

∂f◦g
∂A (T ,A,B,C) = −∇f (T − JA,B,CK) (B�C)
∂f◦g
∂B (T ,A,B,C) = −∇f (T − JA,B,CK) (A�C)
∂f◦g
∂C (T ,A,B,C) = −∇f (T − JA,B,CK) (A�B)

(6.71)

which is nothing more than the usual composition chain rule (f◦g)′(x) = f ′(g(x))g′(x)
written for vector valued functions. Note that for f set to the Frobenius norm, Eq. (6.71)
recovers the gradients shown in (6.63) since∇‖ ‖2F (x) = 2x.

More techniques can be found in the literature [151] which tackle the gradient compu-
tation for more general cost functions to fit the CPD.

6.6 Applications

6.6.1 Preprocessing

Before analyzing data sets, it is often necessary or beneficial to preprocess data. This
goes for multi-way data as well. And essentially, the preprocessing is not much differ-
ent from that of matrix data. The reader is therefore referred to the literature for classi-
cal preprocessing such as scatter correction of infrared spectral data [152], baselining
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of Raman data [153], removal of Raman and Rayleigh scattering effects before ana-
lyzing fluorescence [59], normalization of e.g. omics data [154]. One aspect though
merits some special attention.

Centering and scaling are perhaps the most often used preprocessing methods both for
matrix and tensor data. In matrix data analysis there are certain traditional approaches
for centering and scaling and those approaches actually help making sure that the pre-
processing achieves what is expected. In tensor analysis, it is slightly more complicated
mainly because there are few traditions. Richard Harshman has written an excellent de-
scription of the common pitfalls in centering and scaling [155, 156]. Centering often
serves two separate and independent purposes to remove offsets in data and to make
sure that the components are centered e.g. for subsequent regression problems. Not all
types of centering will achieve these two goals. Imagine as an example, that a tensor
follows a three-component CPD model plus an offset. Such data cannot be modeled
by a three-component CPD model directly. Rather, a four-component model would be
able to model the data. Upon centering, it is expected that the rank four data will now
be rank three meaning that the offset information has been removed. Subtracting e.g.
the overall average of the data would not have that effect [156]. It can be shown that
only centering across one mode will be able to remove offsets. Centering across one
mode means that the average of each column/row/tube is subtracted from that colum-
n/row/tube. Any other centering will introduce artifacts in the data that must then also
be modeled. Likewise for scaling. Tensor data has to be scaled within a mode. That
means that each slab of a three-way array has to be scaled by the same scalar. As for
centering, scaling differently than within a mode will increase the rank artificially.

6.6.2 Fluorescence

In fluorescence excitation emission spectroscopy, each sample is excited at K excita-
tion wavelengths and the emission subsequently measured at J emission wavelengths.
Hence, for I samples an I×J×K tensor T is obtained. If the samples contain, sayR,
chemical compounds that fluoresce, then the rank of the tensor should beR under ideal
conditions up to the noise of the measurements. That is, if the sample is fairly dilute
and does not contain an excessive number of other chromophores that absorb signifi-
cantly [157, 22]. In practice, such data may contain artifacts that need to be handled
before a chemically meaningful CPD model can be fitted. If the absorbance of the sam-
ple is too high, there may be inner filter effects that distort the signal. There are several
methods available for correcting for this either explicitly or implicitly [158, 159, 160].

In addition to inner filter effects, it is common that FEEMs will have significant vari-
ation caused by Raman and Rayleigh scattering [159]. The Raman scattering is often
of moderate size and for many applications, it can be removed by simply subtracting
an FEEM of the solvent from each FEEM. The Rayleigh scattering (Figure 6.6) cannot
be handled this way so usually those areas are removed by replacing the measurements
with missing values or interpolating [161, 160].
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Figure 6.6: A fluorescence excitation emission matrix (FEEM). The two areas sur-
rounded by ellipses reveal Rayleigh scattering.

The sample shown in Figure 6.7 comes from a dataset of 27 samples all containing
varying concentrations of the four fluorophores Hydroquinone, Tryptophan, Pheny-
lalanine, and Dopa. Since there are four chemical compounds, it is expected that a
four-component CPD model would provide an adequate model of the data.

Indeed in this example, a four-component CPD model has a so-called core consistency
of 88% indicating a valid model [125]. However, several aspects seem suspicious. First
of all, it seems that there may be problems with local minima. Refitting the model ten
times, the fit varies between three distinct values: 99.8% variation explained, 96.6%
and 95.5%. Only the best fitting of those qualifies for being the actual CPD model
so the others have to be disregarded. Normally, local minima are not a huge problem
for datasets that follow the CPD models well, but in this case where there is both
a large amount of missing data and some outliers present, the algorithm apparently
struggles. Investigating residuals and parameters, four outlying samples are identified
and removed. The main reason for the outlying behavior is that the concentrations
are quite high. Upon removing the four samples, a four-component model has a core
consistency of 100%. Normally, it is advised to use models with the highest number of
components with a sufficiently high core consistency [125].

It was investigated if the model was more stable and robust when using nonnegativity
constraints. Some of the estimated fluorescence spectra in the unconstrained model
were slightly negative. Not enough to be a significant issue, but oftentimes, imposing
nonnegativity can also stabilize the model with respect to numerical problems. Indeed,
a four-component model with nonnegativity on all parameters did not show any local
minima and had a perfect core consistency. Furthermore, the estimated emission and
excitation spectra looked very similar to what would be expected from prior knowl-
edge. The five-component model has a low core consistency and some of the emission
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Figure 6.7: The same FEEM as in Figure 1 after removal of Rayleigh scattering. Some
traces of Raman scattering are visible.

components come out identical which is not chemically meaningful. Hence, the four-
component model seems a good candidate.

