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Responding to stimuli requires that organisms encode information about the external world. Not
all parts of the signal are important for behavior, and resource limitations demand that signals be
compressed. Prediction of the future input is widely beneficial in many biological systems. We
compute the trade-offs between representing the past faithfully and predicting the future for input
dynamics with different levels of complexity. For motion prediction, we show that, depending on
the parameters in the input dynamics, velocity or position coordinates prove more predictive. We
identify the properties of global, transferrable strategies for time-varying stimuli. For non-Markovian
dynamics we explore the role of long-term memory of the internal representation. Lastly, we show
that prediction in evolutionary population dynamics is linked to clustering allele frequencies into
non-overlapping memories, revealing a very different prediction strategy from motion prediction.

I. INTRODUCTION

How biological systems represent external stimuli is
critical to their behavior. The efficient coding hypoth-
esis, which states that neural systems extract as much
information as possible from the external world, given ba-
sic capacity constraints, has been successful in explaining
some early sensory representations in neuroscience. Bar-
low suggested sensory circuits may reduce redundancy in
the neural code and minimize metabolic costs for signal
transmission [1–4]. However, not all external stimuli are
as important to an organism, and behavioral and environ-
mental constraints need to be integrated into this picture
to more broadly characterize biological encoding. Delays
in signal transduction in biological systems mean that
predicting external stimuli efficiently can confer benefits
to biological systems [5–7], making prediction a general
goal in biological sensing.

Evidence that representations constructed by sensory
systems efficiently encode predictive information has
been found in the visual and olfactory systems [8–10].
Molecular networks have also been shown to be predictive
of future states, suggesting prediction may be one of the
underlying principles of biological computation [11, 12].
However, the coding capacity of biological systems is lim-
ited because they cannot provide arbitrarily high preci-
sion about their inputs: limited metabolic resources and
other sources of internal noise impose finite precision sig-
nal encoding. Given these trade-offs, one way to effi-
ciently encode the history of an external stimulus is to
keep only the information relevant for the prediction of
the future input [12–14]. Here, we explore how optimal

∗Correspondence should be addressed to sepalmer@uchicago.edu

predictions might be encoded by neural and molecular
systems using a variety of dynamical inputs that explore
a range of temporal correlation structures. We solve the
‘information bottleneck’ problem in each of these scenar-
ios and describe the optimal encoding structure in each
case.

The information bottleneck framework allows us to de-
fine a ‘relevance’ variable in the encoded sensory stream,
which we take to be the future behavior of that input.
Solving the bottleneck problem allows us to optimally es-
timate the future state of the external stimulus, given a
certain amount of information retained about the past.
In general, prediction of the future coordinates of a sys-
tem, Xt+∆t reduces to knowing the precise historical co-
ordinates of the stimulus Xt and an exact knowledge of
the temporal correlations in the system. These rules and
temporal correlations can be thought of as arising from
two parts: a deterministic portion, described by a func-
tion of the previous coordinates, H(Xt), and the noise
internal to the system, ξ(t). Knowing the actual real-
ization of the noise ξ(t) reduces the prediction problem
to simply integrating the stochastic equations of motion
forward in time. If the exact realization of the noise if
not known, we can still perform a stochastic prediction
by calculating the future form of the probability distri-
bution of the variable Xt or its moments [15, 16]. The
higher-order moments yield an estimate of Xt and the
uncertainty in the our estimate. However, biological sys-
tems cannot precisely know Xt due to inherently limited
readout precision [17, 18] and limited availability of re-
sources tasked with remembering the measured statistics.

Constructing internal representations of sensory stim-
uli illustrates a tension between predicting the future,
for which the past must be known with higher certainty,
and compression of knowledge of the past, due to finite
resources. We explore this intrinsic trade-off using the in-
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formation bottleneck (IB) approach proposed by Tishby
et. al. [13]. This method assumes that the input variable,
in our case the past signal Xt, can be used to make infer-
ences about the relevance variable, in our case the future
signal Xt+∆t. By introducing a representation variable,

X̃, we can construct the conditional distribution of the
representation variable on the input variable P(X̃|Xt) to
be maximally informative of the output variable (Fig. 1).

Formally, the representation is constructed by optimiz-
ing the objective function,

L = min
P(X̃|Xt)

I(Xt; X̃)− βI(X̃;Xt+∆t). (1)

Each term is the mutual information between two vari-
ables: the first between the past input and estimate of
the past given our representation model, X̃, and the sec-
ond between X̃ and future input. The tradeoff param-
eter, β, controls how much future information we want
X̃ to retain as it is maximally compressed. For large β,
the representation variable must be maximally informa-
tive about Xt+∆t, and will have, in general, the lowest
compression. Small β means less information is retained
about the future and high, lossy compression is allowed.

The causal relationship between the past and the fu-
ture results in a data processing inequality, I(Xt; X̃) ≥
I(Xt+∆t; X̃), meaning that the information generated
about the future cannot exceed the amount encoded
about the past [19]. Additionally, the information
about the past that the representation can extract is
bounded by the amount of information the uncompressed
past, itself, contains about the future, I(X̃;Xt+∆t) ≤
I(Xt;Xt+∆t).

We use this framework to study prediction in two
well-studied dynamical systems with ties to biological
data: the stochastically driven damped harmonic oscil-
lator (SDDHO) and the Wright-Fisher model. We look
simultaneously at these two different systems to gain in-
tuition about how different types of dynamics influence
the ability of a finite and noisy system to make accurate
predictions. We further consider two types of SDDHO
processes with different noise profiles to study the effect
of noise correlations on prediction. Our exploration of
the SDDHO system has a two-fold motivation: it is the
simplest possible continuous stochastic system whose full
dynamics can be solved exactly. Additionally, a visual
stimulus in the form of a moving bar that was driven by
an SDDHO process was used in retinal response stud-
ies [9, 20, 21]. The Wright-Fisher model [22] is a canon-
ical model of evolution [23] for which has been used to
consider how the adaptive immune system predicts the
future state of the pathogenic environment [11, 24].

Build compressed
representation

Information
Bottleneck

FIG. 1: A schematic representation our predictive informa-
tion bottleneck. On the left hand side, we have coordinates Xt
evolving in time, subject to noise to give Xt+∆t. We construct
a representation, X̃, that compresses the past input (mini-

mizes I(Xt; X̃)) while retaining as much information about

the future (maximizes I(X̃;Xt+∆t)) up to the weighting of
the prediction compared to the compression set by β.

II. RESULTS

A. The Stochastically Driven Damped Harmonic
Oscillator

Previous work explored the ability of the retina to con-
struct an optimally predictive internal representation of
a dynamic stimulus. Palmer et al [9] recorded the re-
sponse of a salamander retina to a moving bar stimulus
with SDDHO dynamics. In this case, the spike trains
in the retina encode information about the past stimuli
in a near-optimally predictive way [9]. In order for op-
timal prediction to be possible, the retina should encode
the position and velocity as dictated by the information
bottleneck solution to the problem, for the retina’s given
level of compression of the visual input. Inspired by this
experiment, we explore the optimal predictive encoding
schemes as a function of the parameters in the dynamics,
and we describe the optimal solution across the entire pa-
rameter space of the model, over a wide range of desired
prediction timescales.

We consider the dynamics of a mass m in a viscous
medium attached to a spring receiving noisy velocity
kicks generated by a temporally uncorrelated Gaussian
process, as depicted in Figure 2a. Equations of motion
are introduced in terms of physical variables x̄, v̄, and
t̄ (bars will be dropped later when referring to rescaled
variables), which evolve according to

m
dv̄

dt̄
= −kx̄− Γv̄ + (2kBTΓ)1/2ξ(t̄), (2)

dx̄

dt̄
= v̄,

where k is the spring constant, Γ the damping parameter,
kB the Boltzmann constant, T temperature, 〈ξ(t̄)〉 = 0,
and 〈ξ(t̄)ξ(t̄′)〉 = δ(t̄− t̄′). We rewrite the equation with
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ω0 =
√

k
m , τ = m

Γ , and D = kBT
Γ ,

dv̄

dt̄
= − x̄

4τ2ζ2
− v̄

τ
+

√
2D

τ
ξ(t̄), (3)

dx̄

dt̄
= v̄.

We introduce a dimensionless parameter, the damping
coefficient, ζ = 1/(2ω0τ). When ζ < 1, the motion of the
mass will be oscillatory. When ζ ≥ 1, the motion will be
non-oscillatory. Additionally, we note that the equipar-
tition theorem tells us that 〈x̄(t̄)2〉 ≡ x2

0 = kBT/k =
D/(τω2

0)
Expressing the equations of motion in terms of ζ, τ ,

and x0, we obtain

dv̄

dt̄
= − x̄

4τ2ζ2
− v̄

τ
+

x0√
2τ3ζ

ξ(t̄) (4)

dx̄

dt̄
= v̄.

