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Abstract: Both inherited and acquired cardiac arrhythmias are often associated with the abnormal
functional expression of ion channels at the cellular level. The complex machinery that continuously
traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte
appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been
well established with the discovery of mutations in the genes encoding several ion channels and
ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and
post-transcriptional protein changes are common factors that disorganize normal channel trafficking
during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5
channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on
cardiac arrhythmias will emerge novel antiarrhythmic strategies.
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1. Introduction

Cardiac arrhythmias are the main cause of strokes, heart failure, or sudden death
and are a major health problem. Alteration in the functional activity of ion channels is
central to most inherited and acquired cardiac arrhythmias. However, the underlying
mechanisms are still incompletely understood. One reason is the extreme complexity of
the processes involving a myriad of proteins, referred to as trafficking, that are a major
source of arrhythmogenic mechanisms.

Studies on the genetics of inherited cardiac arrhythmias show that certain loss-of-
function (LOF) mutations are associated with altered channel trafficking that are retained
in intracellular organelles. Then, a number of mutations have been identified in several
protein partners that chaperone channels or tether or anchor channels to the microdomains
of the sarcolemma of cardiomyocytes. These studies have firmly established the role of
alteration in channel trafficking in cardiac arrhythmias. Myocardial remodeling associated
with cardiopathies and heart failure, the main risk factor of cardiac arrhythmias, is also
associated with default of channel trafficking, notably, due to changes in microenvironment
of cardiomyocytes. Things are even more complex given the number of remote factors, for
instance, the membrane lipid composition or the metabolic phenotype of cardiomyocytes,
that can regulate channel trafficking and hence contribute to arrhythmogenic processes.

In this article, first an initial update on knowledge on the physiology of channel traf-
ficking will be provided and then evidence on trafficking defects obtained during inherited
and acquired cardiac arrhythmias will be reviewed. Note that in the general concept of
trafficking, we will include intracellular vesicular trafficking (i.e., surface regulation) and
addressing in specialized areas of the myocyte (i.e., local regulation).
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2. The Trafficking Machinery of Cardiomyocytes

Cardiac excitability is generated exclusively by cardiomyocytes. Some of them are
able to depolarize spontaneously the pacemaker cells of the sinus node, some others are
specialized in the transmission of the electrical impulse (Purkinje cells), whereas the vast
majority are involved in the excitation–contraction coupling process. In cardiomyocytes,
electrogenic systems are composed mainly of voltage-dependent channels (VOC), some
pumps, and exchangers. At rest, cardiomyocytes are polarized around −90 mV, the equi-
librium potential of K+, which is clamped by the background inward rectifier potassium
current, IK1, and the Na+-K+ ATPase pump. The fast upstroke of the action potential (AP)
is caused by the activation of a large sodium current due to the opening of the Nav1.5
sodium channel. The second phase of the AP is a plateau phase lasting a few hundreds
of msec, during which the excitation–contraction coupling process is activated, which is
controlled by the L-type calcium current. A T-type calcium current is recorded in cardiomy-
ocytes, but its role is not established. A number of potassium currents shape the AP; they
belong to voltage-dependent and inward rectifier potassium channel families. There are
also two pore channels that are voltage gated but recruited in response to various stimuli,
such as pH. In addition to a change in the membrane electrical potential, the continuous
variations in free intracellular calcium during the EC coupling process are a master regula-
tor of cardiac excitability mainly via the electrogenic Na+-Ca+ exchanger (NCX); the direct
effect of calcium on channel gating (rapid inactivation of the L-type calcium channel); or
the activation of a second messenger, such as CaMK-II. There are differences between atrial
and ventricular myocytes that are mainly due to the cellular architecture and notably the
organization of the t-tubular system, which is highly developed in ventricular myocytes
(see for more information [1]).

