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Rates of convergence to the local time
of Oscillating and Skew Brownian Motions

Sara Mazzonetto∗
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Abstract

In this paper, a class of statistics based on high frequency observations of oscillating
and skew Brownian motion is considered. Their convergence rate towards the local time
of the underlying process is obtained in form of a functional limit theorem. Oscillating
and skew Brownian motion are solutions to stochastic differential equations with singular
coefficients: piecewise constant diffusion coefficient or additive local time finite variation
term. The result is applied to provide estimators of the skewness parameter and study
their asymptotic behavior, and diffusion coefficient estimation is discussed as well. More-
over, in the case of the classical statistics given by the normalized number of crossings,
the result is proved to hold for a larger class of Itô processes with singular coefficients.
Up to our knowledge, this is the first result proving the convergence rates for estimators
of the skewness parameter of skew Brownian motion.

Keywords: Skew Brownian motion, Oscillating Brownian motion, Threshold diffusions, Local
time, Functional limit theorems, Central Limit Theorem, Parameter estimation.
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1 Introduction

It is well known that the normalized number of crossings of the level r ∈ R of the time
discretization (high frequency) of a Brownian motion (BM) provides an estimator for its local
time at r. Roughly speaking the local time at the point r measures the time the process
spends around r (see (1.3) for a precise definition), so a rescaled number of crossings for high
frequency data is a natural approximation of the local time also for more general processes.
The normalized number of crossings has been extensively studied as an approximation of the
local time of Brownian diffusions solutions of stochastic differential equations (SDEs) whose
drift coefficient and diffusion coefficient σ are sufficiently regular (in particular σ is continuous).
The convergence was proven, for instance, in [5, 6].

In this document we allow the presence of some singularities. We focus on one-dimensional
Itô processes solutions of stochastic differential equations (SDEs) with singular coefficients:
discontinuous coefficients or drift in form of a weighted local time of the process at a given level.
Solutions to such SDEs are often called threshold or skew diffusions. Two key cases belonging
to this class of processes are oscillating Brownian motion (OBM) and skew Brownian motion
(SBM). They are generalizations of BM and of reflected BM as well, with distributions which
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are possibly singular with respect to BM. They change behavior when they reach a point, called
barrier or threshold , which then becomes a discontinuity point for the local time x 7→ Lx

t (X)
(see (1.3)). More precisely, OBM behaves like a BM with a different volatility above and below
the threshold (causing a regime-switch) while SBM behaves like a BM everywhere except when
it reaches the threshold, which plays the role of semi-permeable and semi-reflecting barrier.
Note that OBM and SBM are null-recurrent processes, and so is the diffusion presenting both
behaviors that we call oscillating-skew BM (OSBM).

More general functionals of discrete observations, which include the normalized number of
crossings of a given level, are considered in this document. Given a stochastic process (Xt)t∈[0,∞),
let us consider the following statistics for high frequency observations:

ε
(r,f,X)
n,t :=

1√
n

⌊nt⌋∑
k=1

f(
√
n(X(k−1)/n − r),

√
n(Xk/n − r)) (1.1)

where f : R2 → R is a measurable function satisfying suitable integrability conditions. The
normalized number of crossings of the level r corresponds to considering the function f(x, y) :=
1(−∞,0)(xy) (the statistic is explicitly provided in (3.1)).

In the case X is a BM, for the kind of estimators in (1.1), convergence towards the local
time and Central Limit Theorem (CLT) were obtained in [12, 13]. In the context of Brownian
diffusions with regular coefficients mentioned above, convergence results are proven for specific
functions f in [18] and for more general statistics of multivariate diffusions in [26]. In the latter
article the associated CLT is proved. It is shown via semigroup estimates and martingale limit
theorems, that ε

(r,f,X)
n,t behaves asymptotically (in n) as a mixed Gaussian distribution (see (1.2)

below). The techniques developed so far can be adapted to study more general processes, for
instance fractional BM in [43] and [3, Corollary 14]. In this document we adapt them to study
another class of processes.

Let us have a look at the following simplified statement of our key result, that is Theorem 1
in Section 2.3: let X be an OSBM and r be the threshold, let (Lr

t (X))t≥0 be its symmetric local
time at the threshold. Then for appropriate constants c,K ∈ R it holds for all t ∈ [0,∞) that

n1/4

(
ε
(r,f,X)
n,t − c Lr

t (X)

K2
√

Lr
t (X)

)
n→∞∼ N (0, 1). (1.2)

Although, at the threshold r, OSBM (as OBM and SBM) behave differently with respect to
BM and in particular the local time x 7→ Lx

t (X) is discontinuous at r, the speed of convergence
is the same as for BM: n1/4.

Remark 1 (Heuristics on the rate). The convergence is different from what one might expect
(i.e. n1/2), because the local time at r, and so its estimators, depends on the behavior of the
process around r. Indeed, as n → ∞, among n observations of the process on a fixed interval,
the number of those which are sufficiently close to r to matter is of order n1/2. Think of the
random walk approximation of BM.

The result in Theorem 1 is actually more general. First, it is a functional limit theorem: the
processes are seen as random variables with values in the Skorokhod space of càdlàg functions.
Second, it holds also for processes combining pure skew and oscillating behavior and their drifted
version, under some suitable assumptions on the drift. Therefore, this result extends the existing
results on BM to solutions to SDEs with singular coefficients such as OBM, SBM, OSBM, and
reflected BM (with suitable drift, by Girsanov’s result). Extensions to more general statistics
of more general singular diffusions is object of further research. Nevertheless, in Theorem 2,
we prove the analogous of Theorem 1 for the well known estimator of the normalized number
of crossings when the process is a more general threshold diffusion.

2



Let us illustrate, in the next section, few applications of Theorem 1 on skewness parameter
estimation for SBM. Note that, some among them are contributions of this document. In
addition to those applications, in Section 3, we discuss diffusion coefficients estimation for
OSBM and propose, in Proposition 3, estimators for the diffusions coefficients.

1.1 Motivation and applications

Since the seventies OBM and SBM together with their local time have been studied in the
context of threshold diffusions. In probability and stochastic analysis [8, 31, 45, 22, 19, 50], . . . ,
recently in SPDEs [14, 4], in simulation [17, 48], . . . , and we refer the reader to the introduction
of [35] for some more applications of threshold diffusions in astrophysics, brain imaging, ecology,
geophysics, fluid/gas dynamics, meteorology, molecular dynamics, oceanography.

Some models in financial mathematics and econometrics are threshold diffusions, for instance
continuous-time versions of SETAR (self-exciting threshold auto-regressive) models, see e.g. [15,
41]. SBM and OBM and their local time have been recently investigated in the context of option
pricing, as for instance in [20] and [16]. In [37] it is shown that a time series of threshold diffusion
type captures leverage and mean-reverting effects. We refer to the introduction of the latter
article for further references.

Statistical studies for threshold diffusions are partially motivated by calibration of such
econometric models (see e.g. [49, 36]). Indeed, study of (quasi) maximum likelihood estimators
(MLE) of drift coefficients from high frequency observations depends on the approximations
of occupation times and local times of the process. This is quite naturally explained by the
fact that the behavior of the process changes at the threshold. Less heuristically, and more
quantitatively, since a threshold diffusion behaves differently on two semi-axes, say (−∞, 0)
and (0,+∞), it is natural to look at the dynamics of the process in these semi-axes and this
means considering max{Xt, 0} and min{Xt, 0}. And if Xt satisfies a SDE then by Itô-Tanaka
formula max{Xt, 0} and min{Xt, 0} satisfy a SDE involving the local time of the process Xt.
(See e.g. (4.3) for Itô-Tanaka formula.) Theorem 1 has been applied, in [42], to exhibit the
asymptotic behavior in high frequency of (quasi) MLE of the drift parameters of a threshold
diffusion which is a continuous-time SETAR model: a threshold Ornstein-Uhlenbeck process
which follows two different Ornstein-Uhlenbeck dynamics above and below a fixed threshold.
Similar applications are possible for other econometric models.

The latter application was the original motivation of this document. Nevertheless, Theo-
rem 1 contributes on one side to parameter estimation of SBM answering to a conjecture in [40]
and on another side to estimation of the volatility jump of some levy-processes (see [47], where
a special case of Theorem 1 is applied. Let us be more precise.

Statistical analysis for SBM and OBM is quite recent: parameters estimation for skew re-
flected BM from continuous time observations was provided in [7] and convergence properties
(in long time) were studied by exploiting ergodic properties which SBM and OBM do not
satisfy. Estimators based on high frequency observations of the skewness parameter of SBM
are provided in [39, 40] and of the diffusion coefficients of OBM in [36]. The estimators pro-
posed are based on approximations of the local time and occupation times from high frequency
observations of the process itself.

Theorem 1 allows to establish the speed of convergence and limit distribution of several
estimators of the skewness parameter from high frequency observation of OSBM. In Theorem 3
we focus on SBM and introduce new estimators of the skewness parameter of SBM for which
we show an asymptotic mixed normality property. This is the first result in the literature to
prove the convergence speed for estimators of the skewness parameter of SBM. The speed of
convergence and the limit distribution for the MLE was conjectured in [40], based on the results
for BM and illustrated using skew random walk in [33]. In [34], Theorem 1 is applied to refine
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and prove the conjectured result.
In Section 3.1, we apply Theorem 1, to two classical approximations of the local time of BM

such as the normalized number of crossings. Since standard BM (and reflected BM as well) is
a special case of OSBM, as a by-product, we recover the classical results on the convergence
(rates) for BM (see [13, 26]). In the case of the number of crossings, we can consider threshold
diffusions involving the local time and whose diffusion coefficient is piecewise differentiable and
admits a finite jump (see Theorem 2). In a series of works Gikhman, Portenko, and Goshko
study the convergence in law (without rate) towards the local time of the normalized number of
crossings in a setting allowing for singularities (see [44] and references therein) which seems to
include OBM, SBM, and also sticky BM. Theorem 2 implies a stronger convergence (which was
first proven in [40] for SBM) and exhibits also the rate of convergence. Up to our knowledge,
Theorem 2 is the first result of its kind for such general one-dimensional threshold diffusions.

1.2 Outline of the paper

The paper is organized as follows. First we introduce the processes OSBM as unique strong
solutions to some SDE in Section 2.1, then we state the main result: Theorem 1 in Section 2.3.
Section 3 is devoted to applications: study of the number of crossings for a more general class
of processes in Theorem 2, estimation of the skewness parameter of SBM in Theorem 3, and
estimation of the parameters of OSBM in Proposition 3.

Proofs are provided in Section 4. There it is shown that the proof of Theorem 1 is based
on an auxiliary proposition (Proposition 4), whose proof is so technical that it is provided in
Appendix C. Appendix A deals with useful properties of OBM relevant in this article and in
Appendix C. Appendix B is an introduction to Appendix C: some of the main ideas are already
given in this section through a proof of the convergence (without rates) towards the local time
of the statistics.

1.3 Notation and notions of convergence

1.3.1 Notation

Throughout this document for every measurable functions g : R → R and measure µ on the
Borel space (R,B(R)) we denote by ⟨µ, g⟩ the integral of g with respect to the measure µ:

⟨µ, g⟩ :=
∫ ∞

−∞
g(x)µ(dx).

For every γ ∈ [0,∞) let λ(γ) be the measure on (R,B(R)) absolutely continuous with respect
to the Lebesgue measure satisfying λ(γ)( dx) = |x|γ dx and let

(L1(λ(γ)), ∥ · ∥1,γ)

be the set of Borel measurable λ(γ)-integrable functions and its norm. If γ = 0, we simply
denote by (L1, ∥ · ∥1) := (L1(λ(0)), ∥ · ∥1,0) the normed space of Lebesgue integrable functions.

Definition 1. Let γ ∈ [0,∞). We denote by L1
b(λ

(γ)) the following subspace of L1:

L1
b(λ

(γ)) = {f : R → R, measurable and bounded s.t. f ∈ L1(λ(γ))}.

We denote by Iγ the following space of bi-variate measurable functions

Iγ = {h : R2 → R, ∃ h̄ ∈ L1
b(λ

(γ)),∃ a ∈ [0,∞) s.t. ∀x, y ∈ R : |h(x, y)| ≤ h̄(x)ea|y−x|}.
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Remark 2. If 0 ≤ γ1 ≤ γ2 < +∞, then L1
b(λ

(γ2)) ⊆ L1
b(λ

(γ1)) and Iγ2 ⊆ Iγ1 .

Remark 3. Let γ ∈ [0,∞) and let a function ν := ν+1[0,∞) + ν−1(−∞,0) > 0. Then for every
functions f : R → R and g : R2 → R it holds

• f ∈ L1
b(λ

(γ)) if and only if fν ∈ L1
b(λ

(γ)), where fν(x) := f(ν(x)x),

• h ∈ Iγ if and only if hν ∈ Iγ, where hν(x, y) := h(ν(x)x, ν(y)y).

Proof of Remark 3. It suffices to prove one implication. Let us prove sufficiency for both state-
ments.

Since f and ν are measurable, then fν is measurable. Boundedness for fν follows from
boundedness of f . A change of variable shows that there exists a constant C ∈ (0,∞) depending
on ν−, ν+ such that ⟨λ(γ), |fν |⟩ ≤ C⟨λ(γ), |f |⟩ which is finite by assumption. Thus fν ∈ L1

b(λ
(γ)).

Since h and ν are measurable, then hν is measurable. Let us recall that there exist a non-
negative function h̄ ∈ L1

b(λ
(γ)) and a constant a ∈ [0,+∞) such that |h(x, y)| ≤ h̄(x)ea|x−y| for

all x, y ∈ R. Hence, for all x, y ∈ R it holds that |hν(x, y)| ≤ h̄ν(x)e
a|ν(x)x−ν(y)y| and it can be

shown that |hν(x, y)| ≤ h̄ν(x)e
amax{ν−,ν+}|x−y|. Since h̄ ∈ L1

b(λ
(γ)), we have proven above that

h̄ν ∈ L1
b(λ

(γ)), and amax{ν−, ν+} ∈ [0,∞). Thus hν ∈ Iγ.

1.3.2 The symmetric local time

Let us give a more rigorous definition of the local time process. Let t ∈ [0,∞) and let (Xs)s∈[0,∞)

be a one-dimensional semi-martingale. The symmetric local time at the point x accumulated
on the time interval [0, t] by the semi-martingale X satisfies a.s.

Lx
t (X) = lim

ϵ→0

1

2ϵ

∫ t

0

1{−ϵ≤Xs−x≤ϵ}d⟨X⟩s (1.3)

and if x = 0 we denote L0
t (X) by Lt(X).

1.3.3 Notions of convergence

As already mentioned, the main aim of this article is studying, as n → ∞, the convergence
towards the local time together with its rate of the statistics ε

(r,f,X)
n,· , with X being an OSBM

(see Section 2.1.2) and f suitable function. Let us recall the notions of convergence used for
the results of this paper. The statement of the CLT involves the notion of stable convergence
which was introduced and studied first in [46] and [2]. We now specify it in the case used in
this document.

Definition 2. Let (D, d) be a metric space, (Ω′,F ′,P′) be an extension of the probability space
(Ω,F ,P), let Xn : Ω → D, n ∈ N, be a sequence of random variables, and let X : Ω′ → D be
a random variable. Then we say that Xn converges stably in law to X if for all f : D → R
continuous and bounded and all bounded random variable Y : Ω → R it holds that

lim
n→∞

E[f(Xn)Y ] = E′[f(X)Y ] .

Let t ∈ [0,∞), let Dt, resp. D∞, be the Skorokhod space of càdlàg functions from [0, t], resp.
[0,∞), to R endowed with the Skorokhod topology. When D = Dt, t ∈ [0,∞] the functional
stable convergence in law is usually denoted by

Xn
L−s−−−→
n→∞

X.
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Finally we recall the notion used in the convergence results, i.e. the convergence in probability
locally uniformly in time or convergence uniform on compacts in probability (u.c.p.): let X,Xn,
n ∈ N, be random variables with values in D∞, then

Xn
u.c.p.−−−→ X,

if for all t ∈ [0,∞) it holds that sups∈[0,t] |Xn(s)−X(s)| P−−−→
n→∞

0.

2 Rates of convergence to the local time

In the entire document let (Ω,F , (Ft)t∈[0,∞),P) be a stochastic basis (for convenience, one
may assume the usual conditions: completeness and right-continuity) and W be an (Ft)t∈[0,∞)-
adapted standard BM.