We make two changes of variable to simplify our expres-
sions. We set t = t̄

τ and x = x̄
x0

. We further define a

rescaled velocity, dxdt = v, so that our equation of motion
now reads

dv

dt
= − x

4ζ2
− v +

ξ(t)√
2ζ
. (5)

There are now two parameters that govern a particular
solution to our information bottleneck problem: ζ and
∆t, the timescale on which we want to retain optimal in-
formation about the future. We define Xt = (x(t), v(t))
and Xt+∆t = (x(t+ ∆t), v(t+ ∆t)) and seek a represen-

tation, X̃(ζ,∆t), that can provide a maximum amount
of information about Xt+∆t for a fixed amount of in-
formation about Xt. We note that due to the Gaus-
sian structure of the joint distribution of Xt and Xt+∆t

for the SDDHO, the problem can be solved analytically.
The optimal compressed representation is a noisy linear
transform of Xt (see Appendix A) [25],

X̃ = AβXt + ξ. (6)

Aβ is a matrix whose elements are a function of β, the
tradeoff parameter in the information bottleneck objec-
tive function, and the statistics of the input and output
variables. The added noise term, ξ, has the same dimen-
sions as Xt and is a Gaussian variable with zero mean
and unit variance.

We calculate the optimal compression, X̃, and its pre-
dictive information (see Appendix B.2). The past and
future variables in the SDDHO bottleneck problem are
jointly Gaussian, which means that the optimal compres-
sion can be summarized by its second-order statistics. We
generalize analytically the results that were numerically
obtained in Ref. [9] and explore the full parameter space
of this dynamical model and examine all predictive bot-
tleneck solutions, including different desired prediction
timescales.

We quantify the efficiency of the representation X̃ in
terms of the variance of the following four probability dis-
tributions: the prior distribution, P(Xt), the distribution

of the past conditioned on the compression, P(Xt|X̃),
the distribution of the future conditioned the compressed
variable P(Xt+∆t|X̃), and the distribution of the future
conditioned on exact knowledge of the past P(Xt+∆t|Xt).
We represent the uncertainty reduction using two dimen-
sional contour plots that depict the variances of the dis-
tributions in the ((x−〈x〉)/σx, (v−〈v〉)/σv) plane, where
σx and σv are the standard deviations of the signal dis-
tribution P(Xt).

The representation, X̃, will be at most two-
dimensional, with each of its components corresponding
to linear combinations of position and velocity. It may
be lower dimensional for certain values of β. The small-
est critical β for which the representation remains two-
dimensional is given in terms of the smallest eigenvalue
λ2 of the matrix ΣXt|Xt+∆t

Σ−1
Xt

as βc = 1/(1− λ2) (see
Appendix B.2). ΣXt|Xt+∆t

is the covariance matrix of
the probability distribution of P(Xt|Xt+∆t) and ΣXt is
the input variance. Below this critical β, the compressed
representation is one dimensional, X̃ = k1x+k2v+noise,
but it is still a combination of position and velocity.

Limiting cases along the the information bottleneck
curve help build intuition about the optimal compres-
sion. If X̃ provides no information about the stimulus
(e.g. β = 0), the variances of both of the conditional dis-
tributions match that of the prior distribution, P(Xt),
which is depicted as a circle of radius 1 (blue circle in
Fig. 2b). However, if the encoding contains information

about the past, the variance of P(Xt|X̃) will be reduced
compared to the prior. The maximal amount of predic-
tive information, which is reached when β → ∞, can
be visualized by examining the variance of P(Xt+∆t|Xt)
(e.g. the purple contour in Fig. 2b), which quantifies the
correlations in X, itself, with no compression. Regardless
of how precisely the current state of the stimulus is mea-
sured, the uncertainty about the future stimulus cannot
be reduced below this minimal variance, because of the
noise in the equation of motion.

From Figure 2b, we see that the conditional distribu-
tion P(Xt+∆t|Xt) is strongly compressed in the position
coordinate with some compression in the velocity coordi-
nate. The information bottleneck solution at a fixed com-
pression level (e.g. I(Xt; X̃) = 1), shown in Fig. 3a (left),
gives an optimal encoding strategy for prediction (yellow
curve) that reduces uncertainty in the position variable.

This yields as much predictive information, I(Xt+∆t; X̃),

as possible for this value of I(Xt; X̃). The uncertainty of
the prediction is illustrated by the purple curve. We can
explore the full range of compression levels, tracing out a
full information bottleneck curve for this damping coeffi-
cient and desired prediction timescale, as shown in Figure
3. Velocity uncertainty is only reduced as we allow for
less compression, as shown in Fig. 3a (right). For both of
the cases represented in Fig. 3a, the illustrated encoding
strategy yields a maximal amount of mutual information
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FIG. 2: Schematic of the stochastically driven damped har-
monic oscillator (SDDHO). (a) The SDDHO consists of a
mass attached to a spring undergoing viscous damping and
experiencing Gaussian thermal noise of magnitude. There are
two parameters to be explored in this model: ζ = 1

2ω0τ
and

∆t = ∆t
τ

. (b) We can represent the statistics of the stimulus

through error ellipses. ζ = 1
2
, and ∆t = 1, we plot two-

dimensional confidence intervals under various conditions. In
blue, we plot the two-dimensional confidence interval of the
prior. In yellow, we plot the certainty with which we measure
the position and velocity at time t. Here, it is measured with
infinite precision, meaning Ipast → ∞. In purple, we plot
the two-dimensional confidence interval of the future condi-
tioned on the measurement given in yellow, for this particular
choice of parameters. Precise knowledge of the past coordi-
nates reduces the our uncertainty about the future position
and velocity (as compared to the prior), as depicted by the
smaller area of the purple ellipse.

between the compressed representation, X̃, and the fu-
ture for the given level of compression, as indicated by
the red dots in Fig. 3b.

As noted above, there is a phase transition along the
information bottleneck curve, where the optimal, predic-
tive compression of Xt changes from a one-dimensional
representation to a two-dimensional one. This phase
transition can be pinpointed in β for each choice of ζ
and ∆t, and can be determined using the procedure de-
scribed in is given in the Appendix A. To understand
which directions are most important to represent at high
levels of compression, we derive the analytic form of the
leading eigenvector, w1, of the matrix ΣXt|Xt+∆t

Σ−1
Xt

. We

have defined ω2 = 1
4ζ2 − 1

4 such that

w1 =

[
ω cot(ω∆t) + | csc(ω∆t)|

2
√

2ζ

√
2− ζ2 − ζ2 cos(2ω∆t)

1

]
.

(7)

The angle of the encoding vector from the position direc-
tion is then given by

φ = arctan

((
ω cot(ω∆t)+ (8)

| csc(ω∆t)|
2
√

2ζ

√
2− ζ2 − ζ2 cos(2ω∆t)

)−1
)
.

We consider φ in three limits: (I) the small ∆t limit, (II)
the strongly overdamped limit (ζ → ∞), and (III) the
strongly underdamped limit (ζ → 0).

(I): When ω∆t� 1, the angle can be expressed as

φ = arctan

(
∆t

1 + ω2

)
. (9)

This suggests that for small ω∆t, the optimal encoding
scheme favors position information over velocity infor-
mation. The change in angle of the orientation from the
position axis in this limit goes as O(∆t).

(II): The strongly overdamped limit. In this limit, φ
becomes

φ = arctan

 2 sinh(∆t
2 )

cosh(∆t
2 ) +

√
1+cosh(∆t)

2

 . (10)

In the large ∆t limit, φ → π
4 . In the small ∆t limit,

φ → arctan(∆t). Past position information is the best
predictor of the future input at short lags, which veloc-
ity and position require equally fine representation for
prediction at longer lags.

(III) The strongly underdamped limit. In this limit, φ
can be written as

φ = arctan

 2ζ sin(∆t
2ζ )

cos(∆t
2ζ ) +

√
2− ζ2 − ζ2 cos(∆t

ζ )

 . (11)

We observe periodicity in the optimal encoding angle be-
tween position and velocity. This means that the op-
timal tradeoff between representing position or veloc-
ity depends on the timescale of prediction. However,
the denominator never approaches 0, so the encoding
scheme never favors pure velocity encoding. It returns
to position-only encoding when ∆t/2ζ = nπ.

At large compression values, i.e. small amounts of in-
formation about the past, the information bottleneck
curve is approximately linear. The slope of the infor-
mation bottleneck curve at small I(Xt; X̃) is given by
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1−λ1, where λ1 is the smallest eigenvalue of the matrix,
ΣXt|Xt+∆t

Σ−1
Xt

. The value of the slope is

1− λ1 = exp(−∆t)(
1

4ω2ζ2
+

cos(2ω∆t)

4ω2
+ (12)

| sin(ω∆t)|
2
√

2ω2ζ

√
2− ζ2 − ζ2 cos(2ω∆t)).