2.1. Molecular Basis of Ion Channel Trafficking

Ion channels, such as secreted proteins, are synthesized in the endoplasmic reticulum
(ER) by ER-bound ribosomes. The ER lumen constitutes the future extracellular domain
of the channel and permits cellular quality control to ensure that only correctly folded
channels can exit the compartment [2]. Misfolded or misassembled channels exhibit ER-
retention signals, the best known of which are the RXR and KDEL motifs [3,4]. If misfolded
or misassembled, the channels will be retained in the ER and the unfolded protein response
(UPR) will be triggered using three main pathways: PERK, ATF6, and IRE1 [5,6]. The latter
two activate a subset of target genes involved in the ER-associated degradation system
(ERAD). The ERAD induces cytosolic degradation in the proteasome of misfolded proteins
after ubiquitylation by ER-bound E3-ubiquitin ligases [7]. Specific motifs are also involved
in active transport out of the ER, such as the diacidic DAD or non-acidic VXXSL and
VXXSN motifs [8]. The transport of channels between the ER and the Golgi complex (GC)
takes place via coated transition vesicles: COPII-coated vesicles move toward the GC and
COPI-coated vesicles return to the ER [9]. After exiting the ER, the channels are transported
via vesicles until they reach the plasma membrane. Transportation is achieved by the
fusion of a donor compartment with an acceptor compartment. Each fusion step involves
SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors)
carried by both the donor vesicle membrane (one vesicle-membrane SNARE) and the
acceptor membrane (three target-membrane SNAREs), which destabilize the lipid bilayers
and allow the channel to move to the acceptor compartment when interacting [10]. Ion
channel trafficking in the cytoplasm is coordinated by various Rab GTPases, monomeric
GTPases of the Ras superfamily. Interestingly, these GTPases can serve as markers of the
progression of intracellular trafficking in the antero- and retrograde directions since they
are associated with specific vesicles. For instance, Rab8 is involved in the delivery of newly
synthetized channels and associated with the secretory vesicle. Rab4, Rab5, Rab7, Rab9,
and Rab11 are associated with vesicles following ion channel internalization. Rab4 and
Rab5 are associated with the early endosome and involved mainly in fast recycling back
to the plasma membrane [11,12]. Rab11 is associated with the recycling endosome and
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essential to a slower recycling pathway [13,14]. Rab7 and Rab9 are associated with the late
endosome and direct the trafficking toward the lysosome [15,16] or the proteasome [17]
for degradation. All of these Rab GTPases are expressed in cardiomyocytes. If the vesicles
transporting ion channels can progress through the cell, it is because molecular motors
exist that allow their transport along the cytoskeleton in opposite directions. The vesicles
travel in the anterograde direction along the microtubules by the action of different kinesins
and thereafter along the actin cytoskeleton by the action of myosin V. In the retrograde
direction, the molecular motors are dynein (mostly dynein I) and myosin VI, associated
with microtubules and actin, respectively [18]. Figure 1 illustrates the main fundamental
mechanisms responsible for ion channel trafficking in cardiomyocytes after Golgi exit or
after internalization.

Figure 1. General diagram of the different steps and regulators involved in ion channel trafficking. Ion channels are
directed to the plasma membrane via the anterograde and recycling pathways (red arrows). Due to their topology, proteins
with multiple transmembrane domains, such as ion channels, have their C- and N-terminal domains exposed on the
cytoplasmic side during transport. Endocytosis is ensured by membrane bending and fission of the endocytosis pit, mainly
by dynamin (purple). Internalization signals (blue arrows) lead to degradation or recycling. Rab GTPases regulate specific
steps of trafficking in the cytoplasm. Molecular motors, such as kinesin and dynein, ensure the transport of vesicles along
microtubules, respectively, in the anterograde and retrograde directions. The molecular motors involved in transport along
actin filaments are myosins: myosin V in the anterograde direction, myosin VI in the retrograde direction. Abbreviations:
EE: early endosome; EP: endocytosis pit; ER: endoplasmic reticulum; LE: late endosome; GC: Golgi complex; RE: recycling
endosome; SV: secretory vesicles (from neo-synthesis); TV: transition vesicles (shuttling between ER and the Golgi complex).

Another group of proteins central to the trafficking of cardiac ion channels belongs to
the membrane-associated GUanylate kinase (MAGUK) family. These proteins are charac-
terized by the presence of multiple protein–protein interaction domains, including PDZ
(post synaptic density protein (PSD-95), Drosophila disc large tumor suppressor (Dlg1),
and zonula occludens-1 protein (zo-1)) and SH3 domains (SRC Homology 3 Domain),
explaining how they anchor and tether macromolecular complexes to the plasma mem-
brane. Cardiomyocytes express several MAGUK proteins, such as PSD-95 (post synaptic
density protein), chapsyn-110, synapse-associated protein 102, SAP97 (synapse-associated
protein 97), and CASK (calcium/calmodulin dependent serine protein kinase). SAP97, the
most well-characterized MAGUK protein in the myocardium, interacts with several ion
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channel families: KV1.5 [19,20], KV4.x [21,22], Kir2.x [23–25], and NaV1.5 [24,26]. Apart
from anchoring the ion channels to the plasma membrane microdomains, SAP97 is in-
volved in the trafficking machinery. It regulates the formation of Kir2.1/NaV1.5 complexes,
the two critical channels underlying IK1 and INa, responsible for the maintenance of the
resting membrane potential and the rapid depolarization during the upstroke of the AP,
respectively [24]. This specific multi-channel organization enables reciprocal modula-
tion. Interestingly, when NaV1.5 is overexpressed, internalization of Kir2.1 appears to
be reduced, suggesting that the channels regulate each other in part through retrograde
trafficking [24]. Recently characterized in the myocardium, the MAGUK protein CASK
negatively regulates the surface expression of NaV1.5 by impeding the Golgi-to-plasma-
membrane trafficking of the channel [27,28] and reduces the Kir2.x-mediated IK1 current
(personal unpublished data). Of note, previous publications have reported that SAP97
and CASK act synergistically to regulate the trafficking and targeting of Kir2.2 potassium
channels at the basolateral membrane of epithelial cells [23]. A macromolecular complex
composed of a Mint1/Veli/SAP97/CASK and Kir2.x channel has been characterized in
heart and skeletal muscle cells. This supramolecular complex also interacts with com-
ponents of the dystrophin–glycoprotein complex, including syntrophin, dystrophin, and
dystrobrevin, at the neuromuscular junction, although with lower affinities [29]. Therefore,
both SAP97 and CASK appear to be central proteins of a macromolecular complex that
participate in the trafficking and plasma membrane localization of ion channels.

