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Abstract

An Algebraic Circuit for a polynomial P P Frx1, . . . , xN s is a computational model for
constructing the polynomial P using only additions and multiplications. It is a syntactic
model of computation, as opposed to the Boolean Circuit model, and hence lower bounds for
this model are widely expected to be easier to prove than lower bounds for Boolean circuits.
Despite this, we do not have superpolynomial lower bounds against general algebraic circuits
of depth 3 (except over constant-sized finite fields) and depth 4 (over fields other than F2),
while constant-depth Boolean circuit lower bounds have been known since the early 1980s.

In this paper, we prove the first superpolynomial lower bounds against general algebraic
circuits of all constant depths over all fields of characteristic 0 (or large). We also prove the
first lower bounds against homogeneous algebraic circuits of constant depth over any field.

Our approach is surprisingly simple. We first prove superpolynomial lower bounds for
constant-depth Set-Multilinear circuits. While strong lower bounds were already known
against such circuits, most previous lower bounds were of the form fpdq ¨ polypNq, where
d denotes the degree of the polynomial. In analogy with Parameterized complexity, we
call this an FPT lower bound. We extend a well-known technique of Nisan and Wigderson
(FOCS 1995) to prove non-FPT lower bounds against constant-depth set-multilinear circuits
computing the Iterated Matrix Multiplication polynomial IMMn,d (which computes a fixed
entry of the product of d nˆ n matrices). More precisely, we prove that any set-multilinear

circuit of depth ∆ computing IMMn,d must have size at least nd
expp´Op∆qq

. This result holds
over any field, as long as d “ oplog nq.

We then show how to convert any constant-depth algebraic circuit of size s to a constant-
depth set-multilinear circuit with a blow-up in size that is exponential in d but only polyno-
mial in s over fields of characteristic 0. (For depths greater than 3, previous results of this
form increased the depth of the resulting circuit to Ωplog sq.) This implies our constant-
depth circuit lower bounds.

We can also use these lower bounds to prove a Depth Hierarchy theorem for constant-
depth circuits. We show that for every depth Γ, there is an explicit polynomial which can
be computed by a depth Γ circuit of size s, but requires circuits of size sωp1q if the depth is
Γ´ 1.

Finally, we observe that our superpolynomial lower bound for constant-depth circuits
implies the first deterministic sub-exponential time algorithm for solving the Polynomial
Identity Testing (PIT) problem for all small depth circuits using the known connection
between algebraic hardness and randomness.
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1 Introduction

Background on Algebraic Circuits. Let P px1, . . . , xN q be a multivariate polynomial over
a field F. An Algebraic Circuit for P px1, . . . , xN q is simply a circuit for constructing P using
the input variables and constants from F, by combining them iteratively using additions and
multiplications. This construction may be represented as a DAG, with leaves that are labelled by
variables from tx1, . . . , xNu or field elements and internal nodes that either compute products or
linear combinations of their inputs.1 A special output node (or gate) represents the polynomial
P . In the particular case where the DAG is a tree, such a circuit is called an Algebraic Formula.2

The size of this construction is the number of nodes in the DAG. We also consider the product-
depth of the circuit, which is the maximum number of product gates on a root-to-leaf path.3

We think of such an algebraic circuit as a computational model, solving the computational
task of evaluating P at a given input px1, . . . , xN q P FN . The efficiency of the model is measured
by its size, which closely approximates the number of operations performed in the computation.
As the circuit is required to construct the formal polynomial P , it is a syntactic model of
computation, as opposed to the Boolean circuit model, which is only required to model certain
input-output behaviours. As a consequence, the problem of proving algebraic circuit lower
bounds is widely considered to be easier than its Boolean counterpart. Indeed, it is known that
separating VP from VNP, the algebraic analog of the P vs. NP problem, is a prerequisite to
solving the latter problem (in the non-uniform setting) [5].

As a result, proving lower bounds for algebraic circuits has been the focus of a large body of
research (see, e.g. [6, 58, 50] for nice introductions to this area). Unfortunately, however, we are
far from resolving the big questions. For instance, we do not even have superpolynomial lower
bounds against general algebraic circuits of product-depth 1, which are also called ΣΠΣ formulas
(as they are linear combinations of products of linear combinations of the input variables), over
fields of large size, and no superpolynomial lower bounds against general algebraic circuits
of product-depth more than 1 (e.g. ΣΠΣΠ formulas) over fields other than F2. Note that,
in contrast, we have had strong constant-depth Boolean circuit lower bounds since the early
1980s [1, 16, 21, 48, 59].

In this paper, we prove the first superpolynomial lower bounds for algebraic circuits of
constant product-depth. Our lower bounds hold over all fields of characteristic 0 (or large
enough as a function of the degree parameter).

Theorem 1 (Main Result). Let N, d,∆ be growing parameters with d “ oplogNq. Assume F
has characteristic 0 or greater than d. There is an explicit polynomial PN,dpx1, . . . , xN q that has

no algebraic circuits of product-depth ∆ and size at most Ndexpp´Op∆qq
.

Moreover, the polynomial PN,d is a well-known polynomial that is easy to describe. Assume
n and d are such that N “ dn2. The polynomial PN,d is the Iterated Matrix Multiplication

1More precisely, any internal node v with children u1, . . . , ur is labelled either ˆ or `. In the former case,
the nodes computes the product of its inputs. In the latter case, it computes a linear combination of the inputs,
where the coefficients of the linear combination are field elements labelling the edges between the uis and v.

2Another natural way to define it is that it is just a (possibly nested) algebraic expression made up of variables,
constants, additions and multiplications.

3One can also consider the depth of the formula, which is the maximum length of a root-to-leaf path. The
product-depth is, w.l.o.g., equal to depth up to a factor of two. It is sometimes easier to state results for algebraic
circuits in terms of product-depth, and this is true for our results as well.
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polynomial IMMn,d on N “ dn2 variables, defined as follows. The underlying variables are
partitioned into d sets X1, . . . , Xd of size n2, each of which is represented as an n ˆ n matrix
with distinct variable entries. Then IMMn,d is defined to be the polynomial that is the p1, 1qth
entry of the product matrix X1 ¨X2 ¨ ¨ ¨Xd.

The Approach: ‘Hardness Escalation’. While lower bounds for general algebraic circuits
have been hard to prove, we do have several beautiful results for restricted kinds of algebraic
circuits, such as Homogeneous, Multilinear, and Set Multilinear circuits. As these will be useful
in the sequel, we review some of these definitions below.

Recall that a multilinear polynomial P px1, . . . , xN q is one in which each variable xi has degree
at most 1, and a homogeneous polynomial is one that is a linear combination of monomials of the
same total degree. If the underlying variable set is partitioned into d variable sets X1, . . . , Xd,
then P is said to be set-multilinear with respect to this variable partition if P is a linear
combination of monomials that contain one variable from each variable set among X1, . . . , Xd;
note that a set-multilinear polynomial is both multilinear and homogeneous (of degree d). For
example, the n ˆ n Determinant is a set-multilinear polynomial w.r.t the variable partition
corresponding to the rows of the underlying matrix, and the polynomial IMMn,d defined above
is set-multilinear w.r.t. the partition into matrices X1, . . . , Xd.

Given a set-multilinear polynomial P (w.r.t. variable partition X1, . . . , Xd), it is natural to
look at algebraic circuits computing P that themselves have the same structure. In particular,
an algebraic circuit is said to be set-multilinear if each internal gate computes a set-multilinear
polynomial in a subset of X1, . . . , Xd. Similarly, a multilinear or homogeneous circuit is one
where each internal node computes a multilinear or homogeneous polynomial respectively. For
each such restricted type of circuit, we have non-trivial lower bounds on the sizes of circuit
computing explicit polynomials (also restricted in the same way) [41, 44, 63, 13, 30, 36]. An
important result of Nisan and Wigderson [41] proved lower bounds against small-depth set-
multilinear and homogeneous circuits computing IMMn,d. Building upon this, Raz [44] showed
superpolynomial lower bounds on the size of any (unbounded depth) multilinear formula com-
puting the nˆ n Determinant and Permanent.

It is natural to ask if we can use these lower bounds against restricted kinds of circuits
to prove lower bounds against more general algebraic circuits. Such ‘hardness escalation’4

results have appeared in many areas in computational complexity (see, e.g. [2, 47]), including
Algebraic complexity theory. Strassen [60] and Raz [45] both observed (in different settings) that
lower bounds for small-depth circuits computing low-degree polynomials imply lower bounds for
larger depth circuits. More recently, Raz [46] showed that if a homogeneous or set-multilinear
polynomial of degree d has an algebraic formula of size s, then it also has a homogeneous or
set-multilinear formula of size polypsq ¨ plog sqOpdq respectively. In particular, for a homogeneous
(resp. set-multilinear) polynomial P of degree d “ OplogN{ log logNq, it follows that P has a
formula of size polypNq if and only if P has a homogeneous (resp. set-multilinear) formula of
size polypNq.5

The latter result implies that if we could prove homogeneous or set-multilinear formula lower
bounds of the form Nωdp1q (i.e. the exponent goes to infinity with d) for a polynomial P with
N variables and degree d, then we would have superpolynomial general algebraic formula lower
bounds. In particular, this would imply lower bounds for constant-depth algebraic circuits,
as any constant-depth algebraic circuit can be converted to an algebraic formula with only
polynomial blow-up.

4This terminology appeared in a result of Beame, Huynh and Pitassi [2] on proof complexity. The authors of
that paper attribute the term to Rahul Santhanam.

5Raz’s result is slightly stronger for homogeneous formulas, but we ignore this point here.
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Unfortunately, known results do not yield such lower bounds. In the homogeneous case,
we have strong lower bounds against certain formulas of product-depth at most 2 [41, 30, 36],
but this falls short of proving anything for general formulas as Raz’s ‘homogenization’ result
does not preserve the product-depth of the formula (in fact, known results for homogeneous
formulas stop yielding lower bounds exactly in the regime where they would yield implications
for general circuits). In the set-multilinear, and more generally multilinear case, we do have
lower bounds against formulas of large depth [41, 44, 63], but all such lower bounds are of the
form fpdq ¨ polypNq where fpdq is a superpolynomial (and subexponential) function of d (see
Appendix A). With analogy to Parameterized Complexity Theory [12], we call such bounds
FPT bounds. Our motivating question is if we can prove strong non-FPT lower bounds against
restricted types of circuits or formulas in a setting where we can use them for lower bounds for
general algebraic circuits or formulas. We show that this is indeed possible.