For large ∆t, it is clear that the slope will be constrained
by the exponential term, and the information will fall
as exp(−∆t) as we attempt to predict farther into the
future. For small ∆t, however, we see that the slope goes
as 1 −∆t2, and our predictive information decays more
slowly.

For vanishingly small compression, i.e. β → ∞, the
predictive information that can be extracted by X̃ ap-
proaches the limit set by the temporal correlations in X,
itself, given by

I(Xt;Xt+∆t) =
1

2
log(|ΣXt |)−

1

2
log(|ΣXt|Xt+∆t

|). (13)

For large ∆t, this expression becomes

I(Xt;Xt+∆t) ∝ exp(−∆t). (14)

For small ∆t,

I(Xt;Xt+∆t) ∝ ∆t− 1

2
log(∆t). (15)

The constants emerge from the physical parameters of
the input dynamics.

1. Optimal representations in all parameter regimes for
fixed past information

We sweep over all possible parameter regimes of the
SDDHO keeping I(Xt; X̃) fixed to 5 bits and find the op-
timal representation for a variety of timescales (Fig. 4),
keeping a fixed amount of information encoded about
the past for each realization of the stimulus and predic-
tion. More information can be transmitted for shorter
delays (Fig. 4a,d,g) between the past and future signal
than for longer delays (Fig. 4c,f,i). In addition, at shorter
prediction timescales more information about the past is
needed to reach the upper bound, as more information
can be gleaned about the future. In particular, for an
overdamped SDDHO at short timescales (Fig. 4a), the
evolution of the equations of motion are well approxi-
mated by integrating Eq. 3 with the left hand side set
to zero, and the optimal representation encodes mostly
positional information. This can be observed by not-
ing that the encoding ellipse remains on-axis and mostly
compressed in the position dimension. For the under-
damped case, in short time predictions (Fig. 4g), a sim-
ilar strategy is effective. However, for longer predictions
(Fig. 4h,i), inertial effects cause position at one time to be
strongly predictive of future velocity and vice versa. As

a)

b)
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0 2 4 6
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FIG. 3: We consider the task of predicting the path of an SD-
DHO with ζ = 1

2
and ∆t = 1. (a) (left) We encode the history

of the stimulus, Xt, with a representation generated by the in-
formation bottleneck, X̃, that can store 1 bit of information.
Knowledge of the coordinates in the compressed representa-
tion space enables us reduce our uncertainty about the bar’s
position and velocity, with a confidence interval given by el-
lipse in yellow. This particular choice of encoding scheme
enables us to predict the future, Xt+∆t with a confidence in-
terval given by the purple ellipse. The information bottleneck
guarantees this uncertainty in future prediction is minimal for
a given level of encoding. (right) The uncertainty in the pre-
diction of the future can be reduced by reducing the overall
level of uncertainty in the encoding of the history, as demon-
strated by increasing the amount of information X̃ can store
about Xt. However, the uncertainty in the future prediction
cannot be reduced below the variance of the propagator func-
tion. (b) We show how the information with the future scales
with the information in the past, highlighting the points rep-
resented in panel (a).

a result, the encoding distribution has to take advantage
of these correlations to be optimally predictive. These
effects can be observed in the rotation of the encoding
ellipse, as it indicates that the uncertainty in position-
velocity correlated directions are being reduced, at some
cost to position and velocity encoding. The critically
damped SDDHO (Fig. 4d-f) demonstrates rapid loss of
information about the future, like that observed in the
underdamped case. The critically damped case displays
a bias towards encoding position over velocity informa-
tion at both long and intermediate timescales, as in the
overdamped case. At long timescales, Fig. 4f, the optimal
encoding is non-predictive.
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FIG. 4: Possible behaviors associated for the SDDHO for a variety of timescales with a fixed I(Xt; X̃) of 5 bits. For an
overdamped SDDHO, panel a-c, the optimal representation continues to encode mostly position information, as velocity is
hard to predict. For the underdamped case, panels g-i, as the timescale of prediction increases, the optimal representation
changes from being mostly position information to being a mix of position and velocity information. Optimal representations
for critically damped input motion are shown in panels d-f. Comparatively, overdamped stimuli do not require precise velocity
measurements, even at long timescales. Optimal predictive representations of overdamped input dynamics have higher amounts
of predictive information for longer timescales, when compared to underdamped and critically damped cases.

2. Suboptimal representations

Biological systems might not adapt to each input
regime perfectly, nor may they be optimally efficient
for every possible kind of input dynamics. We con-
sider what happens when an optimal representation is
changed, necessarily making it suboptimal for predict-
ing the future stimulus. We construct a new represen-
tation by rotating the optimal solution in the position,
velocity plane. We examine the conditional distributions
for this suboptimal representation, both about the past,
P(Xt|X̃suboptimal), and the future, P(Xt+∆t|X̃suboptimal).
For a fixed amount of information about the past,
I(Xt; X̃optimal) = I(Xt, X̃suboptimal), we compare the pre-
dictive information in the optimal (Fig. 5a) and the sub-
optimal representations (Fig. 5b). In this example, we
are exploring the impact of encoding velocity with high
certainty as compared to encoding position with high cer-
tainty. We observe that encoding velocity provides very
little predictive power, indicating that encoding veloc-
ity and position is not equally important, even for equal
compression levels. In addition, it shows that encoding

schemes discovered by IB are optimal for predictive pur-
poses.

3. Kalman filters versus information bottleneck

We can also compare our information bottleneck solu-
tions to what one would obtain using Kalman filters [26].
We note that Kalman filters are not designed to be ef-
ficient strategies for extracting predictive information,
as shown in the Appendix, Figure B.1. This is because
the Kalman filter approach does not constrain the repre-
sentation entropy (i.e. it does not have a resource-limit
constraint). A Kalman filter also always explicitly makes
a model of the dynamics that generate updates to the
input variable, an explicit model of the ‘physics of the
external world’. The information bottleneck framework
enables exploration of representations without explicitly
developing an internal model of the dynamics and also in-
cludes resource constraints. Thus, for a given amount of
compression, the information bottleneck solution to the
prediction problem is as predictive as possible, whereas
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FIG. 5: Example of a sub-optimal compression. An optimal
predictive, compressed representation, in panel (a) compared
to a suboptimal representation, in panel (b) for a prediction
of ∆t = 1 away in the underdamped regime (ζ = 1/2). We fix
the mutual information between the representations and the
past (I(Xt; X̃) = 3 bits), but find that, as expected, the sub-
optimal representation contains significantly less information
about the future.

a Kalman filter may miss important predictive features
of the input while representing noisy, unpredictable fea-
tures. In that sense, the Kalman filter approach is ag-
nostic about what input bits matter for prediction, and
is a less efficient coding scheme of predictive information
for a given channel capacity.

4. Transferability of a representation

So far, we have described the form that optimal predic-
tive compressions take along the information bottleneck
curve for a given ζ and ∆t. How do these representations
translate when applied to other prediction timescales (i.e.
can the optimal predictive scheme for near-term predic-
tions help generate long-term predictions, too?) or other
parameter regimes of the model? This may be impor-
tant if the underlying parameters in the external stimu-
lus are changing rapidly in comparison to the adaptation
timescales in the encoder, which we imagine to be a bio-
logical network. One possible solution is for the encoder

to employ a representation that is useful across a wide
range of input statistics. This requires that the predic-
tive power of a given representation is, to some extent,
transferrable to other input regimes. To quantify how
‘transferrable’ different representations are, we take an
optimal representation from one (ζ,∆t) and ask how ef-
ficiently it captures predictive information for a different
parameter regime, (ζ ′,∆t′).

We identify these global strategies by finding the op-
timal encoder for a stimulus with parameters (ζ,∆t)

that generates a representation, P(X̃|Xt), at some
given compression level, Ipast. We will label the
predictive information captured by this representation
I future
optimal((ζ,∆t), Ipast). We hold the representation fixed

and apply it to a stimulus with different underlying pa-
rameters (ζ ′,∆t′) and compute the amount of predic-
tive information the previous representation yields for
this stimulus. We call this the transferred predictive in-
formation I future

transfer((ζ,∆t), Ipast → (ζ ′,∆t′)). We note
that I future

transfer((ζ,∆t), Ipast → (ζ ′,∆t′)) may sometimes
be larger than I future

optimal((ζ,∆t), Ipast), because changing

(ζ,∆t) may increase both Ipast and Ifuture (see e.g. Fig-
ure 6a).