2.2. Why Ion Channel Trafficking Is Crucial for Normal Cardiac Electrical Properties

The trafficking machinery continuously routes, delivers, and recycles electrogenic
proteins, such as channels, pumps, and exchangers, into microdomains of the plasma
membrane of cardiomyocytes. Distinct microdomains can be identified, t-tubules, lat-
eral membrane (LM), and interacted disk (ID), all having precise physiological roles: the
excitation–contraction coupling process, propagation of the action potential, electromechan-
ical coupling between myocytes, or mechano-transduction processes. Such ultrastructural
organization of cardiomyocytes is crucial for the functional polarization of cardiomyocytes
and for the anisotropic transmission of the electromechanical wave at the tissue level.

The molecular organization, including trafficking processes, has been investigated
in great detail for the gap junction channel complex, the connexosome, at the ID. Less
known is the role of the sodium channel in functional cardiac polarization, although
NaV1.5 trafficking and organization appears increasingly central to the genesis of cardiac
arrhythmias, as described below. While NaV1.5 is highly concentrated at the ID, NaV1.5
channels at the LM show a lower density (3- to 8-fold smaller current) [30,31]. From this
perspective, membrane microdomain distribution of NaV1.5 has been further studied using
high-resolution microscopy techniques. Scanning ion-conductance microscopy identified
three topographic structures at the LM: t-tubules, crest, and z-grooves corresponding
to t-tubule openings [32]. High-resolution patch clamp recordings showed that NaV1.5
channels are not distributed homogeneously along the LM. NaV1.5 channels are organized
in clusters, the largest being located around crests (probably costamere regions of the LM)
and the smaller ones at t-tubules. Moreover, using multicolor single-molecule localiza-
tion microscopy, affinity between LM NaV1.5 clusters and the t-tubule marker BIN1 was
observed, indicating that a reasonable subset of intracellular NaV1.5 is expressed at the
t-tubule membrane [33]. Several partners of NaV1.5 were identified, such as connexin-43
(in gap junctions), plakophilin-2 (in desmosomes), ankyrin-G (involved in actin cytoskele-
ton binding), the MAGUK protein SAP97 (in the ID), and syntrophin (at the LM). All
these partners exert a positive regulatory effect on INa since their silencing in vitro, knock
out in vivo, or reduced expression in the Duchenne muscular dystrophy mouse model
decrease both sodium current and NaV1.5 cell surface localization (for a review, see [34]).
However, whether these proteins are involved in the trafficking of NaV1.5 (either antero-
grade or retrograde) or associated with the channel once inserted in the plasma membrane
to stabilize the channel is not well defined. Among these partners, the newly character-
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ized MAGUK protein CASK seems directly involved in the anterograde trafficking of
the NaV1.5 channel in cardiomyocytes. As a syntrophin, CASK is restricted to the LM in
the costameric dystrophin–glycoprotein complex and interacts with the NaV1.5 channel
through its C-terminal PDZ-binding motif SIV [27]. In contrast to other NaV1.5 partners,
CASK negatively regulates the INa current by impeding the early forward trafficking of
NaV1.5 to the LM of cardiomyocytes [27,28]. Given its multi-modular structure, CASK can
control channel delivery at adhesion points in cardiomyocytes, linking channel expression
to structural organization of cardiomyocytes [28].

Additional studies are necessary to identify mechanisms that govern the precise
addressing and organization of channels into specialized domains of the plasma membrane
of cardiomyocytes. In this context, real-time study of channel and partner (co-)trafficking
should help understand whether interactions with and/or competition between different
channel partners during intracellular trafficking steps direct the final destination of ion
channels. Recently, using cutting-edge live-imaging technologies, the group of Tseng
showed that KCNQ1 and KCNE1 traffic through separate routes and only assemble at the
sarcolemma to form IKs [35]. Furthermore, to understand the development of arrhythmias
associated upstream or downstream of myocardial remodeling, the question of the interplay
between electrical and structural polarization must be addressed.

3. Tribute to Inherited Cardiac Arrhythmias for Knowledge on Channel Trafficking

In the late 1990s, the discovery that LOF mutations are responsible for trafficking
defects whereas biosynthesis and biophysical properties of channels are not altered is the
first demonstration of the role played by abnormal channel trafficking in the genesis of
cardiac arrhythmias. Thereafter, more than 230 articles associating inherited arrhythmias
with trafficking defects have been published establishing firmly that channel trafficking is
indeed a major component of cardiac arrhythmias.

Most trafficking defect mutations resulting in LOF involve endoplasmic reticulum
(ER) exit defects, leading to the targeted degradation of misfolded channels by the ERAD
system. Historically, these mutations were first identified as associated with long QT
syndrome and involving HERG [36] (LQT2) and then KCNQ1 [37] (LQT1) or associated
with Brugada syndrome and carried by SCN5A [38]. Gain-of-function (GOF) mutations
supported by enhanced channel trafficking have also been reported for KCNQ1 in both
inherited atrial fibrillation and short QT syndrome [39,40] as well as for KCND3 in atrial
fibrillation (AF) [41]. Although less documented, other trafficking stages can also be im-
pacted. GOF mutations have also been identified for TRPM4, which encodes a nonselective
cation channel, in human progressive familial heart block type I, and involve a defect in
endocytosis [42]. In addition to the mutations in ion channels leading to arrhythmia, some
mutations have been identified in the protein partners with which these channels and trans-
porters associate and by which they are regulated. Next, we will summarize mutations in
channel partners leading to trafficking defects in the context of most documented inherited
cardiac arrhythmias, LTQ, and Brugada syndromes.

