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Rates of convergence to the local time
of Oscillating and Skew Brownian Motions

Sara Mazzonetto*

Abstract

In this paper, a class of statistics based on high frequency observations of oscillating
and skew Brownian motions is considered. Their convergence rate towards the local time
of the underlying process is obtained in form of a Central Limit Theorem. Oscillating and
skew Brownian motions are solutions to stochastic differential equations with singular
coefficients: piecewise constant diffusion coefficient or drift involving the local time. The
result is applied to provide estimators of the parameter of skew Brownian motion and
study their asymptotic behavior. Moreover, in the case of the classical statistic given by
the normalized number of crossings, the result is proved to hold for a larger class of Itô
processes with singular coefficients.

Keywords: Skew Brownian motion, Oscillating Brownian motion, Local time, Functional
limit theorems, Central Limit Theorem, Parameter estimation.

AMS 2010: 60F17, 62F12, 60J55, 60F05.

1 Introduction

It is well known that the normalized number of crossings of the level r ∈ R of the time
discretization (high frequency) of a Brownian motion (BM) provides an estimator for its local
time at r. Roughly speaking the local time at the point r measures the time the process spends
around r (see (1.7) below for a precise definition), so a rescaled number of crossings for high
frequency data is a natural approximation of the local time also for more general processes.
The normalized number of crossings has been extensively studied as an approximation of the
local time of Brownian diffusions whose drift and diffusion coefficient σ are sufficiently regular
(in particular σ is continuous). The convergence was proven, for instance, in [5, 6]. In this
document we allow the presence of some singularities and examine the asymptotic behavior in
Theorem 2 below.

More general functionals of discrete observations can also be considered. Given a stochastic
process (Xt)t∈[0,∞), let us consider the following statistics for high frequency observations:

ε
(r,f,X)
n,t :=

1√
n

⌊nt⌋−1∑
k=0

f(
√
n(Xk/n − r),

√
n(X(k−1)/n − r)) (1.1)

where f : R2 → R is a measurable function satisfying suitable integrability conditions. The
normalized number of crossings of the level r corresponds to considering the function f(x, y) :=
1(−∞,0)(xy) (the statistic is explicitly provided in (3.1) below).
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In the case X is a BM, for the kind of estimators in (1.1), convergence towards the local
time and Central Limit Theorem (CLT) were obtained in [11, 12]. In the context of Brownian
diffusions with regular coefficients mentioned above, convergence results are proven for specific
functions f in [17] and for more general statistics of multivariate diffusions in [24]. In the latter
article the associated CLT is proved. It is shown via semigroup estimates and martingale limit
theorems, that ε

(r,f,X)
n,t behaves asymptotically (in n) as a mixed Gaussian distribution (see (1.2)

below). The techniques developed so far can be adapted to study more general processes, for
instance fractional BM in [41] and [3, Corollary 14].

In this document we focus on one-dimensional Itô processes solutions of stochastic differ-
ential equations (SDEs) with singular coefficients: discontinuous coefficients or distributional
drift in form of a weighted local time of the process at a given level. Solutions to such SDEs
are often called threshold or skew diffusions. Two key cases belonging to this class of processes
are oscillating Brownian motion (OBM) and skew Brownian motion (SBM). They are gener-
alizations of BM and of reflected BM as well, with distributions which are possibly singular
with respect to BM. They change behavior when they reach a point, called barrier or thresh-
old , which then becomes a discontinuity point for the local time x 7→ Lx

t (X). More precisely,
OBM behaves like a BM with a different volatility above and below the threshold (causing a
regime-switch) while SBM behaves like a BM everywhere except when it reaches the threshold,
which plays the role of semi-permeable and semi-reflecting barrier. Note that OBM and SBM
are null-recurrent processes, hence results for ergodic processes cannot be applied.

Let us have a look at the following simplified statement of our key result, that is Theorem 1
below: let X be a SBM/OBM and r be the threshold, let (Lr

t (X))t≥0 be its symmetric local
time at the threshold. Then for appropriate constants c,K ∈ R it holds for all t ∈ [0,∞) that

n1/4

(
ε
(r,f,X)
n,t − c Lr

t (X)

K2
√

Lr
t (X)

)
n→∞∼ N (0, 1). (1.2)

Although, at the threshold r, OBM and SBM behave differently with respect to BM and in
particular the local time x 7→ Lx

t (X) is discontinuous at r, the speed of convergence is the
same as for BM: n1/4. Heuristically the convergence is different from what one might expect
(i.e. n1/2), because the local time in r and its estimator change only when the process reaches r.
Indeed, as n → ∞, among n observations of the process on a fixed interval, the number of those
which are sufficiently close to r to matter is of order n1/2.

The result in Theorem 1 is actually more general. Firstly it is a functional limit theorem: the
processes is seen as random variables with values in the Skorokhod space of càdlàg functions.
Secondly it holds also for drifted OBM and SBM, under some suitable assumptions on the
drift. Therefore, this result extends the existing results on BM to solutions to SDEs with
singular coefficients such as OBM, SBM, and reflected BM (with suitable drift, by Girsanov).
Extensions to more general statistics of solutions to SDEs with more general discontinuous
diffusion coefficient is object of further research. Nevertheless, in Theorem 2, we prove the
analogous of Theorem 1 for the well known estimator of the normalized number of crossings
when the process is a more general threshold diffusion.

1.1 Motivation and applications

Since the seventies OBM and SBM together with their local time have been studied in the
context of threshold diffusions. In probability and stochastic analysis [7, 30, 43, 20, 18, 47], . . . ,
recently in SPDEs [13, 4], in simulation [16, 45], . . . , and we refer the reader to the introduction
of [32] for some more applications of threshold diffusions in astrophysics, brain imaging, ecology,
geophysics, fluid/gas dynamics, meteorology, molecular dynamics, oceanography.
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Some models in financial mathematics and econometrics are threshold diffusions, for instance
continuous-time versions of SETAR (self-exciting threshold auto-regressive) models, see e.g. [14,
38]. The study of SBM (or OBM) and its local time has been recently investigated in the context
of option pricing, as for instance in [19] and [15]. In [34] it is shown that a time series of threshold
diffusion type captures leverage and mean-reverting effects. We refer to the introduction of the
latter article for further references.

Statistical studies for threshold diffusions are partially motivated by calibration of such
econometric models (see e.g. [46, 33]). Indeed, study of (quasi) maximum likelihood estimators
(MLE) of drift coefficients from high frequency observations depends on the approximations
of occupation times and local times of the process. This is quite naturally explained by the
fact that the behavior of the process changes at the threshold. Less heuristically, and more
quantitatively, since the process behaves differently on two semi-axes, say (−∞, 0) and (0,+∞),
it is natural to look at the dynamics of the process in these semi-axes and this means considering
max{Xt, 0} and min{Xt, 0}. And if Xt satisfies a SDE then by Itô-Tanaka formula max{Xt, 0}
and min{Xt, 0} satisfy a SDE involving the local time of the process Xt. In [39], Theorem 1
has been applied to exhibit the asymptotic behavior in high frequency of (quasi) MLE of the
drift parameters of a threshold diffusion which is a continuous-time SETAR model. Similar
applications are possible for other econometric models.

Despite the fact that the latter application was the original motivation of this document,
Theorem 1 contributes to parameter estimation of SBM. Statistical analysis for SBM and OBM
is quite recent: estimators based on high frequency observations of the skewness parameter of
SBM are provided in [36, 37] and of the diffusion coefficients of OBM in [33]. The estimators
proposed are based on approximations of the local time and occupation times from high fre-
quency observations of the process itself (SBM or OBM). Hence the speed of convergence of
such estimators can now be obtained thanks to Theorem 1. The result also allows to establish
the speed of convergence and limit distribution of the MLE of the skewness parameter from high
frequency observation of SBM conjectured in [37]. To give an example, in Theorem 3 (new)
estimators of the skewness parameter of SBM are introduced and their asymptotic behavior is
established. This should be the first result in the literature to prove the convergence speed for
estimators of the skewness parameter of SBM.

In Section 3.1, we apply Theorem 1, to two classical approximations of the local time of BM
such as the normalized number of crossings. Since standard BM (and reflected BM as well)
is a special case of OBM and SBM, as a by-product, we recover the classical results on the
convergence (rates) for BM. In the case of the number of crossings, we can consider threshold
diffusions with diffusion coefficient which is piecewise differentiable and admits a finite jump
and/or involving the local time of the process (see Theorem 2 below). In a series of works
Gikhman, Portenko, and Goshko study the convergence in law towards the local time of the
normalized number of crossings in a setting allowing for singularities (see [42] and references
therein) which seems to include OBM, SBM, and also sticky BM. Theorem 2 below implies
a stronger convergence (which was first proven in [37] for SBM) and exhibits also the rate of
convergence. Up to our knowledge, Theorem 2 is the first result of its kind for such general
one-dimensional threshold diffusion.

1.2 Outline of the paper

The paper is organized as follows. First we introduce the processes SBM and OBM as unique
strong solutions to some SDE in Section 2.1, then we state the main result: Theorem 1 in
Section 2.3. Section 3.1 is devoted to applications.

Proofs are provided in Section 4. An element of the proof of Theorem 1 is Proposition 5
below. Its proof is so technical that it is provided in Appendix B. Appendix A deals with useful
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properties of OBM relevant in this article and in Appendix B.

1.3 Notation and notions of convergence

Throughout this document for every measurable functions g : R → R and measure µ on the
Borel space (R,B(R)) we denote by ⟨µ, g⟩ the integral of g with respect to the measure µ:

⟨µ, g⟩ :=
∫ ∞

−∞
g(x)µ(dx). (1.3)

For every γ ∈ [0,∞) let λ(γ) be the measure on (R,B(R)) absolutely continuous with respect
to the Lebesgue measure satisfying λ(γ)( dx) = |x|γ dx and let

(L1(λ(γ)), ∥ · ∥1,γ) (1.4)

the set of Borel measurable λ(γ)-integrable functions and its norm. If λ = 0, we simply denote
by (L1, ∥ · ∥1) := (L1(λ(0)), ∥ · ∥1,0) the normed space of Lebesgue integrable functions.

Definition 1. Let γ ∈ [0,∞). We denote by L1,b(λ(γ)) the following subspace of L1:

L1,b(λ(γ)) = {f : R → R, measurable and bounded s.t. f ∈ L1(λ(γ))}. (1.5)

We denote by Iγ the following space of bi-variate functions

Iγ = {h : R2 → R,∃ h̄ ∈ L1,b(λ(γ)),∃ a ∈ [0,∞) s.t. ∀x, y ∈ R : |h(x, y)| ≤ h̄(x)ea|y−x|}. (1.6)

Let us give a more rigorous definition of the local time process. Let t ∈ [0,∞) and let
(Xs)s∈[0,∞) be a one-dimensional semi-martingale. The symmetric local time at the point x
accumulated on the time interval [0, t] by the semi-martingale X satisfies a.s.