In this section, we first introduce SBM as solution to the SDE (2.1) involving the local time
of the process Then, OBM is specified as solution to the SDE (2.7) with discontinuous diffusion
coefficient which is a special case of a wider class of processes extending both OBM and SBM,
introduced in Section 2.1.2. Finally we provide what can be considered the main result of this
article, Theorem 1.

2.1 The framework

2.1.1 Skew Brownian motion

Roughly speaking a SBM can be described trajectorially as a standard BM transformed by
flipping its excursions from the origin with a certain probability. In this document we refer to
the characterization as unique strong solution to a SDE involving the local time, which was
first considered by [23]. We refer the reader to a somehow recent survey paper on SBM [32],
where for instance, recalling Portenko’s approach, it can be seen that the local time formally
arises from a distributional drift: the Dirac δ at the threshold.

The SBM with skewness parameter β ∈ [−1, 1] at the threshold r ∈ R is the diffusion which
is strong solution to the following SDE

Xt = X0 +Wt + βLr
t (X) (2.1)

where Lr
t (X) is the symmetric local time of the process at r, X0 ∈ R, and βX0 ≥ 0 if |β| = 1.

Some properties of the local time of SBM are object of the recent paper [11].
We call standard SBM a SBM with threshold r = 0 starting at X0 = 0. In this paper a SBM
with skewness parameter β ∈ (−1, 1) is also denoted by β-SBM. Note that a 0-SBM is a BM.
Moreover the ±1-SBM is a positively/negatively reflected BM.

The following quantities are important for the next sections. Let us denote by µβ the speed
measure associated to the β-SBM with threshold r = 0, that is

µβ(dx) :=
(
(1 + β)1(0,∞)(x) + (1− β)1(−∞,0)(x)

)
dx = (1 + sgn(x)β) dx,

and pβ(t, x, y) denotes its transition density (first computed in [51]):

pβ(t, x, y) =
1√
2πt

exp

(
−(x− y)2

2t

)
+ β sgn(y)

1√
2πt

exp

(
−(|x|+ |y|)2

2t

)
. (2.2)
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2.1.2 Oscillating-skew Brownian motion

We now consider a generalisation of SBM, the oscillating-skew BM (OSBM) with threshold
r ∈ R which is solution to

Xt = X0 +

∫ t

0

σ(Xs) dWs + βLr
t (X) t ≥ 0 P-a.s. (2.3)

with β ∈ [−1, 1], the deterministic initial condition X0β ≥ 0 if |β| = 1 and X0 ∈ R otherwise,
and σ is the positive two-valued function discontinuous at the threshold

σ := σ−1(−∞,r) + σ+1[r,+∞) (2.4)

with σ−, σ+ ∈ (0,+∞). We refer to [30] or [9] for strong existence and pathwise uniqueness of
solutions to (2.3). In this document we also denote this process by (β, σ±)-OSBM. The speed
measure of the OSBM with threshold r = 0 (standard OSBM) is

µX(dx) =
1 + sgn(x)β

(σ(x))2
dx =

(
1− β

σ2
−

1(−∞,0)(x) +
1 + β

σ2
+

1[0,∞)(x)

)
dx (2.5)

and (by Itô-Tanaka formula in Lemma 1), the transition density function satisfies

pX(t, x, y) =
1

σ(y)
pβσ

(
t,

x

σ(x)
,

y

σ(y)

)
with βσ :=

(1 + β)σ− − (1− β)σ+

(1 + β)σ− + (1− β)σ+

(2.6)

where pβσ is the density of the SBM recalled in (2.2).
Let us specify the case of OBM which will be useful in the paper, although we could define

it as a (0, σ±)-OSBM.

Remark 4. When β(σ−−σ+) = 0 the (β, σ±)-OSBM is either a SBM or an OBM. More precisely,
a (β, 1)-OSBM is a β-SBM and a (0, σ±)-OSBM is a σ±-OBM.

2.1.3 Oscillating Brownian motion

The OBM with threshold r ∈ R solves the following special case of (2.3):

Xt = X0 +

∫ t

0

σ(Xs) dWs, t ≥ 0, (2.7)

where X0 ∈ R and the diffusion coefficient σ is the function given in (2.4). This process has
been first defined and studied in [29].

In this document, we also denote this process by σ±-OBM and we call standard OBM an
OBM Y with threshold r = 0 and starting point Y0 = 0. As for SBM and OSBM we can allow
reflection. This would correspond to allow either σ− or σ+ to be infinity: If σ+ = 1, σ− = +∞,
Y0 ≥ r (resp. σ− = 1, σ+ = +∞, Y0 ≤ r) then if r = 0 it is a positively (resp. negatively)
reflected BM.

We specify also the notation for (2.5) and (2.6) for standard OBM (which corresponds to
take β = 0). The speed measure and the transition density (first given in [29]) are here denoted
by

λσ(dx) :=
1

(σ(x))2
dx and qσ(t, x, y) =

1

σ(y)
pβσ

(
t,

x

σ(x)
,

y

σ(y)

)
with βσ := σ−−σ+

σ−+σ+
.
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2.2 Convergence towards the local time

Let X be the OSBM solution to (2.3), let µX denote the speed measure (2.5), and let pX denote
the transition density (2.6). Note that X is a one dimensional null-recurrent diffusion, therefore
the speed measure µX is a stationary measure. In particular one can take X to be the σ±-OBM
solution to (2.7) or the β-SBM solution to (2.1).

Given two measurable functions f : R2 → R and g : R → R, let

EX
f,g(x) =

∫ ∞

−∞
f(x, y)g(y)pX(1, x, y) dy and EX

f := EX
f,1 (i.e. g ≡ 1). (2.8)

We do not provide general assumptions for which the latter integrals are well defined. Assume
for the moment that f and g are positives. Note that, if X denotes the solution with r = 0,
then

EX
f,g(x) = E[f(x,X1)g(X1)|X0 = x]

and note that EX
1,g(x) is the transition semigroup (in usual notations, P1g(x)).

Hypothesis 1. The measurable bi-variate function f : R2 → R satisfies that EX
f , E

X
f2 ∈ L1

b(λ
(2))

where L1
b(λ

(2)) is given in Definition 1 in Section 1.3.

Remark 5. With abuse of notation, if f : R → R, we allow the slight abuse of notation f ∈ Iγ,
EX

f,g, and EX
f as above: one should interpret that f coincides with the function ((x, y) 7→ f(x)).

Observe that, in this case, EX
f = f .

Proposition 1 (Convergence towards the local time). Let f : R2 → R be a function satisfying
Hypothesis 1 and let X be the OSBM solution to (2.3). Then

ε(r,f,X)
n,·

u.c.p.−−−→
n→∞

⟨µX ,E
X
f ⟩Lr

· (X).

Note that the constant ⟨µX ,E
X
f ⟩ can be rewritten as

⟨µX ,E
X
f ⟩ = E[f(X0, X1)|X0 ∼ µX ] .

Actually, the convergence in Proposition 1 is uniform in the parameters θ := (β, σ−, σ+) ∈
[−1, 1] × (0,∞) × (0,∞) := Θ. More precisely, let X(θ) denote the solution associated to the
parameter θ ∈ Θ, then for all t ∈ (0,∞) it holds for all ε ∈ (0,∞) that

lim
n→∞

sup
θ∈Θ

P

(
sup
s∈[0,t]

∣∣∣ε(r,f,X(θ))
n,s − ⟨µX ,E

X
f ⟩Lr

s(X
(θ))
∣∣∣ ≥ ε

)
= 0.

In the case of SBM (with θ := β) the latter equation and Proposition 1 follow from [40,
Proposition 2] (with T = 1) and the scaling property (A.1) in Appendix A.1.

2.3 Rate of convergence to the local time

We refine the above convergence showing that the speed of convergence is of order 1/4.

Theorem 1. Let f ∈ Iγ, γ > 3, let X be the (β, σ±)-OSBM solution to (2.3). Then there
exists (possibly on an extension of the probability space) a BM B independent of X such that

n1/4
(
ε(r,f,X)
n,· − ⟨µX ,E

X
f ⟩Lr

· (X)
) L−s−−−→

n→∞

√
KX

f BLr
· (X), (2.9)
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where KX
f is the non-negative finite constant given by

KX
f = ⟨µX ,E

X
f2 + 2EX

f,PX
f
⟩+ 2σ−σ+

(1 + β)σ− + (1− β)σ+

8

3
√
2π

(⟨µX ,E
X
f ⟩)2

− 2

√
2

π

2σ−σ+

(1 + β)σ− + (1− β)σ+

⟨µX ,E
X
f ⟩

·
∫ ∞

−∞

(
e
− y2

2(σ(y))2 −
√
2π

|y|
σ(y)

Φ

(
− |y|
σ(y)

))
PX

f (y)µX(dy)

− 2⟨µX ,E
X
f ⟩
(

2σ−σ+

(1 + β)σ− + (1− β)σ+

)2

·
∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

|x|e
− x2

2(σ(x))2 Φ(− |y|
σ(y))√

2πσ(x)

√
1

t
− 1f(x

√
t, y

√
1− t)µX(dy) dtµX(dx),

(2.10)

Φ is the cumulative distribution function of a standard Gaussian random variable,

PX
f (x) =

∞∑
j=0

∫ ∞

−∞
pX(j, x, y)

(
EX

f (y)− ⟨µX ,E
X
f ⟩EX

gβ
(y)
)
dy, (2.11)

and gβ(x, y) =
1

1+sgn(y)β

(
|y| − 1+sgn(y)β

1+sgn(x)β
|x|
)
.

Remark 6 (Reflected BM). The assumptions of Proposition 1 and Theorem 1 include reflected
BM, i.e. |β| = 1.

Remark 7 (About results for drifted OSBM). Let us consider a drifted OBM solution of an
SDE with drift coefficient given, for instance, by a bounded function b of the process itself.
Then, Proposition 1 and Theorem 1 hold - with the same quantities and constants - for the
drifted OBM. This follows by the same arguments in [26, Section 2.4]; to summarize, it suffices
to prove the result on bounded time intervals [0, t] (see the beginning of the proof if Theorem 1)
and apply Girsanov’s transform to pass from the driftless case to the drifted one. Since the drift
is bounded, the Radon-Nikodym derivative is integrable. Then, by a dominated convergence
argument, stable convergence holds for the drifted process. The result for drifted OBM implies
the one for drifted OSBM by a simple space transform as a consequence of Section 4.1.

Remark 8. If β = 0 and σ ≡ 1 we recover the known result for BM: e.g. [12, 13] and a special
case of the already cited [26, Theorem 1.2]. The expression for the constant KX

f we propose is
slightly more explicit.

Remark 9. Theorem 1 implies a weaker version of Proposition 1. Proposition 1 requires Hy-
pothesis 1 which is satisfied if for instance f ∈ I2 (see Lemma 2). Theorem 1 instead assumes
f ∈ Iγ, γ > 3, which is a stronger condition.

Let us comment briefly on how to derive the u.c.p. convergence from Theorem 1, although
in Appendix B we provide a direct proof of the weaker version of Proposition 1. The notions
of convergence in law/stably in law/in probability coincide when the limit is constant and so

ε
(r,f,X)
n,· − ⟨µX ,E

X
f ⟩Lr

· (X)
P−−−→

n→∞
0 in the Skorokhod topology. Since Lr

· (X) is (a.s.) continuous

and increasing it can be proven (splitting into positive and negative part of f , and so of EX
f )

that ε
(r,f,X)
n,·

u.c.p.−−−→
n→∞

⟨µX ,E
X
f ⟩Lr

· (X) (see e.g. (2.2.16) in [27]).

3 Applications

As mentioned in the introduction, several applications of Theorem 1 and of the results of this
section can be found in the literature (see for instance [40, 39, 34, 47]). In this section, we
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first consider some classical estimators of the local time of BM and show that they are still
estimators, up to a multiplicative constant, of the local time Lr

T (X) of OSBM and a more
general class of processes. Next, we provide estimators of the skewness parameter of SBM
and analyze their asymptotic behavior. This is the first time the convergence rate and an
asymptotic mixed normality property for a skewness parameter of SBM is established and that
joint estimation of OSBM is explored.

Let r ∈ R be a fixed threshold, and let X be a stochastic process. Let T ∈ (0,∞), N ∈ N,
we observe the process on the discrete time grid i T

N
. We denote by Xi = Xi T

N
.

3.1 Estimating the local time via the number of crossings of the
threshold

Let α ∈ [0,∞) and note that the function hα given by hα(x, y) = |y|α1(−∞,0)(xy) is in Iγ for all
γ ∈ [0,∞). In fact hα(x, y) ≤ cαe

−|x|e|y−x| for some constant cα depending on α. We consider
two estimators obtained considering the functions proportional to h0 and h1:

Lr
T,N(X) = ε

(r,h0,X)
N
T
,T

=

√
T

N

N−1∑
i=0

1{(Xi−r)(Xi+1−r)<0} and (3.1)

Lr
T,N(X) = ε

(r,2h1,X)
N
T
,T

= 2
N−1∑
i=0

1{(Xi−r)(Xi+1−r)<0}|Xi+1 − r|. (3.2)

The first is concerned with the number of crossings of the threshold and the second takes into
account the distance from it. Moreover note that Lr

T,N requires only the knowledge of the N+1
observations Xi, i = 0, . . . , N , and not of T/N , nor of T .

As mentioned in the introduction, in the case of BM, and more general Brownian diffusions,
these are consistent estimators of the local time up to a constant. We now show the consequence
of Theorem 1 for these estimators and, in the case of the statistic (3.1), we extend the result
to skew diffusions with more general drift and diffusion coefficient.

3.1.1 Estimator counting the number of crossings of the threshold

In this section, we consider the semi-martingale satisfying

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σ(Xs) dWs + βLr
t (X) t ≥ 0 P-a.s. (3.3)

where Lr
t (X) is the symmetric local time of the process at the fixed level r ∈ R, X0 ∈ R, and

β, b, and σ satisfy Hypothesis 2.

Hypothesis 2. Let β ∈ [−1, 1], X0β ≥ 0 if |β| = 1, and the diffusion coefficient and drift
coefficient satisfy: bs = b(Xs), with b bounded measurable function, σ ∈ C1(R \ {r}) admits
a finite jump at a fixed threshold r ∈ R, its derivative admits a finite jump at r as well, σ
is bounded from below by a strictly positive constant and there exists a strictly increasing
function Σ such that (σ(x)− σ(y))2 ≤ |Σ(x)− Σ(y)|.
Remark 10. Hypothesis 2 is stronger than necessary. For instance, there is no need of a time-
homogeneous drift, and the boundedness assumption can be relaxed as well.

Under the above assumptions there exists a unique strong solution to the SDE (3.3) (see
e.g. [9]).
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Theorem 2. Let X be solution to (3.3) and let σ± := limx→r± σ(x). Let

cσ±,β :=
2(1− β2)

(1 + β)σ− + (1− β)σ+

√
2

π

and Kσ±,β := KY
h0

is the non-negative finite constant given by (2.10) with Y (β, σ±)-OSBM.
Then, Lr

T,N(X) in (3.1), counting the number of times the process X crosses its threshold r,
satisfies

Lr
T,N(X)

P−−−→
N→∞

cσ±,βL
r
T (X)

and, as N goes to infinity,

(N/T )1/4
(
Lr

T,N(X)− cσ±,βL
r
T (X)

)
converges stably in law to

√
Kσ±,β

√
Lr
T (X)G

where G ∼ N (0, 1) is independent from Lr
T (X) (more generally from FX

T : the natural filtration).

Remark 11. If we would not have assumed to have observations until the fixed time horizon T ,
the result could be provided as a functional limit theorem as Theorem 1:

ε(r,h0,X) u.c.p.−−−→
n→∞

cσ±,βL
r
· (X)

and then there exists (possibly on an extension of the probability space) a BM B independent
of X such that

n1/4
(
ε(r,h0,X)
n,· − cσ±,βL

r
· (X)

) L−s−−−→
n→∞

√
Kσ±,βBLr

· (X).

Remark 12. We provide Theorem 2 for a more general class than OSBM, but an extension
of the more general result is object of further research. This is related to the fact that the
statistics of Theorem 2 basically depends only on the sign of the process.

3.1.2 Another estimator

Let us consider the estimator Lr
T,N in (3.2). We specify its asymptotic behavior for OSBM.