3.1. Long QT Syndrome and Ion Channel Partners

Long QT syndrome (LQTS) is a rare congenital syndrome (1:2500–1:10,000) charac-
terized by prolonged QT intervals and associated with a risk of ventricular tachycardia,
termed torsades de pointes (TdP) and cardiac sudden death [43]. Historically, congenital
LQTS have been associated with multiple penetrant mutations in genes encoding the pore-
forming α-subunit of ion channels, with a majority of mutations located in the KCNQ1,
KCNH2, or SCN5A gene and responsible for LQT1-3 [44]. Recently, helped by advances in
molecular biology and sequencing technology, important observations have been made
regarding the development of LQTS and, more specifically, its association with ion channel
partners.



Cells 2021, 10, 2417 6 of 18

3.1.1. Long QT 4 (Ankyrin Mutations)

Encoded by three genes (ANK-1-3), ankyrins are expressed in many tissues [45]. As
cytoskeleton-binding proteins, ankyrins anchor ion channels to the actin and spectrin
cytoskeleton. A role of ankyrin-B (ANK2) in cardiac arrhythmias was first evidenced by
the identification of a common mutation (E1425G) in patients from a French kindred pre-
senting with atypical LQTS [46], initially referred to as LQT4 and then renamed ankyrin-B
syndrome. The mutation E1425G reduces the targeting of Na/K ATPase, Na/Ca exchanger
(NCX), and inositol-1, 4, 5-triphosphate receptors (InsP3R) to cardiomyocyte t-tubules,
as shown in vitro in AnkB+/−-isolated adult cardiomyocytes, whereas no changes are ob-
served at the transcription level. Ankyrin-B mutation in both human and heterozygous
AnkB+/− mice is responsible for various ECG abnormalities (bradycardia, heart rate vari-
ability), leading to severe arrhythmias and in some cases sudden death. Thereafter, beyond
LQT, several loss-of-function ankyrin-B mutations were identified in patients with various
cardiac arrhythmias notably associated with abnormal calcium homeostasis [47–50] and
during AF [51].

3.1.2. Long QT 9 (Caveolin-3 Mutations)

Caveolins 1–3 are specific membrane proteins that form a hairpin loop inside the
membrane, keeping C- and N-terminals oriented toward the cytosol. Caveolins are the
main constituents of caveolae, small compartments of the plasma membrane, which were
first identified by electron microscopy [52]. These bulb-shaped invaginations connected
to the plasma membrane by a collar are involved in many cellular functions [53]. First
described as a major actor in endocytosis, they are also scaffolding proteins able to guide
and tether signaling molecules and ion channels to the peri-membrane region [54]. Re-
cently, evidence of a mechanical-stress regulation has emerged, with caveolae involved in
mechano-adaptation and cellular homeostasis [55]. CAV3-encoded caveolin-3 is the main
caveolin isoform expressed in the myocardium.

The regulation of cardiac INa by caveolin was first demonstrated by Yarbrough and
co-workers. G-protein activation following β-adrenergic stimulation in rat cardiomyocytes
leads to the opening of caveolae and probably the subsequent release of NaV1.5, indicating
that caveolae could be a reservoir for sodium channel NaV1.5 [56]. Robust evidence of
the role of caveolin-3 in long QT cardiac arrhythmias came from the identification of four
mutations (F97C, S141R, T78M, and A85T) in patients referred for LQTS. Despite the fact
that CAV3 mutation results in late INa increase and that caveolin-3/NaV1.5 association is not
disrupted, no evidence was reported as to whether trafficking was involved in the effect [57].
Indeed, caveolae also serve to organize and regulate signaling pathways. In this regard,
Cheng and co-workers demonstrated that the co-expression of SCN5A, SNTA1, nNOS,
and mutated CAV3 (F97C) leads to increased N-nitrosylation of Nav1.5. nNOS inhibition
reversed both the CAV3-F97C-dependent late INa and S-nitrosylation of NaV1.5 [58]. In
addition, three distinct CAV3 mutations (V14L, T78M, and L79R) affecting late INa in a
similar way were identified in sudden infant death syndrome (SIDS) [59]. More recently,
other channels have been implicated in action potential duration (APD) prolongation
in association with CAV3 mutations, such as CaV1.2 and KV4.x channels. For instance,
the CAV3-S141R mutation was shown to increase ICa,L density without affecting channel
gating properties and to decrease Ito density and slow its activation properties [60]. The
potassium inward rectifier channel Kir2.1 also associates with caveolin-3. CAV3 mutations
F97C, P104L, and T78M significantly decrease IK1 by reducing cell surface expression of
the corresponding channel [61]. Altogether, these studies suggest that caveloae could be
involved both in channel trafficking (i.e., rapid delivery of submembrane pools of ion
channels) and scaffolding of macromolecular complexes, allowing ion channel regulation.
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3.2. Brugada Syndrome and Ion Channel Partners

The Brugada syndrome (BrS) is another cause of life-threatening ventricular arrhyth-
mias, characterized by repolarization abnormalities recorded in the right precordial leads
of the electrocardiogram. BrS is an oligogenic/polygenic disease often characterized by
alterations in sodium current properties, notably in the ventricular output track. However,
the underlying molecular mechanisms of sodium current abnormalities are still being
investigated and often involve default of channel trafficking.