Our results. Our main lower bound result is a strong non-FPT lower bound against small-
depth set-multilinear circuits, considerably strengthening known results in this direction.

We prove our lower bounds for the IMMn,d polynomial on N “ dn2 variables as defined
above. This polynomial has a simple divide-and-conquer-based set-multilinear formula of size
nOplog dq, and more generally for every ∆ ď log d, a set-multilinear formula of product-depth ∆
and size nOp∆d

1{∆q. Even relaxing the set-multilinearity constraint, no considerably better upper
bound is known. This is despite much work on this problem and close connections to important
algorithmic problems such as Graph Reachability [62, 49]. It is reasonable to conjecture that
this simple upper bound is tight up to the constant in the exponent.

This was proved for homogeneous ΣΠΣ circuits by Nisan and Wigderson [41]. For product-
depth ∆ ą 1, they proved an FPT lower bound of exppΩpd1{∆qq ¨ polypnq in the set-multilinear
case. More recently, building on work of Kayal [28] and Gupta, Kamath, Kayal and Sapthar-
ishi [17], Fournier, Limaye, Malod and Srinivasan [15] showed that any set-multilinear ΣΠΣΠ

circuit for IMMn,d must have size nΩp
?
dq, again showing the tightness of the naive upper bound.

This was extended to homogeneous ΣΠΣΠ circuits by Kayal, Limaye, Saha and Srinivasan [29]
and Kumar and Saraf [36]. Kayal, Nair and Saha [31] extended the ΣΠΣ lower bound of [41]
to the more general multilinear setting, while Kayal, Saha and Tavenas [33] strengthened the
result of [15] to the multilinear setting. Note that all these results show non-FPT lower bounds
against special cases of product-depth 2 circuits.

However, as far as we know, no superpolynomial non-FPT lower bounds are known for any
product-depths greater than 2 (or even for general product-depth 2, which is ΣΠΣΠΣ), even
under the set-multilinearity restriction. We show such lower bounds for all constant product-
depths, and in fact, product-depths that are asymptotically smaller than log log d.

Theorem 2 (Lower bound for set-multilinear circuits). Assume d ď plog nq{100. For any
product-depth ∆ ě 1, any set-multilinear circuit C computing IMMn,d of product-depth at most

∆ must have size at least nd
expp´Op∆qq

. In the particular case that ∆ “ 2, the size of C must be
at least nΩp

?
dq.

Note that in the case of ∆ “ 2, our bounds match the best-known (divide-and-conquer)
upper bound for computing IMMn,d.

With these stronger non-FPT lower bounds for set-multilinear circuits in place, we are
able to derive lower bounds for stronger families of algebraic circuits via hardness escalation
arguments.

Firstly, we show (Lemma 12) that any homogeneous circuit of product-depth ∆ and size
s computing a set-multilinear polynomial P of degree d can be converted to a set-multilinear
circuit with the same product-depth for P of size s ¨dOpdq. Putting this together with Theorem 2,

3



we get the first superpolynomial lower bounds (FPT or non-FPT) for homogeneous circuits of
product-depth greater than 2 (and even ΣΠΣΠΣ homogeneous circuits over large fields).

Corollary 3 (Lower bound for homogeneous circuits). Assume d ď plog nq{100. For any
product-depth ∆ ě 1, any homogeneous circuit C computing IMMn,d of product-depth at most

∆ must have size at least nd
expp´Op∆qq

. In the particular case that ∆ “ 2, the size of C must be
at least nΩp

?
dq.

Both Theorem 2 and Corollary 3 hold over any field F. Note that our improved non-FPT
bounds are crucial for deriving the above result from Theorem 2. The previous best lower bound
of exppΩp

?
dqq due to Nisan and Wigderson [41] does not suffice for this.

Next, we show (Lemma 11) that any (possibly non-homogeneous) algebraic circuit of product-
depth ∆ and size s computing a homogeneous polynomial P of degree d can be converted to a
homogeneous circuit for P of product-depth 2∆ and size polypsq¨dOpdq. This conversion assumes
that the underlying field has characteristic 0 or greater than d. This implies the main theorem
Theorem 1. More precisely, we get the following.

Corollary 4 (Lower bound for constant-depth circuits). Assume d ď plog nq{100 and charpFq “
0 or greater than d. For any product-depth ∆ ě 1, any algebraic circuit C computing IMMn,d of

product-depth at most ∆ must have size at least nd
expp´Op∆qq

. In the particular case that ∆ “ 1,
the size of C must be at least nΩp

?
dq.

In the case ∆ “ 1, our bound is actually tight, by a beautiful upper bound due to Gupta,
Kamath, Kayal and Saptharishi [18].

Note that the constraint on d can be greatly relaxed if we only want a superpolynomial
lower bound. Indeed, if d1 ď d2 then the polynomial IMMn,d1 can be easily computed from
a circuit for IMMn,d2 (just instanciate some variables to 0 or 1). Consequently, Corollary 4
implies superpolynomial lower bounds against contant-depth circuits for IMMn,d as soon as
ωp1q ď d ď polypnq.

In comparison, in the particular case of depth-3 circuits, the best lower bound known for an
explicit polynomial was a quadratic lower bound by Shpilka and Wigderson [57] which was then
improved to an almost cubic lower bound in [32]. In the case of depth-4 circuits, Gupta Saha
and Thankey [19] recently got a Ω̃pN2.5q lower bound improving the previous bound from [55].
To our knowledge, for depth ∆ “ 5 or larger, the best lower bound known is Ωp∆N1`1{∆q which
has been found by Shoup and Smolensky [56] and Raz [45].

Theorem 2 also allows us to prove a Depth Hierarchy theorem for constant-depth Algebraic
circuits. Informally, we show that for any constant Γ, circuits of depth Γ are superpolynomially
more powerful than circuits of depth Γ ´ 1. This parallels a similar body of work in Boolean
circuit complexity [22, 23] and also in the setting of multilinear circuits [63, 9].

Specifically, we prove the following result.

Theorem 5. Assume that the underlying field F has characteristic 0. For any constant Γ ě 2
and s a growing parameter, there exists a set-multilinear polynomial QΓ of depth6 Γ and size s
such that any depth pΓ´ 1q circuit computing QΓ must have size sωp1q.

The main idea behind proving such a result is to design an explicit set-multilinear polynomial
for which the lower bound implied by the techniques of Theorem 2 is tight. We present such a
polynomial in Section 9.

6Here, we use depth instead of product-depth to get a finer dichotomy. Our techniques also imply a similar
result for product-depth.
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Finally, we note that our superpolynomial lower bound (Theorem 1) implies a determin-
istic sub-exponential time algorithm for Polynomial Identity Testing (PIT) of constant-depth
circuits.

Kabanets and Impagliazzo [26] established a formal connection between the two most impor-
tant problems in algebraic complexity theory, namely, the problem of proving superpolynomial
lower bounds for algebraic circuits and that of designing efficient deterministic PIT algorithms.
Specifically, using the Hardness versus Randomness framework of Nisan and Wigderson [40]
they showed that superpolynomial lower bounds for general algebraic circuits imply determin-
istic sub-exponential time algorithms for general PIT.

Recent results have tried to extend this algebraic hardness vs. randomness framework in
several different ways [14, 11, 35]. Specifically, Dvir, Shpilka, and Yehudayoff [14] proved that
the hardness of constant-depth circuits implies deterministic PIT for constant depth circuits.
In a recent follow up paper, Chou, Kumar and Solomon [11] refined this result and improved
the dependence on the degree of the polynomial.

We observe that this result from [11] combined with our lower bound from Theorem 1 gives
the first sub-exponential time deterministic PIT for constant-depth circuits. Specifically, we get
the following.

Corollary 6. Let µ ą 0 be a real number and F a field of characteristic 0. Let C be an algebraic
circuit of size s ď polypnq, depth ∆ “ oplog log log nq computing a polynomial on n variables,
then there is a deterministic algorithm that can check whether the polynomial computed by C is
identically zero or not in time ps∆`1 ¨ nqOpn

µq.

As the general PIT problem is a well-known hard problem, several special cases of the
problem have been considered. More specifically, constant-depth circuits have gained a lot of
attention in the literature. See for instance [27, 51, 3, 42, 43] and references therein.

In spite of years of efforts, the problem continues to be notoriously open. Even today, no
polynomial time deterministic algorithm is known for even product-depth 1 circuits. For ΣΠΣ
circuits, the best known upper bound is due to Seshadri and Saxena [52] which gives a nOpkq time
deterministic algorithm, where k is the fan-in of the top Σ gate. This result gives polynomial
upper bound for bounded top fan-in, but for the general case of unbounded top fan-in, this
does not do better than a brute-force algorithm. Here, we obtain the first sub-exponential time
deterministic algorithm for general ΣΠΣ circuits, and more generally for circuits of any constant
depth.

Our Techniques. Our lower bound techniques are simple adaptations of the Partial Deriva-
tive method from the paper of Nisan and Wigderson [41]. In particular, we show that this
method, when applied to set-multilinear polynomials in the setting where the variables are par-
titioned into sets of various sizes, can prove considerably stronger lower bounds than previously
known.

Interestingly, we do not use the Shifted Partial Derivative method that has proven useful in
proving many previous lower bounds for circuits of product-depth greater than 1 [28, 17, 15, 29,
30, 36, 33, 32]. We leave as open the question of whether augmenting our methods with ‘shifts’
can prove stronger lower bounds.