For an OBM solution to (2.7), say Y , a proof that Lr
T,N(Y )

P−−−→
N→∞

Lr
T (Y ) can be found in [38,

Lemma 1]. Applying Proposition 1 to ε(r,2h1,Y ) (recall that β = 0) we obtain a more general
result. And applying Theorem 1 we obtain the convergence rate. We specify the asymptotic
properties of Lr

T,N(Y ) in Proposition 2 below.
The following proposition specifies, if the process is an OSBM, the constants in Proposition 1

and Theorem 1 in case of the estimator (3.2) and shows its asymptotic properties.

Proposition 2. Let X be let X be the (β, σ±)-OSBM solution to (2.3) and let Lr
T,N(X) be

the estimator of the local time Lr
T (X) in (3.2). Then there exists (possibly on an extension of

the probability space) a Gaussian random variable G ∼ N (0, 1) independent of X (independent
from FX

T ) such that, as N tends to infinity,

(N/T )1/4
(
Lr
T,N(X)− (1− β2)(σ− + σ+)

(1 + β)σ− + (1− β)σ+

Lr
T (X)

)
converges stably in law to

√
Kβ,σ±

√
Lr
T (X)G where Kβ,σ± := KX

2h1
in (2.10).

Moreover if β = 0 (X is an OBM) then (1−β2)(σ−+σ+)
(1+β)σ−+(1−β)σ+

= 1 and K0,σ± = 16
3
√
2π

σ2
−+σ2

+

σ−+σ+
. And

if σ− = σ+ = 1 (X is a SBM) then (1−β2)(σ−+σ+)
(1+β)σ−+(1−β)σ+

= 1− β2.
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3.2 Estimating the parameters of skew and oscillating Brownian
motion

3.2.1 Estimating the skewness parameter for SBM

Theorem 1 provides several estimations of the skewness parameter of SBM. They are also
estimators for drifted SBM (see Remark 7). We consider here two new estimators and show
an asymptotic mixed normality property as a straightforward application of the main result
of this paper. We choose two examples, one that involves statistics which check if there is a
sign change between two consecutive time observations and one that does not. In both cases
the computation of the constants involved in the CLT is not trivial at all, so we leave them
implicit. Comparing estimators goes beyond the purpose of this document. And the study
of the asymptotic behavior of the MLE estimator has been considered in [34] (after being
conjectured in [40]), where a fine study of the constant involved in the CLT is provided as well.
Let us mention that the latter results exploit our Theorem 1.

Let X be a β-SBM with threshold r, solution to (2.1). Recall that Lr
T,N is given in (3.2) and

its asymptotic properties are provided in Proposition 2. Let us introduce the following function
f1(x, y) := 1[0,1)(x). Then both EX

f1
in (2.8) and f 2

1 coincide with f1 and satisfy Hypothesis 1.
The same holds for the function |f1|(x) := f1(|x|).

We consider the following estimators for the parameter β:

β̂N :=

∑N−1
k=0 sgn(Xk − r)1(−1,1)(

√
N/T (Xk − r))∑N−1

k=0 1(−1,1)(
√
N/T (Xk − r))

(3.4)

or

β̂N := 1−
Lr
T,N(X)√

T
N

∑N−1
k=0 1[0,1)(

√
N/T (Xk − r))

. (3.5)

Note that both estimators above require the knowledge of the discretization step T/N .
The following result is a direct application of Theorem 1 and of the fact that joint stable

convergence for two sequences holds if one of the sequence converges stably and the other
converges in probability.

Theorem 3. Let X be the β-SBM solution to (2.1) starting at X0 = r. Then β̂N in (3.4)
(resp. (3.5)) is a consistent estimator of β and as N → ∞

N1/4
(
β̂N − β

)
converges stably in law to K T 1/4 G√

Lr
T (X)

with G ∼ N (0, 1) is a standard Gaussian random variable independent of X (of FX
T ) and K =√

K(1−β)f1−2h1/(1 + β) where K(1−β)f1−2h1 is provided by (2.10) (resp. K = 1
2

√
K(sgn(·)−β)|f1|).

The above result tells that β̂N is a consistent estimator of the skewness parameter β, and
N1/4(β̂N −β) for N large behaves like a mixed Gaussian law. Let us observe one again that, in
the same way, we can provide other estimators satisfying Theorem 3 (with a suitable constant
K), as the MLE studied in [39, 34] respectively for β = 0 and β ∈ (−1, 1). Moreover, as
in [39], this paves the way to hypothesis testing to check whether some observations come from
(drifted) BM or (drifted) SBM.

Remark 13. The assumption that the β-SBM starts from r is to ensure on one side that the
estimator (3.4) (resp. (3.5)) is well defined and on the other side that the local time of the
process at r does not vanish at time T .
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Remark 14 (Diffusion parameter estimation). Similarly, we could provide an estimator for the
parameters of OBM. Let Y be the solution to (2.7) starting at X0 = r, f+ : x → 1[0,1)(x) and
f− : x → 1(−1,0](x), and let ± ∈ {−,+}. Then

σ̂2
± :=

Lr
T,N(Y )√

T
N

∑N−1
k=0 f±(

√
N/T (Xk − r))

is a consistent estimator of σ2
± and (N/T )1/4

(
σ̂2
± − σ2

±
)
converges stably in law to a (mixed)

normal law. Since the estimator proposed relies mostly on the behavior of the process around
the threshold, it is slower than the ones based on quadratic variations and occupation times of
the positive and negative part of the process proposed in [36] for OBM which exploit the entire
trajectory. Therefore, we propose in Proposition 3, in the next section, an estimator based on
quadratic variation for the diffusion coefficient of OSBM.

3.2.2 Joint parameter estimation for oscillating-skew Brownian motion

In this section, for simplicity, let the threshold r = 0. The estimators proposed in [36] work
also for estimating the diffusion coefficient of OSBM.

Proposition 3. Let X be the standard (β, σ±)-OSBM solution to (2.3), and for any process Z
observed at times jT/N let [Z,X]N denote

∑N−1
j=0 (Zj+1 −Zj)(Xj+1 −Xj). Then, the estimator

((σ̂V
+)

2, (σ̂V
−)

2) of (σ2
+, σ2

−) given by

(σ̂V
+)

2 :=
[max{0, X}, X]N
T
N

∑N−1
j=0 1{Xj≥0}

, (σ̂V
−)

2 :=
[max{0,−X}, X]N
T
N

∑N−1
j=0 1{−Xj≥0}

satisfies the following convergence property:
√
N
(
(σ̂V

+)
2 − σ2

+, (σ̂V
−)

2 − σ2
−
)
converges in law

to
√
2T

(
σ2
+

(1+β)2

∫ T
0 1{Xs≥0} dBs∫ T
0 1{Xs≥0} ds

,
σ2
−

(1−β)2

∫ T
0 1{Xs<0} dBs∫ T
0 1{Xs<0} ds

)
where B is a BM independent of X (possi-

bly, on an extension of the filtered probability space).

When T = 1 and the process is OBM, Proposition 3 is [36, Theorem 3.5]. By the scaling
property (A.1) one can take T ̸= 1, and the result for OSBM follows by a spatial transformation
given in the proofs section, more precisely Section 4.1.

Combining the main result of this article and Proposition 3 allows to estimate jointly β, σ−
and σ+ for an OSBM. An example is the estimator

θ̂N := (β̂, (σ̂V
−)

2, (σ̂V
+)

2) of θ := (β, σ2
−, σ

2
+)

where

β̂ :=
(σ̂V

+)
2ε

(0,f1,X)
N
T
,T

− (σ̂V
−)

2ε
(0,f−1,X)
N
T
,T

(σ̂V
+)

2ε
(0,f1,X)
N
T
,T

+ (σ̂V
−)

2ε
(0,f−1,X)
N
T
,T

and f1 = 1(0,1) and f−1 = 1(−1,0). Then N1/4(θ̂N − θ) converges in law to the law of a vector
(Z, 0, 0) with Z following a mixed Gaussian law. Considering the convergence rate for σ̂V

± and
further studying the joint behavior goes beyond the aims of this article.

4 Proofs of the main results

In this section we comment the results and their proofs. We first deal with the convergence
in probability to the local time in Proposition 1, which was already known for SBM. Another
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proof of Proposition 1 is also given in Appendix B. Then we deal with the rate of (stable)
convergence in the case of OSBM in Theorem 1 whose proof is provided in Section 4.3 relying
on a well known CLT. Finally we prove Theorem 2.

The fact that, via a spatial transformation, it is possible to change a skewed behavior into
an oscillating behavior (i.e. discontinuous diffusion coefficient) and viceversa is crucial in the
proofs of the above results. In particular, we prove in Section 4.1 the relationship between
OSBM (in particular SBM) and OBM.

From now on, we take r = 0 for simplicity. Indeed if X is a (β, σ±)-OSBM with threshold
r = 0 then X − r is a (β, σ±)-OSBM with threshold r. The same holds for solutions to (3.3)
(after translation of the coefficients).

4.1 Itô-Tanaka formula and interplay between SBM and OBM

SBM and OBM are strongly related in the following sense: Let σ be the function in (2.4), let Y
the solution to (2.7) and X be a SBM solution to (2.1) with skewness parameter βσ := σ−−σ+

σ−+σ+

and suitable initial condition: Solution to the SDE

Xt =
Y0

σ(Y0)
+Wt + βσLt(X). (4.1)

It holds that Xt =
Yt

σ(Yt)
, and the local times satisfy

L(X) =
σ+ + σ−

2σ+σ−
L(Y ). (4.2)

Furthermore, since Xt =
Yt

σ(Yt)
and σ is positive, then YtXt ≥ 0. And, since σ depends only on

the sign of its argument, then σ(Yt) = σ(Xs) and so it holds also Yt = σ(Xt)Xt.

These equalities can be proven via the symmetric (i.e. we consider the symmetric local time)
Itô-Tanaka formula, which we specify in Lemma 1 for the reader’s convenience. In the following
result f ′(y+) stands for right derivative of the function f at y ∈ R and f ′(y−) for left derivative

and f ′(y) = f ′(y+)+f ′(y−)
2

.

Lemma 1. Let f be the difference of two convex functions such that f ∈ C2(R \ {0}) and
f(0) = 0, and let X be a continuous semi-martingale satisfying (3.3) (with drift b·, diffusion
coefficient σ, skewness parameter β).
Then Yt := f(Xt) satisfies:

Yt = f(Xt) = f(X0) +

∫ t

0

f ′(Xs+) + f ′(Xs−)

2
bs ds+

∫ t

0

f ′(Xs+) + f ′(Xs−)

2
σ(Xs) dWs

+
1

2

∫ t

0

f ′′(Xs+) + f ′′(Xs−)

2
σ(Xs)

2 ds+
f ′(0+)(1 + β)− f ′(0−)(1− β)

2
Lt(X).

If in addition f is invertible and f ′(0+)(1 + β) + f ′(0−)(1− β) ̸= 0 then

Yt = Y0 +

∫ t

0

(
f ′(f−1(Ys))bs +

1

2
f ′′(f−1(Ys))σ(f

−1(Ys))
2

)
ds

+

∫ t

0

f ′(f−1(Ys))σ(f
−1(Ys)) dWs +

f ′(0+)(1 + β)− f ′(0−)(1− β)

f ′(0+)(1 + β) + f ′(0−)(1− β)
Lt(Y )

and Lt(Y ) = f ′(0+)(1+β)+f ′(0−)(1−β)
2

Lt(X).
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Proof. We first recall the well known symmetric Itô-Tanaka formula. Let Z be a continuous
semi-martingale and let h be the difference of two convex functions. Then, for any t ≥ 0,

h(Zt) = h(Z0) +

∫ t

0

h′(Zs+) + h′(Zs−)

2
dZs +

1

2

∫
R
Ly
t (Z)h

′′(dy) (4.3)

where h′′(dy) is a measure satisfying∫
R
g(y)h′′(dy) = −

∫
R
g′(y)

h′(y+) + h′(y−)

2
dy

for all g ∈ C1(R) with compact support. The occupation time formula helps dealing with
the integral of the part of h′′(dy) which is absolutely continuous with respect to the Lebesgue

measure. Note that f ′′(dy) = f ′′(y) dy + f ′(0+)−f ′(0−)
2

δ0( dy). Hence, (4.3) applied to f yields
the first equation in the statement. On one hand, this and (4.3) applied to |f | yield

|Yt| = |f(Xt)| = |f(X0)| +
∫ t

0

sgn(f(Xs)) dYs +
f ′(0+)(1 + β) + f ′(0−)(1− β)

2
Lt(X).

On the other hand, Tanaka formula for continuous semi-martingales states

|Yt| = |Y0|+
∫ t

0

sgn(Ys) dYs + Lt(Y ).

Hence the conclusion on the local times. The fact that f is invertible is then used to complete
the proof.

Example 1 (SBM associated to OSBM/σ±-OBM). Let Y a (β, σ±)-OSBM, in particular it
satisfies (2.3). Let f(x) := x

σ(x)
. Note that f is continuous and for all x ̸= 0 we have

f ′(x) = 1
σ(x)

and f ′′(x) = 0. Since σ(x) depends only on the sign of x, then f ′ ◦ f−1 co-

incides with f ′. By Lemma 1, Xt := f(Yt) satisfies (4.1) with βσ = (1+β)σ−−(1−β)σ+

(1+β)σ−+(1−β)σ+
and

L·(X) = (1+β)σ−+(1−β)σ+

2σ−σ+
L·(Y ) holds as well. We call X, the βσ-SBM associated to the (β, σ±)-

OSBM Y . If Y is a σ±-OBM, we recognize βσ = σ−−σ+

σ−+σ+
and (4.2).

Example 2 (OBM associated to a OSBM/β-SBM). Let X be the solution to (3.3). Take

σ
(β)
+ := 1

1+β
, σ

(β)
− := 1

1−β
∈ (0,∞], then β =

σ
(β)
− −σ

(β)
+

σ
(β)
− +σ

(β)
+

and construct the diffusion coefficient

σβ := σ
(β)
− 1(−∞,0) + σ

(β)
+ 1[0,+∞) in (2.4). By Lemma 1, ηt := σ(β)(Xt)Xt is solution to the SDE

ηt = σ(β)(X0)(X0) +

∫ t

0

σ(β)(ηs)σ(ηs/σ
(β)(ηs)) dWs +

∫ t

0

σ(β)(ηs)b(ηs/σ
(β)(ηs)) ds.

and Lt(η) = Lt(X). In particular, if X is the (β, σ±)-OSBM solution to (2.3), then Yt := ηt =

σ(β)(Xt)Xt is a σ
(β)
± σ±-OBM with initial condition Y0 = σβ(X0)X0 and we refer to it as the

OBM associated to the (β, σ±)-OSBM X. And if X is the β-SBM solution to (2.1), then Yt is

the σ
(β)
± -OBM associated to the β-SBM X.

4.2 Proof of Proposition 1

As already mentioned, in the case of SBM, Proposition 1 follows from [40, Proposition 2] (with
T = 1) and the scaling property (A.1) in Appendix A.1. By the transformation provided in
Section 4.1, we are ready to prove Proposition 1 for the OSBM Y solution to (2.3), and in
particular for OBM solution to (2.7).
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However, in Appendix B, we provide a proof of Proposition 1 directly for a standard OBM,
with the purpose of illustrating the main ideas of the proof of Theorem 1.

Let us recall, given a measurable function f : R2 → R and an OSBM Y (with r = 0), we
denote by pY its transition density (2.6) and the function EY

f in (2.8) is computed using it.
Moreover µY denotes its speed measure (2.5).

Proof of Proposition 1 for OSBM. Let X be the βσ-SBM associated to the (β, σ±)-OSBM Y
(see Example 1 in Section 4.1) and let fσ be the function satisfying fσ(x, y) := f(σ(x)x, σ(y)y).
For γ = 1, 2 it holds that EY

fγ (σ(x)x) = EX
(fσ)γ

(x). Hence, Remark 3 ensures that a function f

satisfies Hypothesis 1 for Y (that is EY
f , E

Y
f2 ∈ L1

b(λ
(2))) if and only if fσ satisfies Hypothesis 1

for X (that is EX
fσ
, EX

f2
σ
∈ L1

b(λ
(2))). Moreover 1

σ(x)
µβσ(dx) = 2σ−σ+

(1+β)σ−+(1−β)σ+
µY (dx). So,

⟨µβσ ,E
X
(fσ)γ

⟩L·(X) = ⟨µY ,E
Y
fγ⟩L·(Y ). Applying Proposition 1 for the SBM X and the function

f := fσ and taking into account the latter equalities complete the proof.