For every fixed (ζ,∆t) and Ipast, we can take the op-

timal X̃ and transfer it to a wide range of new ζ ′’s and
timescales, ∆t′. For a particular example (ζ,∆t), this
is shown in Figure 6b. The representation optimized for
critical damping is finer-grained than what’s required in
the overdamped regime. We can sweep over all combi-
nations of the new ζ ′’s and ∆t′s. What we get, then,
is a mapping of I future

transfer for this representation that was
optimized for one particular (ζ,∆t) pair across all new
(ζ ′,∆t′)’s. This is shown in Figure 6c, (Figure 6b are
just two slices through this surface). This surface gives
a qualitative picture the transferability of this particular
representation.

To get a quantitative summary of this behavior that
we can then compare across different starting points
(ζ,∆t), we integrate this surface over 1/3 < ζ ′ < 3,
0.1 < ∆t′ < 10, and then normalize by the integral
of I future

optimal((ζ
′,∆t′), Ipast) over the same surface. This

yields an overall transferability measure, Qtransfer(ζ,∆t).
We report these results in Figure 6d. Representations
that are optimal for underdamped systems at late times
are the most transferable. This is because generating
a predictive mapping for underdamped motion requires
some measurement of velocity, which is generally useful
for many late-time predictions. Additionally, prediction
of underdamped motion requires high precision measure-
ment of position, and that information is broadly useful
across all parameters.

B. History-dependent Gaussian Stimuli

In the above analysis, we considered stimuli with cor-
relations that fall off exponentially. However, natural
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FIG. 6: Representations learned on underdamped systems can be transferred to other types of motion, while representations
learned on overdamped systems cannot be easily transferred. (a) Here, we consider the information bottleneck bound curve
(black) for a stimulus with underlying parameters, (ζ,∆t). For some particular level of Ipast = I0

past, we obtain a mapping,

P(X̃|Xt) that extracts some predictive information, denoted I future
optimal((ζ,∆t), I

0
past), about a stimulus with parameters (ζ,∆t).

Keeping that mapping fixed, we determine the amount of predictive information for dynamics with new parameters (ζ′,∆t′),
denoted by I future

transfer((ζ,∆t), I
0
past → (ζ′,∆t′)). (b) One-dimensional slices of I future

transfer in the (ζ′,∆t′) plane: I future
transfer versus ζ′ for

∆t′ = 1. I0
past = 1 (top), and versus ∆t′ for ζ′ = 1. Parameters are set to (ζ = 1,∆t = 1), I0

past = 1. (c) Two-dimensional map

of I future
transfer versus (ζ′,∆t′) (same parameters as b). (d) Overall transferability of the mapping. The heatmap of (c) is integrated

over ζ′ and ∆t′ and normalized by the integral of I future
optimal((ζ

′,∆t′), Ipast). We see that mappings learned from underdamped
systems at late times yield high levels of predictive information for a wide range of parameters, while mappings learned from
overdamped systems are not generally useful.

scenes, such as leaves blowing in the wind or bees mov-
ing in their hives, are shown to have heavy-tailed statis-
tics [21, 27, 28], and we extend our results to models of
motion stimuli with heavy-tailed temporal correlation.
Despite long-ranged temporal order, prediction is still
possible. We show this through the use of the Gener-
alized Langevin equation [29–31]:

dv

dt
= −

∫ t

0

γv

|t− t′|α
dt− ω2

0x+ ξ(t) (16)

dx

dt
= v (17)

Here, we have returned to unscaled definitions of v, and
t. The damping force here is a power-law kernel. In
order for the system to obey the fluctuation-dissipation
theorem, we note that 〈ξ(t)〉 = 0, and 〈ξ(t′)ξ(t)〉 ∝

1
|t−t′|α . In this dynamical system, position autocorre-

lation 〈x(t)x(t′)〉 ∼ t−α and velocity autocorrelation
〈v(t)v(t′)〉 ∼ t−α−1 for large t.

The prediction problem is similar to the prediction
problem for the memoryless SDDHO, but we now take
an extended past, Xt−t0:t, for prediction of an extended
future, Xt+∆t:t+∆t+t0 , where t0 sets the size of the win-
dow into the past we consider and the future we predict
(Fig. 7a). Using the approach described in Appendix A,
we compute the optimal representation and determine

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.04.29.069179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.069179


9

how informative the past is about the future. The ob-
jective function for this extended information bottleneck
problem is,

L = min
P(X̃|Xt−t0:t)

I(Xt−t0:t; X̃)− βI(Xt+∆t:t+∆t+t0 ; X̃).

(18)

The information bottleneck curves show more predictive
information as the prediction process uses more past in-
formation (larger t0 in Fig. 7b). Not including any his-
tory results in an inability to extract the predictive in-
formation. However, for low compression, large β, we
find that the amount of predictive information that can
be extracted saturates quickly as we increase the amount
of history, t0. This implies diminishing returns in pre-
diction for encoding history. Despite the diverging au-
tocorrelation timescale, prediction only functions on a
limited timescale and the maximum available prediction
information always saturates as a function of t0 (Fig. 7c).
These results indicate that efficient coding strategies can
enable prediction even in complex temporally correlated
environments.

C. Evolutionary dynamics

Exploiting temporal correlations to make predictions
is not limited to vision. Another aspect of the predic-
tion problem appears in the adaptive immune system,
where temporal correlations in pathogen evolution may
be exploited to help an organism build up an immunity.
Exploiting these correlations can be done at a popula-
tion level, in terms of vaccine design [32–35], and has
been postulated as a means for the immune system to
adapt to future threats [11, 36]. Here, we present effi-
cient predictive coding strategies for the Wright-Fisher
model, which is commonly used to describe viral evolu-
tion [37]. In contrast to the two models studied so far,
Wright-Fisher dynamics are not Gaussian. We use this
model to explore how the results obtained in the previous
sections generalize to non-Gaussian statistics of the past
and future distributions.

Wright-Fisher models of evolution assume a constant
population size of N . We consider a single mutating site
with each individual in the population having either a
wild-type or a mutant allele at this site. The allele choice
of subsequent generations depends on the frequency of
the mutant allele in the ancestral generation at time t,
Xt, the selection pressure on the mutant allele, s, and the
mutation rate from the wild-type to the mutant allele and
back, µ, as depicted as Fig. 8a. For large enough N , the
update rule of the allele frequencies is given through the
diffusion approximation interpreted with the Ito conven-
tion [38]:

dXt

dt
= sXt(1−Xt) + µ(1− 2Xt) +

√
Xt(1−Xt)/Nη(t),

(19)
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FIG. 7: The ability of the information bottleneck Method to
predict history-dependent stimuli. (a) The prediction prob-
lem, using an extended history and a future. This problem is
largely similar to the one set up for the SDDHO but the past
and the future are larger composites of observations within a
window of time t−t0 : t for the past and t+∆t : t+∆t+t0 for
the future. (b) Predictive information I(Xt+∆t:t+∆t+t0 , X̃)
with lag ∆t. (c) The maximum available predictive informa-
tion saturates as a function of the historical information used
t0.

where 〈η(t)〉 = 0, 〈η(t)η(t′)〉 = δ(t− t′).
For this model, defining the representation X̃ as a

noisy linear transformation of the past frequency Xt as
we did for the Gaussian case in Eq. 21 does not cap-
ture all of the dependencies of the future on the past due
to the non-Gaussian character of the joint distribution
of Xt+∆t and Xt stemming from the non-linear form of

Eq. 19. Instead, we determine the mapping of Xt to X̃
numerically using the Blahut-Arimoto algorithm [39, 40].
For ease of computation, we will take the representation
variable X̃ to be discrete (Fig. 8b) and later, approximate

continuous X̃ by driving the cardinality of X̃, denoted by
m, to be high. The assumption that X̃ is discrete results
in each realization of the representation tiling a distinct
part of frequency space. This encoding scheme can be
thought of as lymphocyte antigen-receptors in the adap-
tive immune system corresponding to different regions of
phenotypic space [41].
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FIG. 8: The information bottleneck solution for a Wright Fisher process. (a) The Wright-Fisher model of evolution can be
visualized as a population of N parents giving rise to a population of N children. Genotypes of the children are selected as a
function of the parents’ generation genotypes subject to mutation rates, µ, and selective pressures s. (b) Information bottleneck

schematic with a discrete (rather than continuous) representation variable, X̃. (c-h) We explore information bottleneck solutions

to Wright-Fisher dynamics under the condition that the cardinality of X̃, m, is 2 and take β to be large enough that I(Xt; X̃) ≈ 1,
β ≈ 4. Parameters: N = 100, Ns = 0.001, ∆t = 1, and Nµ = 0.2, Nµ = 2, and Nµ = 40 (from left to right). (c-e) In blue,
we plot the steady state distribution. In yellow and red, we show the inferred historical distribution of alleles based on the
observed value of X̃. Note that each distribution is corresponds to roughly non-overlapping portions of allele frequency space.
(f-h) Predicted distribution of alleles based on the value of X̃. We observe that as mutation rate increases, the timescale of
relaxation to steady state decreases, so historical information is less useful and the predictions becomes more degenerate with
the steady state distribution.