Our ‘set-multilinearization’ argument is elementary, but does not seem to appear anywhere
in the literature (however, see [10, Theorem 5.10] for a special case of this argument for ΣΠΣΠ
circuits). Our ‘homogenization’ argument uses a generalization of classical Newton Identities to
derive homogeneous ΣΠΣΠ formulas for certain interesting ‘weighted’ symmetric polynomials.
In the case of ΣΠΣ circuits, it follows from the work of Shpilka and Wigderson [57], as observed
in [18, Section 5.2 of the journal version] and in Saptharishi’s survey [50, Lemma 23.6].
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Other non-FPT bounds. Apart from the above-mentioned work, non-FPT lower bounds
have also been proved in some other models of algebraic computation.

A setting where many strong lower bounds are known for algebraic problems is that of Mono-
tone circuits. Here, the underlying field is the reals and the given polynomial P P Rrx1, . . . , xN s
has non-negative coefficients. A monotone circuit for P is an algebraic circuit that does not use
any negative field constants. Exponential lower bounds against monotone circuits have been
known since the work of Jerrum and Snir [25]. It is also known by work of Shamir and Snir [54]
that any monotone algebraic formula for IMMn,d must have size nΩplog dq. A similar lower bound
for an even simpler polynomial was proved by Hrubeš and Yehudayoff [24]. Unfortunately, these
results do not seem to imply general formula or circuit lower bounds, as it is not clear how to
efficiently convert a general algebraic circuit or formula to a monotone one: in fact, there is
strong indication that this might be impossible [61, 8, 7].

Another setting where non-FPT lower bounds are known is in that of Non-commutative
computation. Here, we assume that the underlying variables x1, . . . , xN do not commute. This
implies that upper bounds get harder, and lower bounds easier. Nisan [39] showed exponential
lower bounds for algebraic formulas and more generally Algebraic Branching Programs and his
results imply, in particular, non-FPT lower bounds for these models.

Organization. We start with some preliminaries and then present a special case of our ar-
gument in Section 4, which already implies explicit lower bounds for homogeneous ΣΠΣΠΣ
circuits and general ΣΠΣ circuits, both of which are well-known open questions in their own
right [41, 57, 32, 4, 34]. We then present the proof of Theorem 2 and the ensuing corollaries.
The Depth hierarchy theorem is proved in Section 9.

2 Preliminaries

We will consider the set of words on an alphabet A Ď Zzt0u. Let w “ pw1, . . . , wdq P A
d. For

a subset S Ď rds, let wS denote
ř

iPS wi. We define Pw “ ti | wi ě 0u and Nw “ ti | wi ă 0u,
i.e., the positive and negative indices of w respectively.

We say w P Ad is b-unbiased if |wrts| ď b for every t ď d.

Given w, we denote by Xpwq a tuple of d sets of variables pXpw1q, . . . , Xpwdqq where
|Xpwiq| “ 2|wi|. We denote by FsmrT s the set of set-multilinear polynomials over the tuple
of sets of variables T .

2.1 The complexity measure

Let MPw and MNw denote the sets of the set-multilinear monomials over only the positive and
only the negative variable sets. Let f P FsmrXpwqs, we define Mwpfq as the matrix of size
|MPw | ˆ |MNw |, where the rows are indexed by MPw and the columns by MNw and where the
coefficient at the entry pm1,m2q is the coefficient of the monomial m1m2 in f .

We associate with the space FsmrXpwqs the standard rank-based complexity measure relrkw
(short for “relative rank”) defined as follows. Let f P FsmrXpwqs and define

relrkwpfq “
rankpMwpfqq
a

|MPw | ¨ |MNw |
“

rankpMwpfqq

2
1
2

ř

iPrds |wi|
ď 1.

We use the following properties of relrkw.

Claim 7. 1. (Imbalance) Say f P FsmrXpwqs. Then, relrkwpfq ď 2´|wrds|{2.
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2. (Sub-additivity) Say f, g P FsmrXpwqs. Then relrkwpf ` gq ď relrkwpfq ` relrkwpgq.

3. (Multiplicativity) Say f “ f1 ¨f2 ¨. . .¨ft and assume that for each i P rts, fi P FsmrXpw|Siqs,
where pS1, . . . , Stq is a partition of rds and for each i P rts, w|Si stands for the sub-word
of w indexed by Si. Then

relrkwpfq “ relrkwpf1 ¨ f2 ¨ . . . ¨ ftq “
ź

iPrts

relrkw|Si pfiq.

Proof. We have |MPw | “ 2
ř

iPPw wi and |MNw | “ 2´
ř

iPNw wi . So 2|wrds| is just the ratio of the
larger dimension of Mwpfq by the smaller one. As the rank of a matrix is bounded by the
minimum between its number of rows and its number of columns, it implies the first inequality
of the claim.

The subadditivity property directly follows from the facts that Mwpf`gq “Mwpfq`Mwpgq
and that the rank of a matrix is subadditive.

The multiplicative argument is standard too. As the product is set-multilinear, it implies
that the matrix Mwpf1 ¨ . . . ¨ftq is the matrix Mwpf1qb . . .bMwpftq where the symbol b stands
for the Kronecker product. Finally the rank is known to be multiplicative with respect to the
Kronecker product. So,

relrkwpf1 ¨ f2 ¨ . . . ¨ ftq “
rankpMwpf1 ¨ . . . ¨ ftqq

2
1
2

ř

jPrds|wj |
“

ź

iPrts

rankpMwpfiqq

2
1
2

ř

jPSi
|wj |

“
ź

iPrts

relrkw|Si pfiq.

2.2 Word Polynomials and Iterated Matrix Multiplication polynomial

Let w P Ad be any word. For any such word, we define a polynomial Pw. Say Xpwq “
pX1, . . . , Xdq and since each Xi has size 2|wi|, we assume that the variables of Xi are labelled
by strings in t0, 1u|wi|.

Given any monomial m P FsmrXpwqs, let m` denote the corresponding “positive” monomial
fromMPw and m´ the corresponding “negative” monomial fromMNw . As each variable of Xpwq
is labelled by a Boolean string and each set-multilinear monomial over any subset of Xpwq is
associated with a string of variables, we can associate any such monomial m1 with a Boolean

string σpm1q. More precisely, if j1 ă ¨ ¨ ¨ ă jt and m1 “ x
pj1q
σ1 x

pj2q
σ2 ¨ ¨ ¨x

pjtq
σt with x

pjiq
σi P Xji

and σi P t0, 1u
|wji | for each i P rts, then σpm1q is defined to be σ1 ¨ ¨ ¨σt. If w is b-unbiased, the

difference of length of the strings σpm`q and σpm´q is at most b. We will write σpm`q „ σpm´q
when the shorter one is a prefix of the other one.

The polynomial Pw is defined as follows

Pw “
ÿ

mPFrXpwqs, σpm`q„σpm´q

m.

Clearly, the matrices MwpPwq are full-rank (i.e. have rank equal to either the number of rows
or the number of columns, whichever is smaller). So, relrkwpPwq “ 2´|wrds|{2 ě 2´b{2.

We observe that Pw can be obtained as a set-multilinear restriction of IMMn,d for an ap-
propriate choice of n. Formally, we show the following.

Lemma 8. Let w P Ad be any word which is b-unbiased. If there is a set-multilinear circuit
computing IMM2b,d of size s and product-depth ∆, then there is also a set-multilinear circuit

of size s and product-depth ∆ computing a polynomial Pw P FsmrXpwqs such that relrkwpPwq ě
2´b{2.

The proof of the lemma is presented in Section 8.
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3 Set-multilinearization of small depth circuits

In the next sections we will show superpolynomial lower bounds for small-degree polynomials
against set-multilinear formulas of various product-depths. We want to extend these lower
bounds to the general setting (i.e., without the set-multilinearity constraint).

In [46], Raz showed that if there is a fanin-2 formula of size s and product-depth ∆ that
computes a set-multilinear polynomial over the disjoint sets pX1, . . . , Xdq, then there exists also
a fanin-2 set-multilinear formula of size Opp∆` 2qdsq and product-depth ∆ that computes the
same polynomial. However the fanin-2 constraint is an issue when we want to deal with constant
depth circuits.

We show here that we can get a similar result for circuits with arbitrary fanins at the cost
of a size blow-up of dOpdq polypsq and an increase of the depth by a factor of at most 2.

Proposition 9. Let s,N, d,∆ be growing parameters with s ě Nd. Assume that charpFq “ 0
or charpFq ą d. If C is a circuit of size at most s and product-depth at most ∆ computing a
set-multilinear polynomial P over the sets of variables pX1, . . . , Xdq (with |Xi| ď N), then there
is a set-multilinear circuit C̃ of size dOpdq polypsq and product-depth at most 2∆ computing P .

Moreover, if C has product-gates at its bottom layer, then the product-depth of C̃ is at most
2∆´ 1.

Similar to Raz’s approach, we start by homogenizing the circuit and then we set-multilinearize
it. In particular the previous proposition is just the composition of Lemmas 11 and 12.

Non-homogeneous to homogeneous circuits. In this section, we state lemmas that con-
vert non-homogeneous formulas of small product-depth ∆ to homogeneous formulas of product-
depth 2∆ with a relatively small size blow-up.

Let us begin by recalling how to do it in the case of product-depth 1. A general ΣΠΣ circuit
of size s yields a formula of the following kind

F “
s
ÿ

i“1

s
ź

j“1

`i,j

where each `i,j is an affine linear polynomial in the underlying variables. Note that the individual
summands of the expression may compute polynomials of degree s, which is possibly much larger
than d. The main observation is that, assuming that the underlying field F has characteristic
0 (or large enough), the homogeneous degree-d part of each summand can be computed by a
homogeneous ΣΠΣΠΣ formula of size polypsq ¨ exppOp

?
dqq. Replacing each of these terms with

such a formula, we see then that the same polynomial can also be computed by a homogeneous
ΣΠΣΠΣ formula of size polypsq ¨ exppOp

?
dqq.