3.2.1. SCN1-3B Mutations

In addition to the pore forming α-subunit, four additional β-subunits encoded by four
distinct genes (SCN1B (encoding the β1 and β1b isoforms) and SCN2B, SCN3B, and SCN4B
(encoding the β2, β3, and β4 isoforms, respectively)) constitute the sodium channel. NaV1.5
β-subunits were identified as INa modulators because they increased NaV1.5 expression at
the cell surface [62,63] and potassium currents by modifying the molecular actors’ gating
properties of Ito and IK1 [64]. In addition, NaV-β are involved in cell adhesions by recruiting
ankyrin-G to cell–cell contact sites [62].

The involvement of the β-subunit in the context of cardiac arrhythmia was first
highlighted by Watanabe and colleagues with the identification of a mutation (W179X)
in SCN1B in a patient presenting with the hallmarks of BrS [63]. In vitro, this mutation
prevents the increase of current density observed when NaV1.5 is co-expressed with
WT β1B [63]. Then, Holst and co-workers identified two additional mutations in SCN1B
(H162P and R214Q) after screening BrS patients [65,66]. Electrophysiological measurements
revealed that R214Q mutation is responsible for both outward current Ito increase and
inward current INa reduction. Plus, NaV-β1b was found to directly interact with both
NaV1.5 and KV4.3 [67]. Functional characterization of the H162P mutant indicates that
hNav1.5/hNavβ1b-H162P association results in reduced peak INa current density [68].
Recently, a new SCN1B variant (A197V) was associated with BrS [69]. In addition to
reducing INa current density, the NaV-β1-A197V mutant impairs channel trafficking to the
plasma membrane, by retaining NaV1.5 channels in the intracellular compartment [70].

In parallel, Hu and co-workers identified a first missense mutation in the SCN3B
gene (L10P) in a patient displaying Type-1 ST segment elevation. As the majority of
mutations identified in SCN1B, SCN3B-L10P associated with reduced INa density. Confocal
microscopy reveals a trafficking defect of the NaV1.5 channel, that it remains blocked in
intracellular organelles instead of being tethered to the cell surface [71]. An SCN3B-V110I
mutation carried by unrelated BrS patients was also identified as a common cause of BrS.
This mutation also reduces INa by impairing forward trafficking [72]. A SCN2B missense
mutation includes SCN2B in the list of candidate genes for BrS. Indeed, D211G mutation
was identified in a patient presenting with clinical manifestations of BrS and was associated
with reduced Nav1.5 channel cell surface expression [73]. As of now, SCN4B has not been
associated with BrS. Apart from BrS, mutations in SCN1B were also linked to LQTS [74]
and SIDS [67], suggesting a common mechanism altering cardiac electric activity, possibly
ion channel trafficking.

3.2.2. Ankyrin-G

Ankyrin-G (ANK3) is located at the ID and in the t-tubules of adult myocytes. The first
piece of evidence of the role of ankyrin-G in ion channel trafficking in cardiomyocyte came
from the identification of a mutation (E1053K) in SCN5A of a BrS patient [48]. Specially
localized in the ankyrin-binding motif of NaV1.5, this mutation prevents NaV1.5 from
binding to ankyrin-G, therefore significantly reducing its accumulation at the cell surface
(ID, t-tubules). Interestingly, Golgi-mediated forward trafficking was not impaired, suggest-
ing that NaV1.5 may bypass the conventional secretory pathway. Ankyrin-G silencing in
adult cardiomyocyte in vitro reduces INa density without changing ion channel biophysical
properties [75]. In addition, loss of NaV1.5–ankyrin-G interaction induces NaV1.5 retention
in perinuclear regions and reduces NaV1.5 surface expression, notably at the ID [75]. This
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study suggests that ion channel trafficking is tightly linked to membrane micro-domains in
adult cardiomyocyte. However, whether ankyrin-G is required for anterograde transport of
the channel or for stabilization/retention of the channel at the surface is not clear. Ankyrin-
G silencing also impairs electrical coupling by reducing connexin-43 (Cx43) expression
and perturbs NaV1.5 localization at the ID [76]. Furthermore, as Cx43 seems crucial for
microtubular network stability [77], Cx43 would be required for the formation of functional
sodium channel complexes at the ID [78]. In vivo experiments using a cardiac-specific
ankyrin-G KO mouse revealed decreased NaV1.5 ID population and reduced INa, asso-
ciated with the reorganization of the ID structure, as plakophilin-2 redistributes to the
cytosolic regions [79]. Recently, Yang and co-workers revealed that ankyrin-G regulates
the targeting of both NaV1.5 and KATP channels to ID but not to LM. Using quantitative
STORM imaging, they demonstrated the existence of a Nav1.5/Kir6.2/AnkG complex
at the ID. This study suggests a functional coupling between those two channels, with a
common regulatory process implicating ankyrin-G [80].