We conclude the section with the lemma proving that the assumptions of Theorem 1 are
stronger than the ones of Proposition 1, as stated in Remark 9.

Lemma 2. Let γ ∈ [0,∞) and f ∈ Iγ. Then EY
f ∈ L1

b(λ
(γ)) and EY

f2 ∈ L1
b(λ

(γ)). Let g
be a measurable function such that x 7→ |g(x)|/(1 + |x|) is bounded, then the function x 7→
EY

f,g(x)/(1 + |x|) belongs to L1
b(λ

(γ)).

Proof. We reduce to prove the statement for SBM. Let X denote the standard SBM associated
to Y in Example 1. Since f ∈ Iγ, Remark 3 ensures that fσ ∈ Iγ. Moreover EY

f (x) =

EX
fσ
(x/σ(x)). If the first statement holds for the SBM X, then EX

fσ
∈ L1

b(λ
(γ)) and Remark 3

ensures that EY
f ∈ L1

b(λ
(γ)). We can conclude similarly for the second part of the statement,

just notice that EY
f,g(x) = EX

fσ ,gσ
(x/σ(x)) and |gσ(x)|/(1 + |x|) is bounded as well.

The SBM case: Y is a Standard SBM. Let f ∈ Iγ. Let us recall that there exist a non-
negative function f̄ ∈ L1

b(λ
(γ)) and constant a ∈ [0,∞) such that |f(x, y)| ≤ f̄(x)ea|y−x|. Since

there exists a constant C ∈ (0,∞) such that for all x, y ∈ R: pβ(1, x, y) ≤ C 1√
2π
e−

1
2
(y−x)2 , then

for all x ∈ R

|EY
f (x)| ≤ Cf̄(x)

∫ +∞

−∞
ea|y−x| 1√

2π
e−

1
2
(y−x)2 dy ≤ 2ea

2/2Cf̄(x).

Thus EY
f ∈ L1

b(λ
(γ)). And EY

f2 ∈ L1
b(λ

(γ)) is proven in the same way, since f̄ is bounded.
Similarly for the second part of the statement, there exists a constant C2 ∈ (0,∞) such that
for all x ∈ R

|EY
f,g(x)| ≤ C2f̄(x)

∫ +∞

−∞
(1 + |y|)ea|y−x| 1√

2π
e−

1
2
(y−x)2 dy

≤ C2f̄(x)

∫ +∞

−∞
(e|y−x| + |x|)ea|y−x| 1√

2π
e−

1
2
(y−x)2 dy

≤ 2e(a+1)2/2C2f̄(x) + 2ea
2/2C2f̄(x)|x| ≤ 2e(a+1)2/2C2f̄(x)(1 + |x|)

where we recall that f̄ ∈ L1
b(λ

(γ)). The proof is thus completed.

4.3 Proof of the Central Limit Theorem: Theorem 1

Let us focus on proving Theorem 1 for OBM. At the end of this section we prove Theorem 1
for OSBM via its associated OBM from Section 4.1, say Y .
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The idea of the proof is decomposing the left hand side of (2.9), namely

n1/4
(
ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y )

)
,

into a discrete martingale and a vanishing term, see (4.4). The decomposition is introduced
in Proposition 4, where it is stated that the discrete martingale satisfies the assumptions of
Proposition 5 (a reformulation of a special case of Theorem 3.2 in [25]) which entails the limits
in Theorem 1. Proposition 5 is stated just after Proposition 4 and the comments to its proof.

Proposition 4. Let (Yt)t∈[0,1] be the OBM with threshold r = 0 strong solution to (2.7) on a
stochastic basis (Ω,F , (Ft)t∈[0,1],P) (where the filtration is the natural one associated to Y ), let
γ > 3, and let h ∈ Iγ.
Then constant KY

h given by (2.10) (with f = h, X = Y , µX = λσ, β = 0) is a non-negative
finite constant, and there exist a sequence of stochastic processes (Vn

t )t∈[0,1], n ∈ N, and a
sequence (Mn

t )t∈[0,1], n ∈ N, of (F⌊nt⌋/n)t∈[0,1]-martingales such that for all t ∈ [0, 1], n ∈ N

n1/4
(
ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y )

)
= Mn

t + n1/4Vn
t , (4.4)

sups∈[0,1]m
1/4|Vm

s | P−−−→
m→∞

0, and for all t ∈ [0, 1], n ∈ N it holds that Mn
t =

∑⌊nt⌋
k=1 χ

n
k where

(χn
k)k∈{1,...,⌊nt⌋}, n ∈ N, are random variables satisfying:

i) for all k ∈ {1, . . . , ⌊nt⌋} χn
k is square integrable F k

n
-measurable and E

[
χn
k |F(k−1)/n

]
= 0,

ii) for all t ∈ [0, 1] it holds that
∑⌊nt⌋

k=1 E
[
(χn

k)
2|F(k−1)/n

] P−−−→
n→∞

KY
h Lt(Y ),

iii) for all t ∈ [0, 1] it holds that
∑⌊nt⌋

k=1 E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

] P−−−→
n→∞

0,

iv) for all ε ∈ (0,∞) it holds that
∑n

k=1 E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

] P−−−→
n→∞

0.

The proof of this result is quite technical, therefore it is provided in Appendix C. Basically, it
consists in generalizing to the case of OBM the fundamental procedure used in [26] for BM which
exploits properties of the transition semigroup. To provide the ideas and step of the proof, and
for the reader convenience, a proof of Proposition 1 for OBM is provided in Appendix B as an
introduction to the proof of Proposition 4. Moreover, a proof of the finiteness of the constant
KY

h of Theorem 1 is provided in Lemma 14, so that the reader does not have to go through the
whole proof of Proposition 4 to check the finiteness.

Let us now assume that Proposition 4 holds and let us prove Theorem 1 first for OBM
and then for OSBM. To do so, we need to state Proposition 5 which provides the asymptotic
behavior of the discrete martingale of Proposition 4.

Proposition 5 (cf. Theorem 3.2 in [25]). Let (Yt)t∈[0,1] be an (Ft)t∈[0,1]-local martingale on the
stochastic basis (Ω,F , (Ft)t∈[0,1],P). For n ∈ N and k = 1, . . . , n, let χn

k be square integrable
F k

n
-measurable random variables, and assume that there are E and F continuous processes on

(Ω,F , (Ft)t∈[0,1],P) such that E has bounded variation and

i) sups∈[0,1]

∣∣∣∑⌊ns⌋
k=1 E

[
χn
k |F(k−1)/n

]
− Es

∣∣∣ P−−−→
n→∞

0,

ii) for all t ∈ [0, 1] it holds that
∑⌊nt⌋

k=1 E
[(
χn
k − E

[
χn
k |F(k−1)/n

])2 |F(k−1)/n

]
P−−−→

n→∞
Ft,

iii) for all t ∈ [0, 1] it holds that
∑⌊nt⌋

k=1 E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

] P−−−→
n→∞

0,
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iv) for all ε ∈ (0,∞) it holds that
∑n

k=1 E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

] P−−−→
n→∞

0, and

v) for all t ∈ [0, 1] and every M bounded (Fs)s∈[0,1]-martingale such that for all s ∈ [0, 1] the
cross variation ⟨M,Y ⟩s is P-a.s. equal to 0, it holds that

⌊nt⌋∑
k=1

E
[
χn
k(Mk/n −M(k−1)/n)|F(k−1)/n

] P−−−→
n→∞

0.

Then there exists a BM B, possibly on an extension of the probability space (Ω,F , (Ft)t∈[0,1],P),
such that B and Y are independent and

⌊n·⌋∑
k=1

χn
k

L−s−−−→
n→∞

E· +BF· .

Proof of Theorem 1 for OBM. Let Y be the OBM strong solution to (2.7). Let us first assume
that the filtration is the natural one associated to Y . Observe that

n
1
4

(
ε(0,f,Y )
n,· − ⟨λσ,E

Y
f ⟩L·(Y )

) L−s−−−→
n→∞

√
KY

f BL·(Y )

in D∞ if and only if, for all t ∈ [0,∞), n
1
4 (ε

(0,f,Y )
n,· − ⟨λσ,E

Y
f ⟩L·(Y ))|[0,t]

L−s−−−→
n→∞

√
KY

f BL·(Y )|[0,t]
in Dt (indeed since BL·(Y ) has (a.s.) continuous trajectories this follows, e.g. combining [10,
Theorem 16.2] and [27, Proposition 2.2.4]). Moreover, without loss of generality we can reduce
ourselves to prove Theorem 1 on the interval [0, 1] (on the Skorokhod space D[0,1]) for n ∈ N
tending to infinity. Indeed the scaling property for the OBM and its local time (see (A.1)) yields
the result for all non-negative times (on the Skorokhod space D[0,t]). (The scaling property also
ensures that in Theorem 1 n is not necessarily a natural number, but it can stay for a positive
real number tending to infinity.)

Proposition 4 implies that there exists a decomposition as in (4.4) and its desired stable
limit as n ∈ N goes to infinity coincides with the stable limit of the sequence Mn of càdlàg

(F ⌊ns⌋
n

)s∈[0,1]-martingales, n ∈ N. Indeed the fact that sups∈[0,1] n
1/4|Vn

s |
P−−−→

n→∞
0, implies that

for every h : D1 → R continuous and bounded it holds that |h(Mn + n
1
4Vn)− h(Mn)| P−−−→

n→∞
0

and so for every bounded continuous function h : D1 → R and bounded measurable random
variable Y : Ω → R it holds that

lim
n→∞

E
[
|h(Mn + n

1
4Vn)− h(Mn)||Y |

]
= 0.

Proposition 4 also ensures that Mn, n ∈ N, satisfies all assumptions, except Item v, of
Proposition 5 (with E ≡ 0 and F = KY

f L(Y ) where KY
f is the constant in equation (2.10)

with X = Y , β = 0 and µX = λσ). Item v of Proposition 5 is trivial because such bounded
martingale M , measurable with respect to the natural filtration of the OBM and orthogonal
to OBM, is nothing but a constant (follows from a martingale representation theorem, see
Lemma 7 in Appendix A.5). Therefore, applying Proposition 5 as described above, completes
the proof of Theorem 1 under the assumption that the filtration is the one associated to Y . It
remains to relax this assumption on the filtration, by the same argument in [26, Section 2.2].
The proof of Theorem 1 is thus completed.

Since Theorem 1 for OBM holds, we now prove it for OSBM and, in particular, for SBM.
The proof is based on the interplay between the processes in Section 4.1.
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Proof of Theorem 1 for OSBM. Let γ > 3, X the (β, σ±)-OSBM solution to (2.3), and f ∈ Iγ.
Let Y be the OBM associated to X (in the notation of Example 2 in Section 4.1) and let
h : R2 → R be the function satisfying h(x, y) := f(x/σ(β)(x), y/σ(β)(y)). Remark 3 ensures that
f ∈ Iγ if and only if h ∈ Iγ. Theorem 1 applied to the OBM Y and the function h yields

n1/4
(
ε(0,h,Y )
n,· − ⟨λσ(β)σ,E

Y
h ⟩L·(Y )

) L−s−−−→
n→∞

√
Kβ

hBL·(Y )

with Kβ
h given by (2.10) (taking f = h, X = Y , σ± = σ

(β)
± σ±, β = 0, µX = λσ(β)σ). As in

the proof of Proposition 1, the fact that Y = σ(β)(X)X, L·(X) = L·(Y ), and the transition
densities (2.6), implies that for γ = 1, 2 it holds ⟨λσ(β)σ,E

Y
hγ⟩ = ⟨µX ,E

X
fγ⟩ and so

n1/4
(
ε(0,f,X)
n,· − ⟨µX ,E

X
f ⟩L·(X)

) L−s−−−→
n→∞

√
Kβ

hBL·(X).

The same arguments are used to rewrite the constant Kβ
h obtaining KX

f : more precisely note

that EY
h (xσ

(β)(x)) = EX
f (x), E

Y
g0
(xσ(β)(x)) = EX

gβ
(x), and PY

h (xσ
(β)(x)) = PX

f (x).

4.4 Proof of Theorem 2

The proof relies on Itô-Tanaka formula and Girsanov’s transform and reduces to prove the result
for OBM, i.e. applying Proposition 1 and Theorem 1 for f(x, y) = h0(x, y) = 1(−∞,0)(xy). The
fact that we can extend so easily the result for more general diffusions solutions to (3.3) is due
to the special structure of the estimator which counts the number of crossings of the threshold
level. Extensions of Theorem 1 to more general diffusions is object of further research.

Proof of Theorem 2. Let us recall that Hypothesis 2 holds. In particular it holds that σ ∈
C1(R \ {0}) is strictly positive, admits a finite jump at the threshold 0, σ± := limx→0± σ(x) ∈
(0,∞), and its derivative admits a finite jump at 0 as well.

We first prove the statement for β = 0 in several steps.
First step. Note that if X is a driftless σ±-OBM, then the statement follows from Proposi-

tion 1 and Theorem 1 taking f = h0. The result holds with constants cσ±,0 and Kσ±,0.
Second step. Assume σ and its derivative are bounded (the derivative is defined on R \ {0},

one may take σ′(0) = (σ′(0+)+σ′(0−)). Let us consider the process Z satisfying that P-a.s. for
all t ∈ [0,∞)

Zt = Z0 +

∫ t

0

σ(Zs) dWs +
1

2

∫ t

0

σ(Zs)σ
′(Zs) ds.

Let

S(x) := σ+

∫ x

0

1

σ(y)
dy 1[0,+∞)(x)− σ−

∫ 0

x

1

σ(y)
dy 1(−∞,0)(x).

Note that S is difference of two convex functions, S ∈ C1(R)∩C2(R \ {0}), S(0) = 0, and S is
strictly increasing. By Lemma 1, Yt := S(Zt) is an OBM starting at S(Z0). Since xS

−1(x) ≥ 0
for all x ∈ R, then for all t it holds that Zt and S−1(Zt) = Yt have the same sign and, since
L0

T,N depends only on the observations through their sign, L0
T,N(Y ) = L0

T,N(Z). Therefore we
proved that Theorem 2 holds for the process Z with the same constants cσ±,0 and Kσ±,0.

Third step. Assume σ and σ′ are bounded, as in the previous step. Combining stable
converge and Girsanov’s transform (see Remark 7) ensures that the same result holds for X
solution to (3.3) if β = 0 with the same constants cσ±,0 and Kσ±,0. Let us be more precise. Let
Z as in the previous step and let X solve (3.3) with β = 0. The Doléans-Dade exponential,
expressing the Radon-Nikodym derivative between the law of X and the one of Z, is E(ξ)
with ξt :=

∫ t

0

b(Zs)− 1
2
σ(Zs)σ′(Zs)

σ(Zs)
dWs. It is an exponential martingale (see e.g. Novikov’s condition
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in [28, Corollary 3.5.14]) because b, σ′ are bounded and σ is bounded from below by a strictly-
positive constant. By a localization argument, the boundedness conditions for σ and σ′ can be
removed.

Now let us consider β ̸= 0.
Consider the process ηs := σ(β)(Xs)Xs of Example 2 in Section 4.1. Note that L0

T,N(η) =
L0

T,N(X) because the statistics depends only on the sign of the observations of η and X and
this sign is preserved by the transformation we apply. We have proved above that the process
η satisfies Theorem 2 with constants c

σ
(β)
± σ±,0

and K
σ
(β)
± σ±,0

hence X satisfies the theorem with

the same constants that we just rename in order to explicit the dependence from σ(β) as a
dependence from β. The proof is thus completed.

A Properties of OBM

We recall known properties of the law of OBM and its local time. And we establish bounds for
the transition semigroup which are useful in the proof of the key Proposition 4 in Appendix C.
Note that, by the interplay between OSBM and OBM (see Section 4.1), one can derive results
for OSBM analogous to the ones obtained in this section.

Unless explicitly stated, in this section we consider Y to be a driftless OBM with threshold
r = 0.