The main observation is also easy to prove. Consider any summand Ti “ `i,1 ¨ ¨ ¨ `i,s. It
suffices to prove the observation in the case that each `i,j has a non-zero constant term cj (it is
easy to reduce to this case). In this case, we can write

Ti “

˜

s
ź

j“1

ci

¸

¨

s
ź

j“1

p1` `1i,jq

where each `1i,j is a homogeneous linear polynomial. It then follows that the degree-d homoge-
neous part Ti,d of Ti can be written as a linear projection applied to the Elementary Symmetric
Polynomial Eds of degree d in s variables. More precisely, we have

Ti,d “

˜

s
ź

i“1

ci

¸

¨ Eds p`
1
i,1, . . . , `

1
i,sq.
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Shpilka and Wigderson [57, Theorem 5.3] proved that, over fields of characteristic 0 the poly-
nomial Eds has a homogeneous7 ΣΠΣΠ circuit of size polypsq ¨ exppOp

?
dqq. Using this with the

above expression, we get the following result.

Lemma 10 ([18] Lemma 5.6 in the journal version). Let s,N be growing parameters. Assume
that charpFq “ 0 or charpFq ą d. Fix any ΣΠΣ circuit F of size at most s computing a homoge-
neous polynomial P px1, . . . , xN q of degree d. Then, P can also be computed by a homogeneous
ΣΠΣΠΣ circuit F 1 of size at most polypsq ¨ exppOp

?
dqq.

We show a generalization of the above lemma for larger depths.

Lemma 11. Let s,N, d,∆ be growing parameters with s ě N . Assume that charpFq “ 0 or
charpFq ą d. If C is a circuit of size at most s and product-depth at most ∆ computing a homo-
geneous polynomial P px1, . . . , xN q of degree d, then, P can also be computed by a homogeneous

circuit C̃ of size at most polypsq2Op
?
dq and product-depth at most 2∆.

Moreover, if C has product-gates at its bottom layer, then the product-depth of C̃ is at most
2∆´ 1.

We will prove Lemma 11 in Section 7.

Homogeneous to set-multilinear circuits We also want to convert homogeneous circuits
into set-multilinear ones without increasing the product-depth and with a relatively small size
blow-up.

Lemma 12. Let s,N, d,∆ be growing parameters with s ě Nd. If C is a homogeneous circuit
of size at most s and product-depth at most ∆ computing a set-multilinear polynomial P over
the sets of variables pX1, . . . , Xdq (with |Xi| ď N), then there is a set-multilinear circuit C̃ of
size at most pd!qs and product-depth at most ∆ computing P .

Proof. Let us describe our new circuit C̃. For any gate α of degree dα from C, we create
`

d
dα

˘

gates αS in C̃ (we index these gates by the subsets S Ď rds such that |S| “ dα). Now we
want to link these gates such that for every gate α in C and any S Ď rds with |S| “ dα, the
product-depth of αS is the same than the one of α and the polynomial computed by αS is the
projection of the polynomial computed by α to the set-multilinear part associated to S:

αS “
ÿ

m set-multilinear over pXiqiPS

prmsαq m

where prmsαq is the coefficient of the monomial m in α.
Let us do it by induction on the structure of the graph.
If α is a leaf, it is labelled either by a constant or by a variable. When dα “ 0, there is

nothing to change. Otherwise dα “ 1. In C the leaf α is labelled by a variable x which belongs
to an Xi. We just need to label the gates by αtiu “ x and αtju “ 0 for j ‰ i.

If α “ c1α1 ` . . . ` cpαp is a sum gate (where the ci are constants in F), we just need to
compute the linear combination part by part. For any S Ď rds with |S| “ dα:

αS “ c1α1
S ` . . .` c

pαpS .

7In fact they claim the result for general depth-4 circuits, but it was already noticed in [18] that the formula
they get with this approach is homogeneous. In fact in [18], they also show that the product gates can be replaced
by exponentiation gates, but we do not need it here.
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Finally if α “ α1 ¨ . . . ¨ αp is a product gate, we need to extract all the decompositions. Let
S Ď rds with |S| “ dα:

αS “
ÿ

pS1,...,Spq partition of S
with @i,|Si|“dαi

α1
S1
¨ . . . ¨ αpSp .

The size of the sum is
`

dα
dα1 ,...,dαp

˘

.

Hence each leaf and sum gate α in C creates
`

d
dα

˘

ď d! new gates in C̃. Each multiplication

gate α in C creates
`

d
dα

˘

ď d! sum gates and
`

d
dα

˘`

dα
dα1 ,...,dαp

˘

ď d! new product gates. So the

number of gates of C̃ is bounded by 2d! times the number of gates of C. Notice that we can
avoid the factor 2 since we do not need to keep the sum gates which come from a product gate,
we can inject them into the sum gates of the next layer of the circuit. Furthermore, the product
depth of the gate αS in C̃ is the same than the one of the gate α in C.

4 Lower bounds for depth-three circuits

We prove in this section the case ∆ “ 2 of Theorem 2 and Corollary 3 and the case ∆ “ 1 of
Corollary 4. By Proposition 9 and Lemma 12, it is sufficient to get a sufficiently large lower
bound for set-multilinear depth-5 circuits.

Lemma 13. Let n, d P Nzt0u with n ě 4
?
d`1. Any set-multilinear circuit C of product-depth 2

computing IMMn,d has size at least nΩp
?
dq.

Proof of the case ∆ “ 2 of Theorem 2 and Corollary 3 and ∆ “ 1 of Corollary 4. For Theorem 2,
the result directly follows Lemma 13. In the case of Corollary 4 (resp. Corollary 3) using Propo-
sition 9 (resp. Lemma 12), we can transform the circuit C into a depth-5 set-multilinear one

of size at most dOpdqpolypsq. By Lemma 13, it implies that dOpdqpolypsq ě nΩp
?
dq. By the

assumption d ď plog nq{100, we get the desired lower bound for s.

Proof of Lemma 13. Recall that any circuit of constant depth can be converted to a formula
with only polynomial blow-up. Let us see that it suffices to show the following.

Claim 14. Let d ě 16 and k ą 2
?
d be an integer. Let w be any word of length d on the

alphabet t´k, tk ´ k{
?
duu. Then any set-multilinear formula C of product depth 2 and of size

s satisfies

relrkwpCq ď s ¨ 2´
k
?
d

8 .

Indeed, by fixing k “ tlog2 nu, we have k ą 2
?
d. We can construct by induction a word

w on the alphabet t´k, tk ´ k{
?
duu which is k-unbiased. Indeed, if |wris| ď 0, we choose

wi`1 “ tk ´ k{
?
du, otherwise we set wi`1 “ ´k. By Lemma 8 and Claim 14, we get the lower

bound:
s ě 2

k
?
d

8 2´k ě 2plog2 n´1q
?
d

8
´log2 n ě n

?
d

8 2´
log2 n

16
´log2 n ě n

?
d

8
´ 17

16 .

for the polynomial IMM2k,d against set-multilinear circuits of product-depth 2.

Proof of Claim 14. We know C is a product-depth 2 formula, so we can define C “ C1` . . .`Ct
where each Ci is of the form

śřśř

and has size si. We say that Ci is of type 1 if some
factor of Ci has degree ě

?
d{2, otherwise it is of type 2.
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• If Ci is of type 1, then Ci “ Ci,1 ¨ . . . ¨Ci,ti . Upto reordering, we can assume that Ci,1 is a
sum of products of linear forms of degree at least

?
d{2. Notice that if L is a linear form

on variables Xpwiq, we have relrkpLq ď 2´|wi|{2 ď 2´pk´k{
?
d´1q{2. In particular, by the

multiplicativity and sub-additivity of relrkw (Claim 7),

relrkwpCiq ď relrkwpCi,1q ď si2
´ k

?
d´k´

?
d

2
?
d

degpCi,1q
ď si2

´ k
?
d´k´

?
d

4 ď si2
´ k

?
d

8 .

• If Ci is of type 2, then Ci “ Ci,1 ¨ . . . ¨Ci,ti where each factor Cij has degree ă
?
d{2. Each

Cij is a set-multilinear formula over a subset pXpwpq : p P Sjq for some Sj Ď rds, where
S1, . . . , Sti partition rds. Let wi1, . . . , witi be the corresponding decomposition of w. That
is, wij “ w|Sj . Recall that for a word wij we defined in the preliminaries wijSj as the sum
of its entries.

Let j P rtis. Let aij be the number of positive indices in wij . If 2aij ď degpCi,jq, then

wijSj ď
degpCi,jq

2
ˆ p´kq `

degpCi,jq

2
ˆ pk ´

k
?
d
q “ ´

k

2
?
d

degpCi,jq.

Otherwise, we have∣∣∣wijSj ∣∣∣ “
∣∣∣∣aij Zk ´ k

?
d

^

´ pdegpCi,jq ´ aijqk

∣∣∣∣
“

∣∣∣∣aijk ´ aij R k
?
d

V

´ degpCi,jqk ` aijk

∣∣∣∣
ą

ˆ

2aij ´ degpCi,jq ´
aij
?
d

˙

k ´ aij

ą
k

2
´
k

4
“
k

2
¨

1

2
as 2aij ´ degpCi,jq ě 1 and aij ă

?
d{2

ą
k degpCi,jq

2
?
d

as degpCi,jq ă
?
d{2.

So in both cases,
∣∣∣wijSj ∣∣∣ ě k degpCi,jq

2
?
d

.

In particular,

relrkwpCiq ď
ti
ź

j“1

2
´ 1

2
|wijSj | ď 2

´ 1
2

ř k degpCi,jq

2
?
d “ 2

´ kd

4
?
d ď si2

´ k
?
d

8 .

The result of the claim directly follows from the subadditivity of the measure.

5 Lower bounds for small-depth circuits

We prove in this section the general case of Theorem 2 and Corollaries 3 and 4. By Proposition 9,
it is sufficient to get a sufficiently large lower bound for set-multilinear circuits of small depth.

Lemma 15. Let n, d,∆ P Nzt0u with n ě 210d`1. Any set-multilinear circuit C of product-depth
∆ computing IMMn,d has size at least

n
Ω

ˆ

d1{p2
∆´1q

∆

˙

.
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Proof of Theorem 2, Corollary 3 and Corollary 4. By Proposition 9 or Lemma 12, we can trans-
form the circuit C into a depth-∆̃ set-multilinear one of size at most dOpdqpolypsq. More-
over the product-depth is unaffected, ∆̃ “ ∆ during this transformation in the case of The-
orem 2 and Corollary 3 and it is multiplied by 2: ∆̃ “ 2∆ in the case of Corollary 4.