Lx
t (X) = lim

ϵ→0

1

2ϵ

∫ t

0

1{−ϵ≤Xs−x≤ϵ}d⟨X⟩s (1.7)

and if x = 0 we denote L0
t (X) by Lt(X).

As already mentioned, the main aim of this article is studying, as n → ∞, the convergence
towards the local time together with its rate of the statistics ε

(r,f,X)
n,· , with X being an OBM or

a SBM and f suitable function. Let us recall the notions of convergence used for the results
of this paper. The statement of the CLT involves the notion of stable convergence which was
introduced and studied first in [44] and [2]. We now specify it in the case used in this document.

Definition 2. Let (D, d) be a metric space, (Ω′,F ′,P′) be an extension of the probability space
(Ω,F ,P), let Xn : Ω → D, n ∈ N, be a sequence of random variables, and let X : Ω′ → D be
a random variable. Then we say that Xn converges stably in law to X if for all f : D → R
continuous and bounded and all bounded random variable Y : Ω → R it holds that

lim
n→∞

E[f(Xn)Y ] = E′[f(X)Y ] . (1.8)

Let t ∈ [0,∞), let Dt, resp. D∞, be the Skorokhod space of càdlàg functions from [0, t], resp.
[0,∞), to R endowed with the Skorokhod topology. When D = Dt, t ∈ [0,∞] the functional
stable convergence in law is usually denoted by

Xn
L−s−−−→
n→∞

X. (1.9)

Finally we recall the notion used in the convergence results, i.e. the convergence in probability
locally uniformly in time or convergence uniform on compacts in probability (u.c.p.): let X,Xn,
n ∈ N, be random variables with values in D∞, then

Xn
u.c.p.−−−→ X, (1.10)

if for all t ∈ [0,∞) it holds that sups∈[0,t] |Xn(s)−X(s)| P−−−→
n→∞

0.
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2 Rates of convergence to the local time

In the entire document let (Ω,F , (Ft)t∈[0,∞),P) be a stochastic basis (i.e. a complete filtered
probability space whose filtration satisfies the usual conditions) andW be an (Ft)t∈[0,∞)-adapted
standard BM.

In this section we first introduce the processes Skew and Oscillating Brownian as solutions
to SDEs respectively with discontinuous diffusion coefficient, see (2.4), and involving the local
time of the process in (2.1). Note that the local time formally arises from a distributional drift:
the Dirac δ at the threshold. Then we introduce a wider class of processes in Section 2.1.4.
Finally we provide what can be considered the main result of this article, Theorem 1.

2.1 The framework

2.1.1 Skew Brownian motion

Roughly speaking a SBM can be described trajectorially as a standard BM transformed by
flipping its excursions from the origin with a certain probability. In this document we refer to
the characterization as solution to a SDE involving the local time, which was first considered
by [21]. We refer the reader to a somehow recent survey paper on SBM [31].

The SBM with skewness parameter β ∈ [−1, 1] at the threshold r ∈ R is the diffusion which
is strong solution to the following SDE

Xt = X0 +Wt + βLr
t (X) (2.1)

where Lr
t (X) is the symmetric local time of the process at r, X0 ∈ R, and βX0 ≥ 0 if |β| = 1.

Some properties of the local time of SBM are object of the recent paper [10].
We call standard SBM a SBM with threshold r = 0 starting at 0. In this paper a SBM
with skewness parameter β ∈ (−1, 1) is also denoted by β-SBM. Note that a 0-SBM is a BM.
Moreover the ±1-SBM is a positively/negatively reflected BM.

The following quantities are important for the next sections. Let us denote by µβ the
stationary measure associated to the β-SBM with threshold r = 0, that is

µβ(dx) :=
(
(1 + β)1(0,∞)(x) + (1− β)1(−∞,0)(x)

)
dx = (1 + sgn(x)β) dx, (2.2)

and pβ(t, x, y) denotes its transition density (first computed in [48]):

pβ(t, x, y) =
1√
2πt

exp

(
−(x− y)2

2t

)
+ β sgn(y)

1√
2πt

exp

(
−(|x|+ |y|)2

2t

)
. (2.3)

2.1.2 Oscillating Brownian motion

Let X0 ∈ R. The strong solution to the SDE

Xt = X0 +

∫ t

0

σ(Xs) dWs, t ≥ 0, (2.4)

is called OBM with threshold r ∈ R when the diffusion coefficient σ is the positive two-valued
function discontinuous at the threshold:

σ := σ−1(−∞,r) + σ+1[r,+∞). (2.5)

In this document, we also denoted this process by σ±-OBM. This process has been first defined
and studied in [28]. Note that pathwise uniqueness for the SDE follows for instance from the
results of [40].
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We call standard OBM an OBM Y with threshold r = 0 and starting point Y0 = 0.
We can allow either σ− or σ+ to be infinity: If σ+ = 1, σ− = +∞, Y0 ≥ r (resp. σ− = 1,
σ+ = +∞, Y0 ≤ r) then if r = 0 it is a positively (resp. negatively) reflected BM.

The stationary measure for the OBM with threshold 0 is

λσ(dx) :=
1

(σ(x− r))2
dx =

(
1

σ2
−
1(−∞,0) +

1

σ2
+

1[0,∞)

)
dx (2.6)

and its transition density, here denoted by qσ(t, x, y), satisfies

qσ(t, x, y) =
1

σ(y − r)
pβσ

(
t,

x

σ(x− r)
,

y

σ(y − r)

)
with βσ :=

σ− − σ+

σ− + σ+

, (2.7)

where pβσ is the density of the SBM recalled in (2.3) (see, e.g. equation (3) in [33] for an explicit
expression).

2.1.3 The interplay between SBM and OBM

For simplicity let r = 0. SBM and OBM are strongly related in the following sense: Let σ
be the function in (2.5), let Y the solution to (2.4) and X be a SBM solution to (2.1) with
skewness parameter βσ := σ−−σ+

σ−+σ+
and suitable initial condition: Solution to the SDE

Xt =
Y0

σ(Y0)
+Wt +

σ− − σ+

σ− + σ+

Lt(X). (2.8)

It holds that Yt = σ(Xt)Xt , or equivalently
Yt

σ(Yt)
= Xt, and the local times satisfy

L(X) =
σ+ + σ−

2σ+σ−
L(Y ). (2.9)

This follows from applying Itô-Tanaka formula (see, e.g. [33, page 3573]).

2.1.4 Itô process with singular coefficients

We consider processes satisfying

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σ(Xs)dWs + βLr
t (X) t ≥ 0 P-a.s. (2.10)

where the diffusion coefficient σ ∈ C1(R \ {r}) is strictly positive and admits a finite jump at a
fixed threshold r ∈ R, Lr

t (X) is the symmetric local time of the process at the fixed level r ∈ R,
β ∈ [−1, 1], and b is a “suitable” drift (think of bs = b(Xs) or bs = b(s,Xs) with b a bounded
measurable function).

SBM and OBM correspond to the driftless b = 0 SDE (2.10) whence σ is piecewise constant
and β(σ− − σ+) = 0.

We are not concerned with (strong) existence and uniqueness results, for it we refer to
the literature on SDEs and Itô processes with singular drift and diffusion coefficients (see
e.g. [29, 8, 26] and references therein). This will provide conditions on the coefficients to get
existence and uniqueness results.

We possibly need additional assumptions. Let Yt be the strong solution to (2.10) with β = 0
and null drift. Then P-a.s. for all t ≥ 0 it holds Yt = Y0 +

∫ t

0
σ(Ys)dWs. Assume the drift b is

such that the Doléans-Dade exponential E(ξ) with

ξt :=

∫ t

0

bs
σ(r + (Ys − r)(1 + sgn(Ys − r)β)/2)

dWs (2.11)

is an exponential martingale (see e.g. Novikov’s condition in [27, Corollary 3.5.14]).
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2.2 Convergence towards the local time

Let X be either the σ±-OBM solution to (2.4) or the β-SBM solution to (2.1), let µX and pX
denote respectively the stationary measure λσ, resp. µβ, and transition density qσ, resp. pβ.

Given two measurable functions f : R2 → R and g : R → R, let

EX
f,g(x) =

∫ ∞

−∞
f(x, y)g(y)pX(1, x, y) dy and EX

f := EX
f,1 (i.e. g ≡ 1). (2.12)

Note that, if Xx denotes the solution with X0 = x and r = 0, then

EX
f,g(x) = E[f(x,Xx

1 )g(X
x
1 )] . (2.13)

Hypothesis 1. The measurable bi-variate function f : R2 → R satisfies that EX
f , E

X
f2 ∈ L1,b(λ(2)).

Proposition 1 (Convergence towards the local time). Let f : R2 → R satisfying Hypothesis 1
and let X be either the OBM solution to (2.4) or the SBM solution to (2.1). Then

ε(r,f,X)
n,·

u.c.p.−−−→
n→∞

⟨µX ,E
X
f ⟩Lr

· (X). (2.14)

Note that the constant ⟨µX ,E
X
f ⟩ can be rewritten as

⟨µX ,E
X
f ⟩ = E[f(X0, X1)|X0 ∼ µX ] . (2.15)

Moreover observe that actually the convergence in Proposition 1 is uniform in the parameter.
Let θ := (σ−, σ+) ∈ (0,∞]2 =: Θ for OBM, θ := β ∈ [−1, 1] = Θ for SBM, and let X(θ) denote
the solution associated to the parameter θ ∈ Θ, then for all t ∈ (0,∞) it holds for all ε ∈ (0,∞)
that

lim
n→∞

sup
θ∈Θ

P

(
sup
s∈[0,t]

∣∣∣ε(r,f,X(θ))
n,s − ⟨µX ,E

X
f ⟩Lr

s(X
(θ))
∣∣∣ ≥ ε

)
= 0. (2.16)

In the case of SBM the latter equation and Proposition 1 follows from [37, Proposition 2] (with
T = 1) and the scaling property.

2.3 Rate of convergence to the local time

We refine the above convergence showing that the speed of convergence is of order 1/4.

Theorem 1. Let f ∈ Iγ, γ > 3, let X be either the σ±-OBM solution to (2.4) (in this case take
β = 0) or the β-SBM solution to (2.1) (in this case take σ± = 1). Then there exists (possibly
on an extension of the probability space) a BM B independent of X such that

n1/4
(
ε(r,f,X)
n,· − ⟨µX ,E

X
f ⟩Lr

· (X)
) L−s−−−→

n→∞

√
KfBLr

· (X), (2.17)

where

Kf = ⟨µX ,E
X
f2 + 2EX

f,PX
f
⟩+ 2σ−σ+

σ− + σ+

8

3
√
2π

(⟨µX ,E
X
f ⟩)2

− 2

√
2

π

2σ−σ+

σ− + σ+

⟨µX ,E
X
f ⟩
∫ ∞

−∞

(
e−

y2

2 −
√
2π|y|Φ(−|y|)

)
PX

f (σ(y)y)µX(dy)

− 2⟨µX ,E
X
f ⟩
(

2σ−σ+

σ− + σ+

)2

·
∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

σ(x)σ(y)|x|e−
x2

2 Φ(−|y|)√
2π

√
1

t
− 1f(σ(x)x

√
t, σ(y)y

√
1− t)µX(dy) dtµX(dx),

(2.18)
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Φ is the cumulative distribution function of a standard Gaussian random variable,

PX
f (x) =

∞∑
j=0

∫ ∞

−∞
pX(j, x, y)

(
EX

f (y)− ⟨µX ,E
X
f ⟩EX

gβ
(y)
)
dy, (2.19)

and gβ(x, y) =
1

1+sgn(y)β

(
|y| − 1+sgn(y)β

1+sgn(x)β
|x|
)
.