We first consider the example with m = 2 repre-
sentations. In the weak mutation, weak selection limit
(Nµ,Ns � 1), the steady state probability distribution
of allele frequencies,

Ps(X) ∝ [X(1−X)]
Nµ−1

eNsX (20)

(blue line in Fig. 8c) is peaked around the frequency
boundaries, indicating that at long times, an allele ei-
ther fixes or goes extinct. In this case, one value of the
representation variable corresponds to the range of high
allele frequencies and the other corresponds to low allele
frequencies (Fig. 8c, yellow and red lines). These encod-
ing schemes can be used to make predictions, whether
it be by an observer or the immune system, via deter-
mining the future probability distribution of the alleles
conditioned on the value of the representation variables,
P(Xt+∆t|X̃). We present these predictions in Fig. 8f.
The predictive information conferred by the representa-
tion variable is limited by the information it has about
the past, as in the Gaussian case (Fig. 10a.)

For larger mutation rates, the steady state distribu-
tion becomes centered around the equal probability of
observing either one of the two alleles, but the two rep-
resentation variables still cover the frequency domain in
way that minimizes overlap (Fig. 8d and e). We observe

a sharp drop in P (Xt|X̃) at the boundary between the
two representations. The future distribution of allele fre-
quencies in this region (Fig. 8g and h), however, displays
large overlap. The degree of this overlap increases as the
mutation rate gets larger, suggesting prediction is harder
in the strong mutation limit. The optimal encoding of
the past distribution biases the representation variable
towards frequency space regions with larger steady state
probability mass.

In Fig. 9, we explore the consequence of transferring
a mapping, P(X̃|Xt), from a high mutation model to a
low mutation model and vice versa. We observe that the
weak mutation representation is more transferrable than
the strong mutation representation. One reason for this
is that the strong mutation limit provides little predictive
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FIG. 9: Transferability of prediction schemes in Wright-Fisher
dynamics. We transfer a mapping, P(X̃|Xt), trained on one
set of parameters and apply it to another. We consider trans-
fers between two choices of mutability, Nµ1 = 0.2 (low) and
Nµ2 = 20 (high), with N = 100, Ns = 0.001, ∆t = 1.
The dotted line is the steady state allele frequency distribu-
tion, the solid lines are the transferred representations, and
the dashed lines are the optimal solutions. The top pan-
els correspond to the distributions of Xt and the bottom
panels correspond to distributions of Xt+∆t. (a) Transfer
from high to low mutability. Optimal information values:
Ipast
optimal = 0.98 and I future

optimal = 0.93; transferred information

values: Ipast
transfer((Nµ2), Ipast = 0.92 → (Nµ1)) = 0.14 and

I future
transfer((Nµ2), Ipast = 0.92 → (Nµ1)) = 0.05. Represen-

tations learned on high mutation rates are not predictive in
the low mutation regime. (b) Transfer from low to high mu-
tability. Optimal information values: Ipast

optimal = 0.92 and

I future
optimal = 0.92 and I future

optimal = 0.28. Transferred information

values: Ipast
transfer((Nµ1), Ipast = 0.98 → (Nµ2)) = 0.79 and

I future
transfer((Nµ1), Ipast = 0.98 → (Nµ2)) = 0.27. Transfer in

this direction yields good predictive informations.

information, as seen in Fig. 10b. In addition, high muta-
tion representations focus on X = 1/2, while the popu-
lation more frequently occupies allele frequencies near 0
and 1 in other regimes. Comparatively, representations
learned on weak mutation models can provide predictive
information, because they cover more evenly the spec-
trum of allele frequencies.

We can extend the observations in Fig. 8 to see how
the predictive information depends on the strength of the
selection and mutation rates (Fig. 10b and d). Predic-
tion is easiest in the weak mutation and selection limit, as
population genotype change occur slowly and the steady
state distribution is localized in one regime of the fre-
quency domain. For evolutionary forces acting on faster
timescales, prediction becomes harder since the relax-
ation to the steady state is fast. Although the mutation
result might be expected, the loss of predictive informa-
tion in the high selection regime seems counterintuitive:
due to a large bias between one of the two alleles evolu-
tion appears reproducible and “predictable” in the high
selection limit. This bias renders the allele state easier
to guess but this is not due to information about the
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FIG. 10: Amount of predictive information in the Wright
Fisher dynamics as a function of the model parameters. (a)
Predictive information as a function of compression level.
Predictive information increases with the cardinality, m, of
the representation variable. The amount of predictive infor-
mation is limited by log(m) (vertical dashed lines) for small
m, and the mutual information between the future and the
past, I(Xt+∆t;Xt) (horizontal dashed line), for large m. Bi-
furcations occur in the amount of predictive information. For
small I(Xt; X̃), the encoding strategies for different m are

degenerate and the degeneracy is lifted as I(Xt; X̃) increases,

with large m schemes accessing higher I(Xt; X̃) ranges. Pa-
rameters: N = 100, Nµ = 0.2, Nµ = 0.2, Ns = 0.001,
∆t = 1. (b-d), Value of the asymptote of the information bot-
tleneck curve, I(Xt;Xt+∆t) with: (b) N = 100, Ns = 0.001,
∆t = 1 as a function of µ; (c) N = 100, Nµ = 0.2, Ns = 0.001
as a function of ∆t; and (d) N = 100, Nµ = 0.2, and ∆t = 1
as a function of s.

initial state. The mutual information-based measure of
predictive information used here captures a reduction of
entropy in the estimation of the future distribution of al-
lele frequencies due to conditioning on the representation
variable. When the entropy of the future distribution of
alleles H(Xt+∆t) is small, the reduction is small and pre-
dictive information is also small. As expected, predictive
information decreases with time ∆t, since the state Xt

and Xt+∆t decorrelate due to noise (Fig. 10c).

So far we have discussed the results for m = 2 rep-
resentations. As we increase the tradeoff parameter, β
in Eq. 1, the amount of predictive information increases,
since we retain more information about the past. How-
ever, at high β values the amount of information the
representation variable can hold saturates, and the pre-
dictive information reaches a maximum value (1 bit for
the m = 2 yellow line in Fig. 10a). Increasing the number
of representations m to 3 increases the range of accessi-
ble information the representation variable has about the
past I(Xt;X), increasing the range of predictive infor-
mation (purple line in Fig. 10a)). Comparing the m = 2
and m = 3 representations for maximum values of β for
each of them (Fig. 11a and b), shows that larger numbers
of representations tile allele frequency space more finely,
allowing for more precise encodings of the past and fu-
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FIG. 11: Encoding schemes with m > 2 representation variables. The representations which carry maximum predictive
information for m = 2 at I(Xt; X̃) ≈ log(m) = 1(a) and m = 3 at I(Xt; X̃) ≈ log(m) ≈ 1.5. (b). The optimal representations
at large m tile space more finely and have higher predictive information. The optimal representations for m = 200 at fixed
β = 1.01 (I(Xt; X̃) = 0.28, I(Xt+∆t; X̃) = 0.27) (c) and β = 20 (I(Xt; X̃) = 2.77, I(Xt+∆t; X̃) = 2.34). (d) At low I(Xt; X̃),
many of the representations are redundant and do not confer more predictive information than the m = 2 scheme. A more
explicit comparison is given in Appendix Fig. C.2. At high I(Xt; X̃), the degeneracy is lifted. All computations done at
N = 100, Nµ = 0.2, Ns = 0.001, ∆t = 1.
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ture distributions. The maximum amount of information
about the past goes as log(m) (Fig. 10a). The predictive
information curves for different m values are the same,
until the branching point . log(m) for each m (Fig. 10a).

We analyze the nature of this branching by taking
m� 1, m = 200 (Fig. 11c and d). At small β (and cor-

responding small I(Xt; X̃)) the optimal encoding scheme
is the same if we had imposed a small m (Fig. 11c), with
additional degenerate representations (Fig. C.2). By in-

creasing β (and I(Xt; X̃)), the degeneracy is lifted and
additional representation cover non-overlapping regimes
of allele frequency space. This demonstrates the exis-
tence of a critical β for each predictive coding scheme,
above which m needs to be increased to extract more
predictive information and below which additional values
of the representation variable encode redundant portions
of allele frequency space. While we do not estimate the
critical β, approaches to estimating them are presented
in [42, 43].

The m = 200 encoding approximates the continu-
ous X̃ representation. In the high I(Xt; X̃) limit, the
m = 200 encoding gives precise representations (i.e. with

low variability in P(Xt|X̃)) in regions of allele frequency
space with high steady state distribution values, and less
precise representations elsewhere (Fig. 11d top panel,
Fig. C.3). This dependence differs from the Gaussian
case, where the uncertainty of the representation is in-
dependent of the encoded value. The decoding distri-
butions P(Xt|X̃) are also not Gaussian. This encoding
builds a mapping of internal response to external stim-
uli, by tiling the internal representation space of external
stimuli in a non-uniform manner. These non-uniform
frequency tilings are similar to Laughlin’s predictions for
maximally informative coding in vision [2], but with the
added constraint of choosing the tiling to enable the most
informative predictions.