By Lemma 15, it implies that dOpdqpolypsq ě n
Ω

ˆ

d1{p2∆̃´1q{∆̃

˙

. If ∆̃ ě 1
2 log2 log2 d, then

nd
expp´Opdqq

“ np1{ log dqΩp1q ă n and so the results are trivial. Otherwise, d1{p2∆̃´1q ą log d,

and by the assumption d ď plog nq{100, we get that nd
2´∆̃

{∆̃ ě n2
?

log d{ log log d ě dωpdq. It
implies the desired lower bound for s.

Proof of Lemma 15. Let us assume first the following claim:

Claim 16. Let k ě 10d. Let w be any word of length d such the entries of w are tαku and ´k
where α “ 1{

?
2. Then for any ∆ ě 1, any set-multilinear formula C of product depth ∆ of

size at most s satisfies

relrkwpCq ď s ¨ 2´
kd1{p2

∆´1q

20 .

By fixing k “ tlog2 nu, we have k ě 10d. As in the proof of Lemma 13, we can fix a word w of
length d over the alphabet ttαku,´ku such that w is k-unbiased. By Lemma 8, relrkwpPwq ě 2´k

for suitable set-multilinear polynomial Pw of degree d which is a set-multilinear projection of
IMM2k,d. If C is a set-multilinear circuit of size s and product-depth ∆ computing IMMn,d,

then by expanding it, we can transform it to a set-multilinear formula of size at most s2∆ for
the same polynomial. By Lemma 8 and Claim 16, we get the lower bound

s2∆ ě 2´k2
kd1{p2

∆´1q

20 ě

´n

2

¯
d1{p2

∆´1q

20
{n.

Proof of Claim 16. We do the proof by induction on ∆.
If ∆ “ 1, then C “ C1 ` . . .` Ct where each Ci is a product of linear forms. So for all i,

relrkwpCiq “
d
ź

j“1

2´
1
2
|wj | ď 2´

kd
4 .

By subadditivity of relrkw,

relrkwpCq ď s2´
kd
4 ď s2´

kd
20 .

Assume the claim is proved for all formulas of product-depth ď ∆. Let C be a formula of
product-depth p∆` 1q.

Let C “ C1 ` . . . ` Ct. Each Ci of size si is said to be of type 1 if one of its factors has
degree at least T∆ “ dp2

∆´1q{p2∆`1´1q, otherwise it is of type 2.

• If Ci is of type 1, then Ci “ Ci,1 ¨ . . . ¨Ci,ti . Upto reordering, we can assume that Ci,1 is a
product-depth-∆ formula of degree at least T∆. Assume it is of size si,1. By induction,

relrkwpCiq ď relrkwpCi,1q ď si,12´
kT

1{p2∆´1q
∆

20 ď si2
´ kd1{p2

∆`1´1q

20 .

• If Ci is of type 2, then Ci “ Ci,1 ¨ . . . ¨ Ci,ti where each factor Cij has degree ă T∆. In
particular ti ą

d
T∆

. As the circuit is set-multilinear, pS1, . . . , Stiq form a partition of S
where each Ci,j is set-multilinear with respect to pXlqlPSj and Ci is set-multilinear with
respect to pXlqlPS . Let wi1, . . . , witi be the corresponding decomposition.
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Let j P rtis. Let aij be the number of positive indices in wij . We have∣∣∣wijSj ∣∣∣ “ |aijtαku´ pdegpCi,jq ´ aijqk|

ě |aijαk ´ pdegpCi,jq ´ aijqk|´ |aijαk ´ aijtαku|
ě |aijα´ pdegpCi,jq ´ aijq| k ´ aij

We use here a result on diophantine approximation.

Claim 17. Let a, b P Z. Then

|aα´ b| ě 1

4|aα|` 2
.

Proof. If |b| ě |aα|` 1, then the result is immediate. Otherwise, we can notice that

|aα´ b| ¨ |aα` b| “
∣∣∣∣a2

2
´ b2

∣∣∣∣ ě 1

2
.

And so,

|aα´ b| ě 1

2|aα|` 2|b|
ě

1

4|aα|` 2
.

Now we can come back to the bound on |wijSj |:∣∣∣wijSj ∣∣∣ ě k

4aijα` 2
´ aij ě

k

5T∆
´ T∆ ě

k

10T∆
.

The last inequality follows from the fact that k ě 10d ě 10T 2
∆. So,

relrkwpCiq “
ti
ź

j“1

relrkwij pCi,jq ď
ti
ź

j“1

2
´ 1

2
|wijSj | ď 2

´
kti

20T∆ ď 2
´ kd

20T2
∆ ď 2´

kd1{p2
∆`1´1q

20 .

The final result directly follows from the subadditivity of the mesure.

6 PIT for small-depth circuits

In this section we consider the Polynomial Identity Testing (PIT) question for small-depth
circuits. We observe that the PIT for small-depth circuits can be solved in deterministic sub-
exponential time. We derive this as a corollary of our lower bound from Section 5 and the
following result of Chou, Kumar and Solomon [11].

Lemma 18 ([11] Theorem 2.3). Assume that F has characteristic 0. Let Λ ě 6 be an integer
and ε ą 0 be a real number and let M,m be any integer parameters such that m “ M ε. Let f
be an explicit8 multilinear polynomial on m variables of degree d “ Oplog2m{ log2 logmq, which
cannot be computed by circuits of depth9 Λ and size polypmq. Then, there is a deterministic
algorithm, which given as circuit C of size s ď polypMq, depth Λ ´ 5, and degree D on M
variables, runs in time ps ¨ M ¨ DqOpm

2q and determines if the polynomial computed by C is
identically zero or not.

8Here, explicit means that the polynomial can be evaluated at a given point in polynomial time.
9Here the parameter depth refers to the exact depth of the circuit and not the product-depth. I.e. if the

circuit has product depth ∆ then it has depth Λ “ 2∆` 1.
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From the above statement along with Corollary 4, Corollary 6 easily follows:

Proof of Corollary 6. Let ε “ µ{2. Let us define m “ nε. We would like to apply Lemma 18
with f “ IMMν,δ where δ “ logm

log logm and ν “
a

m
δ . In particular, IMMν,δ ism-variate. Moreover,

as log ν
100 ě ωpδq, and as

δexpp´Op∆qq ě 2
log δ

plog logmqop1q ě ωp1q,

Corollary 4 implies that IMMν,δ does not have circuits of depth ∆`5 and size νOp1q ě mOp1q. So

Lemma 18 directly implies a deterministic PIT algorithm with running time psndqOpn
2εq against

algebraic circuits of size s, depth ∆, degree d, and with n variables.
As a circuit of depth ∆ and size s computes a polynomial of degree at most s∆, the claimed

upper bound on the running time follows.

7 Proof of the homogenization transformation

We give below a stronger statement of Lemma 11 that is more amenable to induction.

Lemma 19. Let s,N, d,∆ be growing parameters with s ě N . Assume that charpFq “ 0 or
charpFq ą d. Fix any circuit C of size at most s and product-depth at most ∆. Assume C
has m output gates which compute polynomials P1, . . . , Pm. There is a homogeneous circuit C̃

with m ¨ pd` 1q output gates that compute polynomials P
piq
j (j P rms, i P t0, . . . , duq where P

piq
j

denotes the degree-i homogeneous component of Pj. Further, the size of C̃ is at most s22Op
?
dq

and its product-depth is at most 2∆.
Moreover, if C has product-gates at its bottom layer, then C̃ has product-depth at most

2∆´ 1.

The proof of Lemma 10 (case ∆ “ 1) is based on the construction of a homogeneous ΣΠΣΠ
formula for the Elementary Symmetric Polynomial of degree d. This construction, due to
Shpilka and Wigderson [57], depends on the classical Newton identities (also called Newton-
Girard identities) relating different families of symmetric polynomials with each other. The
lemma above is proved by using a generalization of these identities.

To state Lemma 20, we will need the notion of the weighted degree of a polynomial. Assume
that we are working over Frx1, . . . , xN s and we have a ‘weight function’ ϕ : tx1, . . . , xNu Ñ rds
which assigns to each variable xi an integer weight in rds. The weighted degree of a monomial
śN
i“1 x

ei
i w.r.t. ϕ is defined in the natural way to be

řN
i“1 eiϕpxiq. The weighted degree of a

polynomial P , the weighted degree-d part of P , etc. are defined analogously. A formula in the
variables x1, . . . , xN is weighted-degree homogeneous if each node in the formula computes a
homogeneous weighted polynomial (of some degree).

We need the following technical lemma about ‘extracting’ the component of a fixed weighted
degree from a ΠΣ expression.

Lemma 20. Assume that charpFq “ 0 or charpFq ą d. Let s, d be growing parameters. Let
Y “ pyi,jqiPrds,jPrss be a matrix of variables with weight function ϕ : tyi,j | i P rds, j P rssu Ñ
rds, such that ϕpyi,jq “ i for each i, j. Assume T “

śs
j“1pcj ` y1,j ` ¨ ¨ ¨ ` yd,jq. Then, the

homogeneous weighted degree-d part T pdq of the polynomial T can be computed by a weighted-
degree homogeneous ΣΠΣΠ formula of size at most s2Op

?
dq.

We first show how to use the above lemma to prove Lemma 19.
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Proof of Lemma 19. Let c be a constant such that T pdq from Lemma 20 is computed by a
weighted-degree homogeneous depth-4 circuit of size s2c

?
d (in particular d` 1 ď 2c

?
d).

We prove the lemma by induction on ∆. We will aim for a size bound of s2 ¨ 2c
?
d.

The case ∆ “ 0 is trivial as the polynomials P1, . . . , Pm are just affine polynomials.
The case ∆ “ 1 where the bottom gates are product-gates means that P1, . . . , Pm are com-

puted as linear combinations of monomials. In particular each monomial being homogeneous,
by splitting the monomials in fonction of their degree, we directly get a homogeneous circuit C̃
of product-depth 1 and size sd.