Remark 1 (Results for drifted OBM and SBM). Proposition 1 and Theorem 1 hold also in the
case of drifted OBM and drifted SBM that are solutions to (2.10): respectively with σ piecewise
constant and (σ− − σ+)β = 0.

Remark 2. If β = 0 and σ ≡ 1 we recover the known result for BM: e.g. [11, 12] and a special
case of the already cited [24, Theorem 1.2]. The expression for the constant Kf we propose is
slightly more explicit.

Remark 3. Note that the function f is allowed to depend only on the first variable. In particular
we would have EX

f = f .

Remark 4. Theorem 1 implies a weaker version of Proposition 1. Proposition 1 requires Hy-
pothesis 1 which is satisfied if for instance f ∈ I2. Theorem 1 instead assumes f ∈ Iγ, γ > 3,
which is a stronger condition.

Let us comment on how to derive the u.c.p. convergence from Theorem 1: The notions
of convergence in law/stably in law/probability coincide when the limit is constant and so

ε
(r,f,X)
n,· − ⟨µX ,E

X
f ⟩Lr

· (X)
P−−−→

n→∞
0 in the Skorokhod topology. Since Lr

· (X) is (a.s.) continuous

and increasing it can be proven (splitting into positive and negative part of f , and so of EX
f )

that ε
(r,f,X)
n,·

u.c.p.−−−→
n→∞

⟨µX ,E
X
f ⟩Lr

· (X) (see e.g. (2.2.16) in [25]).

3 Applications

Let r ∈ R be a fixed threshold, and let X be a stochastic process. Let T ∈ (0,∞), N ∈ N, we
observe the process on the discrete time grid i T

N
. We denote by Xi = Xi T

N
.

3.1 Estimating the local time via number of crossings of the thresh-
old

In this section we consider some classical estimators of the local time of BM and show that
they are still estimators, up to a multiplicative constant, of the local time Lr

T (X) of SBM or
OBM or a more general class of processes.

Let α ∈ [0,∞) and note that the function hα given by hα(x, y) = |y|α1(−∞,0)(xy) is in Iγ
for all γ ∈ [0,∞). In fact hα(x, y) ≤ cαe

−|x|e|y−x| for some constant cα depending on α. We
consider two estimators obtained considering the functions proportional to h0 and h1:

Lr
T,N(X) = ε

(r,h0,X)
N
T
,T

=

√
T

N

N−1∑
i=0

1{(Xi−r)(Xi+1−r)<0} and (3.1)

Lr
T,N(X) = ε

(r,2h1,X)
N
T
,T

= 2
N−1∑
i=0

1{(Xi−r)(Xi+1−r)<0}|Xi+1 − r|. (3.2)

The first is concerned with the number of crossings of the threshold and the second takes into
account the distance from it. Moreover note that Lr

T,N requires only the knowledge of the N+1
observations Xi, i = 0, . . . , N , and not of T/N .
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As mentioned in the introduction, in the case of BM, and more general Brownian diffusions,
these are consistent estimators of the local time up to a constant.

We now show the consequence of Theorem 1 for these estimators and, in the case of the
statistic (3.1), we extend the result to processes satisfying (2.10) in Theorem 2 below.

Throughout this section let the function Φ: R → [0, 1] be the cumulative distribution func-

tion of a standard Gaussian random variable: for all x ∈ R it holds Φ(x) = 1√
2π

∫ x

−∞ e−
y2

2 dy.

3.1.1 Estimator counting the number of crossings of the threshold

Theorem 2. Let X satisfy (2.10) and let σ± := limx→r± σ(x). Then ε(r,h0,X) satisfies (2.14)
and (2.17) with ⟨µX ,E

X
h0
⟩ =: cσ±,β and Kh0 =: Kσ±,β given by

cσ±,β =
2(1− β2)

(1 + β)σ− + (1− β)σ+

√
2

π
(3.3)

and

Kσ±,β

cσ±,β

= 1 +
√
2π

∫ ∞

−∞
Φ(−|x|)Pσ,β(x) dx+

4σ−σ+(1− β2)

(σ−(1 + β) + σ+(1− β))2
8− 3π

3π

− 4

√
2

π

∫ ∞

−∞

(σ+1(−∞,r)(x) + σ−1[r,+∞)(x))(1 + sgn(x)β)

(σ−(1 + β) + σ+(1− β))
(e−

x2

2 −
√
2π|x|Φ(−|x|))Pσ,β(x) dx

(3.4)

with,

Pσ,β(x) =
∞∑
j=0

∫ ∞

−∞
pσ−(1+β)−σ+(1−β)

σ−(1+β)+σ+(1−β)

(j, x, y)Gσ±,β(y) dy, (3.5)

and

Gσ,β(y) =
2(σ−1(−∞,r)(y) + σ+1[r,+∞)(y))(1− sgn(y)β)

σ+(1− β) + σ−(1 + β)

·
(
Φ(−|y|)− 2

π

2(σ+1(−∞,r)(y) + σ−1[r,+∞)(y))(1 + sgn(y)β)

σ+(1− β) + σ−(1 + β)

(
e−

y2

2 −
√
2π|y|Φ(−|y|)

))
.

(3.6)

In particular Lr
T,N(X) in (3.1), counting the number of times the process X crosses its threshold

r, satisfies

Lr
T,N(X)

P−−−→
N→∞

cσ±,βL
r
T (Y ) (3.7)

and, as N goes to infinity,

(N/T )1/4
(
Lr

T,N(X)− cσ±,βL
r
T (X)

)
converges stably in law to

√
Kσ±,βBLr

T (X) (3.8)

where B is a BM, possibly on an extension of the probability space, independent from X (inde-
pendent from FT ).

3.1.2 Another estimator

Let us consider the estimator Lr
T,N in (3.2).

For an OBM, say Y , a proof that Lr
T,N(Y )

P−−−→
N→∞

Lr
T (Y ) can be found in [35, Lemma 1].

Applying Proposition 1 to ε(r,2h1,X) (with β = 0) we obtain a more general result. And applying
Theorem 1 we obtain the convergence rate. We specify the asymptotic properties of Lr

T,N(Y )
in Proposition 2 below.

9



Proposition 2. Let Y be the OBM solution to (2.4) and let Lr
T,N(Y ) be the estimator of the

local time Lr
T (Y ) in (3.2). Then there exists (possibly on an extension of the probability space)

a BM B independent of Y (independent from FT ) such that, as N tends to infinity,

(N/T )1/4(Lr
T,N(Y )− Lr

T (Y )) converges stably in law to

√
16

3
√
2π

σ2
− + σ2

+

σ− + σ+

BLr
T (Y ). (3.9)

The following proposition specifies, if the process is a SBM, the constants in Proposition 1
and Theorem 1 in case of the estimator (3.2) and shows its asymptotic properties.

Proposition 3. Let X be the solution to (2.1) and Lr
T,N(X) be the estimator in (3.2). There

exists (possibly on an extension of the probability space) a BM B independent of X (of FT )

such that Lr
T,N(X)

P−−−→
N→∞

(1 − β2)Lr
T (X) and (N/T )1/4(Lr

T,N(X) − (1 − β2)Lr
T (X)) converges

stably in law to
√

KβBLr
T (X) where

1

1− β2
Kβ =

16

3
√
2π

− 4β

∫ ∞

−∞
xΦ(−|x|)Pβ(x) dx+

4√
2π

(1− β)β, (3.10)

with Pβ(x) :=
∑∞

j=0

∫∞
−∞ pβ(j, x, y)Gβ(y) dy and

Gβ(y) := sgn(y)(1− sgn(y)β)β
1√
2π

(
e−

y2

2 −
√
2π|y|Φ(−|y|)

)
. (3.11)

3.2 Estimating the parameters of skew and oscillating Brownian
motion

Let X be a β-SBM with threshold r.Recall that Lr
T,N is given in (3.2) and its asymptotic

properties are provided in Proposition 3. Let us introduce the following function f1(x, y) :=
1(0,1)(x). Then both EX

f1
in (2.12) and f 2

1 coincide with f and satisfy Hypothesis 1. The same
holds for the function |f1|(x) := f1(|x|).

We consider the following estimators for the parameters of a the β-SBM solution to (2.1):

β̂N := 1−
Lr
T,N(X)√

T
N

∑N−1
k=0 1(0,1)(

√
N/T (Xk − r))

(3.12)

or

β̂N :=

∑N−1
k=0 sgn(Xk − r)1(−1,1)(

√
N/T (Xk − r))∑N−1

k=0 1(−1,1)(
√
N/T (Xk − r))

. (3.13)

Note that both estimators above require the knowledge of the discretization step T/N .
The following result is a direct application of Theorem 1. Indeed, a sort of Slutsky lemma

holds replacing converge in law by stable converge.

Theorem 3. Let X be the β-SBM solution to (2.1). Then β̂N in (3.12) (resp. (3.13)) is a
consistent estimator of β and as N → ∞

N1/4
(
β̂N − β

)
converges stably in law to K T 1/4

BLr
T (X)

Lr
T (X)

(3.14)

with B a BM independent of X and K =

√
K(1−β)f1−2h1

1+β
where K(1−β)f1−2h1 is provided by (2.18)

(resp. K = 1
2

√
K(sgn(·)−β)·|f1|).
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The result above tells that β̂N is a consistent estimator of the skewness parameter β, and
N1/4(β̂N − β) for N large behaves like a “mixed” Gaussian law. The constant K can be
computed in a more explicit expression depending on β, as in the previous applications. Note
that, in the same way, we can provide other estimators satisfying Theorem 3 (with a suitable
constant K). Moreover, as in [36], this paves the way to hypothesis testing to check whether
some observations come from (drifted) BM or (drifted) SBM.

Remark 5. Similarly, we can provide an estimator for the parameters of OBM. Let Y be the
solution to (2.4), f+ : x → 1(0,1)(x) and f− : x → 1(−1,0)(x). Then

σ̂2
± :=

Lr
T,N(Y )√

T
N

∑N−1
k=0 f±(

√
N/T (Xk − r))

(3.15)

is a consistent estimator of σ2
± and (N/T )1/4

(
σ̂2
± − σ2

±
)
converges stably in law to a (mixed)

normal law. Since the estimator proposed relies mostly on the behavior of the process around
the threshold, it is slower than the ones based on quadratic variations and occupation times of
the positive and negative part of the process proposed in [33] for OBM.