A.1 Scaling property

Assume Y starts from a deterministic point Y0, let c ∈ (0,∞), and let Z denote the OBM
with threshold r = 0 starting from

√
cY0. Let us mention the following well known diffusive

scaling properties for OBM:

(
1√
c
Zct

)
t≥0

law
=
(
Yt

)
t≥0

(i.e. “the rescaled OBM is still a OBM with

rescaled starting point”) and(
1√
c
Zct,

1√
c
Lct(Z)

)
t≥0

law
=
(
Yt, Lt(Y )

)
t≥0

. (A.1)

Remark 15. The transition density satisfies for every c > 0 that qσ(t, x, y) =
√
cqσ(ct,

√
cx,

√
cy).

This and the Markov property imply that for all k = 0, 1, . . .

1√
n
EY

f,g(
√
nYk/n) =

1√
n
E
[
f(
√
nYk/n,

√
nY(k+1)/n)g(

√
nY(k+1)/n)|Yk/n

]
.

And ρσt (y, ℓ), the joint density of a standard OBM and its local time introduced in the next
section, satisfies for every c > 0: ρσt (y, ℓ) = cρσct(

√
cy,

√
cℓ).

A.2 The joint density of a standard OBM and its local time

The joint density of a standard OBM (i.e. Y0 = 0) and its local time at time t, ρσt (y, ℓ) coincides
with

ρσt (y, ℓ) =
1

(σ(y))2
ρt

(
y

σ(y)
,
σ− + σ+

2σ−σ+

ℓ

)
(A.2)

for y ̸= 0, where ρ is the joint density of the BM and its local time at time t:

ρt(y, ℓ) =
|y|+ ℓ√
2πt3

exp

(
−(|y|+ ℓ)2

2t

)
1(0,∞)(ℓ). (A.3)

In particular ρσt (y, ℓ) dy dℓ = ρt

(
y

σ(y)
, σ−+σ+

2σ−σ+
ℓ
)
λσ(dy) dℓ.
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A.3 Bounds for the semigroup

Let βσ := σ−−σ+

σ−+σ+
and recall that, for every function f : R → R, fσ(x) := f(σ(x)x). For a

measurable, bounded function f : R → R set

Qσ
t f(x) :=

∫ ∞

−∞
qσ(t, x, y)f(y) dy and P βσ

t f(x) :=

∫ ∞

−∞
pβσ(t, x, y)f(y) dy (A.4)

for all t ∈ [0,∞). They are respectively the semigroup of the standard OBM and of the standard
βσ-SBM and they satisfy Qσ

t f(x) = P βσ
t fσ(x/σ(x)). Note that Pt := P 0

t = Q1
t is the semigroup

of the BM and

Qσ
t f(x) = Ptfσ(x/σ(x)) + βσPt(fσ1[0,∞))(−|x|/σ(x))− βσPt(fσ1(−∞,0))(|x|/σ(x)). (A.5)

From this relationship between the semigroups of OBM and BM we derive the following prop-
erties.

Lemma 3. Let f ∈ L1
b(λ

(2)), and let us denote by p(t, ·) is the density of a Gaussian random
variable with variance t. Then there exists a positive constant K ∈ (0,∞) such that for all
x, y ∈ R, 0 ≤ s ≤ t it holds that

i) |Qσ
t f(x)| ≤ 1

min{σ−,σ+}

(
1 + |σ−−σ+|

σ−+σ+

)
1√
2π

∥f∥1√
t
,

ii)
∣∣∣Qσ

t f(x)−
2σ−σ+

σ−+σ+
⟨λσ, f⟩p(t, x/σ(x))

∣∣∣ ≤ K√
t3
(∥f∥1,2 + ∥f∥1,1|x|) ,

iii) for all ζ ≥ 0 there exists a positive constant Kζ such that∣∣∣Qσ
t f(x)−

2σ−σ+

σ−+σ+
⟨λσ, f⟩p(t, x/σ(x))

∣∣∣ ≤ Kζ

t

(
∥f∥1,1

1+(|x|/(σ(x)
√
t))ζ

+
∥f∥1,1+ζ

1+(|x|/σ(x))ζ

)
,

iv) |Qσ
t f(x)−Qσ

t f(y)| ≤ 1
min{σ−,σ+}

(
1 + |σ−−σ+|

σ−+σ+

)
K |x−y|

t
∥f∥1, and

v) |Qσ
t f(x)−Qσ

sf(x)| ≤ 1
min{σ−,σ+}

(
1 + |σ−−σ+|

σ−+σ+

)
K t−s√

s3
∥f∥1.

Proof. Item i is a straightforward consequence of (2.6) (with β = 0) and of the fact that

pβσ(t, x, y) ≤ (1 + |βσ|)p(t, x− y) ≤ 1 + |βσ|√
2πt

.

To prove the other items we also use the fact for all α ≥ 0 ∥f(σ(·)·)∥1,α ≤ ∥f∥1,α
(min {σ−,σ+})1+α and

∥f1[0,∞)∥1,α + ∥f1(−∞,0)∥1,α = ∥f∥1,α. Item ii follows from (A.5) and [40, Lemma 1] for SBM.
Item iii follows from (A.5) and the analogous result for BM: equation (3.2) in [26, Lemma 3.1].
Item iv and Item v follow from (A.5) and equations (3.4)-(3.5) in [26, Lemma 3.1].

We now consider the aggregated action of the semigroup which is useful in the convergence
results provided in Section B.3. Let f : R → R and

Γt(n, f, Y0) :=

⌊nt⌋−1∑
k=1

Qσ
kf(

√
nY0).

Note that if Y is an OBM, then Γt(n, f, x) =
∑⌊nt⌋−1

k=1 E [f(
√
nYk)|Y0 =

√
nx] . And by the

scaling property (A.1) it holds that Γt(n, f, x) =
∑⌊nt⌋−1

k=1 E
[
f(Yk/n)|Y0 = x

]
.
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Lemma 4. Let f : R → R and Γt(n, f, Y0) as above. There exists a positive constant K
(depending on σ±) such that |Γt(n, f, Y0)| ≤ K∥f∥1

√
nt and if ⟨λσ, f⟩ = 0 then it holds that

|Γt(n, f, Y0)| ≤ K (∥f∥1,2 + ∥f∥1,1|Y0|
√
n) and |Γt(n, f.Y0)| ≤ K∥f∥1,1(1 + log(nt)).

Proof. This proof is analogous to the one of [26, Lemma 3.3]. Item i in Lemma 3 and the

fact that
∑⌊nt⌋−1

k=1
1√
k
≤ 2

√
nt prove the first result. The second part of the statement, under

the assumption that ⟨λσ, f⟩ = 0, follows from Items ii-iii in Lemma 3 and the facts that∑∞
k=1

1√
k3

< ∞ and
∑⌊nt⌋−1

k=1
1
k
≤ (1 + max{0, log(nt)}).

A.4 Local time: on time continuity and moments

In this section we explore some properties of the local time of OBM and its moments.
The following statement is well known for the local time of BM. The proof is standard

(based on Itô-Tanaka formula and Burkholder-Davis-Gundy inequality).

Lemma 5. For all q ∈ (2,∞), α ∈ (0, q−2
2q

) it holds that (the pathwise continuous version

of) the local time L·(Y ) is locally α-Hölder continuous. In particular for all δ ∈ (−∞, 1
2
),

T ∈ [0,∞) it holds that

sup
t∈[0,T ]

nδ
(
Lt+ 1

n
(Y )− Lt(Y )

)
a.s.−−−→

n→∞
0.

Proof. In this proof let T ∈ [0,∞) and s, t ∈ [0, T ] with s ≤ t be fixed. Let us first note that
Itô-Tanaka formula implies that

Lt − Ls = |Yt| − |Ys| −
∫ t

s

sgn(Yu)σ(Yu) dWu.

The fact that for all a, b ∈ R, p ∈ [1,∞) it holds that (a + b)p ≤ 2p−1(|a|p + |b|p) and that
||a| − |b|| ≤ |a− b|, and Burkholder-Davis-Gundy inequality ensure that for all q ∈ [2,∞) there
exists a constant Kq > 0 (dependent on q, σ− and σ+) such that

E[|Lt − Ls|q] ≤ KqE

[∣∣∣∣∫ t

s

σ2(Yu) du

∣∣∣∣
q
2

]
≤ max {σ−, σ+}qKq(t− s)q/2.

Finally Kolmogorov continuity theorem ensures that there exists a continuous version of the
local time (that we took already) and it is locally Hölder continuous as required.

Let us recall that Y is an OBM with threshold r = 0. For every p ∈ [0,∞), x ∈ R, assume
that Y0 = x and for every function f : R → R either non-negative or such that (L1(Y ))p f(Y1) ∈
L1(P), let

L(p)(f, x) := E[(L1(Y ))p f(Y1)|Y0 = x]. (A.6)

In this document we only consider functions f : R → R satisfying that there exist K,α ∈ [0,∞)
such that |f(y)| ≤ Keα|y| for all y ∈ R, so L(·)(f, ·) is well defined. The scaling property (A.1)
in Appendix A.1 implies that

L(p)(f,
√
nY (k−1)

n

) = n
p
2E
[(

L k
n
(Y )− L k−1

n
(Y )
)p

f(
√
nY k

n
)|F (k−1)

n

]
. (A.7)

In particular note that L(1)(1, ·) = EY
g (·) with g(x, y) = |y| − |x|.
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Lemma 6. Let x ∈ R, let W be a standard BM and Y be a standard OBM defined on the same
probability space, let f : R → R be a function satisfying that there exist K,α ∈ [0,∞) such that
|f(y)| ≤ Keα|y| for all y ∈ R. Then for all p ∈ N it hold that

L(p)(f, x) =

∫ 1

0

|x|
σ(x)

(1− t)
p
2

√
2πt

3
2

e
− x2

2(σ(x))2tE
[
(L1(Y ))p f(Y1

√
1− t)

]
dt

=

(
2σ−σ+

σ− + σ+

)(p+1) |x|
σ(x)

∫ 1

0

(1− t)
p
2

√
2πt

3
2

e
− x2

2(σ(x))2tE
[
(L1(W ))p (σ(W1))

−1f(σ(W1)W1

√
1− t)

]
dt,

if x ̸= 0, and L(p)(f, 0) =
(

2σ−σ+

σ−+σ+

)(p+1)

E[(L1(W ))p (σ(W1))
−1f(σ(W1)W1)].

(If σ± = ∞ then replace f in the right hand side of last two equalities with f1R∓.)

Proof. We reduce to consider the case x ̸= 0 because if x = 0 then the statement follows from
simple computations using the joint density of the OBM Y and its local time (A.2).

Let βσ = σ−−σ+

σ−+σ+
and let X be the βσ-SBM starting from x/σ(x). Let Zt := Y/σ(Y ) a

standard βσ-SBM and let B be a BM starting at x/σ(x) independent of Y . For a process ξ let
us denote by T0(ξ) := inf({∞} ∪ {t ≥ 0: ξt = 0}) the first time it hits 0.

One well known property of SBM is that the process behaves as a BM until it reaches the

barrier, which is 0. This means that T0(X)
law
= T0(B). Moreover, by the Markov property, it

holds that X·+T0(X) conditioned on T0 (X) is distributed as Z·.
This and the relationship between the local times of OBM and SBM (4.2) show that

L(p)(f, x) =
(

2σ−σ+

σ−+σ+

)p
E
[
1{T0(X)≤1}E[(L1(X))p f(σ(X1)X1)|T0(X)]

]
=
(

2σ−σ+

σ−+σ+

)p
E
[
1{T0(B)≤1}

(
L1−T0(B)(Z)

)p
f(σ(Z1−T0(B))Z1−T0(B))

]
.

Let us recall the well known fact that the random variable T0(B) has density w.r.t. the Lebesgue

measure given by (0,∞) ∋ t 7→ |x|
σ(x)

1
√
2πt

3
2
e
− x2

2(σ(x))2t . Then the relationship between the local

times of OBM and associated SBM (4.2), the scaling property (A.1) and simple changes of
variables imply that

L(p)(f, x) =

∫ 1

0

|x|
σ(x)

(1− t)
p
2

√
2πt

3
2

e
− x2

2(σ(x))2tE
[
(L1(Y ))p f(Y1

√
1− t)

]
dt.

The relationship between the joint density of the standard OBM and its local time (A.2) and
the one for BM and its local time (A.3) yield the conclusion.

A.5 Orthogonal martingales

In this section let Y be a OBM and (Ft)t∈[0,1] its natural filtration. In this section we show
another fact that OBM has in common with the one-dimensional BM: the only orthogonal
square-integrable (Ft)t∈[0,1]-martingales are the constants.

Lemma 7. Let (Mt)t∈[0,1] be a square-integrable (Ft)t∈[0,1]-martingale such that for all t ∈ [0, 1]
the cross variation satisfies P(⟨Mt, Yt⟩t = 0) = 1. Then M is constant.

Proof. Without loss of generality we can assume M0 = 0, otherwise consider Mt −M0. There
exists an (Ft)t∈[0,1]-progressively measurable process ν such that Mt =

∫ t

0
νs dYs for all t ∈ [0, 1].

The orthogonality of M to Y rewrites as follows for all t ∈ [0, 1] it holds P(
∫ t

0
νsσ

2(Ys) ds =

0) = 1. By continuity, we deduce that P-a.s. for all t ∈ [0, 1] it holds that
∫ t

0
νsσ

2(Ys) ds = 0.

Thus P-a.s.
∫ 1

0
1{νs ̸=0} ds = 0. Hence for all t ∈ [0, 1] it holds P-a.s. that Mt =

∫ t

0
νs dYs = 0.

Theorem 4.15 in [28] ensures the a.s. uniqueness of the paths of the process ν in L2([0, 1];R)
and so Mt ≡ 0.
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B Towards proving Proposition 4: Sketch of a proof of

Proposition 1

In this section we prove Proposition 1 for OBM with threshold r = 0. More precisely we focus
on proving that

sup
s∈[0,t]

∣∣ε(0,h,Y )
n,s − ⟨λσ,E

Y
h ⟩Ls(Y )

∣∣ P−−−→
n→∞

0 (B.1)

under Hypothesis 1 (i.e. EY
h , E

Y
h2 ∈ L1

b(λ
(2))). Since the proof of Proposition 4 is quite technical,

we exploit the proof of the latter convergence to provide a clearer picture to the reader and, at
the same time, to introduce some results which are useful in the proof of Proposition 4.

First, we provide the following decomposition

ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y ) = M̂n

t + Vn
t (B.2)

where M̂n
· is a (F⌊nt⌋/n)t≥0-martingale. The decomposition in Proposition 4 is such that n1/4M̂n

t

has a non-trivial limit involving the local time. In this section we are not interested on the
limit, therefore the decomposition we take here, is slightly different that the one we consider in
Section C.1. Indeed here both terms of the decomposition should vanish as n grows. How to
find M̂n

t and Vn
t ? A first step is to look for an approximation of the local time.

B.1 A statistics approximating the local time

The following lemma is crucial in because it identifies a statistics which provide an approxima-
tion of the local time.

Lemma 8. Let g : R2 → R be the real function satisfying g(x, y) = |y| − |x|. Then for all
t ∈ [0,∞) it holds that ⟨λσ,E

Y
g ⟩ = 1,

ε
(0,EY

g ,Y )

n,t :=
1√
n

⌊nt⌋−1∑
k=0

EY
g (
√
nYk/n) =

⌊nt⌋−1∑
k=0

E
[
L(k+1)/n(Y )− Lk/n(Y )|Fk/n

]
and sups∈[0,t]

∣∣∣ε(0,EY
g ,Y )

n,s − Ls(Y )
∣∣∣ P−−−→

n→∞
0.

Proof. Some computations show that ⟨λσ,E
Y
g ⟩ = 1. In fact it holds that

⟨λσ,E
Y
g ⟩ =

∫ ∞

−∞

∫ ∞

−∞

(|y| − |x|)
(σ(x))2

qσ(1, x, y) dy dx

=
1− βσ

σ−σ2
+

∫ 0

−∞

∫ ∞

0

−(y + x)√
2π

e
− 1

2

(
x

σ+
− y

σ−

)2
dx dy +

1 + βσ

σ2
−σ+

∫ 0

−∞

∫ ∞

0

(y + x)√
2π

e
− 1

2

(
x

σ−
− y

σ+

)2
dy dx

+

∫ ∞

0

∫ ∞

0

(y − x)

σ3
+

√
2π

(
e
− 1

2

(
x

σ+
− y

σ+

)2
+ βσe

− 1
2

(
x

σ+
+ y

σ+

)2)
dx dy

+

∫ 0

−∞

∫ 0

−∞

−(y − x)

σ3
−
√
2π

(
e
− 1

2

(
x

σ−
− y

σ−

)2
− βσe

− 1
2

(
x

σ−
+ y

σ−

)2)
dx dy.