3.2.3. Other Trafficking Partner Mutations in Brugada Syndrome

Five cases of single amino acid substitutions of plakophilin 2 (PKP2) have been re-
ported in patients with BrS without mutations in the BrS-related genes (SCN5A, CACNA1C,
GPD1L, and MOG1) or sign of ARVC. Several in vitro data obtained from hiPS-derived
cardiomyocytes of a patient with a PKP2 mutation indicate that the mutated plakophilin 2
fails to target NaV1.5 channels at the plasma membrane [81]. Studying a human sample
of the genetically elusive LQTS and BrS, Musa and co-workers provided the first piece
of evidence involving a GOF missense mutation in DLG1 (SAP97-M82T) favoring Kv4.3-
mediated Ito [82]. In this context, the SIV domain of the sodium channel has been shown to
be responsible for the interaction with both SAP97 and CASK and a V2016M mutation in
this SIV domain has been identified in a patient suffering from BrS [83].

4. Can Acquired Cardiac Arrhythmias Be Caused by Default of Channel Trafficking?

Acquired cardiac arrhythmias such as AF, scar-, or heart failure-related ventricular
arrhythmias are often underlined by a complex substrate that includes fibrosis, neuro-
hormonal activation, and post-translational changes in myriads of proteins. Consequently,
a combination of mechanisms operates together to generate an arrhythmia such as ab-
normal pace making, triggered activities, local conduction block, and circuit of reentries
of the electrical influx. Interestingly, despite this complexity, common pathophysiolog-
ical pathways emerge that lead to default of channel trafficking and disorganization of
the macromolecular complex. Alteration in myocyte–myocyte coupling, disorganization
of membrane microdomains, and changes in the channel microenvironment appear as
major mechanisms responsible for default of channel trafficking during acquired cardiac
arrhythmias.

4.1. When Tissue Remodeling Disorganizes Cardiac Channel Trafficking

The delocalization of gap junctional channels, the connexins, from the intercalated
disk (ID) to the LM of cardiomyocytes has been consistently reported during hypertrophic
and fibrotic myocardial remodeling at both atrial and ventricular levels [84–87]. This
connexin disorganization can reduce myocyte–myocyte electrical coupling and favor elec-
trical conduction block and, hence, cardiac arrhythmias. This phenomenon is probably
the first indication of default of channel trafficking during acquired cardiac arrhythmias.
The remodeling of the extracellular matrix surrounding cardiomyocytes together with the
abnormal coupling between myocyte and (myo-)fibroblasts favors gap junction channel
disorganization. This has been demonstrated in vitro by atrial myocytes with a fibrob-
last co-culture that reproduce the delocalization of connexin at the LM of cardiomyocyte
without gap junction organization and reduce myocyte–myocyte electrical coupling [88].
Delocalized Cx43 at the LM are predominantly in a dephosphorylated state, which has
been shown elsewhere to contribute to abnormal targeting and assembly of connexins



Cells 2021, 10, 2417 9 of 18

into gap junctions [84,85,89]. Another piece of evidence of the critical role of Cx43 in
the normal electrical function of the mammalian heart has been provided by the study
of the internally translated Cx43 isoform GJA1-20k. This auxiliary subunit contributes
to the normal trafficking of Cx43, and its mutation M213L is associated with abnormal
electrocardiograms and sudden death in mice models [89].

Several studies suggest that the disorganization of membrane microdomains con-
taining the subpopulations of NaV1.5 channels could also contribute to the substrate of
acquired cardiac arrhythmias, for instance, the direct targeting of hemi-channels to the
ID via the microtubule plus-end-tracking protein EB1 [90] and the targeting of CaV1.2 to
t-tubules by BIN1 (bridging integrator 1), a protein involved in membrane invagination
and endocytotic processes [91]. Notably, mice with cardiac BIN deletion present decreased
t-tubule folding, resulting in the free diffusion of local extracellular calcium and potassium
ions, lengthening of action potential, and abnormal susceptibility to ventricular arrhyth-
mias [92]. Furthermore, the MAGUK protein CASK, which negatively regulates INa by
impeding NaV1.5 anterograde trafficking to the LM, is downregulated in diseased atria
of patients with AF or valve regurgitation and could contribute to the loss of anisotropy
of the diseased atrial myocardium [27]. Of note, CASK expression is enhanced in the
hypertrophied myocardia of patients suffering from aortic stenosis and heart failure with
preserved ejection fraction. However, in this condition, the deleterious effect of CASK on
ventricle pump function and cardiac arrhythmias has been attributed to its CaMKII activity
and not to channel trafficking [93].

4.2. Keep Ion Channel Trafficking Balanced

As mentioned above, a fine balance between exocytosis and endocytosis of ion chan-
nels is necessary for normal cardiac electrical activity (for review, see [94]). In some
conditions, the dysregulation of this balance can be arrhythmogenic (Figure 2).