4 Proofs of the main results

In this section we comment the results and their proof. We first deal with the convergence in
probability to the local time in Proposition 1, which was already known for SBM. Then with
the rate of (stable) convergence in the case of SBM and OBM in Theorem 1 whose proof is
provided in Section 4.2 relying on an a well known CLT. Finally we prove Theorem 2. The
relationship between SBM and OBM recalled in Section 2.1.3 is crucial in the proofs.

From now on we can take r = 0 for simplicity. Indeed if X is a β-SBM/σ±-OBM with
threshold r = 0 then X − r is a β-SBM/σ±-OBM with threshold r = 0.

4.1 Proof of Proposition 1

As already mentioned, in the case of SBM, Proposition 1 follows from [37, Proposition 2] (with
T = 1) and the scaling property. By the transformation provided in Section 2.1.3, we are now
ready prove Proposition 1 for the OBM Y solution to (2.4).

Let us recall, given a measurable function f : R2 → R and a skew or oscillating BM X (with
r = 0), we denote by pX its transition density and the function EX

f in (2.12) is computed using
it. Moreover µX denotes its stationary measure.

Proof of Proposition 1 for OBM. Let X be the SBM associated to the σ-OBM Y , i.e. X is
a βσ-SBM with skewness parameter βσ = σ−−σ+

σ−+σ+
solution to (2.8). Let fσ be the function

satisfying fσ(x) := f(σ(x)x). Note that a function f satisfies Hypothesis 1 for Y if and
only if fσ satisfies Hypothesis 1 for X. Moreover it holds that EY

fγ (σ(x)x) = EX
(fσ)γ

(x) and

so ⟨µβσ ,E
X
(fσ)γ

⟩ = 2σ−σ+

σ−+σ+
⟨λσ,E

Y
fγ⟩. Applying Proposition 1 for the SBM X and the function

f := fσ and taking into account the latter equalities and the relationship between local times
(2.9) complete the proof.

4.2 Proof of the Central Limit Theorem: Theorem 1

We introduce now Proposition 5 and show its key role in the proof of the main Theorem 1.
Before to do it we reformulate, in Proposition 4, a special case of Theorem 3.2 in [23] which
provides a suitable CLT to be combined with Proposition 5.
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Proposition 4 (cf. Theorem 3.2 in [23]). Let (Yt)t∈[0,1] be an (Ft)t∈[0,1]-local martingale on

the stochastic basis (Ω,F , (Ft)t∈[0,1],P). Let Zn =
∑⌊nt⌋

k=1 χ
n
k where χn

k are square integrable F k
n
-

measurable, n ∈ N, and assume that there are E and F continuous processes on (Ω,F , (Ft)t∈[0,1],P)
such that E has bounded variation and it holds

i) sups∈[0,1]

∣∣∣∑⌊ns⌋
k=1 E

[
χn
k |F(k−1)/n

]
− Es

∣∣∣ P−−−→
n→∞

0,

ii) for all t ∈ [0, 1] that
∑⌊nt⌋

k=1

(
E
[
(χn

k)
2|F(k−1)/n

]
−
(
E
[
χn
k |F(k−1)/n

])2) P−−−→
n→∞

Ft,

iii) for all t ∈ [0, 1] that
∑⌊nt⌋

k=1 E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

] P−−−→
n→∞

0,

iv) for all ε ∈ (0,∞) that
∑n

k=1 E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

] P−−−→
n→∞

0, and

v) for all t ∈ [0, 1] and M bounded (Ft)t∈[0,1]-martingale such that for all s ∈ [0, 1] the cross
variation satisfies P(⟨M,Y ⟩s = 0) = 1 that

⌊nt⌋∑
k=1

E
[
χn
k(Mk/n −M(k−1)/n)|F(k−1)/n

] P−−−→
n→∞

0. (4.1)

Then there exists a BM B, possibly on an extension of the probability space (Ω,F , (Ft)t∈[0,1],P),
such that B and Y are independent and

Zn
·

L−s−−−→
n→∞

E· +BF· . (4.2)

Proposition 5. Let (Yt)t∈[0,1] be the OBM with threshold r = 0 strong solution to (2.4) on the
stochastic basis (Ω,F , (Ft)t∈[0,1],P), let γ > 3, and let h ∈ Iγ.
Then there exist sequences of stochastic process (Vn

t )t∈[0,1], n ∈ N, with

sup
s∈[0,1]

m1/4|Vm
s | P−−−→

m→∞
0, (4.3)

(F⌊nt⌋/n)t∈[0,1]-martingales (Mn
t )t∈[0,1], n ∈ N, and random variables (χn

k)k∈{1,...,⌊nt⌋}, n ∈ N,
such that for all t ∈ [0, 1], n ∈ N it holds that Mn

t =
∑⌊nt⌋

k=1 χ
n
k and

n1/4
(
ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y )

)
= Mn

t + n1/4Vn
t , (4.4)

and it holds

i) for all k ∈ {1, . . . , ⌊nt⌋} χn
k is square integrable F k

n
-measurable and E

[
χn
k |F(k−1)/n

]
= 0,

ii) for all t ∈ [0, 1] that
∑⌊nt⌋

k=1 E
[
(χn

k)
2|F(k−1)/n

] P−−−→
n→∞

KhLt(Y ) with Kh given by (2.18),

iii) for all t ∈ [0, 1] that
∑⌊nt⌋

k=1 E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

] P−−−→
n→∞

0,

iv) for all ε ∈ (0,∞) that
∑n

k=1 E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

] P−−−→
n→∞

0.

The proof of this result consists in generalizing to the case of OBM the fundamental procedure
used in [24] for BM. It is quite technical, therefore it is provided in Appendix B.

Let us now assume that Proposition 5 holds and let us prove Theorem 1 first for OBM and
then for SBM.
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Proof of Theorem 1 for OBM. Let Y be the OBM strong solution to (2.4). Recall we can take
threshold r = 0 in all proofs.

Without loss of generality we can reduce ourselves to prove Theorem 1 on the interval [0, 1]
for n ∈ N tending to infinity.
The scaling property for the OBM and its local time (see (A.1)) yields the result for all non-
negative times: as processes on D[0,t]. (The scaling property also ensures that in Theorem 1
(for SBM and OBM) n is not necessarily a natural number, but it can stay for a positive real

number tending to infinity.) And n
1
4

(
ε
(0,f,Y )
n,· − ⟨λσ,E

Y
f ⟩L·(Y )

)
L−s−−−→
n→∞

√
KfBL·(Y ) in D∞ if and

only if for all t ∈ [0,∞) n
1
4 (ε

(0,f,Y )
n,· − ⟨λσ,E

Y
f ⟩L·(Y ))|[0,t]

L−s−−−→
n→∞

√
KfBL·(Y )|[0,t] in Dt (indeed

since BL·(Y ) has (a.s.) continuous trajectories this follows, e.g. combining [9, Theorem 16.2]
and [25, Proposition 2.2.4]).

Proposition 5 implies that there exists a decomposition as in (4.4) and its desired stable
limit as n ∈ N goes to infinity coincides with the stable limit of the sequence Mn of càdlàg

(F ⌊ns⌋
n

)s∈[0,1]-martingales, n ∈ N. Indeed the fact that sups∈[0,1] n
1/4|Vn

s |
P−−−→

n→∞
0, implies that

for every h : D1 → R continuous and bounded it holds that |h(Mn + n
1
4Vn)− h(Mn)| P−−−→

n→∞
0

and so for every bounded continuous function h : D1 → R and bounded measurable random
variable Y : Ω → R it holds that

lim
n→∞

E
[
|h(Mn + n

1
4Vn)− h(Mn)||Y |

]
= 0.

Proposition 5 also ensures that Mn, n ∈ N, satisfies all assumptions, except Item (v), of
Proposition 4 (with local martingale M = Y , Zn = Mn, E ≡ 0 and F = KfL(Y ) where Kf is
the constant in equation (2.18)). Item (v) of Proposition 4 is trivial because such martingale
M orthogonal to OBM is nothing but a constant.

Therefore, applying Proposition 4 as described above completes the proof of Theorem 1.

Since Theorem 1 for OBM holds, we now prove it for SBM.

Proof of Theorem 1 for SBM. Let β ∈ [−1, 1], γ > 3, X the β-SBM solution to (2.1), and
f ∈ Iγ. Recall we take threshold r = 0 in all proofs.

Take σ
(β)
+ , σ

(β)
− ∈ (0,∞] such that β =

σ
(β)
− −σ

(β)
+

σ
(β)
− +σ

(β)
+

(σ
(β)
± = 2

1±β
) and construct the diffusion

coefficient σβ := σ
(β)
− 1(−∞,0)+σ

(β)
+ 1[0,+∞) in (2.5). Let Y be the σ

(β)
± -OBM and initial condition

Y0 = σβ(X0)X0 and let hβ : R2 → R be the function satisfying hβ(x) := f(x/σβ(x)).
Note that f ∈ Iγ if and only if hβ ∈ Iγ. Theorem 1 can be applied to the OBM Y and the
function hβ to obtain that

n1/4
(
ε
(0,hβ ,Y )
n,· − ⟨λσβ

,EY
hβ
⟩L0

· (Y )
)

L−s−−−→
n→∞

√
Khβ

BL0
· (Y β) (4.5)

with Khβ
from (2.18) (with σ± = σ

(β)
± , β = 0). The relationship between X and Y , in particular

between their local times (2.9) and their transition densities (2.7), and the fact that ⟨λσβ
,EY

hβ
⟩ =

σ
(β)
− +σ

(β)
+

2σ
(β)
+ σ

(β)
−

⟨µβ,E
X
f ⟩ are used to rewrite the constant Kf (with σ± = 1 and β = β in the notation

of (2.18)).

4.3 Proof of Theorem 2

With no surprise the proof relies on Girsanov’s transform and Itô-Tanaka formula and reduces
to prove the result for OBM, i.e. applying Proposition 1 and Theorem 1 for f = h0.
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Proof of Theorem 2. Let σ± := limx→r± σ(x).
We first prove the statement for β = 0 in several steps.
Note that if X is a σ±-OBM, then the statement follows from Proposition 1 and Theorem 1

taking f = h0. The result holds with constants cσ±,0 and Kσ±,0.
Next, let us consider the process Z satisfying that P-a.s. for all t ∈ [0,∞)

Zt = Z0 +

∫ t

0

σ(Zs) dWs +
1

2

∫ t

0

σ(Zs)σ
′(Zs) ds

where 0 < infx∈R σ(x) ≤ supx∈R σ(x) < ∞ and supx∈R |σ′(x)| < ∞. For simplicity consider
threshold r = 0, indeed Z − r is so. Let S(x) :=

∫ x

0
σ±
σ(y)

dy. It follows from the Itô-Tanaka

formula that Yt := S(Zt) is an OBM with threshold r = 0 starting at S(Z0). Moreover
Itô-Tanaka formula (applied to |Y | and to |S(Z)|) yields that the local times at 0 of Y and
Z coincide. The function S is invertible and xS−1(x) ≥ 0 for all x ∈ R. Hence L0

T,N,·(Y ) =
L0

T,N,·(Z). Therefore we proved that Theorem 2 holds for the process Z with the same constants
cσ±,0 and Kσ±,0.

