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On the broad tails in breaking time distributions of vibrated clogging arches
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Abstract. Flowing grains can clog an orifice by developing arches, an undesirable event in many cases.
Several strategies have been put forward to avoid this. One of them is to vibrate the system in order to undo the
clogging. Nevertheless, the time taken to break an arch under a constant vibration has a distribution displaying
a heavy tail. This can lead to a situation where the average breaking time is not well defined. Moreover, it has
been observed in some experiments that these tails tend to flatten for very long times, exacerbating the problem.
Here we will review two conceptual frameworks that have been proposed to understand the phenomenon and
discuss their physical implications.

1 Introduction

Clogging is a distinct feature of grains flowing through
a constriction or a duct. An arch (a mechanically stable
structure) can be spontaneously formed and halt the flow.
In order to break this arch and restore the flow (i. e. un-
clog the granular medium) an external perturbation is re-
quired. This is often done in the form of a vibration. The
endurance of arches against the external vibration can be
quantified by means of the time that it takes to break them
from the moment when the vibration is applied; this time
lapse is called tb. A feature that has been found in many
different systems is that the distribution of breaking times,
P(tb), displays a heavy tail [1–3], which often flattens at
very long times .

In practice, survival analysis is often used to describe
the results. The survival function, also known as comple-
mentary cumulative probability distribution, is defined as

S (t) ≡ P(tb > t) ≡
∫ ∞

t
P(t ′) dt ′

In other words, S (t) is the probability that an arch is still
unshattered after a time t. If P(tb) ∼ t−αb then S (tb) ∼
t−α+1
b . To be physically realistic, the power law is only

valid for a range of times. The power law must break down
at short times (otherwise, it would diverge for t → 0) and
after a long time the vibration can further alter the arch
stability by making it more resistant (therefore, flattening
the survival function).

We have carried out several sets of experiments, some
of which have been previously reported [3–5]. The ones
used here consist of a monolayer of grains enclosed
between two vertical glass plates. An orifice at the base
lets the grains flow until an arch is formed, halting the
outpouring. Then, an external energy input is supplied to

∗e-mail: angel@unav.es

10
0

10
1

10
2

t (s)

10
-2

10
-1

10
0

P
(t

b
 >

 t
)

Figure 1. The blue points are the experimental survival function
of more than 6000 arches (they look like a continuous trait). They
were obtained for a two dimensional silo with a vibrated base;
the exit orifice is 2.3 mm wide (beads have a diameter of 1 mm).
The sinusoidal vibration has a frequency of f = 90 Hz and an
acceleration amplitude of 0.025 g. The dashed line is a linear fit
between t = 10 s and t = 50 s, giving α = −1.93.

break the arch and restore the flow. The time needed to
break the arch, tb, is recorded. These experiments have
been performed with several protocols. Sometimes, the
whole silo is vibrated; in other cases, only the base is
shaken. The vibration may be an acceleration ramp, or
a perturbation of constant amplitude. Irrespective of the
specific procedures, a heavy tail for large tb is a feature
that often appears in these experiments. A typical survival
function of tb obtained from a particular experiment (see
caption for details) is shown in Fig. 1.

Such distributions imply that a characteristic time
scale is lacking. Apart from fundamental questions about
the phenomenon itself, this leads to a disturbing possi-
bility: it may be impossible to predict whether or not
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a given vibration will be able to restore the flow in a
finite time. This stems from the fact that the integral
〈tb〉 =

∫
tb P(tb) dtb may not converge, as P(tb) ∼ t−αb .

Thus, if α ≤ 2 the integral diverges as the experimental
time grows: the mean is dominated by large events. In
other words, arches may outlast any finite time threshold
that one can set, and therefore unclogging with gentle vi-
brations may be unfeasible in this circumstance. This re-
presents a problem whenever a realistic, finite time is con-
sidered. The fact that the distribution flattens for very long
times only worsens the problem. In fact, there may exist
unbreakable arches that cannot be destroyed with a cons-
tant amplitude vibration even if it is applied for very long
periods.

The granular flow through a bottleneck is a paradigm
that has been used as a model to explain the features of
other systems, such as macroscopic active matter. It has
been proposed that the clogging transition can be descri-
bed with three universal variables, which can be traced to
the loads and densities of granular media. Heavy tails ap-
pear in many of those systems [1, 6, 7] with features simi-
lar to those found in granular matter. Therefore, this study
can have broad resonance in other fields.