4.2.1. hERG, Channel at Demand

The IKr current is encoded by the human ether-a-go-go-related gene (HERG or KCNH2)
in the heart [95,96]. HERG mutations resulting in reduced IKr cause type 2 long QT syn-
drome (LQT2), which predisposes individuals to life-threatening arrhythmias. The vast
majority of HERG mutations are LOF mutations resulting from disrupted forward traf-
ficking of the hERG channel and resulting in decreased IKr [97]. The hERG channel is
also a notorious target for several classes of drugs that engender acquired LQTS [98]. For
instance, apart from exerting a pore-block effect, tricyclic antidepressants, such as de-
sipramine, were shown to increase hERG endocytosis and degradation following channel
ubiquitination and simultaneously to inhibit hERG forward trafficking from the ER [99].
LQTS and torsades de pointes are known to be exacerbated by hypokalemia, with a moderate
increase in serum [K+] capable of correcting LQTS in some patients [100]. Hypokalemia is,
therefore, considered a risk factor for LQTS and sudden cardiac death. Guo and colleagues
provided a clue to the role of extracellular potassium in the functional expression of the
hERG channel [101]. In a rabbit model of hypokalemia, the QT interval prolongation corre-
lates with a prolongation of APD90. In vitro, exposure to a potassium-depleted medium
completely but reversibly eliminates the IKr current without affecting other potassium
currents. The decrease in IKr is explained by a reduction in the sarcolemmal expression of
the hERG channel, combined with increased internalization and lysosomal degradation
of the channel following its ubiquitylation [101] (Figure 2A, left). These results provide
a potential mechanism for hypokalemia-induced exacerbation of LQTS. Prolongation of
the QT interval is also a prominent electrical disorder in patients suffering from diabetes
mellitus. Shi and co-workers reported that cells incubated in a high-glucose medium
display reduced hERG current and hERG protein expression of the mature (glycosylated)
and immature (unglycolsylated) forms [102]. This reduced expression level is associated
with impaired anterograde trafficking through reduced interaction between hERG and
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the chaperone protein Hsp90, leading to the activation of the UPR and subsequent hERG
degradation [102] (Figure 2A, right).

Figure 2. Summary diagram of alterations in the intracellular trafficking of cardiac potassium channels involved in acquired
arrhythmias. (A) Regulation of hERG channel trafficking by hypokalemia and hyperglycemia. Decreased extracellular
potassium triggers hERG channel ubiquitination, internalization, and degradation. Hyperglycemia interrupts the interaction
between hERG and the chaperone HSP90 and prevents its anterograde trafficking to the membrane, activating the UPR
and channel degradation. (B) Regulation of KV1.5 trafficking by cholesterol. Cholesterol depletion activates the recycling
and exocytosis of the KV1.5 channel from the recycling endosome without affecting either the secretory route or the
fast recycling pathway mediated by the early endosome. (C) Regulation of KV1.5 trafficking by mechanical constraint
and atrial remodeling. In control condition, both anterograde and retrograde pathways are at equilibrium. Laminar
shear stress stimulates the integrin/phospho-FAK signaling, which activates the recycling of KV1.5 channels accumulated
in the recycling endosome. In remodeled atria and during AF, this recycling pathway is constitutively activated and
the trafficking balance is altered in the direction of a favored anterograde traffic to the detriment of retrograde traffic.
Abbreviations: A: anterograde; CCP: clathrin-coated pit (cleaved by dynamin); EB1: end-binding protein 1; EE: early
endosome; ER: endoplasmic reticulum; FAK: focal adhesion kinase; HSP90: heat shock protein 90; P: phosphorylation; PM:
plasma membrane; RE: recycling endosome; R: retrograde; SV: secretory vesicle; Ub: ubiquitylation; UPR: unfolded protein
response.

4.2.2. The Restless KV1.5 Channel

The other ion channel the functional expression of which is highly regulated by traf-
ficking process is the voltage-gated KV1.5 channel. KV1.5 continuously oscillates between
a mobile/trafficking state and a more static one, determining its level of expression at the
sarcolemma [103]. The KV1.5 channel underlies an important repolarizing current of the
plateau phase of the atrial myocytes, IKur [104]. Moreover IKur has been implicated in the
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electrical remodeling associated with the occurrence of AF [105,106], leading to the unmet
expectation of KV1.5 blockers as specific anti-arrhythmic agents against AF. Nevertheless,
dissection of the recycling process of the KV1.5 channel in normal and diseased atria has
led to an important breakthrough in the pathophysiology of cardiac electrical remodeling.

a. KV1.5 channel trafficking needs fat

The plasma membrane of a cardiomyocyte is composed of various types of lipids,
which determine the structural and physical properties of the membrane [107]. Cholesterol
affects membrane fluidity, defined as the degree of ordering and motional freedom of a
lipid-soluble molecule within a cellular membrane. Cholesterol is not randomly distributed
in the plasma membrane but packed in a cholesterol-enriched domain called lipid rafts,
which are dynamic platforms important for the delivery of proteins to the membrane and
for sequestering proteins in close physical proximity to control their functional interac-
tions [108]. Several cardiac ion channels are localized into a lipid raft, notably the caveolae
containing the anchoring protein caveolin-3, which regulates their trafficking at the plasma
membrane [94,109].

Another way by which cholesterol can influence membrane cardiac ionic channel func-
tion is by affecting its delivery at the plasma membrane. Depletion of membrane cholesterol
using methyl-β-cyclodextrin (MβCD) increases the number of functional KV1.5 channels
in atrial myocytes rapidly (in a few minutes), as shown by single KV1.5 channel activity
recordings in cell-attached patch clamp configuration and fluorescence recovery after pho-
tobleaching (FRAP) experiments [110]. This increased functional expression is due to the
exocytosis of channels from the recycling pathway, specifically the Rab11-coupled recycling
endosome, and not from the insertion of neo-synthesized, membrane-addressed channels
through the conventional secretory pathway. Indeed, the KV1.5 channel packed into the
Rab11 recycling endosome, considered as a slow route for ion channel recycling [13,14],
dissociates rapidly upon cholesterol depletion in atrial myocytes (Figure 2B). In addition
to the KV1.5 channel, the IKs current appears to be regulated by intracellular trafficking.
Indeed, chronic activation of calcium-dependent PKC (cPKC) induces a decrease in KCNQ1
membrane expression and IKs current via an increase in channel endocytosis dependent on
dynamin II and Rab5 [111]. Interestingly, the use of statins restores the surface localization
of the channel and its function by inhibiting the Rab5-associated early endosome [111,112].
Thus, anti-cholesterol therapies could be beneficial in diseases associated with chronic PKC
activation and/or calcium handling defects, such as heart failure.