The same result holds for Z without the boundedness conditions for σ and σ′, it can be
seen using a localization argument. Moreover it holds for r ̸= 0. And standard arguments
combining stable converge and Girsanov’s transform ensure that the same result holds for X
solution to (2.10) if β = 0 with the same constants cσ±,0 and Kσ±,0.

Now let us consider β ̸= 0.

Let σ
(β)
± ∈ (0,+∞] constants such that β =

σ
(β)
− −σ

(β)
+

σ
(β)
− +σ

(β)
+

(σ
(β)
± = 2

1±β
). Let σ(β) := σ

(β)
− 1(−∞,r) +

σ
(β)
+ +σ

(β)
−

2
δ{r} + σ

(β)
+ 1(r,+∞) and consider the process ηs − r := σ(β)(Xs)(Xs − r). Note that

Lr
T,N,·(η) = Lr

T,N,·(X). By Itô-Tanaka formula the latter process satisfies:

ηt = r + σ(β)(X0)(X0 − r) +

∫ t

0

σ(β)(ηs)σ(r + (ηs − r)/σ(β)(ηs)) dWs +

∫ t

0

σ(β)(ηs)bs ds (4.6)

and

Lr
t (η) =

2σ
(β)
+ σ

(β)
−

σ
(β)
+ + σ

(β)
−

Lr(X) =
1− β2

2
(σ

(β)
+ + σ

(β)
− ). (4.7)

We have proved above that the process η satisfies Theorem 2 with constants c
σ
(β)
± σ±,β

and

K
σ±σ

(β)
± ,β

hence X satisfies the theorem with constants

cσ±,β := c
σ
(β)
± σ±,0

1− β2

2
(σ

(β)
+ + σ

(β)
− ) =

σ
(β)
+ + σ

(β)
−

σ
(β)
− σ− + σ

(β)
+ σ+

√
2

π
(1− β2) (4.8)

and Kσ±,β :=
K

σ
(β)
± σ±,0

c
σ
(β)
± σ±,0

cσ±,β. The proof is thus completed.

A Properties of oscillating Brownian motion

In this section we consider Y to be an OBM with threshold r = 0.

A.1 Scaling property

In this section Y Y0 denotes the OBM with threshold r = 0 starting from a deterministic
point Y0, let c ∈ (0,∞). Let us mention the following well known diffusive scaling properties
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for OBM:

(
1√
c
Y Y0
ct

)
t≥0

law
=
(
Y

Y0/
√
c

t

)
t≥0

(i.e. “the rescaled OBM is still a OBM with rescaled

starting point”) and (
1√
c
Y

√
cY0

ct ,
1√
c
Lct(Y

√
cY0)

)
t≥0

law
=
(
Y Y0
t , Lt(Y

Y0)
)
t≥0

. (A.1)

A.2 The joint density of a standard OBM and its local time

The joint density of a standard OBM and its local time at time t, ρσt (y, ℓ) coincides with

ρσt (y, ℓ) =
1

(σ(y))2
ρt

(
y

σ(y)
,
σ− + σ+

2σ−σ+

ℓ

)
(A.2)

for y ̸= 0, where ρ is the joint density of the BM and its local time at time t:

ρt(y, ℓ) =
|y|+ ℓ√
2πt3

exp

(
−(|y|+ ℓ)2

2t

)
1(0,∞)(ℓ). (A.3)

In particular ρσt (y, ℓ) dy dℓ = ρt

(
y

σ(y)
, σ−+σ+

2σ−σ+
ℓ
)
λσ(dy) dℓ.

A.3 Bounds for the semigroup

For a measurable, bounded function f : R → R set

Qσ
t f(x) :=

∫ ∞

−∞
qσ(t, x, y)f(y) dy and P βσ

t f(x) :=

∫ ∞

−∞
pβσ(t, x, y)f(y) dy (A.4)

for all t ∈ [0,∞). They are respectively the semigroup of the standard OBM and of the standard
βσ-SBM with skewness parameter βσ := σ−−σ+

σ−+σ+
and they satisfy Qσ

t f(x) = P βσ
t fσ(x/σ(x)). Note

that Pt := P 0
t = Q1

t is the semigroup of the BM and

Qσ
t f(x) = Ptfσ(x/σ(x)) + βσPt(fσ1[0,∞))(−|x|/σ(x))− βσPt(fσ1(−∞,0))(|x|/σ(x)) (A.5)

where fσ(x) = f(σ(x)x). From this relationship between the semigroups of OBM and BM we
derive the following properties.

Lemma 1. Let f ∈ L1,b(λ(2)), and let us denote by p(t, ·) is the density of a Gaussian random
variable with variance t. Then there exists a positive constant K ∈ (0,∞) such that for all
x, y ∈ R, 0 ≤ s ≤ t it holds that

i) |Qσ
t f(x)| ≤ 1

min{σ−,σ+}

(
1 + |σ−−σ+|

σ−+σ+

)
1√
2π

∥f∥1√
t
,

ii)
∣∣∣Qσ

t f(x)−
2σ−σ+

σ−+σ+
⟨λσ, f⟩p(t, x/σ(x))

∣∣∣ ≤ K√
t3
(∥f∥1,2 + ∥f∥1,1|x|) ,

iii) for all ζ ≥ 0 there exists a positive constant Kζ such that∣∣∣Qσ
t f(x)−

2σ−σ+

σ−+σ+
⟨λσ, f⟩p(t, x/σ(x))

∣∣∣ ≤ Kζ

t

(
∥f∥1,1

1+(|x|/(σ(x)
√
t))ζ

+
∥f∥1,1+ζ

1+(|x|/σ(x))ζ

)
,

iv) |Qσ
t f(x)−Qσ

t f(y)| ≤ 1
min{σ−,σ+}

(
1 + |σ−−σ+|

σ−+σ+

)
K |x−y|

t
∥f∥1, and

v) |Qσ
t f(x)−Qσ

sf(x)| ≤ 1
min{σ−,σ+}

(
1 + |σ−−σ+|

σ−+σ+

)
K t−s√

s3
∥f∥1.
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Proof. Item (i) is a straightforward consequence of (2.7) and of the fact that

pβσ(t, x, y) ≤ (1 + |βσ|)p(t, x− y) ≤ 1 + |βσ|√
2πt

. (A.6)

To prove the other items we also use the fact for all α ≥ 0 ∥f(σ(·)·)∥1,α ≤ ∥f∥1,α
(min {σ−,σ+})1+α and

∥f1[0,∞)∥1,α+ ∥f1(−∞,0)∥1,α = ∥f∥1,α. Item (ii) follows from (A.5) and [37, Lemma 1] for SBM.
Item (iii) follows from (A.5) and the analogous result for BM: equation (3.2) in [24, Lemma 3.1].
Item (iv) and Item (v) follow from (A.5) and equations (3.4)-(3.5) in [24, Lemma 3.1].

The proof of the following lemma follows from Lemma 1 and it is analogous to the one of
[24, Lemma 3.3]. It is therefore omitted.

Lemma 2. Let f : R → R and Γt(n, f) :=
∑⌊nt⌋−1

k=1 Qσ
kf(

√
nY0). Then there exists a posi-

tive constant K (depending on σ±) such that |Γt(n, f)| ≤ K∥f∥1
√
nt and if ⟨λσ, f⟩ = 0 then

|Γt(n, f)| ≤ K (∥f∥1,2 + ∥f∥1,1|Y0|
√
n) |Γt(n, f)| ≤ K∥f∥1,1(1 + log(nt)).

A.4 Behavior of the local time

In this section we explore some properties of the local time of OBM and its moments.

Lemma 3. For all q ∈ (2,∞), α ∈ (0, q−2
2q

) it holds that (the pathwise continuous version

of) the local time L·(Y ) is locally α-Hölder continuous. In particular for all δ ∈ (−∞, 1
2
),

T ∈ [0,∞) it holds that

sup
t∈[0,T ]

nδ
(
Lt+ 1

n
(Y )− Lt(Y )

)
a.s.−−−→

n→∞
0. (A.7)

This statement is not surprising since it is well known for the local time of BM. The proof is
standard (based on Itô-Tanaka formula and Burkholder-Davis-Gundy inequality) and therefore
omitted.

Lemma 4. Let g : R2 → R be the real function satisfying g(x, y) = |y| − |x|. Then for all
t ∈ [0,∞) it holds that ⟨λσ,E

Y
g ⟩ = 1,

1√
n

⌊nt⌋−1∑
k=0

EY
g (
√
nYk/n) =

⌊nt⌋−1∑
k=0

E
[
L(k+1)/n(Y )− Lk/n(Y )|Fk/n

]
(A.8)

and sups∈[0,t]

∣∣∣ 1√
n

∑⌊ns⌋−1
k=0 EY

g (
√
nYk/n)− Ls(Y )

∣∣∣ P−−−→
n→∞

0.

Proof. Some computations, that we decide to omit, show that ⟨λσ,E
Y
g ⟩ = 1. The scaling prop-

erty A.1, the Markov property, and Itô-Tanaka formula show 1√
n
EY

g (
√
nYk/n) = E

[
L(k+1)/n(Y )− Lk/n(Y )|Fk/n

]
.

Lemma 2.14 in [22] ensures the desired convergence in probability.

In the remainder of this section Y x, x ∈ R, denotes the OBM with threshold r = 0 starting
from Y0 = x. For every p ∈ [0,∞), x ∈ R, and function f : R → R either non-negative or such
that (L1(Y

x))p f(Y x
1 ) ∈ L1(P) let

L(p)(f, x) := E[(L1(Y
x))p f(Y x

1 )]. (A.9)

In this document we only consider functions f : R → R satisfying that there exist K,α ∈ [0,∞)
such that |f(x)| ≤ Keα|x| for all x ∈ R, so L(·)(f, ·) is well defined. The scaling property (A.1)
in Appendix A.1 implies that

L(p)(f,
√
nY Y0

(k−1)
n

) = n
p
2E
[(

L k
n
(Y Y0)− L k−1

n
(Y Y0)

)p
f(
√
nY Y0

k
n

)|F (k−1)
n

]
. (A.10)

In particular note that L(1)(1, ·) = EY
g (·) with g(x, y) = |y| − |x|.
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Lemma 5. Let x ∈ R, let W be a BM with W0 = 0, let f : R → R be a function satisfying that
there exist K,α ∈ [0,∞) such that |f(y)| ≤ Keα|y| for all y ∈ R. Then for all p ∈ N it hold
that

L(p)(f, x) =

∫ 1

0

|x|
σ(x)

(1− t)
p
2

√
2πt

3
2

e
− x2

2(σ(x))2tE
[(
L1(Y

0)
)p

f(Y 0
1

√
1− t)

]
dt

=

(
2σ−σ+

σ− + σ+

)(p+1) |x|
σ(x)

∫ 1

0

(1− t)
p
2

√
2πt

3
2

e
− x2

2(σ(x))2tE
[
(L1(W ))p (σ(W1))

−1f(σ(W1)W1

√
1− t)

]
dt,

(A.11)

if x ̸= 0, and L(p)(f, 0) =
(

2σ−σ+

σ−+σ+

)(p+1)

E[(L1(W ))p (σ(W1))
−1f(σ(W1)W1)].