In the following, we will review two explanations that
can be given to describe and better understand the appea-
rance of heavy tails in the distribution of tb when arches
are submitted to a vibration. Remark that these two expla-
nations are not mutually exclusive.

2 Trap model: energy barrier distribution

The conceptual framework of this model is to consider the
stable arch as a point located inside a potential well, which
describes the potential energy associated to a stable confi-
guration and the small deviations from it. The form of this
well is determined by the arch geometry, and in general, it
will be difficult to find explicitly, as we do not know how to
relate the arch shape to its resistance by means of an analy-
tical expression. The different clogging arches will there-
fore define an energy landscape. A vibration applied to the
arch can be likened to a thermal agitation, because experi-
ments indicate that the evolution of the potential (linked to
the creeping motion of the arch beads) is much slower than
the vibration frequency. Thus, the point representing the
arch shape can move inside the well and eventually escape
from it, meaning that the arch breaks down. Taking into
account the frictional forces, this process can be described
by a Langevin equation:

r̈ = −
∂V
∂r

+ f + ξ(t)

where r is the position of a variable representing the arch
shape, V stands for the potential, f for the frictional forces,
and the vibration is represented by ξ(t) (a ‘noise’). This
concept is summarized in Fig. 2.

The escape rate from a potential well was worked out
by Kramers [8]. Here, we have an energy landscape with
different well depths (Fig. 2, b). In fact, the distribution
of energy barriers Eb can be inferred from experimental
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Figure 2. Trap model for the energy landscape of arch confi-
gurations. (a) Beads in the arch explore different configurations
by minute displacements; (b) Each stable configuration can be
thought of as a point at the bottom of a potential well; each well
k corresponds to one arch, and the whole set of arches describe
an energy landscape (c) A generic energy barrier used in the nu-
merical simulations. Figure adapted from [9].

results: in [9], it was derived from the experimental data
on the perturbation amplitude needed to break the arches.
Under some reasonable assumptions, it was found that Eb

follows a Weibull distribution

p(Eb) =
1

aE?
b

(
Eb

E?
b

) 1−a
a

e− (Eb/E?
b )1/a

where E?
b is an energy scale of the system, and a is a shape

factor of the distribution. The experimental results imply
that a = 2, as argued in [9].

The distribution of escape times P(tb) cannot be calcu-
lated analytically for all cases, but a reasonable approxi-
mation yields

P(tb > t) ≈ e− (ε ln t) 1/a

where ε depends on the friction coefficient, the vibration
intensity and E?

b .
Numerical solutions with an energy well shape as that

in Fig. 2, c provide a result that closely resembles the sur-
vival function found in experiments (Fig. 1), meaning, a
heavy tail which tend to flatten for long times.

In summary, this model can reproduce experimental
results with a sensible distribution of energy barriers. Each
arch is inside a well that defines the stable configurations.
Exploration of this potential well, and eventually escaping
from it (entailing breakage) is enabled by the external vi-
bration. The escape times can be computed numerically
for a given distribution of energy barriers, and they are
consistent with heavy tails that flatten for very long times,
as observed in experiments.

3 Ageing

An alternative explanation to justify the origin of the broad
tails in the distribution of breaking times observed in the
experiments is to model the temporal evolution of the arch
properties as a random walker. The position of the random
walker is given by a variable related to the arch geometry,
so a change in the arch shape is equivalent to a step of the
random walker. In general, the length of the steps and the
times at which these steps are taken are not fixed. The path
takes place in a space where the boundary is the frontier
beyond which no stable configuration is to be found, me-
aning, the point where arches break down. It is of course
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an absorbing boundary, because the random walker cannot
come back once it reaches it. Breaking times can be iner-
preted as a first passage time through that boundary. The
energy needed by the arch to explore this space (i. e. the
energy needed to deform it plastically) is provided by the
external perturbation. Depending on the specific features
of the random walk, this process can be history dependent.

This explanation was elaborated to better understand
the dynamics of arches while they were being vibrated. In
a series of experiments [4, 5] and numerical simulations
[10] the positions of the beads in the arch where registered
along time, with a high sampling frequency. In order to
define the arch geometry, the angles between two conse-
cutive beads were used, taken as a vector; or, alternatively,
the standard deviation σ of that set of angles was used.
The latter misses some details, but nevertheless it captures
in a single number the more salient episodes of the dyna-
mics, which is composed of jerking motions interspersed
with almost quiescent time periods (see [4]). It was there-
fore used as a proxy to describe the arch irregularity.