Now consider ∆ ą 0. Let C be a circuit of product depth ∆ and size at most s. We first apply
the induction hypothesis to the subcircuit D of C containing all the gates of product-depth at
most ∆´ 1. Let t be the size of D. We consider all the t ď s gates g1, . . . , gt of D to be output
gates. Applying the induction hypothesis to D yields a circuit D̃ of size at most s1 “ t22c

?
d

with t ¨ pd` 1q output gates g̃j,i (j P rts, i P t0, . . . , du) and of product-depth 2∆´ 2 (moreover
if C has product-gates at its bottom layer, then D̃ has product-depth at most 2∆´ 3).

Let the output gates of C be h1, . . . , hm computing polynomials P1, . . . , Pm. Assume that the
subcircuits corresponding to h1, . . . , hr have product-depth ∆ and hr`1, . . . , hm have product-
depth less than ∆. Without loss of generality, we assume hr`1, . . . , hm are g1, . . . , gm´r.

Fix any u P rrs. We have

Pu “
su
ÿ

j“0

αu,j

tu,j
ź

k“1

Pu,j,k (1)

where αu,j P F, su ď s´ t, tu,j ď t and each Pu,j,k is computed by a gate of product-depth less
than ∆ in C.

Note that for any i P rds, the degree-i component P
piq
u equals the degree-i component of

su
ÿ

j“0

αu,j

tu,j
ź

k“1

i
ÿ

`“0

P
p`q
u,j,k

loooooomoooooon

P
pďiq
u,j

. (2)

This is because Pu,j,k and
ři
`“0 P

p`q
u,j,k differ only on components of degree greater than i.

Consider the polynomial P
pďiq
u,j on the right hand side of (2). We note that Lemma 20 can

be used to ‘extract’ the homogeneous degree-i component of P
pďiq
u,j using a homogeneous circuit.

Putting these circuits will yield the desired circuit C̃.

More precisely, fix j P rsus and define the polynomial Tu,i,j “
śtu,j
k“1pck` y

pu,jq
1,k ` ¨ ¨ ¨` y

pu,jq
i,k q

where ck P F is the constant term P
p0q
u,j,k. We define a weight function ϕi,j : ty

pu,jq
`,k | ` P ris, k P

rtu,jsu Ñ ris where each y
pu,jq
`,k has weight `. By Lemma 20, for any i P rds, the weighted degree-i

component of Tu,i,j has a weighted homogeneous ΣΠΣΠ formula F
piq
u,j of size t2c

?
d. Let F

piq
u

denote the formula which computes the linear combination
řsu
j“0 αu,jF

piq
u,j . Let F

p0q
u be a leaf

computing the constant term of Pu.

To construct C̃, we start with the circuit D̃ and add the formulas F
piq
u (u P rrs, i P t0, . . . , du)

with the inputs rewired so that y
pu,jq
`,k is replaced by the gate computing P

p`q
u,j,k in D̃. The output

gates of C̃ are the output gates of these new formulas along with the gates g̃j,i (j P rm´ rs, i P
t0, . . . , du) which compute the homogeneous components of Pr`1, . . . , Pm.

The size of the circuit C̃ can be bounded by

s1 ` pd` 1qps´ tq ` ps´ tqt2c
?
d “ st2c

?
d ` pd` 1qps´ tq ď s22c

?
d.

15



To get C̃, we increase the product-depth of D̃ of at most two. So C̃ has product-depth at most
2∆ and even product-depth at most 2∆´1 in the case where C has product-gates at its bottom
layer.

It remains to prove Lemma 20. Let us start by introducing two families of polynomials. Let
us recall that py`,kq is a family of sd variables which is ϕ-graded by ϕpy`,kq “ `. The first family
is a ‘weighted’ generalization of elementary symmetric polynomials. For 0 ď d

WESymd
s “

ÿ

pα1,...,αsqPr0,dss

s.t.
ř

αi“d

ź

iPrss
s.t. αi‰0

yαi,i.

The size of the formula above is not an FPT bound. The goal of the next paragraphs is to
show that we can compute this polynomial by a depth-4 circuit of size 2Op

?
dqs.

The second family is a ‘weighted’ generalization of power sums. For 0 ă d

WPowd
s “

ÿ

uPrss

ÿ

pβ1,...,βdqPrds
d

s.t.
ř

jβj“d

p´1qd`}β}1cβ

d
ź

j“1

y
βj
j,u

where the cβs are the constants

cβ “

ˆ

}β}1
β1, . . . , βd

˙

`
ÿ

jPrds
s.t. βj‰0

pj ´ 1q

ˆ

}β}1 ´ 1

β1, . . . , βj´1, βj ´ 1, βj`1, . . . , βd

˙

.

The second sum is taken over the partitions of the integer d. In particular it is known [20]

that the number of partitions of d is 2θp
?
dq. Hence WPowd

s is computed by a depth-2 formula

of size 2Op
?
dqs.

We said these families are generalizations of classical polynomials. Indeed, if we instanciate
the variables yj,u with j ě 2 by 0, we fall back on usual elementary symmetric polynomials and
power sums. We can easily check that WESymd

s and WPowd
s are ϕ-homogeneous of degree d.

To simplify the notations let us give a name to the sets of indices and to the monomials
involved in these polynomials. Say As,d “ tα P r0, dss |

ř

αi “ du, Bd “ tβ P rdsd |
ř

jβj “ du,

as,α “
ś

i|αi‰0 yαi,i, and bu,β “
śd
j“1 y

βj
j,u. In particular with these notations, WESymd

s “
ř

αPAs,d as,α and WPowd
s “

ř

uPrss,βPBdp´1qd`}β}1cβbu,β.
Notice that by the definitions,

p´1qd´1WPowd
s ` p´1qd´2WPowd´1

s WESym1
s ` . . .`WPow1

sWESymd´1
s

“

d´1
ÿ

r“0

ÿ

pα,β,uq
PAs,rˆBd´rˆrss

p´1q}β}1`1cβas,αbu,β. (3)

A corollary of Theorem 2.1 in [38] implies that the classical Newton identities still work in
this generalized framework. That is to say that the equation (3) equals d ¨WESymd

s .

Claim 21 (Corollary10 of Theorem 2.1 in [38]). We have

dWESymd
s “ p´1qd´1WPowd

s ` p´1qd´2WPowd´1
s WESym1

s ` . . .`WPow1
sWESymd´1

s .

10Indeed, one can notice that the claim can be got by applying Theorem 2.1 in [38] on the graph formed by
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To make the proof of the homogeneization step self-contained and to avoid the translation
of our objects into the framework of [38], we mimick their proof in our particular case.

Proof. First let us start by seeing where the constants cβ come from. Let us write j1 ă . . . ă jp
(with some p ě 1) be the indices of the support of β (i.e., βj ‰ 0 ðñ Dk, j “ jk). The
constants cβ are in fact exactly the numbers generated by the recurrence

cβ “

p
ÿ

k“1

cpβ1,...,βjk´1,βjk´1,βjk`1,...,βdq when }β}1 ě 2,

with the initial conditions cej “ j where ej is the vector with only zeros except for a 1 at
the jth coordinate. This follows easily of the usual recurrence relation on the multinomials: if
m1, . . . ,mp are positive integers, then

ˆ

m1 ` ¨ ¨ ¨ `mp

m1, . . . ,mp

˙

“

p
ÿ

i“1

ˆ

m1 ` ¨ ¨ ¨ `mp ´ 1

m1, . . . ,mi ´ 1, . . . ,mp

˙

.

We partition the indices of the sums of (3) into two sets: Z “ tpα, β, uq P
Ťd´1
r“0pAs,r ˆ

Bd´r ˆ rssq | αu “ 0u and D “ p
Ťd´1
r“0 As,r ˆ Bd´r ˆ rssqzZ. Now, let us look at the application

π : D Ñ Z
pα, β, uq ÞÑ ppα1, . . . , αu´1, 0, αu`1, . . . , αsq, pβ1, . . . , βαu´1, βαu ` 1, . . . , βdq, uq

.

The main point of this application is the remark that if pα1, β1, u1q “ πpα, β, uq, then we

have as,α1bu1,β1 “
´

ś

i|αi‰0 yαi,i{yαu,u

¯´

yαu,u
śd
j“1 y

βj
j,u

¯

“ as,αbu,β.

Since for all pα, β, uq P D we have that }β}1 ě 1, we know that if pα1, β1, u1q P Impπq then
}β1}1 ě 2. We show that the converse is true. Let pα1, β1, u1q P Z such that }β1}1 ě 2. We know
pα1, β1, u1q P As,řα1i

ˆ Bř jβ1j
ˆ rss. So d “

ř

α1i `
ř

jβ1j . Let us choose k such that β1k ‰ 0 and

consider the triplet t “ ppα11, . . . , α
1
u´1, k, α

1
u`1, . . . , α

1
sq, pβ

1
1, . . . , β

1
k´1, β

1
k ´ 1, β1k`1, . . . , β

1
dq, uq.

Hence t P As,k`řα1i
ˆ B´k`ř jβ1j

ˆ rss. As k `
ř

α1i ă d and k ą 0, it implies that t P D.

Moreover, we can easily check that πptq “ pα1, β1, u1q, which means that Impπq “ tpα1, β1, uq P
Z | }β1}1 ě 2u.

Let t “ pα1, β1, u1q P πpDq and let j1 ă . . . ă jp (with p ě 1) be the indices of the support of
β1. We compute

ÿ

pα,β,uqPπ´1ptq

p´1q}β}1`1cβas,αbu,β “

˜

p
ÿ

k“1

cpβ1,...,βjk´1,βjk´1,βjk`1,...,βdq

¸

p´1q}β
1}1as,α1bu1,β1

“ ´p´1q}β
1}1`1cβ1as,α1bu1,β1

s disjoint copies of the graph Cu: ´y1,u

´y2,u

´y3,u

´yd,u

d ´ 1
vertices

which has
`

d
2

˘

` 1 vertices

(the unlabelled edges are labelled by the constant 1). By the way, the constants cβ arise naturally in this setting,
they correspond to the number of closed walks in Cu with weight p´1q}β}1bu,β .
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where the second equality uses the recurrence relation on the cβs. Consequently,
ÿ

pα,β,uqPD
p´1q}β}1`1cβas,αbu,β “ ´

ÿ

pα1,β1,u1qPπpDq
p´1q}β

1}1`1cβ1as,α1bu,β1 .