The first two terms of the right-hand-side cancel because 1−βσ

σ−σ2
+

= 1+βσ

σ2
−σ+

, so simple change of

variables show that

⟨λσ,E
Y
g ⟩ =

∫ ∞

0

∫ ∞

0

(y − x)√
2π

(
e−

(x−y)2

2 + βσe
− (x+y)2

2 + e−
(x−y)2

2 − βσe
− (x+y)2

2

)
dx dy

= 2

∫ ∞

0

∫ ∞

0

−(x− y)√
2π

e−
(x−y)2

2 dx dy = 2

∫ ∞

0

1√
2π

e−
(0−y)2

2 dy = 1.
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The scaling property (A.1), the Markov property, and Itô-Tanaka formula (see Lemma 1)
show 1√

n
EY

g (
√
nYk/n) = E

[
L(k+1)/n(Y )− Lk/n(Y )|Fk/n

]
. Indeed, let us observe that a simple

change of variable (corresponding to the scaling property (A.1)) and the Markov property yield

1√
n
EY

g (
√
nY k

n
) =

1√
n

∫ ∞

−∞

(
|y| −

√
n|Y k

n
|
)
qσ(1,

√
nY k

n
, y) dy

=

∫ ∞

−∞

(
|y| − |Y k

n
|
)
qσ(

1
n
, Y k

n
, y) dy = E

[
|Y (k+1)

n

| − |Y k
n
|||Y k

n
|
]
= E

[
|Y k+1

n
| − |Y k

n
||F k

n

]
.

Lemma 2.14 in [24] and Lemma 5 ensure the desired convergence in probability.

Observe that EY
g (x) is the difference between the expected value of |Y1/n| and |Y0| = |x|

and ε
(0,EY

g ,Y )

n,t is a sort of average of all absolute value increments between two consecutive
observations.

B.2 Identifying the martingale term

Lemma 8 suggests that the decomposition (B.2) could be

ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y ) = ε

(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩ε

(0,EY
g ,Y )

n,t + ⟨λσ,E
Y
h ⟩
(
ε
(0,EY

g ,Y )

n,t − Lt(Y )
)
.

Let us look more closely to the first two terms of the right-hand-side. It would be convenient
to add and remove a term involving the function EY

h . The idea behind that is to prove, by

dealing with martingales or functions of one variable, that the statistics ε
(0,h,Y )
n,t , ε

(0,EY
h ,Y )

n,t :=
1√
n

∑⌊nt⌋−1
k=0 EY

h (
√
nYk/n), and ⟨λσ,E

Y
h ⟩ε

(0,EY
g ,Y )

n,t have the same limit (i.e. ⟨λσ,E
Y
h ⟩Lt(Y ) by Lemma 8).

A candidate for M̂n
t is

ε
(0,h,Y )
n,t − ε

(0,EY
h ,Y )

n,t =
1√
n

⌊nt⌋∑
k=1

(
h(
√
n(Y(k−1)/n − r),

√
n(Yk/n − r))− EY

h (
√
nY(k−1)/n)

)
which can be easily seen to be a (F⌊nt⌋/n)t≥0-martingale: M̂n

t = 1√
n

∑⌊nt⌋
k=1 ϵ

n
k with

ϵnk := h(
√
n(Y(k−1)/n − r),

√
n(Yk/n − r))− E

[
h(
√
nY(k−1)/n,

√
nYk/n)|

√
nY(k−1)/n

]
.

Hence, Vn
t is given by

Vn
t = ⟨λσ,E

Y
h ⟩
(
ε
(0,EY

g ,Y )

n,t − Lt(Y )
)
+

1√
n

⌊nt⌋−1∑
k=0

Gh(
√
nYk/n)

where
Gh := EY

h − ⟨λσ,E
Y
h ⟩EY

g (B.3)

with g(x, y) = |y| − |x|.
By Lemma 8, to prove (B.1), it remains to study the convergence of both M̂n

t and Gn
t :=

1√
n

∑⌊nt⌋−1
k=0 Gh(

√
nYk/n): sups∈[0,t](|M̂n

s | + |Gn
s |)

P−−−→
n→∞

0. In Section B.3, we provide some

auxiliary convergence results which are useful to deal with these two terms. In particular,
Proposition 7 (see Remark 16) is suitable for dealing with both convergences. We provide the
details in Section B.4.

To conclude we give some rough ideas of what it means that Gn
t vanishes and why it is so.

Note that the function Gh is such that ⟨λσ,Gh⟩ = 0 which suggests that “averaging” over EY
h

is not as different from “averaging” over couples consecutive increments crossing the threshold
and then consider the average (integral) of the function EY

h with respect to the stationary
measure of the process.
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B.3 Auxiliary convergence results

We now provide several convergence results towards 0 or towards the local time of statistics of
the form 1√

n

∑⌊nt⌋−1
k=0 gn(

√
nY k

n
) under different assumptions on the sequence (gn)n. Note that

M̂n
t and Gn

t are of the latter form.
The first auxiliary result is the generalization to the case of OBM of [26, Lemma 4.2].

Lemma 9. Let (gn)n∈N be a sequence of real functions satisfying that ⟨λσ, gn⟩ = 0 and for all
x ∈ R

lim
n→∞

gn(x
√
n)2

n
+

∥g2n∥1√
n

+
∥gn∥1,1|gn(x

√
n)| log(n)

n
+

∥gn∥1,1∥gn∥1 log(n)√
n

= 0. (B.4)

Then limn→∞ E
[(

1√
n

∑⌊nt⌋−1
k=0 gn(

√
nY k

n
)
)2]

= 0 for all t ∈ [0, 1].

Proof. The proof is analogous to the one of Lemma 4.2 in [26]. It consists in bounding from

above E
[(∑⌊nt⌋−1

k=0 gn(
√
nY k

n
)
)2]

by

g2(
√
nY ) + Γt(n, g

2, Y0) + 2(|g(
√
nY0)|+ Γt(n, |g|, Y0)) sup

x∈R,s∈[0,t]
|Γs(n, g, x)|

and then using the different bounds of Lemma 4 to conclude.

The following propositions correspond to Theorem 4.1 a) and b) in [26].

Proposition 6. Let gn : R → R, n ∈ N, be a sequence of functions satisfying limn→∞ ∥gn∥1 = 0
and for all x ∈ R it holds that limn→∞

1√
n
gn(

√
nx) = 0. Then for all t ∈ (0, 1] it holds

lim
n→∞

E
[
sup
s∈[0,t]

∣∣n−1/2

⌊ns⌋−1∑
k=0

gn(
√
nY k

n
)
∣∣] = 0.

Proof. Notice that the integrand is bounded by n−1/2|gn|(
√
nY0) + n−1/2Γt(n, gn, Y0). The con-

clusion follows from the first statement in Lemma 4.

Proposition 7. Let gn : R → R, n ∈ N, be a sequence of functions satisfying (B.4) and there
exists λ ∈ R such that limn→∞⟨λσ, gn⟩ = λ. Then for all t ∈ [0, 1] it holds that

1√
n

⌊nt⌋−1∑
k=0

gn(
√
nY k

n
)

P−−−→
n→∞

λLt(Y ).

If in addition supn∈N ∥gn∥1 < ∞ then

sup
s∈[0,1]

∣∣∣n−1/2

⌊ns⌋−1∑
k=0

gn(
√
nY k

n
)− λLs(Y )

∣∣∣ P−−−→
n→∞

0.

Proof. Let us set the sequence fn := gn − ⟨λσ, gn⟩EY
g with g(x, y) := |y| − |x|. Note that

Lemma 8 ensures that ⟨λσ,E
Y
g ⟩ = 1 and that 1√

n

∑⌊nt⌋−1
k=0 EY

g (
√
nY k

n
)

P−−−→
n→∞

Lt(Y ). Hence

⟨λσ, fn⟩ = 0 and one can easily show that fn satisfies (B.4). Lemma 9 yields the result.
The additional statement is the same as [26, Theorem 4.1]. It consists in observing that, up to
taking a subsequence ⟨λσ, |gn|⟩ converges and then applying the first statement to the sequences

g±n (x) = max{±gn(x), 0}. The fact that 1√
n

∑⌊nt⌋−1
k=0 g±n (

√
nY k

n
) are increasing and converge to a

continuous (in time) limit implies the convergence in probability locally uniformly in time.
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Remark 16 (Proposition 6 and 7 for a constant sequence of functions). Let f ∈ L1 such that

for all x ∈ R it holds that limn→∞
f(

√
nx)√
n

= 0 (e.g. f ∈ L1
b(λ

(0))). Then Proposition 6 states

that if ∥f∥1 = 0 then for all t ∈ (0, 1] :

lim
n→∞

E
[
sup
s∈[0,t]

|n−1/2

⌊ns⌋−1∑
k=0

f(
√
nY k

n
)|
]
= 0.

And Proposition 7 states that if f 2 ∈ L1 and f ∈ L1(λ(1)) (e.g. f ∈ L1
b(λ

(1))) then

sup
s∈[0,1]

∣∣∣n−1/2

⌊ns⌋−1∑
k=0

f(
√
nY k

n
)− ⟨λσ, f⟩Ls(Y )

∣∣∣ P−−−→
n→∞

0.

B.4 Proof of the consistency (B.1)

We wish to show sups∈[0,t](|M̂n
s | + |Gn

s |)
P−−−→

n→∞
0, where M̂n

s and Gn
s have been introduced

in Section B.2. The next result, Lemma 10, ensures that Gh satisfies the assumptions in

Remark 16, thus sups∈[0,t] |Gn
s |

P−−−→
n→∞

0. For M̂n
· , the proof is more elaborate. It is sketched

after Lemma 10.

Lemma 10. Let γ ∈ [0,∞), h : R2 → R be a measurable function such that EY
h is well defined

and EY
h ∈ L1

b(λ
(γ)) (e.g. h ∈ Iγ by Lemma 2), and let Gh be the function defined in (B.3).

Then ⟨λσ,Gh⟩ = 0 and Gh ∈ L1
b(λ

(γ)).

Proof. Throughout this proof let Kσ = 1
min{σ2

−,σ2
+}

2σ−σ+

σ−+σ+
∈ (0,∞). First note that the fact that

qσ(1, x, y) ≤ Kσ
1√
2π
e−

(x−y)2

2 implies that we reduce to the case of Brownian motion and so, some
computations show:

|EY
g (x)| ≤ Kσ

1√
2π

∫ ∞

−∞
||y| − |x||e−

(x−y)2

2 dy ∈ L1
b(λ

(α))

for all α ≥ 0. Moreover EY
h ∈ L1

b(λ
(γ)), hence in particular it holds ⟨λσ,E

Y
h ⟩ ≤ ∥EY

h ∥1 < ∞.
Therefore |Gh| ≤ |EY

h |+ ∥EY
h ∥1|EY

g | ∈ L1
b(λ

(γ)) and so Gh ∈ L1
b(λ

(γ)).
It remains to prove that ⟨λσ,Gh⟩ = 0. This follows from the fact that ⟨λσ,Gh⟩ =

⟨λσ,E
Y
h ⟩(1− ⟨λσ,E

Y
g ⟩) and ⟨λσ,E

Y
g ⟩ = 1 by Lemma 8.

To conclude, we provide the arguments to deal with M̂n
t = 1√

n

∑⌊nt⌋
k=1 ϵ

n
k . By [21, Lemma 9],

to prove that M̂n
t converges to 0 in probability, it suffices to show that

1

n

⌊nt⌋∑
k=1

E
[
(ϵnk)

2|F(k−1)/n

] P−−−→
n→∞

0.

(Proposition 5 provides the asymptotic behavior as well so it requires more restrictive assump-
tions.) Since

E
[
(ϵnk)

2|F(k−1)/n

]
≤ E

[
h(
√
nY(k−1)/n,

√
nYk/n)

2|
√
nY(k−1)/n

]
= EY

h2(
√
nY(k−1)/n),

it suffices to prove that

1√
n

 1√
n

⌊nt⌋∑
k=1

EY
h2(

√
nY(k−1)/n)

 P−−−→
n→∞

0.

And this follows by applying the results of the following section, in particular by applying
Proposition 7 (see Remark 16) to EY

h2 ∈ L1
b(λ

(1)). The proof of (B.1) is thus completed.
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Decomposition (4.4) into martingale vanishing term

Lemma 12 Lemma 5

Lemma 11 Lemma 15

Lemma 9 Lemma 4

Item i

Lemma 8

Item ii

Proposition 7

Lemma 3
Lemma 10 Lemma 6

Lemma 13

Item iii

Proposition 6

Item iv

Figure 1: Map of the proof of Proposition 4.
In the appendix we introduce many auxiliary results. This map show how they intervene in
the proof of Proposition 4 and of other results of the appendix.

C Proof of the key Proposition 4

In this section we prove Proposition 4 which was stated in Section 4.3. The section is organized
as follows: We split the proof of Proposition 4 into three parts. The first part, in Section C.1,
consists in finding the decomposition (4.4) into a sum of martingale and a vanishing term. We
deal with the vanishing term in Section C.3. Finally, in Section C.4, we demonstrate that the
martingale part satisfies Items i-iv of Proposition 4. In Section C.2, we prove that the constant
KY

h defined by (2.10) is finite. Figure 1 show how the results of the paper intervene in the proof
of Proposition 4.

In this section, (Yt)t∈[0,1] is a standard OBM.
Let us recall that by assumption γ > 3 and h ∈ Iγ. By Lemma 2, EY

f and EY
f2 are well

defined and belong to L1
b(λ

(γ)). For most of the following definitions and proof steps γ ≥ 0
suffices. For the sake of precision, we specify when it does not.

C.1 The decomposition into a sum of martingale and vanishing
terms

In this section we determine the terms of the decomposition in equation (4.4) into a sum of a
vanishing term n1/4Vn and a martingale Mn. Note that for all n ∈ N, t ∈ [0, 1] :

ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y ) = Mn,1

t + Gn
t + ⟨λσ,E

Y
h ⟩
(
L⌊nt⌋/n(Y )− Lt(Y )

)
where Mn,1 and Gn are the processes satisfying for all t ∈ [0, 1] that

Mn,1
t = ε

(0,h,Y )
n,t − ε

(0,EY
h ,Y )

n,t + ⟨λσ,E
Y
h ⟩
(
ε
(0,EY

g ,Y )

n,t − L ⌊nt⌋
n

(Y )
)

and Gn
t = 1√

n

∑⌊nt⌋−1
k=0 Gh(

√
nY k

n
) (Gh is defined in (B.3) and g(x, y) := |y|− |x|). We used here

the abuse of notation ε
(0,EY

h ,Y )
n,t and ε

(0,EY
g ,Y )

n,t as in Appendix B.
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This decomposition is not the same as the one proposed in Section B.2. Indeed, Lemma 5
suggests that L⌊nt⌋/n(Y )−Lt(Y ) will contribute to Vn

t , so we split into two terms the quantity

⟨λσ,E
Y
h ⟩
(
ε
(0,EY

g ,Y )

n,t −Lt(Y )
)
.Moreover, it has been shown in Section B.4 that sups∈[0,t] |Gn

s |
P−−−→

n→∞
0, but the convergence speed have not been studied. In Section C.1 we decompose Gn

t into two
terms, one contributing to Mn

t and the other to Vn
t . More precisely, Gn = (Gn −Mn,2) +Mn,2

where

Mn,2
t =

1√
n

⌊nt⌋∑
k=1

⌊n
1
4 ⌋∑

j=0

(
E
[
Gh(

√
nY(j+k)/n)|Fk/n

]
− E

[
Gh(

√
nY(j+k)/n)|F(k−1)/n

])
. (C.1)

And so it holds for all n ∈ N, t ∈ [0, 1] that

ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y ) = Mn,1

t +Mn,2
t + Gn

t −Mn,2
t + ⟨λσ,E

Y
h ⟩
(
L⌊nt⌋/n(Y )− Lt(Y )

)
.

We first show, in Lemma 11, thatMn,1
t is a good candidate for contributing to the martingale

part of the decomposition.

Lemma 11. Mn,1 is a martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1].