(If σ± = ∞ then replace f in the right hand side of last two equalities with f1R∓.)

Proof. We reduce to consider the case x ̸= 0 because if x = 0 then the statement follows from
simple computations using the joint density of the OBM Y and its local time (A.2).

Let X be the βσ-SBM satisfying (2.8). In particular X0 = x/σ(x) ̸= 0. Let B be a BM
starting at x/σ(x) and let X0

t a standard βσ-SBM independent of B. For a process ξ let us
denote by T0(ξ) := inf({∞} ∪ {t ≥ 0: ξt = 0}) the first time it hits 0.

One well known property of SBM is that the process behaves as a BM until it reaches the

barrier, which is 0. This means that T0(X)
law
= T0(B). Moreover, by the Markov property, it

holds that Xt+T0(X) conditioned on T0 (X) is distributed as X0
t .

This and the relationship between the local times of OBM and SBM (2.9) show that

L(p)(f, x) =
(

2σ−σ+

σ−+σ+

)p
E
[
1{T0(X)≤1}E[(L1(X))p f(σ(X1)X1)|T0(X)]

]
=
(

2σ−σ+

σ−+σ+

)p
E
[
1{T0(B)≤1}

(
L1−T0(B)(X

0)
)p

f(σ(X0
1−T0(B))X

0
1−T0(B))

]
.

(A.12)

Let us recall the well known fact that the random variable T0(B) has density w.r.t. the Lebesgue

measure given by (0,∞) ∋ t 7→ |x|
σ(x)

1
√
2πt

3
2
e
− x2

2(σ(x))2t . Then the relationship between the local

times of OBM and associated SBM (2.9), the scaling property (A.1) and simple changes of
variables imply that

L(p)(f, x) =

∫ 1

0

|x|
σ(x)

(1− t)
p
2

√
2πt

3
2

e
− x2

2(σ(x))2tE
[(
L1(Y

0)
)p

f(Y 0
1

√
1− t)

]
dt. (A.13)

The relationship between the joint density of the standard OBM and its local time (A.2) and
the one for BM and its local time (A.3) yield the conclusion.

B Proof of the key Proposition 5

In this section we prove Proposition 5 which was stated in Section 4.2. The section is organized
as follows: We first introduce, in Sections B.1-B.2, some auxiliary results and functions. Then
we split the proof of Proposition 5 into two parts. The first part, in Section B.3, consists in
proving the decomposition (4.4) into a sum of a vanishing term and a martingale part. In the
second part, in Section B.4, we demonstrate that the martingale part satisfies Items (i)-(iv) of
Proposition 5. Figure 1 show how the results intervenes in the proof.

In this section, (Yt)t∈[0,1] is a standard OBM.
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Decomposition (4.4) in martingale vanishing term

Lemma 9 Lemma 3

Lemma 10

Lemma 6 Lemma 2

Item (i)

Lemma 4

Item (ii)

Proposition 7

Lemma 1
Lemma 7 Lemma 5

Lemma 8

Item (iii)

Proposition 6

Item (iv)

Figure 1: Map of the proof of Proposition 5.
In the appendix we introduce many auxiliary results. This map show how they intervene in
the proof of Proposition 5 and of other results of the appendix.

B.1 Auxiliary convergence results

The following is the generalization to the case of OBM of Lemma 4.2 in [24]. The proof is
analogous and therefore omitted.

Lemma 6. Let (gn)n∈N be a sequence of real functions satisfying that ⟨λσ, gn⟩ = 0 and for all
x ∈ R

lim
n→∞

gn(x
√
n)2

n
+

∥g2n∥1√
n

+
∥gn∥1,1|gn(x

√
n)| log(n)

n
+

∥gn∥1,1∥gn∥1 log(n)√
n

= 0. (B.1)

Then limn→∞ E
[(

1√
n

∑⌊nt⌋−1
k=0 gn(

√
nY k

n
)
)2]

= 0 for all t ∈ [0, 1].

The following propositions correspond to Theorem 4.1 a) and b) in [24]. The proof of the
first is step by step an adaptation to OBM of the proof of Theorem 4.1.a) for BM and it relies
on Lemma 2. The proof of Proposition 6 is therefore omitted.

Proposition 6. Let gn : R → R, n ∈ N, be a sequence of functions satisfying limn→∞ ∥gn∥1 = 0
and for all x ∈ R it holds that limn→∞

1√
n
gn(

√
nx) = 0. Then

lim
n→∞

sup
s∈[0,1]

E
[
|n− 1

2

⌊ns⌋−1∑
k=0

gn(
√
nY k

n
)|
]
= 0. (B.2)

Proposition 7. Let gn : R → R, n ∈ N, be a sequence of functions satisfying (B.1) and there
exists λ ∈ R such that limn→∞⟨λσ, gn⟩ = λ. Then for all t ∈ [0, 1] it holds that

1√
n

⌊nt⌋−1∑
k=0

gn(
√
nY k

n
)

P−−−→
n→∞

λLt(Y ). (B.3)
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If in addition supn∈N ∥gn∥1 < ∞ then

sup
s∈[0,1]

∣∣∣n− 1
2

⌊ns⌋−1∑
k=0

gn(
√
nY k

n
)− λLs(Y )

∣∣∣ P−−−→
n→∞

0. (B.4)

Proof. Let us set the sequence fn := gn−⟨λσ, gn⟩EY
g with g(x, y) := |y|−|x|. Note that Lemma 4

ensures that ⟨λσ,E
Y
g ⟩ = 1 and that 1√

n

∑⌊nt⌋−1
k=0 EY

g (
√
nY k

n
)

P−−−→
n→∞

Lt(Y ). Hence ⟨λσ, fn⟩ = 0

and one can easily show that fn satisfies (B.1). Lemma 6 yields the result. The additional
statemets is the same as [24, Theorem 4.1].

Remark 6 (Proposition 6 and 7 for a constant sequence of functions). Let f ∈ L1 such that for

all x ∈ R it holds that limn→∞
f(

√
nx)√
n

= 0 (e.g. f ∈ L1,b(λ(0))). Then Proposition 6 states that

if ∥f∥1 = 0 then

lim
n→∞

sup
s∈[0,1]

E
[
|n− 1

2

⌊ns⌋−1∑
k=0

f(
√
nY k

n
)|
]
= 0. (B.5)

And Proposition 7 states that if f 2 ∈ L1 and f ∈ L1(λ(1)) (e.g. f ∈ L1,b(λ(1))) then

sup
s∈[0,1]

∣∣∣n− 1
2

⌊ns⌋−1∑
k=0

f(
√
nY k

n
)− ⟨λσ, f⟩Ls(Y )

∣∣∣ P−−−→
n→∞

0. (B.6)

B.2 Auxiliary functions

Lemma 7. Let γ ∈ (0,∞), h ∈ Iγ, and let Gh be the function

Gh := EY
h − ⟨λσ,E

Y
h ⟩EY

g (B.7)

with g(x, y) = |y| − |x|. Then ⟨λσ,Gh⟩ = 0 and Gh ∈ Iγ.

Proof. Throughout this proof let Kσ = 1
min{σ2

−,σ2
+}

2σ−σ+

σ−+σ+
∈ (0,∞). First note that the fact that

qσ(1, x, y) ≤ Kσ
1√
2π
e−

(x−y)2

2 implies that |EY
g (x)| ≤ Kσ

1√
2π

∫∞
−∞ |y − x|e−

(x−y)2

2 dy ∈ Iα for all
α ≥ 0. And it also implies, together with the fact that h ∈ Iγ, that

|EY
h (x)| ≤ Kσ

1√
2π

∫ ∞

−∞
|h(x, y)|e−

(x−y)2

2 dy ≤ Kσh̄(x)e
−a2

2 (B.8)

with h̄ ∈ L1,b(λ(γ)) positive function and a non negative constant. Hence it holds that EY
h ∈

L1,b(λ(γ)). In particular it holds ⟨λσ,E
Y
h ⟩ ≤ ∥EY

h ∥1 < ∞. Therefore |Gh| ≤ |EY
h |+∥EY

h ∥1|EY
g | ∈

Iγ and so Gh ∈ Iγ.
It remains to prove that ⟨λσ,Gh⟩ = 0. This follows from the fact that ⟨λσ,Gh⟩ =

⟨λσ,E
Y
h ⟩(1− ⟨λσ,E

Y
g ⟩) and ⟨λσ,E

Y
g ⟩ = 1 by Lemma 4.

In the reminder of this section let γ ∈ [1,∞), h ∈ Iγ, let Gh be the function in (B.7), and
for all i, j ∈ {0, 1}, η ∈ [0,∞), n ∈ [1,∞) let

Q(η)
n,i,j :=

⌊nη⌋+j∑
k=i

Qσ
kGh and Qn,i,j := Q( 1

4
)

n,i,j (B.9)

where Qσ is the semigroup of the OBM given in (A.4). Let n ∈ N be fixed.
The following facts are consequences of Lemma 7, Lemma 1, and the fact that

∑n
j=1

1
j
≤

2 log(n) for n ≥ 2.
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For every ζ ∈ [0, γ − 1], for every η ∈ (0, 1) the fact that λ(Gh) = 0 and Item (iii) in Lemma 1
imply that for all x ∈ R it holds that

|Qσ
nη+1Gh(x)| ≤

(
1 + |σ−σ+|

σ−+σ+

)
Kζn

−η
(

1
1+|xn−η/2/σ(x)|ζ +

1
1+(|x|/σ(x))ζ

)
(B.10)

and

|Q(η)
n,1,0(x)|+ |Q(η)

n,1,1(x)| ≤ 2Kζ log(n)

(
1

1+|xn− η
2 /σ(x)|ζ

+ 1
1+|x/σ(x)|ζ

)
(B.11)

for some Kζ ∈ (0,∞) depending also on η. Hence (B.11) with ζ = 0 and Item (ii) in Lemma 1
imply that for all x ∈ R it holds that

|Q(η)
n,1,0(x)|+ |Q(η)

n,1,1(x)| ≤ 2Kmin {log(n), (1 + |x|)}, (B.12)

for some constant K ∈ (0,∞) depending on η ∈ (0, 1). This and the fact that Gh is bounded

ensures that for some positive constant K ∈ (0,∞) it holds that |Q(η)
n,0,0(x)| + |Q(η)

n,0,1(x)| ≤
2|Gh(x)|+ |Q(η)

n,1,0(x)|+ |Q(η)
n,1,1(x)| ≤ 2K(log(n) + 1) and

|Q(η)
n,0,0(x)|+ |Q(η)

n,0,1(x)|+ |Q(η)
n,1,0(x)|+ |Q(η)

n,1,1(x)| ≤ 2K(log(n) + 1). (B.13)

The following lemma is a straightforward consequence of Item (ii) in Lemma 1 and of the
fact that ⟨λσ,Gh⟩ = 0 (see Lemma 7).