III. DISCUSSION

We have demonstrated that the information bottle-
neck method can be used to construct predictive encod-
ing schemes for a variety of biologically-relevant dynamic
stimuli. The approach described in this paper can be
used to make predictions about the underlying encoding
schemes used by biological systems that are compelled by
their behavioral and fitness constraints to make predic-
tions. These results thus provide experimentally testable
hypotheses. The key principle is that not all input di-
mensions are equally relevant for prediction; information
encoding systems must be able to parse which dimen-
sions are relevant when coding capacity is small relative
to the available predictive information. Hence, the bio-
logical (or engineered) system must navigate a tradeoff
between reducing the overall uncertainty in its prediction
while only being able to make measurements with some
fixed uncertainty.

We hypothesize that biological systems that need to

operate flexibly across a wide range of different input
statistics may use a best-compromise predictive encod-
ing of their inputs. We have used a transferability met-
ric, Q, to quantify just how useful a particular scheme is
across other dynamic regimes and prediction timescales.
What we have shown is that a compromise between repre-
senting position and velocity of a single object provides a
good, general, predictor for a large set of input behaviors.
When adaptation is slower than the timescale over which
the environment changes, such a compromise might be
beneficial to the biological system. On the other hand, if
the biological encoder can adapt, the optimal predictive
encoder for those particular dynamics is the best encoder.
We have provided a fully-worked set of examples of what
those optimal encoders look like for a variety of parame-
ter choices. The dynamics of natural inputs to biological
systems could be mapped onto particular points in these
dynamics, providing a hypothesis for what optimal pre-
diction would look like in that system.

We also explored the ability to predict more complex,
non-Markovian dynamics. We asked about the useful-
ness of storing information about the past in the pres-
ence of power-law temporal correlations. The optimal
information bottleneck solution showed fast diminishing
returns as it was allowed to dig deeper and deeper into
the past, suggesting that simple encoding schemes with
limited temporal span have good predictive power even
in complex correlated environments.

Superficially, our framework may seem similar to a
Kalman filter [26]. There are few major differences in this
approach. Kalman filtering algorithms have been used to
explain responses to changes in external stimuli in bio-
logical system [44]. In this framework, the Kalman filters
seek to maximize information by minimizing the variance
of the true coordinates of an external input and the esti-
mate of those coordinates. The estimate is, then, a pre-
diction of the next time step, and is iteratively updated.
Our information bottleneck approach extracts past in-
formation, but explicitly includes another constraint: re-
source limitations. The tuning of Ipast is the main differ-
ence between our approach and a Kalman filter. Another
major difference is that we do not assume the underlying
encoder has any explicit representation of the ‘physics’
of the input. There is no internal model of the input
stimulus, apart from our probabilistic mapping from the
input to our compressed representation of that input. A
biological system could have such an internal model, but
that would add significant coding costs that would have
to be treated by another term in our framework to draw
a precise equivalence between the approaches. We show
in the Appendix that the Kalman filter approach is not
as efficient, in general, as the predictive information bot-
tleneck approach that we present here.

The evolutionary context shows another set of solu-
tions to predictive information in terms of discrete rep-
resentations that tile input space. Although we impose
discrete representations, their non-overlapping character
remains even it the limit of many representations. These
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kinds of solutions are reminiscent of the Laughlin so-
lution for information maximization of input and out-
put in the visual system given a nonlinear noisy chan-
nel [2], since input space is covered proportionally to the
steady state distribution at a given frequency. Tiling
solutions have also been described when optimizing in-
formation in gene regulatory networks with nonlinear
input-output relations, when one input regulates many
gene outputs [45]. In this case each gene was expressed
in a different region of the input concentration domain.
Similarly to our example, where the lifting the degener-
acy between multiple representations covering the same
frequency range allows for the prediction of more infor-
mation about the future, lifting the degeneracy between
different genes making the same readout, increases the
transmitted information between the input concentration
and the outputs. More generally, discrete tiling solutions
are omnipresent in information optimization problems
with boundaries [46, 47].

Biologically, predicting evolutionary dynamics is a dif-
ferent problem than predicting motion. Maybe the accu-
racy of prediction matters less, while covering the space
of potentially very different inputs is important. In our
simple example, this is best seen in the strong mutation
limit where the mutant allele either fixes or goes extinct
with equal probability. In this case, a single Gaussian
representation cannot give a large values of predictive
information. A discrete representation, which specializes
to different regions of input space, is a way to maximize
predictive power for very different inputs. It is likely that
these kinds of solutions generalize to the case of continu-
ous, multi-dimensional phenotypic spaces, where discrete
representations provides a way for the immune system to
hedge its bets against pathogens by covering the space of
antigen recognition[24]. The tiling solution that appears
in the non-Gaussian solution of the problem is also po-
tentially interesting for olfactory systems. The number
of odorant molecules is much larger than odor receptors
[48, 49], which can be thought of as representation vari-
ables that cover the phenotypic input space of odorants.
The predictive information bottleneck solution gives us
a recipe for covering space, given a dynamical model of
evolution of the inputs.

The results in the non-Gaussian problem are different
than the Gaussian problem in two important ways: the
encoding distributions are not Gaussian (e.g. Fig. 8d
and e), and the variance of the encoding distributions

depends on the the value of P(Xt|X̃) (Fig. 11d). These
solutions offer more flexibility for internal encoding of
external signals.

The information bottleneck approach has received a lot

of attention in the machine learning community lately,
because it provides a useful framework for creating well-
calibrated networks that solve classification problems at
human-level performance[14, 50, 51]. In these deep net-
works, variational methods approximate the information
quantities in the bottleneck, and have proven their prac-
tical utility in many machine learning contexts. These
approaches do not always provide intuition about how
the networks achieve this performance and what the IB
approach creates in the hidden encoding layers. Here, we
have worked through a set of analytically tractable exam-
ples, laying the groundwork for building intuition about
the structure of IB solutions and their generalizations in
more complex problems.

In summary, the problem of prediction, defined as ex-
ploiting correlations about the past dynamics to antici-
pate the future state comes up in many biological sys-
tems from motion prediction to evolution. This prob-
lem can be formulated in the same way, although as we
have shown, the details of the dynamics matter for how
best to encode a predictive representation and maximize
the information the system can retain about the future
state. Dynamics that results in Gaussian propagators is
most informatively predicted using Gaussian representa-
tions. However non-Gaussian propagators introduce dis-
joint non-Gaussian representations that are nevertheless
predictive.

By providing a set of dissected solutions to the pre-
dictive information bottleneck problem, we hope to show
that not only is the approach feasible for biological en-
coding questions, it also illuminates connections between
seemingly disparate systems (such as visual processing
and the immune system). In these systems the overarch-
ing goal is the same, but the microscopic implementation
might be very different. Commonalities in the optimally
predictive solutions as well as the most generalizable ones
can provide clues about how to best design experimen-
tal probes of this behavior, at both the molecular and
cellular level or in networks.
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IV. SUPPORTING INFORMATION

Appendix A COMPUTING THE OPTIMAL REPRESENTATION FOR JOINTLY GAUSSIAN
PAST-FUTURE DISTRIBUTIONS

We follow Chechik, et al.[25] to analytically construct the optimally predictive representation variable, X̃, when
the input and output variables are jointly Gaussian. The input is Xt ∼ N (0,ΣXt) and the output is Xt+∆t ∼
N (0,ΣXt+∆t

). The joint distribution of Xt and Xt+∆t is Gaussian. To construct the representation, we take a noisy

linear transformation of Xt to define X̃

X̃ = AβXt + ξ. (21)

Here, Aβ is a matrix whose elements are a function of β, the tradeoff parameter in the information bottleneck objective
function between compressing, in our case, the past while retaining information about the future. ξ is a vector of
dimension dim(Xt). The entries of ξ are Gaussian-distributed random numbers with 0 mean and unit variance.
Because the joint distribution of the past and the future is Gaussian, to capture the dependencies of Xt+∆t on Xt we
can use a noisy linear transform of Xt to construct a representation variable that satisfies the information bottleneck
objective function[25].

We compute Aβ by first computing the left eigenvectors and the eigenvalues of the regression matrix, ΣXt|Xt+∆t
Σ−1
Xt

.
Here, ΣXt|Xt+∆t

is the covariance matrix of the probability distribution of P(Xt|Xt+∆t). These eigenvector–eigenvalue
pairs satisfy the following relation

vTi ΣXt|Xt+∆t
Σ−1
Xt

= λiv
T
i . (22)

(We are taking vTi to be a row vector, rather than a column vector.)
The matrix, Aβ , is then given by

Aβ =

α1v
T
1

α2v
T
2

...