Proof. Throughout this proof let An and Bn be the processes given by

An
t =

1√
n

⌊nt⌋−1∑
k=0

EY
g (
√
nY k

n
)− L ⌊nt⌋

n

(Y ) and Bn
t = Mn,1

t − ⟨λσ,E
Y
h ⟩An

t .

So Bn
t = 1√

n

∑⌊nt⌋−1
k=0

(
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
)
)
. It suffices to show the martingale

property for An and Bn. Let t ∈ [0, 1] be fixed. The martingale property for An is an immediate
consequence of Lemma 8. Let us explicit the case of the process Bn. For all j ∈ {0, . . . , ⌊nt⌋−1}
it can be easily shown that

E
[
n

1
2Bn

t |F j
n

]
=

⌊nt⌋−1∑
k=j

E
[
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
)|F j

n

]
+Bn

j
n

= Bn
j
n

.

because for all k ∈ {j, . . . , ⌊nt⌋ − 1} it holds that

E
[
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
)|F j

n

]
= E

[
E
[
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
)|F k

n

]
|F j

n

]
= E

[∫ ∞

−∞
h(
√
nY k

n
,
√
ny)qσ(1/n,

√
nY k

n
, y) dy − EY

h (
√
nY k

n
)|F j

n

]
= E

[
0|F j

n

]
= 0.

The proof is thus completed.

Definition (C.2) implies that Mn,2 is a martingale as well.

Lemma 12. Mn,2 is a martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1].

Proof. Using (C.4) we rewrite Mn,2 in (C.5) as

Mn,2
t =

1√
n

⌊nt⌋∑
k=1

⌊n
1
4 ⌋∑

j=0

(
E
[
Gh(

√
nY(j+k)/n)|Fk/n

]
− E

[
Gh(

√
nY(j+k)/n)|F(k−1)/n

])
(C.2)

which shows that Mn,2 is a martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1].
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Lemma 11 and Lemma 12 identify the (F⌊nt⌋/n)t≥0-martingale Mn and also the candidate
to be the vanishing term with rate of order at least 1/4 (denoted by Vn):

Mn
t := n1/4

(
Mn,1

t +Mn,2
t

)
and

Vn
t := Gn

t −Mn,2
t + ⟨λσ,E

Y
h ⟩
(
L ⌊nt⌋

n

(Y )− Lt(Y )
)
.

(C.3)

To prove Proposition 4, it remains to show that supt∈[0,1] n
1/4|Vn

t |
P−−−→

n→∞
0 and that Mn

· satisfies

Items i-iv. This is done in Section C.3 and Section C.4.

C.2 Finiteness of the variance

In this section we provide the proof of the finiteness of the constant KY
h defined by (2.10). The

proof is actually contained in Section C.4, but we choose to show it separately. Instead, we do
not prove separately non-negativity of the constant.

The expression of KY
h depends on a function, PY

h which is here expressed with the use of
some auxiliary functions. We first introduce and prove some properties of these functions that
are also used to provide an alternative expression for Mn,2. For all i, j ∈ {0, 1}, η ∈ [0,∞) let

Q(η)
n,i,j :=

⌊nη⌋+j∑
k=i

Qσ
kGh and Qn,i,j := Q( 1

4
)

n,i,j (C.4)

where Qσ is the semigroup of the OBM given in (A.4). These quantities may be seen as the
aggregated action of the semigroup on the function Gh up to different times of order nη. We
reduce to consider only some precise values of η, in particular η = 1/4 and η = 3/4. (The
results in the next sections would restrict the parameter choices, and these precise choices
would respect the restrictions.)

Note that the process Mn,2 satisfy for all t ∈ [0, 1] that

Mn,2
t =

1√
n

⌊nt⌋∑
k=1

(
Qn,0,0(

√
nY k

n
)−Qn,1,1(

√
nY k−1

n
)
)
. (C.5)

The following lemma relates the sequence (Qm,0,0)m∈N with PY
h in (2.11) (with β = 0 because

Y is an OBM).

Lemma 13. Pointwise limm→∞Qm,0,0 = PY
h . Moreover, x 7→ PY

h (x)/(1 + |x|) is bounded.

Proof. Let x ∈ R. Note that PY
h in (2.11) for OBM rewrites as

PY
h (x) =

∞∑
k=0

∫ ∞

−∞
pX(k, x, y)Gh(y) dy =

∞∑
k=0

Qσ
kGh(x).

Hence there exists a positive constant K ∈ (0,∞) such that

∣∣Qm,0,0(x)− PY
h (x)

∣∣ ≤ ∞∑
k=⌊m1/4⌋+1

|Qσ
kGh(x)| ≤ K(1 + |x|)

∞∑
k=⌊m1/4⌋+1

k−3/2

where the last inequality follows from Item ii in Lemma 3 and Lemma 10. Indeed, Lemma 10
establishes that Gh ∈ L1

b(λ
(γ)) for all γ > 0 (in particular for γ = 1 and γ = 2). The

fact that
∑∞

k=⌊m1/4⌋+1 k
−3/2 converges to 0 as m → ∞ proves the first statement. Similarly,

Item ii in Lemma 3 proves that there exist constants K,K ′ ∈ (0,+∞) such that |PY
h (x)| ≤

|Gh(x)|+K(1 + |x|)
∑∞

k=1 k
−3/2 ≤ K ′(1 + |x|). The proof is thus completed.
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We are now ready to prove the finiteness of KY
h .

Lemma 14. The quantity KY
h defined by (2.10) is a finite constant.

Proof. Let us recall that

KY
h = ⟨µY ,EY

h2 + 2EY
h,PY

h
⟩+

2σ−σ+

σ− + σ+

8

3
√
2π

(⟨µY ,EY
h ⟩)2

− 2

√
2

π

2σ−σ+

σ− + σ+
⟨µY ,EY

h ⟩
∫ ∞

−∞

(
e
− y2

2(σ(y))2 −
√
2π

|y|
σ(y)

Φ

(
−

|y|
σ(y)

))
PY
h (y)µY (dy)

− 2⟨µY ,EY
h ⟩
(

2σ−σ+

σ− + σ+

)2 ∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

|x|e
− x2

2(σ(x))2 Φ
(
− |y|

σ(y)

)
√
2πσ(x)

√
1

t
− 1h(x

√
t, y

√
1− t)µY (dy) dtµY (dx),

where Φ is the cumulative distribution function oh a standard Gaussian random variable, and
PY

h has been studied in Lemma 13. Note that λ-integrability is equivalent to µY -integrability.
Therefore if f ∈ L1

b(λ
(0)) then f is λ-integrable and ⟨µY , f⟩ is finite. Since γ ≥ 1, Lemma 2

ensures that f = EY
h ,E

Y
h2 ∈ L1

b(λ
(1)) which is contained in L1

b(λ
(0)) by Remark 2. And

also, in Lemma 13 it has been shown that |PY
h (y)| ≤ K(1 + |y|) for some constant K ∈

(0,∞), so Lemma 2 ensures that x 7→ EY
h,PY

h
(x)/(1 + |x|) belongs to L1

b(λ
(γ)). Since γ ≥

1, we deduce that EY
h,PY

h
is λ-integrable. Let us now consider the second last integral ap-

pearing in the expression of KY
h . Since 1 −

√
2π |y|

σ(y)
Φ
(
− |y|

σ(y)

)
e

y2

2(σ(y))2 ∈ [0, 1] for all y ∈
R, we reduce to check that e−y2/2PY

h (σ(y)y) is λ-integrable. And this is the case because
e−y2/2PY

h (σ(y)y) ≤ K(1 + |y|)e−y2/2. For the last integral we use that h ∈ Iγ and exploit
the inequality h(x, y) ≤ h̄(x)ea|y−x| ≤ Kea|y−x| for some constant a,K ∈ (0,∞). Then we

deal with
∫ 1

0

√
1
t
− 1ea|

√
tx−

√
1−ty| dt ≤ ea|x|+a|y| ∫ 1

0

√
1
t
− 1 dt = ea|x|+a|y| π

2
. By observing that

x 7→ ea|x| |x|e
− x2

2(σ(x))2

√
2πσ(x)

and y 7→ ea|y|Φ
(
− |y|

σ(y)

)
are λ-integrable, we complete the proof.

To conclude the section we study some properties of the sequences Qn,i,j which intervene in
the next sections. The following facts are consequences of Lemma 10, Lemma 3 (which requires
γ ≥ 2), and the fact that

∑n
k=1

1
k
≤ 2 log(n) for n ≥ 2. For every ζ ∈ [0, γ − 1] and every

η ∈ (0, 1), the fact that ⟨λσ,Gh⟩ = 0 and Item iii in Lemma 3 imply that for all x ∈ R it holds
that

|Qσ
nη+1Gh(x)| ≤

(
1 + |σ−σ+|

σ−+σ+

)
Kζn

−η
(

1
1+|xn−η/2/σ(x)|ζ +

1
1+(|x|/σ(x))ζ

)
(C.6)

and
|Q(η)

n,1,0(x)|+ |Q(η)
n,1,1(x)| ≤ 2Kζ log(n)

(
1

1+|xn−η/2/σ(x)|ζ +
1

1+|x/σ(x)|ζ

)
(C.7)

for some Kζ ∈ (0,∞) depending also on η. Hence (C.7) with ζ = 0 and Item ii in Lemma 3
imply that for all x ∈ R it holds that

|Q(η)
n,1,0(x)|+ |Q(η)

n,1,1(x)| ≤ 2Kmin {log(n), (1 + |x|)}, (C.8)

for some constant K ∈ (0,∞) depending on η ∈ (0, 1). This and the fact that Gh is bounded

ensures that for some positive constant K ∈ (0,∞) it holds that |Q(η)
n,0,0(x)| + |Q(η)

n,0,1(x)| ≤
2|Gh(x)|+ |Q(η)

n,1,0(x)|+ |Q(η)
n,1,1(x)| ≤ 2K(log(n) + 1) and

|Q(η)
n,0,0(x)|+ |Q(η)

n,0,1(x)|+ |Q(η)
n,1,0(x)|+ |Q(η)

n,1,1(x)| ≤ 2K(log(n) + 1). (C.9)
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C.3 Dealing with the vanishing term

We now prove that Vn defined in (C.3), satisfies that supt∈[0,1] n
1/4|Vn

t |
P−−−→

n→∞
0. This is a

consequence of Lemma 5 and Lemma 15.

Lemma 15. Let h ∈ I3. Then sups∈[0,1] n
1/4|Gn

s −Mn,2
s | P−−−→

n→∞
0.

Proof. Using (C.4) we rewrite Mn,2 in (C.2) as (C.5) and also as

Mn,2
t = Gn

t − 1√
n

(
Qn,0,0(

√
nY0)−Qn,0,0(

√
nY⌊nt⌋/n)

)
− 1√

n

⌊nt⌋−1∑
j=0

Qσ

⌊n
1
4 ⌋+1

Gh(
√
nYj/n).

Let

mn
t := Gn

t − 1√
n

(
Q(3/4)

n,0,0 (
√
nY0)−Q(3/4)

n,0,0 (
√
nY⌊nt⌋/n)

)
− 1√

n

⌊nt⌋−1∑
j=0

Qσ

⌊n
3
4 ⌋+1

Gh(
√
nYj/n).

By analogy, mn
t has an expression as (C.2) and so it is clear that mn is a martingale with

respect to the filtration (F⌊nt⌋/n)t∈[0,1]. Therefore n1/4(Mn,2
t − mn

t ) as well. Let us denote by

Dn
t := n1/4(Gn

t − Mn,2
t ) and dnt := n1/4(Gn

t − mn
t ). Then Dn − dn = n1/4(mn − Mn,2) is a

martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1]. In this notation, the goal is to prove

sups∈[0,1] |Dn
s |

P−−−→
n→∞

0.

First step: For every t ∈ [0, 1], let us show that limn→∞ E[(Dn
t − dnt )

2] = 0 by demonstrating
the stronger fact that limn→∞ E[(Dn

t )
2 + (dnt )

2] = 0.
Let t ∈ [0, 1] and η ∈

{
1
4
, 3
4

}
be fixed. Inequality (C.9) implies for all ω ∈ Ω that

sup
s∈[0,1]

n− 1
4

(
Q(η)

n,0,0(
√
nY0(ω))−Q(η)

n,0,0(
√
nY⌊ns⌋/n(ω))

)
−−−→
n→∞

0, (C.10)

hence it holds also that limn→∞ E
[
n−1/2

(
Q(η)

n,0,0(
√
nY0)−Q(η)

n,0,0(
√
nY⌊nt⌋/n)

)2]
= 0. Next ob-

serve that, since λσ is a stationary measure, the sequences of functions g
(η)
n := n1/4Qσ

⌊nη⌋+1Gh,

η ∈ {1
4
, 3
4
} satisfy that ⟨λσ, g

(η)
n ⟩ = n1/4⟨λσ,Gh⟩ which is equal to 0 by Lemma 10. This and

inequality (C.6) (with ζ = 2 since h ∈ Iζ+1) ensure that (B.4) holds. (A sufficient condition is
η ≥ 1/4.)

Hence, Lemma 9 shows that limn→∞ E
[
n−1/2

(∑⌊nt⌋−1
j=0 Qσ

⌊nη⌋+1Gh(
√
nYj/n)

)2]
= 0.

Second step: It holds that sups∈[0,1] |Dn
s − dns |

P−−−→
n→∞

0.

This follows from [1, Proposition 1.2] as a consequence of the previous step and the martingale
property of Dn − dn.

Third step: It holds that sups∈[0,1] |dns |
P−−−→

n→∞
0. This follows from (C.10) and from applying

Proposition 6 to the sequence gn := n1/4Qσ

⌊n
3
4 ⌋+1

Gh. (Here taking n1/4Qσ
⌊nη⌋+1Gh with η >

1/2 would be sufficient.) The assumptions are indeed satisfied: limn→∞ ∥gn∥1 = 0 by Item i
in Lemma 3 and in the first step we have proven that gn satisfies (B.4) and in particular

limn→∞
gn(

√
nx)√
n

= 0.
Combining the two last steps yields the conclusion.
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C.4 Dealing with the martingale term

In this section we complete the proof of Proposition 4. The arguments are sometimes sketched
because analogous to the ones in [26, Section 6].

Let γ > 3 and h ∈ Iγ be fixed. By Definition 1 of Iγ there exist a non-negative function
h̄ ∈ L1

b(λ
(γ)) and a constant a ∈ [0,∞) such that |h(x, y)| ≤ h̄(x)ea|y−x|. In this section h̄ and

a are fixed.
Let us also recall some notation: let EY the functional in (2.8), Qσ the semigroup in (A.4), Gh

in (B.3), Q in (C.4) and its limit PY
h in (2.11) (see Lemma 13), and L in (A.6).

For all n ∈ N the (F⌊nt⌋/n)t∈[0,1]-martingale Mn in (C.3) rewrites as Mn
t =

∑⌊nt⌋
k=1 χ

n
k where

χn
k := n− 1

4

(
h(
√
nY(k−1)/n,

√
nYk/n)− ⟨λσ,E

Y
h ⟩

√
n(Lk/n(Y )− L(k−1)/n(Y ))

)
+n− 1

4

(
Qn,0,0(

√
nYk/n)−Qn,0,1(

√
nY(k−1)/n)

)
.

(C.11)

Now it remains to prove Items i-iv in Proposition 4.

C.4.1 Proof of Item i in Proposition 4

It follows from scaling property (A.1) and Lemma 8. For all n ∈ N, k ∈ {1, . . . , ⌊n⌋}, the
scaling property (A.1), Lemma 8 and (C.4) ensure that

E
[
χn
k |F(k−1)/n

]
= n− 1

4

(
Gh(

√
nY(k−1)/n) +

∫ ∞

−∞
Qn,0,0(y)qσ(1,

√
nY(k−1)/n, y) dy −Qn,0,1(

√
nY(k−1)/n)

)
= n− 1

4

(
Qσ

1Qn,0,0(
√
nY(k−1)/n)−Qn,1,1(

√
nY(k−1)/n)

)
= 0.

C.4.2 Proof of Item ii in Proposition 4

Let t ∈ [0, 1] be fixed.
First step: It can be easily shown that

√
nE
[
(χn

k)
2|F(k−1)/n

]
= fn(

√
nY(k−1)/n) + (⟨λσ,E

Y
h ⟩)2L(2)(1,

√
nY(k−1)/n)− 2⟨λσ,E

Y
h ⟩hn(

√
nY(k−1)/n)

where fn and hn are given by fn(x) := EY
h2(x)+2EY

h,Qn,0,0
(x)+gn(x) and hn(x) := L(1)(h(x, ·), x)+

L(1)(Qn,0,0, x), with gn(x) := Qσ
1 ((Qn,0,0)

2) (x)− (Qn,0,1(x))
2.