Lemma 8. Pointwise limm→∞Qm,0,0 = PY
h . (Recall that PY

h is given by (2.19).)

B.3 The decomposition as sum martingale and vanishing terms

In this section let γ be an arbitrary non-negative number to be specified in each statement and
let h ∈ Iγ. We are now determining the terms of the decomposition in equation (4.4).
For every n ∈ N let Mn,1, Mn,2, and Nn be the processes satisfying for all t ∈ [0, 1] that

Mn,1
t =

1√
n

⌊nt⌋−1∑
k=0

(
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
) + ⟨λσ,E

Y
h ⟩EY

g (
√
nY k

n
)
)
− L ⌊nt⌋

n

(Y ),

(B.14)

Mn,2
t =

1√
n

⌊nt⌋∑
k=1

(
Qn,0,0(

√
nY k

n
)−Qn,1,1(

√
nY k−1

n
)
)
, and Nn

t =
1√
n

⌊nt⌋−1∑
k=0

Gh(
√
nY k

n
) (B.15)

(recall the definition for Gh in (B.7), Q in (B.9), and g(x, y) = |y| − |x|). Trivially it holds for
all n ∈ N, t ∈ [0, 1] that

ε
(0,h,Y )
n,t − ⟨λσ,E

Y
h ⟩Lt(Y ) = Mn,1

t +Nn
t + ⟨λσ,E

Y
h ⟩
(
L⌊nt⌋/n(Y )− Lt(Y )

)
= Mn,1

t +Mn,2
t −Mn,2

t +Nn
t + ⟨λσ,E

Y
h ⟩
(
L⌊nt⌋/n(Y )− Lt(Y )

)
.

(B.16)

The right-hand-side of the latter equality is a sum of an (F⌊nt⌋/n)t≥0-martingale (denoted by

n− 1
4Mn) and of a vanishing term with rate of order at least 1/4 (denoted by Vn):

Vn
t := Nn

t −Mn,2
t + ⟨λσ,E

Y
h ⟩
(
L ⌊nt⌋

n

(Y )− Lt(Y )
)

and Mn
t := n1/4

(
Mn,1

t +Mn,2
t

)
. (B.17)

Lemma 10 below, together with Lemma 3, ensures that supt∈[0,1] n
1/4|Vn

t |
P−−−→

n→∞
0. The two

lemmas below prove the martingale property of Mn, for n ∈ N.

20



Lemma 9. Mn,1 is a martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1].

Proof. Throughout this proof let An and Bn be the processes given by

An
t =

1√
n

⌊nt⌋−1∑
k=0

EY
g (
√
nY k

n
)− L ⌊nt⌋

n

(Y ) and Bn
t = Mn,1

t − ⟨λσ,E
Y
h ⟩An

t . (B.18)

So Bn
t = 1√

n

∑⌊nt⌋−1
k=0

(
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
)
)
. It suffices to show the martingale

property for An and Bn. Let t ∈ [0, 1] be fixed. The martingale property for An is an immediate
consequence of Lemma 4. Let us explicit the case of the process Bn. For all j ∈ {0, . . . , ⌊nt⌋−1}
it can be easily shown that

E
[
n

1
2Bn

t |F j
n

]
=

⌊nt⌋−1∑
k=j

E
[
h(
√
nY k

n
,
√
nY k+1

n
)− EY

h (
√
nY k

n
)|F j

n

]
+Bn

j
n

= Bn
j
n

. (B.19)

This completes the proof.

Lemma 10. Let h ∈ I3. Then Mn,2 is a martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1]

and it holds that sups∈[0,1] n
1/4|Nn

s −Mn,2
s | P−−−→

n→∞
0.

Proof. Using (B.9) we rewrite Mn,2 in (B.15) as

Mn,2
t =

1√
n

⌊nt⌋∑
k=1

⌊n
1
4 ⌋∑

j=0

(E
[
Gh(

√
nY(j+k)/n)|Fk/n

]
− E

[
Gh(

√
nY(j+k)/n)|F(k−1)/n

]
)

= Nn
t − 1√

n

(
Qn,0,0(

√
nY0)−Qn,0,0(

√
nY⌊nt⌋/n)

)
− 1√

n

⌊nt⌋−1∑
j=0

Qσ

⌊n
1
4 ⌋+1

Gh(
√
nYj/n).

(B.20)

The first equality of the latter equation makes clear that that Mn,2 is a martingale with respect
to the filtration (F⌊nt⌋/n)t∈[0,1]. Let

mn
t := Nn

t − 1√
n

(
Q(3/4)

n,0,0 (
√
nY0)−Q(3/4)

n,0,0 (
√
nY⌊nt⌋/n)

)
− 1√

n

⌊nt⌋−1∑
j=0

Qσ

⌊n
3
4 ⌋+1

Gh(
√
nYj/n).

(B.21)
As for (B.20) it is clear that mn is a martingale with respect to the filtration (F⌊nt⌋/n)t∈[0,1].

Therefore n1/4(Mn,2
t − mn

t ) as well. Let us denote by Dn
t := n1/4(Nn

t − Mn,2
t ) and dnt :=

n1/4(Nn
t −mn

t ). Then Dn − dn = n1/4(wn −Mn,2) is a martingale with respect to the filtration

(F⌊nt⌋/n)t∈[0,1]. In this notation, the goal is to prove sups∈[0,1] |Dn
s |

P−−−→
n→∞

0.

First step: For every t ∈ [0, 1], let us show that limn→∞ E[(Dn
t − dnt )

2] = 0 by demonstrating
the stronger fact that limn→∞ E[(Dn

t )
2 + (dnt )

2] = 0.
Let t ∈ [0, 1] and η ∈

{
1
4
, 3
4

}
be fixed. Inequality (B.13) implies for all ω ∈ Ω that

sup
s∈[0,1]

n− 1
4

(
Q(η)

n,0,0(
√
nY0(ω))−Q(η)

n,0,0(
√
nY⌊ns⌋/n(ω))

)
−−−→
n→∞

0, (B.22)

hence it holds also that limn→∞ E
[
n− 1

2

(
Q(η)

n,0,0(
√
nY0)−Q(η)

n,0,0(
√
nY⌊nt⌋/n)

)2]
= 0. Next observe

that, since λσ is the stationary measure, the sequences of functions g
(η)
n := n1/4Qσ

⌊nη⌋+1Gh,
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η ∈ {1
4
, 3
4
} satisfy that ⟨λσ, g

(η)
n ⟩ = n1/4⟨λσ,Gh⟩ which is equal to 0 by Lemma 7. This and

inequality (B.10) (with ζ = 2 since h ∈ Iζ+1) ensure that (B.1) holds. Hence, Lemma 6 shows

that limn→∞ E
[
n− 1

2

(∑⌊nt⌋−1
j=0 Qσ

⌊nη⌋+1Gh(
√
nYj/n)

)2]
= 0.

Second step: It holds that sups∈[0,1] |Dn
s − dns |

P−−−→
n→∞

0.

This follows from [1, Proposition 1.2] as a consequence of the previous step and the martingale
property of Dn − dn.

Third step: It holds that sups∈[0,1] |dns |
P−−−→

n→∞
0. This follows from (B.22) and from applying

Proposition 6 to the sequence gn := n1/4Qσ

⌊n
3
4 ⌋+1

Gh The assumptions are indeed satisfied:

limn→∞ ∥gn∥1 = 0 by Item (i) in Lemma 1 and in the first step we have proven that gn satisfies

(B.1) and in particular limn→∞
gn(

√
nx)√
n

= 0.
Combining the two last steps yields the conclusion.

B.4 Final steps of the proof

In this section we complete the proof of Proposition 5. The arguments are sometimes sketched
because analogous to the ones in [24, Section 6].

Let γ > 3 and h ∈ Iγ be fixed. By Definition 1 of Iγ there exist a non-negative function
h̄ ∈ L1,b(λ(γ)) and a constant a ∈ [0,∞) such that |h(x, y)| ≤ h̄(x)ea|y−x|. In this section h̄ and
a are fixed.
Let us also recall some notation: let EY the functional in (2.12), Qσ the semigroup in (A.4),
Gh in (B.7), Q in (B.9) and its limit PY

h in (2.19), and L in (A.9).

For all n ∈ N the (F⌊nt⌋/n)t∈[0,1]-martingale Mn in (B.17) rewrites as Mn
t =

∑⌊nt⌋
k=1 χ

n
k where

χn
k := n− 1

4

(
h(
√
nY(k−1)/n,

√
nYk/n)− ⟨λσ,E

Y
h ⟩

√
n(Lk/n(Y )− L(k−1)/n(Y ))

)
+n− 1

4

(
Qn,0,0(

√
nYk/n)−Qn,0,1(

√
nY(k−1)/n)

)
.

(B.23)

Now it remains to prove Items (i)-(iv) in Proposition 5. Item (i) in Proposition 5 follows from
scaling property (A.1) and Lemma 4.

B.4.1 Proof of Item (ii) in Proposition 5

Let t ∈ [0, 1] be fixed.
First step: It can be easily shown that
√
nE
[
(χn

k)
2|F(k−1)/n

]
= fn(

√
nY(k−1)/n) + (⟨λσ,E

Y
h ⟩)2L(2)(1,

√
nY(k−1)/n)− 2⟨λσ,E

Y
h ⟩hn(

√
nY(k−1)/n)

(B.24)

where fn and hn are given by fn(x) := EY
h2(x)+2EY

h,Qn,0,0
(x)+gn(x) with gn(x) := Qσ

1 (Qn,0,0)
2 (x)−

(Qn,0,1(x))
2 and hn(x) := L(1)(h(x, ·), x) + L(1)(Qn,0,0, x).

Second step: It follows from applying Proposition 7 to the constant sequence of functions

L(2)(1, ·) that 1√
n

∑⌊nt⌋
k=1 L(2)(1,

√
nY(k−1)/n)

P−−−→
n→∞

2σ−σ+

σ−+σ+

8
3
√
2π
Lt(Y ). The fact that the assump-

tions of the proposition (i.e. L(2)(1, ·) ∈ L1,b(λ(2))) are satisfied and ⟨λσ,L(2)(1, ·)⟩ = 2σ−σ+

σ−+σ+

8
3
√
2π

follows from the fact that E
[
(L1(W ))2

]
= 1 and Lemma 5.

In the two final steps, we want to apply Proposition 7 to the sequences fn and hn.

Third step: We show that 1√
n

∑⌊nt⌋
k=1 fn(

√
nY(k−1)/n)

P−−−→
n→∞

⟨λσ,E
Y
h2+2EY

h,PY
h
⟩Lt(Y ). applying

Proposition 7. To do so we check that the sequence fn satisfies (B.1) and that limn→∞⟨λσ, fn⟩ =
⟨λσ,E

Y
h2 + 2EY

h,PY
h
⟩.
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The fact that limn→∞⟨λσ, gn⟩=0 follows from the fact that λσ is the stationary measure,
inequality (B.10) with ζ = γ − 1 > 2, and inequality (B.11). Note that EY

h,Qn,0,0
= EY

h,Gh
+

EY
h,Qn,1,0

. Lemma 7 (in particular the fact that Gh is bounded) ensures that there exists a

constant K ∈ (0,∞) such that |EY
h,Gh

(x)| ≤ Kh̄(x). By (B.12) there exists constants K1, K2 ∈
(0,∞) (all depending on σ± and K2 depending also on the constant a ∈ [0,∞)) such that

|EY
h,Qn,1,0

(x)| ≤ K1h̄(x)

(∫ ∞

−∞
(1 + |x|1[−x,x](y) + |y|1R\[−x,x](y))e

a|y−x|qσ(1, x, y) dy

)
≤ K2h̄(x)(1 + |x|).