That is to say, for computing (3), it is sufficient to compute the sum over ZzπpDq.
In this case, let pα, β, uq P ZzπpDq. Then, if β P Bd´r, we get that βd´r “ 1 and βj “ 0 for

all j ‰ d´ r. Consequently, cβ “ d´ r and bu,β “ yd´r,u. It implies

ÿ

pα,β,uq
PZzπpDq

p´1q}β}1`1cβas,αbu,β “
d´1
ÿ

r“0

s
ÿ

u“1

ÿ

αPAs,r
s.t.αu“0

pd´ rqas,αyd´r,u

“
ÿ

αPAs,d

ÿ

i
αi‰0

i ¨ as,α

“ d ¨WESymd
s .

We know that Newton identities imply that we can write usual elementary symmetric poly-
nomials as determinants of power sums (see for example p28 in [37]). Since the polynomials
WESym and WPow satisfy the same recurrence relations, this is also the case for them

pd!qWESymd
s “ det

»

—

—

—

—

—

–

WPow1
s 1 0 0

WPow2
s WPow1

s 2 0
...

...
...

. . . 0

WPowd´1
s WPowd´2

s WPowd´3
s ¨ ¨ ¨ d´ 1

WPowd
s WPowd´1

s WPowd´2
s ¨ ¨ ¨ WPow1

s

fi

ffi

ffi

ffi

ffi

ffi

fl

.

In fact, we can easily come back to the usual Newton identities by applying Laplace expansion
on the last row.

Expanding the determinant, we get

WESymd
s “

ÿ

γ:
ř

iγi“d

κγpWPow1
sq
γ1 ¨ ¨ ¨ pWPowd

sq
γd

where the κγs are constants of F. As previously, the sum is taken on the partitions of d. It
implies that the polynomials WESymd

s are computed by some ϕ-homogeneous
řśřś

circuits

of size 2Op
?
dqs. We can now easily prove Lemma 20.

Proof of Lemma 20. First, let us assume that cj “ 1 for each j P rss. We can notice that the
result of the lemma directly follows. Indeed, for each j P rss, we observe that

T pdq “ WESymd
spyi,j : i P rds, j P rssq. (4)

It remains to prove the lemma for the case when the constant terms cj are arbitrary. If
cj ‰ 0, then by dividing by cj , we come back to the case cj “ 1. So the main difficulty comes
from the case cj “ 0. Note that if there are more than d many j such that cj “ 0, then the
weighted-degree d component T pdq of T is the zero polynomial. Hence, we assume that there
are t ď d many j such that cj “ 0. Without loss of generality, say that these are c1, . . . , ct.
Hence, we have

T “

˜

ź

jďt

d
ÿ

i“1

yi,j

¸

ź

jąt

pcj `
d
ÿ

i“1

yi,jq “

˜

ź

jąt

cj

¸

¨

˝

ź

jďδ

d
ÿ

i“1

yi,j

˛

‚

ź

jąt

p1`
d
ÿ

i“1

yi,j
cj
q. (5)
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So we get

T pdq “

˜

ź

jąt

cj

¸

ÿ

pα1,...,αsqPrdstˆr0,dss´t

s.t.
ř

αi“d

ź

iPrts

yαi,i
ź

iPrt`1,ss
s.t. αi‰0

yαi,i
ci

.

So this is almost the polynomial WESymd
s , but we need to ensure that α1, . . . , αt are positive.

We will use a standard interpolation trick. Let x be a fresh variable. We have

T pdq “
ź

jąt

cj ¨ rx
tsWESymd

spx ¨ yi,1, . . . , x ¨ yi,t, yi,t`1{ct`1, . . . , yi,s{csq

where rxdsf is the coefficient of the monomial xd of f seen as a univariate polynomial in x. By
interpolation, we can get access to these coefficients

T pdq “

˜

ź

jąt

cj

¸

t`1
ÿ

r“1

γrWESymd
spr ¨ yi,1, . . . , r ¨ yi,t, yi,t`1{ct`1, . . . , yi,s{csq

where the γr are constants (there are entries of the inverse of the Vandermonde matrix of

p1, . . . , t` 1q). We get a weighted-degree homogeneous ΣΠΣΠ formula of size s2Op
?
dq for T pdq.

This proves the lemma.

8 Proof of Lemma 8

We start by noting that for every w which does not have too much bias, there is a polynomial
Pw P FsmrXpwqs that has large rank w.r.t. w and has a small set-multilinear Algebraic Branching
Program (ABP). We start by recalling the definition of such an ABP.

A set-multilinear ABP over the variables in Xpwq is a layered directed acyclic graph with
d` 1 layers labelled 0, . . . , d. The 0th and dth layer contain a single vertex each (they are the
source and sink vertices of the DAG). All edges go from the pi´ 1qth layer to the ith layer for
some i P rds, and each such edge is labelled by a homogeneous linear polynomial in the variables
from Xpwiq. The polynomial computed by the ABP is defined to be the sum, over all source to
sink paths ρ, of the products of the edge-labels seen along ρ. This is clearly a polynomial of the
space FsmrXpwqs.

Lemma 22. Let w P Ad be any word that is b-unbiased. Then, there is a set-multilinear ABP
of width 2b that computes a polynomial Pw P FsmrXpwqs such that relrkwpPwq ě 2´b{2.

Proof Sketch. We start by recalling the description of the polynomial Pw. SayXpwq “ pX1, . . . , Xdq

and since each Xi has size 2|wi|, we assume that the variables of Xi are labelled by strings in
t0, 1u|wi|.

Given any monomial m P FsmrXpwqs, let m` denote the corresponding “positive” monomial
from MPw and m´ the corresponding “negative” monomial from MNw . As each variable of
Xpwq is labelled by a Boolean string and each monomial ofMNw and ofMPw is associated with
a string of variables, we can associate any monomial m1 with a Boolean string σpm1q. As w is
b-unbiased, the difference of length of the strings σpm`q and σpm´q is at most b. We will write
σpm`q „ σpm´q when the shorter one is a prefix of the other one.

The polynomial Pw is defined as follows

Pw “
ÿ

mPFrXpwqs, σpm`q„σpm´q

m.

Clearly, the matrices MwpPwq are full-rank. So, relrkwpPwq “ 2´|wrds|{2 ě 2´b{2.
We now show how to construct an ABP for Pw.
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• At each layer i P t0, . . . , du, the ABP has exactly 2|wris| ď 2b vertices. For the partial
monomial m seen so far, the ABP is intuitively keeping track of either the last few bits of
σpm`q or the last few bits of σpm´q.

For example, assume that wris ě 0. Then, for any monomial m in variable sets X1, . . . , Xi,
the string σpm`q has length exactly wris more than that of σpm´q. Assuming that σpm`q
agrees with σpm´q on all but its last wris bits, i.e. σpm`q “ σpm´qτ for τ P t0, 1uwris , the
vertex of the ABP keeps track of the string τ .

More formally, for each τ P t0, 1u|wris|, we have a vertex vτ in the ith layer of the ABP,
where the polynomial Pvτ computed from the source node to vτ is the sum over all mono-
mials m over X1, . . . , Xi such that σpm`q “ σpm´qτ (resp. σpm´qτ “ σpm`q) if wris ě 0
(resp. wris ă 0).

• Given vertices uτ on layer i`1, one can see that we have Puτ “
ř

vρ
Pvρ ¨Lρ for a suitable

linear polynomial Lρ in FrXi`1s where the sum runs over all vertices vρ in the ith layer.
More precisely, we have

Lρ “

$

’

’

’

’

&

’

’

’

’

%

0 if sgnpwri`1sq “ sgnpwrisq, |wri`1s| ě |wris|, and ρ not a prefix of τ ,

xρ1 if sgnpwri`1sq “ sgnpwrisq, |wri`1s| ě |wris|, and τ “ ρρ1,

0 if sgnpwri`1sq “ sgnpwrisq, |wri`1s| ă |wris|, and τ not a suffix of ρ,

xτ 1 if sgnpwri`1sq “ sgnpwrisq, |wri`1s| ă |wris|, and ρ “ τ 1τ ,

xρτ if sgnpwri`1sq ‰ sgnpwrisq.

• Finally, identifying all the vertices on layer d gives us an ABP computing the polynomial
Pw.

Proof of Lemma 8 now follows from the above lemma.

Proof of Lemma 8. By Lemma 22, we know that there is a width 2b set-multilinear ABP com-
puting a polynomial Pw such that relrkwpPwq ě 2´b{2. It is a standard fact (and easy to see)
that since the polynomial Pw is computed by a set-multilinear ABP of width at most 2b, it
is a set-multilinear restriction of IMM2b,d “ IMMn,d in the following sense. There are maps
ρp : Xp Ñ Xpwpq, such that upon applying these linear substitutions to all the variables in
IMMn,d yields the polynomial Pw.

By applying this linear substitution to the circuit computing IMMn,d, we directly get a
circuit computing Pw.

9 Depth Hierarchy

Throughout this section, we work over fields of characteristic 0.
In this section, we prove the following theorem, which is a restatement of Theorem 5 from

the Introduction. Unlike the rest of the paper, here we will focus on the depth of the circuit
(instead of the product-depth) because it allows us to state a finer dichotomy.

Theorem 23. Fix any constant ∆ ě 2. Let s be a growing parameter. There is an explicit
set-multilinear polynomial Q∆ of depth ∆ and size s such that any formula of depth ∆ ´ 1
computing Q∆ must have size sωp1q.

In order to prove the above theorem, we will use the following consequence of two lemmas
from [18].
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Lemma 24 (combining Lemmas 4.5 and 4.8 from [18]11). Let C be any circuit of size s and
product-depth 2 in N variables such that all product gates in C have fan-in at most t. Then,
the polynomial computed by C is also computed by a circuit C 1 of product-depth 1 and size
polypsNq ¨ 2Optq.

In particular, by induction on ∆, the above implies the following corollary. The corollary
can be proved in a similar way to Lemma 19. We omit the details.