With these experimental results at hand, it is possible
to analyze the flattening of the survival function (see in
Fig. 1 how the curve changes the decreasing trend for tb >
50 s). This means that once a certain time is reached,
the risk (as characterized by the hazard function, which is
related to the derivative of the survival function) is lower.

Ageing is a term often used in the context of polymers
and other soft matter [11]. In the glass transition and in
some other cases, a dependence on the logarithm of time
is observed, and has been successfully explained with the
help of some models. In those systems, a rapid quench
from a high temperature to a temperature below the glass
transition point leads to a dynamic change of the system
properties: they depend on the time after the quench, and
the change rate gradually slows down. This can be de-
monstrated by waiting a time tw after the quench and then
measuring a given property along time: the rate of change
will be slower as tw increases.

In order to check whether such a phenomenon is pre-
sent in the experiment, we can calculate the time auto-
correlation function of σ at different waiting times. As
this variable captures to some extent the evolution of the
arch geometry, it will slowly decrease with time. Remark
that the position of the beads will nevertheless be strongly
correlated, so the decrease of the autocorrelation will be
small. The key aspect is whether the correlation function
changes with tw. This is shown in Fig. 3, where the two-
time autocorrelation function is plotted. As can be seen,
C(tw, t) decreases along time. The longer tw, the smaller
the decrease of C. After about 10 seconds, the changes in
the correlation function with tw are too small to be noticed.

A simple framework in which this phenomenon fits
nicely is a model called continuous-time random walk
(CTRW). It considers a random walker, as in Brownian
motion, but irregular steps are taken at irregular time in-
tervals. In CTRW models, these steps are sampled from
a continuous distribution of times. The picture therefore
would be that of a configuration space that is randomly ex-
plored by the arch shape (as embodied by a variable such
as σ). Rearrangements of the beads would correspond to

Figure 3. Time correlation function of σ for different waiting
times, from 0.5 to 40 seconds, as indicated in the legend. Figure
adapted from [4].

the jumps of the random walker, and interludes to quies-
cent times of the CTRW.

This model has been studied by Merrigan and
coworkers [10], who tuned a CTRW to reproduce the re-
sults of numerical simulations. This boils down to the
choice of a suitable distribution for the times at which the
walker jumps. They included a broad distribution of qui-
escent times (in fact, a stretched exponential distribution
similar to the proposed for the aforementioned trap mo-
del). Later, Guerrero and coworkers [5] estimated the qui-
escent times distribution from experimental data and they
found that this CTRW reproduces many of the features of
the experiments, although quantitative agreement is some-
times lacking. In particular, absence of ergodicity –as re-
vealed by the difference between ensemble averaged and
time averaged mean squared displacements of the variable
describing the geometry– was found both in the experi-
ments and the model.

4 Discussion

The distribution of the breaking times of vibrated arches
often display broad tails, which may even tend to flatten
for very long times. This means that the phenomenon
lacks a characteristic time scale. Heavy tails are a dis-
turbing issue as they can lead to diverging averages for the
breaking times, which in turn implies that vibration may
not succeed in breaking arches and restoring the flow.

To date, two models have been put forward to ratio-
nalize these features. The first of them, the trap model,
considers a particular distribution of potential wells, each
well corresponding to a single arch configuration. It does
not include any dynamics except the escape rate from the
well; escaping from the well means that the arch breaks
down. The distribution of breaking times stem from the
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energy barrier distribution, which is in turn related to the
wide range of arches –each one with a given robustness–
able to clog the orifice. The second model, a continuous
time random walk, uses a specific time distribution for the
intervals between consecutive steps directly related with
the breaking times distribution. The dynamics of the ran-
dom walker are here included as an ingredient of the mo-
del. In this model, memory effects are at play, as it is a
history dependent process.

Note that both models are not incompatible, as the two
mechanisms can be acting at the same time. It would be
interesting to extend and couple both models, so that a ran-
dom walker explores an energy landscape with different
potential wells corresponding to an assortment of shapes.
An arch could therefore escape from a well, fall into anot-
her one, and drift around this landscape until it either reac-
hes the boundary or falls in a well so deep that the vibra-
tion cannot provide enough energy to extract it from there.
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