How is the membrane cholesterol regulation of cardiac channel turnover linked to
cardiac arrhythmias? Growing evidence indicates a tight relationship between AF and
metabolic disorders, such as obesity. Furthermore, experimental models of obesity and a
high fat diet are characterized by an abnormal susceptibility to AF [113]. Several factors
can explain this association between obesity, diet, and AF, and among them, a direct effect
of a cholesterol diet on membrane composition and excitability is a probability [109,114].

b. Do not stress the KV1.5 channel

Cardiomyocytes are continuously submitted to mechanical forces during cardiac
cycles that can be distinguished into stretch, shear stress, and strain constraints. For
instance, shear stress is generated by the sliding of myocardial layers [115,116] and it can
activate intracellular calcium transients [117,118], increase the beating rate of neonatal
ventricular myocytes [119], and trigger propagating action potential (AP) [120].

Shear stress also triggers the development of a large outward current in atrial my-
ocytes, shortening the atrial AP [121]. Several arguments indicate that shear-stress-induced
outward potassium is due to the recruitment of KV1.5 channels from subcellular com-
partments to the sarcolemma. Notably, the delivery of KV1.5 channels has been directly
visualized by total internal reflection fluorescence (TIRF) microscopy in live atrial car-
diomyocytes submitted to laminar shear stress [121]. As for the recruitment of KV1.5
channels upon cholesterol depletion, the donor compartment is the recycling endosome
and occurs in the same time frame, i.e., a few minutes. The exocytosis process is regulated
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by integrin signaling through the activation of the focal adhesion kinase (FAK) and relies
on an intact microtubule system [121]. This study was the first one to give evidence that
mechanical stress increase in the atrial myocardium triggers the recruitment of a pool
of KV1.5 from an inducible reservoir. During atrial dilation caused by a hemodynamic
overload, this phenomenon is exacerbated, resulting in an increased IKur despite reduced
KV1.5 expression levels in hypertrophied atrial myocytes. The resulting shortening of the
AP could contribute to high susceptibility to developing AF in hemodynamically over-
loaded and dilated atria [121] (Figure 2C). Note that laminar shear stress also increases
the hERG1-encoded current, an effect suppressed by FAK inhibitor [122]. Mutated hERG
channels associated with some LQTS are insensitive to laminar shear stress [122].

During AF, drastic changes in the trafficking equilibrium as well as an alteration in
the polymerization state of microtubules are observed, leading to reduced endocytosis and
increased recycling [103] (Figure 2C). Taken together, this finding of up-regulated recycling
pathways and reduced clathrin-mediated endocytosis is consistent with the accumulation
of KV1.5 channels in the plasma membrane of atrial myocytes during AF.

Evidence of the role of the recycling of KV1.5 during atrial arrhythmias is also provided
by the study of the mechanism linking mutation in KCNE and the risk of AF. KCNE
subunits are single transmembrane domain proteins that form complexes with voltage-
gated potassium (KV) channel α-subunits that can regulate channel trafficking. Deletion
of KCNE3 is associated with susceptibility to AF in mice [123]. At the cellular level, the
KV1.5-encoded repolarizing atrial current is enhanced due to increased Rab4-, Rab5-, and
Rab9-dependent recycling of Kv1.5 channels to the z-disc/t-tubule region and LM via
activation of the Akt/AS160 pathway [123]. Finally, survival of Purkinje cells following
myocardial infraction depends on the subcellular remodeling of both SAP97 and the
actin-binding protein cortactin, thereby preserving KV1.5 channel function [124].

5. Conclusions

Today, abundant literature has established that the trafficking of ion channels is a
central regulator of normal cardiac electrophysiology and that alterations in this process
are often a major cause of both inherited and acquired cardiac arrhythmias. This new
knowledge on cardiac electrophysiology has profoundly transformed our view on the
pathology of cardiac arrhythmias, which has shifted from a classical scheme of cardiac
arrhythmia being a fixed molecular or tissue defect to its being a dynamic substrate
regulated by a number of different factors. For instance, remodeling of the myocyte
microarchitecture, accumulation of extracellular matrix, proliferation of non-cardiomyocyte
cells, and alteration in the metabolic or oxidative status impact channel trafficking and,
indeed, turn out to be important newly identified players in cardiac arrhythmias. In
this light, it is easy to understand why conventional antiarrhythmic therapies targeting
channel pores have demonstrated limited efficiency and why new antiarrhythmic strategies
that also target cardiovascular risk factors, cardiac hemodynamic, or diet are now being
investigated. A new chapter on cardiac electrophysiology and basic cardiac arrhythmias is
now opened.
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