In fact first note that, by (A.7), for all k = 1, . . . , ⌊nt⌋ it holds that

hn(
√
nY k−1

n
) =

√
nE
[
(h(

√
nY k−1

n
,
√
nY k

n
) +Qn,0,0(

√
nY k

n
))(L k

n
(Y )− L k−1

n
(Y ))|F k−1

n

]
.

Let us now consider fn. Clearly fn have to be the sum of all remaining terms and it has
to have the desired form. This follows from the fact that the scaling property (A.1) and

equation (C.4) ensure that E
[
(Qn,0,0(

√
nYk/n))

2|F(k−1)/n

]
= Qσ

1 ((Qn,0,0(
√
nYk/n))

2). but also

E
[
Qn,0,0(

√
nYk/n)|F(k−1)/n

]
= Qn,1,1(

√
nY(k−1)/n) which, together with the definition of Gh in

(B.3), (A.7), and the fact that Qn,1,1(
√
nY(k−1)/n) = Qn,0,1(

√
nY(k−1)/n)−Gh(

√
nY(k−1)/n) show

that Qn,0,1(
√
nY(k−1)/n) can be rewritten as

Qn,0,1(
√
nY k−1

n
) = E

[
h(
√
nY k−1

n
,
√
nY k

n
) +Qn,0,0(

√
nY k

n
)− ⟨λσ,E

Y
h ⟩
√
n(L k

n
(Y )− L k−1

n
(Y ))|F k−1

n

]
.

The proof of the first step is thus completed.
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Second step: It follows from applying Proposition 7 to the constant sequence of functions

L(2)(1, ·) that 1√
n

∑⌊nt⌋
k=1 L(2)(1,

√
nY(k−1)/n)

P−−−→
n→∞

2σ−σ+

σ−+σ+

8
3
√
2π
Lt(Y ). The fact that the assump-

tions of the proposition (i.e. L(2)(1, ·) ∈ L1
b(λ

(2))) are satisfied and ⟨λσ,L(2)(1, ·)⟩ = 2σ−σ+

σ−+σ+

8
3
√
2π

follows from the fact that E
[
(L1(W ))2

]
= 1 and Lemma 6.

In the two final steps, we want to apply Proposition 7 to the sequences fn and hn.

Third step: We show that 1√
n

∑⌊nt⌋
k=1 fn(

√
nY(k−1)/n)

P−−−→
n→∞

⟨λσ,E
Y
h2+2EY

h,PY
h
⟩Lt(Y ). applying

Proposition 7. To do so we check that the sequence fn satisfies (B.4) and that limn→∞⟨λσ, fn⟩ =
⟨λσ,E

Y
h2 + 2EY

h,PY
h
⟩.

The fact that limn→∞⟨λσ, gn⟩=0 follows from the fact that λσ is a stationary measure,
inequality (C.6) with ζ = γ−1 > 2, and inequality (C.7). Note that EY

h,Qn,0,0
= EY

h,Gh
+EY

h,Qn,1,0
.

Lemma 10 (in particular the fact that Gh is bounded) ensures that there exists a constant
K ∈ (0,∞) such that |EY

h,Gh
(x)| ≤ Kh̄(x). By (C.8) there exists constants K1, K2 ∈ (0,∞) (all

depending on σ± and K2 depending also on the constant a ∈ [0,∞)) such that

|EY
h,Qn,1,0

(x)| ≤ K1h̄(x)

(∫ ∞

−∞
(1 + |x|1[−x,x](y) + |y|1R\[−x,x](y))e

a|y−x|qσ(1, x, y) dy

)
≤ K2h̄(x)(1 + |x|).

The fact that h ∈ Iγ ⊆ I2 ensures that h̄ ∈ L1
b(λ

(1)) (by Lemma 2) and so EY
h,Qn,0,0

∈ L1.

Hence, dominated convergence and Lemma 13 show that limn→∞⟨λσ, fn⟩ = ⟨λσ,E
Y
h2 +2EY

h,PY
h
⟩.

Let us now show that fn satisfies equation (B.4). By Lemma 2, EY
h2 ∈ L1

b(λ
(2)).

Let us explore the contribution to (B.4) of the other parts of fn. Let us first consider E
Y
h,Qn,0,0

=

EY
h,Gh

+ EY
h,Qn,1,0

. Above we saw that |EY
h,Gh

| ≤ Kh̄ with K non negative constant. Cauchy-
Schwarz inequality implies that

(EY
h,Qn,1,0

(x))2 ≤
∫ ∞

−∞
h(x, y)2qσ(1, x, y) dy

∫ ∞

−∞
(Qn,1,0(y))

2qσ(1, x, y) dy.

It can be easily shown that the first factor is uniformly bounded by a finite constant. And by
(C.7) (taking ζ = γ − 1 > 2) there exist constants K1, K2 ∈ (0,∞) such that

Qσ
1

(
(Qn,1,0)

2
)
=

∫ ∞

−∞
(Qn,1,0(y))

2qσ(1, x, y) dy

≤ K1

∫ ∞

−∞

(log n)2qσ(1, x, y)

(1 + |yn− 1
8/σ(y)|γ−1)2

dy ≤ K2(log(n))
2

1 + |xn− 1
8/σ(x)|2(γ−1)

.

(C.12)

The last inequality are consequences of the upper bound for the transition density of OBM

qσ(1, x, y) ≤
(
1+
∣∣∣σ−−σ+
σ−+σ+

∣∣∣)
√
2πσ(y)

e−
1
2
( y
σ(y)

− x
σ(x)

)2 and of [26, Lemma 3.2] (or some computations). There-

fore EY
h,Qn,0,0

(x) ≤ K

(
h̄(x) + log(n)

1+|xn− 1
8 /σ(x)|γ−1

)
. Finally we consider the auxiliary function gn:

note that |gn|(x) ≤ Qσ
1 (2(Qn,0,0)

2 + 2(Gh)
2)(x) + 2(Qn,1,1(x))

2 + 2(Gh(x))
2. Inequality (C.7)

and inequality (C.12) imply that Qσ
1 ((Qn,0,0)

2) (x) + (Qn,1,1(x))
2 ≤ K(log(n))2

1+|xn− 1
8 /σ(x)|2(γ−1)

for some

non negative constant K. Lemma 10, the fact that γ ≥ 2 and Item iii of Lemma 3 yields
(Gh)

2 ≤ KGh and Qσ
1 ((Gh)

2) (x) ≤ K(e−x2/2 + 1
1+(|x|/σ(x))γ ) for some non-negative constant

K. Combining all terms yields that fn satisfies (B.4). (Here we used the fact that γ ≥ 3 and
η = 1/4 < 1/3 in the definition of Q.)

Fourth step: We show that 1√
n

∑⌊nt⌋
k=1 hn(

√
nY(k−1)/n)

P−−−→
n→∞

chLt(Y ) applying Proposition 7,

where 2⟨λσ,E
Y
h ⟩ch := −Kh + ⟨λσ,E

Y
h2 + 2EY

h,PY
h
⟩ + 2σ−σ+

σ−+σ+

8
3
√
2π
(⟨λσ,E

Y
h ⟩)2. To do so we check

that the sequence hn satisfies (B.4) and that limn→∞⟨λσ, hn⟩ = ch.
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Inequality (C.8), the fact that Gh is bounded (see Lemma 10), the fact that

E
[
L1(W )(1 + |W1|+ eaσ(W1)|W1|1{σ(W1)∈R})

]
< ∞

(see the joint density of BM and its local time (A.3)), boundedness of h̄, and the change of
variable s = x2

(σ(x))2t
show that there exists K ∈ (0,∞) such that

|L(1)(h(x, ·), x)|+ |L(1)(Qn,0,0, x)| ≤ 2K|x|e−
x2

(σ(x))2 ∈ L1.

Hence dominated convergence, and Lemma 13 demonstrates that limn→∞⟨λσ,L(1)(Qn,0,0, ·)⟩ =
⟨λσ,L(1)(PY

h , ·)⟩. Moreover the latter inequalities ensure also that hn satisfy (B.4).
Lemma 6 allows us to rewrite ch := ⟨λσ,L(1)(h(·, ), ·)⟩+ ⟨λσ,L(1)(PY

h , ·)⟩ as

ch =

√
2

π

(σ− + σ+)

2σ−σ+

∫ 1

0

√
1

t
− 1

∫ ∞

−∞

∫ ∞

0

ρσ1 (y, ℓ)ℓPY
h (y

√
1− t) dℓ dy dt

+

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

∫ ∞

0

|x|e−
x2

2(σ(x))2

√
2πσ(x)

√
1

t
− 1ρσ1 (y, ℓ)ℓh(x

√
t, y

√
1− t) dℓ dy dtλσ(dx)

where ρσ1 is the joint density of a standard OBM and its local time at time 1 (given in (A.2)).
This expression can be easily checked to be the desired expression for ch.

C.4.3 Proof of Item iii in Proposition 4

Let t ∈ [0, 1] be fixed.
First step: Let us show that

E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

]
=

1√
n

(
n− 1

4f1(
√
nY(k−1)/n) + gn(

√
nY(k−1)/n) + ⟨λσ,E

Y
h ⟩n− 1

4f2(
√
nY(k−1)/n)

)
where f1, f2, gn are given by

f1(x) :=

∫ ∞

−∞
(h(x, y) +Gh(y))(y − x)qσ(1, x, y) dy, f2(x) := xL(1)(1, x), and

gn(x) := n− 1
4

∫ ∞

−∞
Qn,1,0(y)(y − x)qσ(1, x, y) dy.

Throughout the proof of this step let I : x 7→ x denote the identity function. It follows from
(C.11), the fact that Y is a martingale, (A.7), and the scaling property (A.1) that

n
3
4 E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

]
= f1(

√
nY(k−1)/n) + ⟨λσ,E

Y
h ⟩f2(

√
nY(k−1)/n)− L(1)(I,

√
nY(k−1)/n)) + n1/4gn(

√
nY(k−1)/n).

The proof of this step is completed if L(1)(I, ·) = 0. This equality follows from the fact that for
a standard BM, say W , it holds that E[L1(W )W1] = 0 and from Lemma 6.

In the next steps we want to check that Proposition 6 can be applied to the sequences
n− 1

4f1, n
− 1

4f2 and gn.
Second step: We show that f1 is bounded and integrable: f1 ∈ L1

b(λ
(0)).

The proof follows from Lemma 10, and Item iii in Lemma 3. In this proof the fact that
γ > 3 is strongly used.
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The fact that h ∈ Iγ ⊆ I3 and Lemma 10 ensure that h̄ and Gh are in L1
b(λ

(2)). This,

Cauchy-Schwarz, the fact that
(∫∞

−∞(y − x)2qσ(1, x, y) dy
)
≤ σ2

−1{σ−∈R} + σ2
+1{σ+∈R}, and the

fact that that
∫∞
−∞(Gh(y))

2qσ(1, x, y) dy = Qσ
1G

2
h(x) yield

|f1(x)| ≤ h̄(x)

∫ ∞

−∞
ea|y−x||y − x|qσ(1, x, y) dy +

√
σ2
−1{σ−∈R} + σ2

+1{σ+∈R}
(
|Qσ

1G
2
h(x)|

)1/2
.

By Lemma 10 Gh is bounded, i.e. there exists K ∈ (0,∞) such that supx∈R |Gh(x)| ≤ K and
⟨λσ,Gh⟩ = 0, and so |⟨λσ,G

2
h⟩| ≤ K|⟨λσ,Gh⟩| = 0. And so Item iii in Lemma 3 implies, up to

increase the constant K ∈ [1,∞), that

|Qσ
1G

2
h(x)| ≤ K

1

1 + |x/σ(x)|γ−1
+K

1√
2π

e
− x2

2(σ(x))2 ≤ 2K2 1

(1 + |x/σ(x)| γ−1
2 )2

.

Since γ > 3 it holds that (|Qσ
1G

2
h(x)|)

1
2 ∈ L1

b(λ
(0)) and so |f1| ∈ L1

b(λ
(0)).

Third step: The fact that f2 is bounded and integrable follows from Lemma 6.
This and the change of variable s 7→ r = x2

(σ(x))2s
show that there exists a positive constant

K such that

f2(x) =

(
2σ−σ+

σ− + σ+

)2
x|x|
σ(x)

E
[
L1(W )

σ(W1)

] ∫ 1

0

√
1− s

√
2πs

3
2

e
− x2

2(σ(x))2sds

=

(
2σ−σ+

σ− + σ+

)2
x|x|
σ(x)

E
[
L1(W )

σ(W1)

] ∫ ∞

x2

(σ(x))2

1√
2π

√
(σ(x))2

x2
− 1

r
e−

r
2
1√
r
dr 1{σ(x)∈R}

≤
(

2σ−σ+

σ− + σ+

)2 |x|E[L1(W )]

min{σ−, σ+}

∫ ∞

x2

(σ(x))2

1√
2π

e−
r
2
1√
r
dr 1{σ(x)∈R} ≤ Ke

− x2

4(σ(x))2 ∈ L1
b(λ

(0)).

In the last inequality we used that E[L1(W )] ∈ [0,∞). This step is thus completed.
Fourth step: We prove that

∫∞
−∞ |gn(x)| dx and 1√

n
gn(

√
nx) converge to 0.

Cauchy-Schwarz inequality ensures

|gn(x)|2 ≤ n−1/2

(∫ ∞

−∞
(Qn,1,0(y))

2qσ(1, x, y) dy

)(∫ ∞

−∞
(y − x)2qσ(1, x, y) dy

)
.

Note that
(∫∞

−∞(y − x)2qσ(1, x, y) dy
)
≤ σ2

−1{σ−∈R}+σ2
+1{σ+∈R} and inequality (C.12) yield that

there exists a constant K ∈ (0,∞) depending on γ and σ± such that |gn(x)| ≤ n− 1
4K2 log(n)

1+|xn− 1
8 /σ(x)|γ−1

.

In the last steps we proved that Proposition 6 can be applied and this completes the proof.

C.4.4 Proof of Item iv in Proposition 4

Let ε ∈ (0,∞) be fixed. For every k, Hölder’s inequality and Markov’s inequality show

E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

]
≤ E

[
|χn

k |5|F(k−1)/n

]
ε−3.

The fact that h ∈ Iγ ⊆ I0 ensures that h̄ is bounded and integrable. This combined with
Jensen’s inequality and (C.9) ensures that supx∈R h̄(x) + |⟨λσ,E

Y
h ⟩| is bounded by a constant

K ∈ (0,∞) and for all n ∈ N \ {0, 1, 2, 3} it holds that

E
[
|χn

k |5|F(k−1)/n

]
≤ 44n− 5

4K5
(
E
[
e5a

√
n|Yk/n−Y(k−1)/n||F(k−1)/n

]
+ E

[(√
n|Lk/n(Y )− L(k−1)/n(Y )|

)5 |F(k−1)/n

]
+ (log n)5

)
.
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The fact that density of the OBM has a Gaussian behavior together with the scaling prop-

erty (A.1) ensure that E
[
e5a

√
n|Yk/n−Y(k−1)/n||F(k−1)/n

]
=
∫∞
−∞ e5a|y−x|qσ(1, x, y) dy is bounded.

By (A.6) and Lemma 6 we can show, similarly to the third step of the proof of Item iii, that
there exist constants K1, K2 ∈ (0,∞) such that

E
[(√

n|Lk/n(Y )− L(k−1)/n(Y )|
)5 |F(k−1)/n

]
= L(5)(1,

√
nY(k−1)/n)

≤ K1

∫ 1

0

(1− t)
5
2

√
2πt

3
2

√
n|Y(k−1)/n|

σ(Y(k−1)/n)
e
−

n(Y(k−1)/n)2

2(σ(Y(k−1)/n))t dt ≤ K2.

We conclude that there exists a constant K ∈ (0,∞) such that

n∑
k=1

E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

]
≤ nKn− 5

4 log(n)ε−3 −−−→
n→∞

0.
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[5] J.-M. Azäıs. Approximation des trajectoires et temps local des diffusions. Ann. Inst. H.
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