(B.25)

The fact that h ∈ Iγ ensures that h̄ ∈ L1,b(λ(1)) and so EY
h,Qn,0,0

∈ L1. Hence, dominated

convergence and Lemma 8 show that limn→∞⟨λσ, fn⟩ = ⟨λσ,E
Y
h2 + 2EY

h,PY
h
⟩.

Let us now show that fn satisfies equation (B.1). The fact that h̄ ∈ L1,b(λ(2)) ensures that
EY

h2(x) ≤ Kh̄(x) for some positive constant K and so EY
h2 ∈ L1,b(λ(2)).

Let us explore the contribution to (B.1) of the other parts of fn. Let us first consider E
Y
h,Qn,0,0

=

EY
h,Gh

+ EY
h,Qn,1,0

. Above we saw that |EY
h,Gh

| ≤ Kh̄ with K non negative constant. Hölder’s
inequality implies that

(EY
h,Qn,1,0

(x))2 ≤
∫ ∞

−∞
h(x, y)2qσ(1, x, y) dy

∫ ∞

−∞
(Qn,1,0(y))

2qσ(1, x, y) dy. (B.26)

It can be easily shown that the first factor is uniformly bounded by a finite constant. And by
(B.11) (taking ζ = γ − 1 > 2) there exist constants K1, K2 ∈ (0,∞) such that∫ ∞

−∞
(Qn,1,0(y))

2qσ(1, x, y) dy ≤ K1

∫ ∞

−∞

(log n)2qσ(1, x, y)

(1 + |yn− 1
8/σ(y)|γ−1)2

dy

≤ K2(log(n))
2

1 + |xn− 1
8/σ(x)|2(γ−1)

.

(B.27)

The last inequality are consequences of the upper bound for the transition density of OBM

qσ(1, x, y) ≤
(
1+

∣∣∣σ−−σ+
σ−+σ+

∣∣∣)
√
2πσ(y)

e−
1
2
( y
σ(y)

− x
σ(x)

)2 and of [24, Lemma 3.2] (or some computations). There-

fore EY
h,Qn,0,0

(x) ≤ K

(
h̄(x) + log(n)

1+|xn− 1
8 /σ(x)|γ−1

)
. Finally we consider the auxiliary function

gn: note that |gn| ≤ Qσ
1 (2Q2

n,0,0 + 2G2
h) + 2Q2

n,1,1 + 2G2
h. Inequality (B.11) and inequal-

ity (B.27) imply that Qσ
1 (Q2

n,0,0) + Q2
n,1,1 ≤ K(log(n))2

1+|xn− 1
8 /σ(x)|2(γ−1)

for some non negative con-

stant K. Lemma 7, the fact that γ ≥ 2 and Item (iii) of Lemma 1 yields G2
h ≤ Gh and

Qσ
1G

2
h(x) ≤ K(e−x2/2 + 1

1+(|x|/σ(x))γ ) for some non-negative constant K. Combining all terms

yields that fn satisfied (B.1).

Forth step: We show that 1√
n

∑⌊nt⌋
k=1 hn(

√
nY(k−1)/n)

P−−−→
n→∞

chLt(Y ) applying Proposition 7,

where 2⟨λσ,E
Y
h ⟩ch := −Kh + ⟨λσ,E

Y
h2 + 2EY

h,PY
h
⟩ + 2σ−σ+

σ−+σ+

8
3
√
2π
(⟨λσ,E

Y
h ⟩)2. To do so we check

that the sequence hn satisfies (B.1) and that limn→∞⟨λσ, hn⟩ = ch.
Inequality (B.12), the fact that Gh is bounded (see Lemma 7), the fact that

E
[
L1(W )(1 + |W1|+ eaσ(W1)|W1|1{σ(W1)∈R})

]
< ∞ (B.28)

(see the joint density of BM and its local time (A.3)), boundedness of h̄, and the change of
variable s = x2

(σ(x))2t
show that there exists K ∈ (0,∞) such that

|L(1)(h(x, ·), x)|+ |L(1)(Qn,0,0, x)| ≤ 2K|x|e−
x2

(σ(x))2 ∈ L1. (B.29)
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Hence dominated convergence, and Lemma 8 demonstrates that limn→∞⟨λσ,L(1)(Qn,0,0, ·)⟩ =
⟨λσ,L(1)(PY

h , ·)⟩. Moreover the latter inequalities ensure also that hn satisfy (B.1).
Lemma 5 allows us to rewrite ch := ⟨λσ,L(1)(h(·, ), ·)⟩+ ⟨λσ,L(1)(PY

h , ·)⟩ as

ch =

√
2

π

(σ− + σ+)

2σ−σ+

∫ 1

0

√
1

t
− 1

∫ ∞

−∞

∫ ∞

0

ρσ1 (y, ℓ)ℓPY
h (y

√
1− t) dℓ dy dt

+

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞

∫ ∞

0

|x|e−
x2

2(σ(x))2

√
2πσ(x)

√
1

t
− 1ρσ1 (y, ℓ)ℓh(x

√
t, y

√
1− t) dℓ dy dtλσ(dx)

(B.30)

where ρσ1 is the joint density of a standard OBM and its local time at time 1 (given in (A.2)).
This expression can be easily checked to be the desired expression for ch.

B.4.2 Proof of Item (iii) in Proposition 5

Let t ∈ [0, 1] be fixed.
First step: Let us show that

E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

]
=

1√
n

(
n− 1

4f1(
√
nY(k−1)/n) + gn(

√
nY(k−1)/n) + ⟨λσ,E

Y
h ⟩n− 1

4f2(
√
nY(k−1)/n)

) (B.31)

where f1, f2, gn are given by

f1(x) :=

∫ ∞

−∞
(h(x, y) +Gh(y))(y − x)qσ(1, x, y) dy, f2(x) := xL(1)(1, x), and

gn(x) := n− 1
4

∫ ∞

−∞
Qn,1,0(y)(y − x)qσ(1, x, y) dy.

(B.32)

Throughout the proof of this step let I : x 7→ x denote the identity function. It follows from
(B.23), the fact that Y is a martingale, (A.10), and the scaling property (A.1) that

n
3
4 E
[
χn
k(Yk/n − Y(k−1)/n)|F(k−1)/n

]
= f1(

√
nY(k−1)/n) + ⟨λσ,E

Y
h ⟩f2(

√
nY(k−1)/n)− L(1)(I,

√
nY(k−1)/n)) + n1/4gn(

√
nY(k−1)/n).

(B.33)

The proof of this step is completed if L(1)(I, ·) = 0. This equality follows from the fact that for
a standard BM, say W , it holds that E[L1(W )W1] = 0 and from Lemma 5.

In the next steps we want to check that Proposition 6 can be applied to the sequences
n− 1

4f1, n
− 1

4f2 and gn.
Second step: We show that f1 is bounded and integrable: f1 ∈ L1,b(λ(0)).
The proof follows from Lemma 7, and Item (iii) in Lemma 1. In this proof the fact that

γ > 3 is strongly used.
Third step: The fact that f2 is bounded and integrable follows from Lemma 5.
Forth step: We prove that

∫∞
−∞ |gn(x)| dx and 1√

n
gn(

√
nx) converge to 0.

Cauchy-Schwarz inequality and inequality (B.27) yield that there exists a constant K ∈
(0,∞) depending on γ and σ± such that |gn(x)| ≤ n− 1

4K2 log(n)

1+|xn− 1
8 /σ(x)|γ−1

.

In the last steps we proved that Proposition 6 can be applied and this completes the proof.

24



B.4.3 Proof of Item (iv) in Proposition 5

Let ε ∈ (0,∞) be fixed. For every k, Hölder’s inequality and Markov’s inequality show

E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

]
≤ E

[
|χn

k |5|F(k−1)/n

]
ε−3. (B.34)

The fact that h ∈ Iγ ⊆ I0 ensures that h̄ is bounded and integrable. This combined with
Jensen’s inequality and (B.13) ensures that supx∈R h̄(x) + |⟨λσ,E

Y
h ⟩| is bounded by a constant

K ∈ (0,∞) and for all n ∈ N \ {0, 1, 2, 3} it holds that

E
[
|χn

k |5|F(k−1)/n

]
≤ 44n− 5

4K5
(
E
[
e5a

√
n|Yk/n−Y(k−1)/n||F(k−1)/n

]
+ E

[(√
n|Lk/n(Y )− L(k−1)/n(Y )|

)5 |F(k−1)/n

]
+ (log n)5

)
.

(B.35)

The fact that density of the OBM has a Gaussian behavior together with the scaling prop-

erty (A.1) ensure that E
[
e5a

√
n|Yk/n−Y(k−1)/n||F(k−1)/n

]
=
∫∞
−∞ e5a|y−x|qσ(1, x, y) dy is bounded.

By (A.9) and Lemma 5 we can show, similarly to the third step of the proof of Item (iii), that
there exist constants K1, K2 ∈ (0,∞) such that

E
[(√

n|Lk/n(Y )− L(k−1)/n(Y )|
)5 |F(k−1)/n

]
= L(5)(1,

√
nY(k−1)/n)

≤ K1

∫ 1

0

(1− t)
5
2

√
2πt

3
2

√
n|Y(k−1)/n|

σ(Y(k−1)/n)
e
−

n(Y(k−1)/n)2

2(σ(Y(k−1)/n))t dt ≤ K2.
(B.36)

We conclude that there exists a constant K ∈ (0,∞) such that

n∑
k=1

E
[
|χn

k |21{|χn
k |≥ε}|F(k−1)/n

]
≤ nKn− 5

4 log(n)ε−3 −−−→
n→∞

0. (B.37)
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Probab. Stat., 52(2):915–938, 2016.

[27] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume
113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

[28] Julian Keilson and Jon A. Wellner. Oscillating Brownian motion. J. Appl. Probability, 15
(2):300–310, 1978.

[29] Jean-François Le Gall. One-dimensional stochastic differential equations involving the local
times of the unknown process. In Stochastic analysis and applications (Swansea, 1983),
volume 1095 of Lecture Notes in Math., pages 51–82. Springer, Berlin, 1984.

[30] Jean-François Le Gall and Marc Yor. Etude asymptotique de certains mouvements brown-
iens complexes avec drift. Probability theory and related fields, 71(2):183–229, 1986. ISSN
0178-8051.

[31] Antoine Lejay. On the constructions of the skew Brownian motion. Probab. Surv., 3:
413–466, 2006.
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