To verify the model, we perform a splithalf analysis where the data are split into two
parts in the sample mode [162]. A four-component CPD model is fitted to the first 13
samples and independently to the last 14 samples. If the model is correctly specified
the components should be the same in the two models. In Figure 6.8, the results of
the two models are shown together with the overall model. As can be seen, the four
estimated emission (top) and excitation (bottom) spectra are almost exactly identical
even though they are estimated from different sample sets. This is a very convincing
diagnostic for assessing the validity of the model.

As a final illustration of the ability to uncover the underlying chemistry, the scores are
plotted in Figure 6.9. Each score is plotted against the known actual concentration of
the corresponding chemical in each sample. As can be seen, the model is capable of re-
covering the concentrations up to a scaling; hence estimating the relative concentration
of each compound.

6.6.3 Chromatography

Gas Chromatograpy with Mass Spectrometric detection (GC-MS) is a very common
tool in analytical chemistry e.g. for measuring hormones in food products, flavor com-
pounds in wines or proteins in blood. In simpler cases, there is little need for much
data analysis as the whole purpose of the chromatography is to ensure that different
chemical constituents come out at different times. However as shown in Figure 6.10,
sometimes the peaks of different chemicals are overlapping. Ideally, each chemical
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Figure 6.8: The results of split-half analysis (black: set 1; gray: set 2).

would be a baseline-resolved Gaussian curve but when compounds overlap, the tradi-
tional approaches for handling the data often fail.

For ideal chromatographic data, fitting a CPD model would allow to resolve overlap-
ping data. Each CPD component would consist of a component in the elution mode
giving the elution profile and in the spectral mode giving the pure mass spectrum of
each analyte. The sample mode would then give the relative concentration of each
chemical in each sample/experiment [163, 164]. However, the CPD model requires
that the elution profile of each chemical compound keeps the same shape across differ-
ent samples. This is almost never the case in chromatography. Due to retention time
shifts, the elution profile will change slightly from sample to sample. This is also evi-
dent in Figure 6.10, where the peak at approximately time 21.7 minutes varies. Further,
there are a number of minor peaks around 21.8-22 minutes and it is difficult to discern
exactly how many.

The PARAFAC2 model has been shown repeatedly to provide a good model for chro-
matographic data and fitting the model to interval indicated in Figure 6.10; it turns out
that there are as many as seven components needed for describing the data. In Figure
6.11, the elution mode components are shown. There are 44 samples in the dataset
hence, there are 44 versions of each elution profile.

6.6.4 Other Applications

Tensor analysis has a long history in chemistry and there are many diverse fields of
applications as also evidenced in older reviews [165]. The applications can be di-
vided into typical groups. The first group consists of applications where hard model-
ing such as Beer’s law is used to identify chemical information like pure spectra and
concentrations. This can be used for untargeted approaches where many chemicals
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Figure 6.9: The four score vectors of a CPD model plotted against the corresponding
actual concentrations.

are being estimated at the same time [166] or in targeted approaches where one or a
few compounds need to be quantified [167]. The models used are mostly CPD and
PARAFAC2 but also sometimes alternatives such as restricted Tucker3 models [168]
or methods based on rank annihilation [169, 170, 171, 172, 173]. Especially CPD is
useful e.g. for high-resolution nuclear magnetic resonance [174, 175, 176, 177, 178]
as well as low-resolution magnetic resonance [179, 180]. Traditionally, CPD and vari-
ants have also been popular within electroencephalography [181, 182, 183]. For more
exploratory purposes, it is common to use the Tucker3 model often followed by some
types of rotations of either the core or the factor matrices [36, 62]. Examples often
come from environmental analysis [184, 185, 186] but variants of CPD are also used
[187, 188]. Sensory profiling is a common approach for understanding human per-
ception e.g. in food analysis. The traditional sensory profiling data are a three-way
structure consisting of a number of assessors assessing a number of items with respect
to a number of attributes. The data can be analyzed with both CPD and Tucker3, but the
Tucker2 model is often preferred because the extended core array allows meaningful
interactions between components [189]. In batch process monitoring or multivariate
statistical process monitoring in general, the aim is to understand and operate produc-
tion processes. In early days, both Tucker and CPD, and even PARAFAC2 models
were investigated [190, 191]. Nowadays though, the three-way data are often unfolded
and analyzed as matrix data to better handle the complex dynamics that such data
have. A third type of problem that occurs quite often in the chemical sciences is re-
gression, which is also referred to as multivariate calibration. The classical problem
is to replace a tedious and costly reference method with a prediction based on some
more easily available data. The most popular algorithm for this is multi-way par-
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Figure 6.10: Example of a set of samples measured by GC-MS. The mass spectrum is
summed at each time point so that the measurements of each sample become a vector
called a TIC – Total Ion Current chromatogram. In the dark part, a time interval with
overlapping peaks is shown.

tial least squares regression [130], which has been used for a multitude of problems
[192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 176, 202, 203]. An interesting al-
ternative is the method SCREAM that combines the regression with the more flexible
PARAFAC2 model [204].
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Figure 6.11: Estimated elution profiles from a seven-component PARAFAC2 model.
Components 2 and 3 are describing baseline variation whereas the remaining five com-
ponents are describing different chemical compounds.
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