 . (23)

αi are scalar values given by

αi =

√
β(1− λi)− 1

λivTi ΣXtvi
if β >

1

1− λi
(24)

αi =0 otherwise.

The αi define the dimensionality of the most informative representation variable, X̃. The dimension of X̃ is the
number of non-zero αi. The optimal dimension for a given β is, at most, equal to the dimension of Xt+∆t. The
set of values, {βci |β = 1/(1− λi)}, can be thought of as critical values, as each βci triggers the inclusion of the ith

left eigenvector into the optimal X̃. The critical values depend strongly on the particular statistics of the input and
output variable, so they may be different as the parameters that generate X change.

To compute the information about the past and future contained in X̃, we compute P(Xt|X̃) and P(Xt+∆t|X̃).
These distributions are Gaussian. The mean of each distribution corresponds to the encoded value of Xt and Xt+∆t.
The variance corresponds to the uncertainty, or entropy, in this estimate. To compute the variance, we need the
variance of X̃

ΣX̃ = 〈X̃T X̃〉 = 〈X̃TATβAβX̃〉+ 〈ξT ξ〉, (25)

where the excluded terms are zero. Recalling the definition of ξ, we can simplify this expression to yield

ΣX̃ = AβΣXtA
T
β + I2. (26)

Here, I2 is the identity matrix. To compute the mutual information quantities, we use the following equations,

I(Xt; X̃) =
1

2
log2(|AβΣXtA

T
β + I2|), (27)

I(Xt+∆t; X̃) = I(Xt; X̃)− 1

2

n(β)∑
i=1

log2(β(1− λi)),
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where n(β) corresponds to the number of dimensions included in Aβ . We also need the cross covariances between X̃

and Xt and between X̃ and Xt+∆t, which are particularly useful for visualizing the optimal predictive encoding. To
obtain these matrices, we use

ΣX̃Xt = AβΣXt (28)

ΣX̃Xt+∆t
= AβΣXt+∆tXt .

We can use these results and the Schur complement formula to obtain

ΣXt|X̃ = ΣXt − ΣXtX̃Σ−1

X̃
ΣT
XtX̃

(29)

ΣXt+∆t|X̃ = ΣXt+∆t
− ΣXt+∆tX̃

Σ−1

X̃
ΣT
Xt+∆tX̃

.

Appendix B THE STOCHASTICALLY DRIVEN DAMPED HARMONIC OSCILLATOR

.1 Harmonic Oscillator Model With No Memory

We begin by considering a mass attached to a spring undergoing viscous damping. The mass is being kicked
by thermal noise. This mechanical system is largely called the stochastically driven damped harmonic oscillator
(SDDHO). A simple model for its position and velocity evolution is given by

m
dv

dt
= −Γv(t)− kx+ (2kBTΓ)1/2ξ(t) (30)

dx

dt
= v.

We use the redefined variables presented in the main text Equations 2− 9 to rewrite the equations as

dv

dt
= − x

4ζ2
− v +

ξ(t)√
2ζ

(31)

dx

dt
= v.

There are now two key parameters to explore: ζ and ∆t. There are three regimes of motion described by this model.
The overdamped regime occurs when ζ > 1. In this regime of motion, the mass, when perturbed from its equilibrium
position, relaxes back to its equilibrium position slowly. The underdamped regime occurs when ζ < 1. In this regime
of motion, when the mass is perturbed from its equilibrium position, it oscillates about its equilibrium position with
an exponentially decaying amplitude. At ζ = 1, we are in the critically damped regime of motion; in this regime,
when the mass is perturbed from equilibrium, it returns to equilibrium position as quickly as possible without any
oscillatory behavior.

To apply the information bottleneck method to this system, we need to compute the following covariance and cross
covariance matrices: ΣXt , ΣXt+∆t , and ΣXtYt+∆t . We note that because the defined motion model is stationary in time,
ΣXt = ΣXt+∆t . Using the procedure given in Flyvbjerg et. al. [52], we can compute the requisite autocorrelations to
describe the cross-covariance matrix, ΣXtXt+∆t .

We begin by using the equipartition theorem that states that

〈x2
0〉 = 1 (32)

〈x0vo〉 = 0

〈v2
0〉 =

1

4ζ2
.

The covariance matrices are symmetric, so we can use these values to define the elements of ΣXt . We then obtain
expressions for ΣXtXt+∆t

ΣXtXt+∆t = exp

(
−∆t

2

)[
cos(ω∆t) + sin(ω∆t)

2ω − sin(ω∆t)
4ζ2ω

sin(ω∆t)
4ζ2ω

cos(ω∆t)
4ζ2 − sin(ω∆t)

8ωζ2

]
(33)
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where we have defined ω2 = 1
4ζ2 − 1

4 . An alternative approach for the derivation of the above correlation values by

methods of Laplace transforms can be found in Sandev et. al. [29].
To construct the optimal representation for prediction, we need the conditional covariance matrices, ΣXt|Xt+∆t

and
ΣXt+∆t|Xt . This can be computed using the Schur complement formula to yield

ΣXt|Xt+∆t
= ΣXt − ΣXtXt+∆t

Σ−1
Xt

ΣXtXt+∆t
(34)

ΣXt+∆t|Xt = ΣXt − ΣTXtXt+∆t
Σ−1
Xt

ΣXtXt+∆t

We provide a graphical representation of these distributions in Fig. 2b (main text). These graphical representations
correspond to the contour inside which ∼ 68% of observations are observed (i.e. one standard deviation from the
mean).

.2 Applying the information bottleneck Solution

To apply the information bottleneck solution, we construct the matrix, ΣYu|Yu+∆u
Σ−1
Yu

, and find its eigenvalues and
eigenvectors. The left eigenvectors of the matrix will be denoted by the columns of a new matrix, w, given by

w =

[
ω cot(ω∆t) + | csc(ω∆t)|

2
√

2ζ

√
2− ζ2 − ζ2 cos(2ω∆t) ω cot(ω∆t)− | csc(ω∆t)|

2
√

2ζ

√
2− ζ2 − ζ2 cos(2ω∆t)

1 1

]
. (35)

The eigenvalues are then

λ1 = 1− exp(−∆t)

(
1

4ω2ζ2
+

cos(2ω∆t)

4ω2
+
| sin(ω∆t)|

2
√

2ω2ζ

√
2− ζ2 − ζ2 cos(2ω∆t)

)
(36)

λ2 = 1− exp(−∆t)

(
1

4ω2ζ2
+

cos(2ω∆t)

4ω2
− | sin(ω∆t)|

2
√

2ω2ζ

√
2− ζ2 − ζ2 cos(2ω∆t)

)
The transformation matrix, Aβ , will now depend on the parameters of the stimulus. Hence, we now refer to this
matrix as Aβ(ζ,∆t), illustrating its functional dependence on those parameters.

Some general intuition can be gained from the form of the above expressions. The eigenvalue gap, λ1 − λ2 is

proportional to exp(−∆t)‖2 sin(ω∆t)‖
ζ . This suggests that the eigenvalue gap grows for small ∆t, then shrinks for large

∆t. Additionally, in the small ∆t limit, the eigenvectors align strongly along the position and velocity axes, with the
eigenvector corresponding to the smaller eigenvalue being along the position axis. Hence, for predictions with small
∆t, the representation variable must encode a lot of information about the position dimension. For longer timescale
predictions, both eigenvectors contribute to large levels of compression, suggesting that the encoding scheme should
feature a mix of both position and velocity. This is presented in Figure 5.

We also compute the total amount of predictive information available in this stimulus. This is given by

I(Xt;Xt+∆t) =
1

2
log(|ΣXt |)−

1

2
log(|ΣXt|Xt+∆t

|). (37)

Simplifying this expression yields

I(Xt;Xt+∆t) = ∆t− 1

2
log

(
exp(2∆t) + cos4(ω∆t)− sin4(ω∆t) (38)

−2 exp(∆t)

(
cos2(ω∆t) +

1 + ζ2

1− ζ2
sin2(ω∆t)

)
+ 2 sin2(ω∆t)

)
We can see for very large ∆t, this expression becomes

I(Xt;Xt+∆t) ∼ ∆t− 1

2
log (exp(2∆t)− 2 exp(∆t)) . (39)

For small ∆t, we note there are two conditions: |ΣXt|Xt+∆t
| < k and |ΣXt|Xt+∆t

| > k, where k corresponds to width
of the distribution. If the width of the Gaussian is below k, we treat this as being effectively deterministic. In this
case,

I(Xt;Xt+∆t) ∝
1

2
log(|ΣXt |) (40)
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where there are some constants that set the units of the information and the reference point. For widths larger than
k, the expression becomes:

I(Xt;Xt+∆t) ∝ exp(−∆t) (41)

.3 Comparing the information bottleneck Method to Different Encoding Schemes

We compare the encoding scheme discovered by the information bottleneck to alternate encoding schemes. We
accomplish this by computing the optimal transformation for a particular parameter set for some value of β, Aβ(ζ,∆u).
We then determine the conditional covariance matrix, ΣXt|X̃ . We generate data from this distribution and apply a

two-dimensional unitary rotation. We then compute the covariance of the rotated data. This gives us a suboptimal
encoding scheme, as represented in Figure 4b in yellow. We note that this representation contains the same amount
of mutual information with the past as the optimal representation variable, though the dimensions the suboptimal
encoding scheme emphasizes are very different. Evolving the rotated data forward in time and then taking the
covariance of the resulting coordinate set gives us ΣXt+∆t|X̃ , as plotted in Figure 4b in purple. We clearly see that

encoding the past with the suboptimal representation reduces predictive information, as the predictions of the future
are much more uncertain.

.4 Comparing the information bottleneck method to Kalman filters

The Kalman filter approach seeks to fuse a prediction of a system’s coordinates at time t + ∆t based on initial
coordinates at time t and knowledge of the dynamical system with an observation at time t+∆t to increase the certainty
in the inference of the coordinates at time t + ∆t[26]. We present Kalman filters here to highlight the differences
between the information bottleneck method and Kalman filtering techniques. First, we consider the structure of the
Kalman filter,

X(naive)(∆t) = H(X0:∆t,∆t)X(0) + ξ(∆t) (42)

X̃(measured)(∆t) = AX(∆t) + χ(∆t)

X(corrected) = X(naive)(∆t) +K∆t(X̃
(measured)(∆t)−AX(naive)(∆t)).

The first equation here considers an initial condition, X(0), a dynamical system model, H(X0:∆t,∆t), and a particular
noise condition to construct an estimate of where an observer might expect their system to be after some time, ∆t,
has passed from initial time 0. The second equation constructs a measurement, X̃(∆t) of the true coordinates, using
a known observation model, A, and some measurement noise, χ(∆t). A is analogous to the probabilistic mapping

constructed in the information bottleneck scheme, X̃; however, unlike in information bottleneck, in Kalman filtering,
A is given to the algorithm and not discovered by any optimization procedure. Finally, the third equation unites the
measurement, X̃, and the guess, X(∆u), by choosing K∆t, to be the transform which minimizes the variance between
the true coordinates and the corrected coordinates. This correction is a post hoc correction and is not present in the
information bottleneck scheme.

We now compare the results from a Kalman filtering technique and the information bottleneck when they both use
the same probabilistic mapping, X̃. From Figure B.1(a), we see that even though the Kalman filter has higher levels
of Ipast for the same probabilistic mapping, the Kalman filtering algorithm is not efficient, as it is not extracting the
most available predictive information.

.5 An approach to encoding when the parameters of the stimulus are evolving

We examine prediction in the SDDHO when the underlying parameters governing the trajectory are evolving faster
than adaptation timescales. While there are many possible strategies for prediction in this regime, we consider a
strategy where the system picks a representation that provides a maximal amount of information across a large family
of stimulus parameters. We chose this strategy because it enables us to analyze the transferability of representations
from one parameter set against another. In other words, we can understand how robust representations learned for
particular stimulus parameters are.

We first determine the predictive information extracted by an efficient coder for a particular representation level,
Ipast for a particular stimulus with parameters (ζ,∆t), I future

optimal((ζ,∆t), Ipast). This predictive mapping is achieved by
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FIG. B.1: Kalman filtering schemes are not efficient coders for a given channel capacity. (a) Here, we present the information
bottleneck curve for a stochastically driven damped harmonic oscillator with ζ = 1

2
and ∆t = 1. We determine the optimal

mapping for Ipast = 1 bit and plot that point along the information bottleneck curve. Using the same probablistic mapping,
we apply a Kalman filtering approach. We see that the Kalman filter approach results in an increase in both Ipast and Ifuture,
but the result does not lie along the curve, indicating the scheme is not efficient. Panels (b) and (c) present the results in terms
of uncertainty reduction in each scheme.

having a mapping, P(X̃|Xt). We apply this mapping to a new stimulus with different parameters (ζ,∆t) to determine
the amount of predictive information extracted by this mapping on a different stimulus with parameters (ζ ′,∆t′). We
call this predictive information I future

transfer((ζ,∆t), Ipast → (ζ ′,∆t′)).

We quantify the quality of these transferred representations in comparison with I future
optimal((ζ

′,∆t′), Ipast) as

Qtransfer((ζ,∆t)) =

∫∆tmax

∆tmin

∫ ζmax

ζmin
I future
transfer((ζ,∆t), Ipast → (ζ ′,∆t′))dζ ′d∆t′∫∆tmax

∆tmin

∫ ζmax

ζmin
I future
optimal((ζ

′,∆t′), Ipastdζ ′d∆t′
(43)

The resulting value is the performance of the mapping against a range of stimuli. In Figure 6, we analyzed the
performance of mappings learned on 1

3 < ζ < 3, 0.1 < t < 10, on stimuli with parameters 1
3 < ζ ′ < 3, 1 < t′ < 10.

This choice of range is somewhat arbitrary, but it is large enough to see the asymptotic behavior in ∆t, ζ.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.04.29.069179doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.069179


22

.6 History Dependent Harmonic Oscillators

We extend the results on the Stochastically Driven Damped Harmonic Oscillator to history-dependent stimuli by
modifying the original equations of motion to have a history dependent term using the Generalized Langevin Equation

dv

dt
= −

∫ t

0

γv

|t− t′|α
dt′ − ω2

0x+ ξ(t) (44)

dx

dt
= v,

where − γ
|t−t′|α governs how the history impacts the velocity-position evolution. In the main text, we take γ = 1, ω = 1,

and α = 5/4. To compute the autocorrelation functions, we compute the Laplace transform of each autocorrelation
function and numerically invert the Laplace transform to estimate the value

L[〈v(t)v(0)〉] =
s

s2 + γsα + ω2
(45)

L[〈v(t)x(0)〉] = − 1

s2 + γsα + ω2

L[〈x(t)v(0)〉] = −L[〈v(t)x(0)〉]

L[〈x(t)x(0)〉] =
1

ω2s
− 1

s2 + γsα + ω2
.

To expand our past and future variables to include multiple time points, we extend the past variable to be obser-
vations between t− t0 and t and the future variable to be t+ ∆t to t+ ∆t+ t0. The size of the window is set by t0.
We discretize each window with a spacing of dt = 2 and compute correlation functions along the discrete points of
time, yielding the full covariance matrices. After this, the recipe is as outlined in Appendix A.

Appendix C WRIGHT FISHER DYNAMICS

Wright-Fisher dynamics are used in population genetics to describe the evolution of a population of fixed size over
generations. Here, we consider the diffusion approximation to the Wright-Fisher model with continuous time, given
by Eq. 19. We numerically integrate Eq. 19 using a time step of dt = 0.001 and use 10000 data points starting from
a given initial allele frequencies to estimate the joint distribution, P (Xt+∆t, Xt). We discretize allele frequency space
with N + 1 bins. We compute the maximum available predictive information for different values of the parameters
(Fig. 10) using:

I(Xt;Xt+∆t) = −
∑
Xt

P(Xt) log(P(Xt))−
∑
Xt+∆t

P(Xt+∆t) log(P(Xt+∆t)) +
∑

Xt,Xt+∆t

P(Xt, Xt+∆t) log(P(Xt+∆t, Xt)).

(46)

A simple estimate for I(Xt; X̃) can be obtained by considering the case where each individual memory reflects a distinct
cluster of allele frequencies. In the optimal encoding case, each memory encodes an equal amount of probability weight
on the input variable[2, 53]. The upper bound on the information the representation variable has about the past state

is I(Xt; X̃) = log(m).
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FIG. C.2: The optimal P (Xt|X̃) and P (Xt+∆t|X̃) for Wright Fisher dynamics with N = 100, Nµ = 0.2, Ns = 0.001, ∆t = 1

with information bottleneck parameters β = 1.01 (I(Xt; X̃) = 0.27) for m = 2 (a) and m = 200 (b). Many representations are
degenerate in the m = 200 in this limit. The encoding schemes for m = 2 versus m = 200 are nearly identical for this small
I(Xt; X̃) limit.
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FIG. C.3: Mean (left) and variance (right) of the past allele frequency Xt conditioned on the (categorical) representation

variable X̃ (left), for the information bottleneck solution of the Wright-Fisher dynamics with m = 200, N = 100, Nµ = 0.2,
Ns = 0.001, β =∞. The standard deviation is not constant: it is smaller where the prior probability of Xt is large.
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