Corollary 25. Let d,N, s,∆ be positive integers with s ě N . If a homogeneous polynomial P
of degree d in N variables has a circuit C of size at most s and product-depth at most ∆ where
bottom gates are product gates, then P also has a (possibly inhomogeneous) circuit C 1 of depth
at most ∆` 1 and size at most polypsq ¨ 2Opdq. The output gate of C 1 is a sum gate.

The main technical result of this section is the following.

Notation. For any t ě 1, we let ct denote 2t ´ 1.

Lemma 26. Let n, d,∆ be growing parameters with 2 ď ∆ ď plog log dq{100 and d ď plog nq{100.
There is a polynomial P∆ that is computable by a set-multilinear formula on n variables of
product-depth ∆ and size nOp∆d

1{c∆ q where bottom gates are product gates and such that any

homogeneous circuit of product-depth less than ∆ computing P∆ has size at least nΩpd1{c∆´1{∆q.

Assuming this lemma for now, we finish the proof of Theorem 23.

Proof of Theorem 23. Given ∆, s as in the statement of the theorem, we fix n, d so that d “

plog nq{100 and n∆d1{c∆´1
“ sε for a small constant ε ą 0 that we will fix below. Note in

particular that dd ď dlogn ď nlog d ď sop1q for this choice of n, d.
Now, consider the polynomial P∆´1 as defined in Lemma 26 (for this choice of n, d).

The polynomial has a set-multilinear (and hence in particular homogeneous) formula F∆´1

of product-depth ∆ ´ 1 with product-gates at its bottom layer and size nOp∆d
1{c∆´1 q “ sOpεq.

Further, by Corollary 25, we see that P∆´1 also has a circuit of depth ∆ and size at most
sOpεq ¨2Opdq ď s{2 for a small enough choice of ε. Let us choose two disjoint sets of n variables Y
and Z. We define the 2n-variate polynomial QpY, Zq “ P∆´1pY q ` P∆´1pZq. In particular Q∆

can also be computed by a circuit C∆ of depth ∆ and size at most s. Moreover, the polynomial
Q∆ is irreducible.

We claim that Q∆ has no circuits of depth ∆ ´ 1 and size polypsq. To see this, let C∆´1

be any circuit of depth ∆ ´ 1 and size s1 (say) computing Q∆. By irreducibility of Q∆, we
can assume that the circuit C∆´1 has a `-gate as its output gate. By instantiating all the
Z-variables to 0, it gives a depth ∆´ 1 circuit of size s1 with a `-gate at the top for P∆´1. By
Proposition 9, we see that P∆´1 is also computed by a set-multilinear circuit of product-depth

∆´ 2 and of size s2 :“ polyps1q ¨ d
Opdq. Lemma 26 now implies that s2 ě nΩpd1{c∆´2{∆q “ sωp1q.

As dd “ sop1q, this implies that s1 “ sωp1q, proving the theorem.

We now prove Lemma 26. The high-level idea of the proof is to find a family of polynomials
for which the lower bound technique from Section 5 is ‘tight’ (i.e. yields the right lower bound).
The polynomials we consider are similar to the word polynomials Pw from Section 2.2 but the
definition is quite a bit more cumbersome. However, with the proper definitions in place, it is
easy to see how to construct these polynomials via set-multilinear formulas of the required size.
The lower bound will follow directly from the proof of Lemma 15.

11Lemma 4.5 in [18] is only stated for circuits computing homogeneous polynomials, but the proof works for
any circuit.
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Proof of Lemma 26. Assume α “ 1{
?

2. Fix k ě 10d such that k “ tlog n{2u. From the proof
of Lemma 15, we know that there is a w P t´k, tαkuud such that |wrds| ď k and such that for

any set-multilinear polynomial P P FsmrXpwqs satisfying

relrkwpP q ě 2´|wrds|{2, (6)

P has no set-multilinear circuit C of product-depth ∆ ´ 1 and size less than nΩpd1{c∆´1{∆q. In
light of this, it suffices to show that there is a polynomial P satisfying (6) such that P has a

set-multilinear formula F of product-depth ∆ and size nOp∆d
1{c∆ q.

To do this, we will first define a larger family of polynomials. We first need some notation.

Notation.

• Recall that |Xpwiq| “ 2|wi| and as in Section 2.2, we assume that the variables of Xpwiq
are labelled by strings in t0, 1u|wi|.

• Given S Ď rds, we define S` “ ti P S | wi ą 0u and S´ “ ti P S | wi ă 0u. Also define
k` “

ř

iPS`
|wi| and k´ “

ř

iPS´
|wi|. We say S is P-heavy if k` ě k´ and N -heavy

otherwise.

• Let I “ rKs where K “
ř

i |wi|. We partition I “ I1 Y ¨ ¨ ¨ Y Id where each Ij is the
interval of length |wj | starting at

ř

iăj |wi|`1. Given any T Ď rds, we let IpT q “
Ť

jPT Ij .

• Any monomial m P MS
w can be written uniquely as a product of a ‘positive monomial’

m` PMPXSw and a negative monomial m´ PMNXSw . The monomial m` is associated to
a string σpm`q P t0, 1u

k` (as in Section 2.2). We think of σpm`q : IpS`q Ñ t0, 1u (i.e.
we think of the indices of σpm`q as labelled by elements of IpS`q in the natural way).
Similarly, we define σpm´q : IpS´q Ñ t0, 1u.

With the above notation in hand for a given S, we define a sequence of polynomials that, as
we will show, have small set-multilinear formulas. Fix the following notation for some S Ď rds.

• Fix J` Ď IpS`q and J´ Ď IpS´q such that |J`| “ |J´| “ mintk`, k´u. Equivalently,
J` “ IpS`q if S is N -heavy, and J´ “ IpS´q if S is P-heavy, and both J` and J´ have
the same size.

• Let π denote a bijection from J` to J´.

We call such a tuple pS, J`, J´, πq valid.
Fix a valid pS, J`, J´, πq. Now, given a τ P t0, 1u|k`´k´|, we interpret τ as a function

mapping IpS`qzJ` to t0, 1u if S is P-heavy and as a function mapping IpS´qzJ´ to t0, 1u if S
is N -heavy. We define the polynomial PpS,J`,J´,π,τq to be the sum of all monomials m such that

1. σpm`qpjq “ σpm´qpπpjqq for each j P J`, and

2. σpm`qpjq “ τpjq for all j P IpS`qzJ` if S is P-heavy or σpm´qpjq “ τpjq for all j P
IpS´qzJ´ if S is N -heavy.

We observe the following properties of these polynomials.

(P1) For any valid pS, J`, J´, πq and any τ P t0, 1u|k`´k´|, the matrix Mw|S pPpS,J`,J´,π,τqq has
the maximum possible rank for a matrix with its dimensions. More precisely,

rankpMw|S pPpS,J`,J´,π,τqqq “ mint|MPXSw |, |MNXSw |u “ 2mintk`,k´u. (7)
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(P2) Assume pSi, Ji,`, Ji,´, πiq (i P rrs) are all valid tuples with the Si (i P rrs) all being
P-heavy and also pairwise disjoint. Further, assume that we have τi P t0, 1u

ki,`´ki,´

where ki,` “
ř

jPIpSi,`q
wj . Then we have the following. Let S “

Ť

i Si (also P-heavy by

definition), J` “
Ť

i Ji,`, J´ “
Ť

i Ji,´, π “
Ť

i πi, and τ “
Ť

i τi.
12 Then pS, J`, J´, πq is

a valid tuple and moreover

PpS,J`,J´,π,τq “
r
ź

i“1

PpSi,Ji,`,Ji,´,πi,τiq. (8)

An analogous fact is true in the case that each Si is N -heavy.

(P3) Say S1, S2 are disjoint sets where S1 is P-heavy and S2 is N -heavy. Also fix any valid
pS1, J 1`, J

1
´, π

1q and pS2, J2`, J
2
´, π

2q.

Assume that S “ S1 Y S2 is P-heavy. Let J´ “ IpS´q and J` “ J 1` Y J2` Y J3 where
J3 Ď IpS1`q is any set of size |IpS2´q|´ |IpS

2
`q| disjoint from J 1`YJ

2
` (such a set J3 exists

by the condition that S is P-heavy). Fix any bijection π3 : J3 Ñ IpS2´qzJ
2
´. Assume

π : J` Ñ J´ is defined to be pπ1 Y π2 Y π3qpjq for j P J 1` Y J
2
` Y J

3.

Finally, fix any τ : IpS`qzJ` Ñ t0, 1u. We say that τ 1 : IpS1`qzJ
1
` Ñ t0, 1u extends τ

if τ 1 restricts to τ on the set IpS`qzJ` (note that J` contains J2` “ IpS2`q and hence
IpS`qzJ` Ď IpS1`qzJ

1
`, so this definition makes sense). We denote by τ 1zτ the restriction

of τ 1 to the set J3.

Based on this notation, we get

PpS,J`,J´,π,τq “
ÿ

τ 1 extends τ

PpS1,J 1`,J 1´,π1,τ 1q ¨ PpS2,J2`,J2´,π2,pτ 1zτq˝π3´1q (9)

Note that the size of the sum is 2|J
3| “ 2k

2
´´k

2
` .

An analogous identity holds in the case that S is N -heavy.

We are now ready to state the main technical claim that will imply the lemma which we are
trying to prove.

Claim 27. Fix any S Ď rds. Assume |S| “ t such that |wS | ď k. Then, there exist J`, J´, π
such that pS, J`, J´, πq is valid satisfying the following property.

Fix any positive integer δ. For each τ P t0, 1u|k`´k´|, the polynomial PpS,J`,J´,π,τq is com-
puted by a ΣΠΣΠ ¨ ¨ ¨ΣΠ set-multilinear formula FpS,J`,J´,π,τq of depth 2δ and size at most

dδ250kδt1{cδ .

We note first that the above claim can be applied to the case S “ rds as |wrds| ď k. In this

case, the above implies the existence of a polynomial P P FsmrXpwqs such that

• P has a set-multilinear formula of depth 2δ and size at most nOpδd
1{cδ q. Further, the number

of variables of P is at most d ¨ 2k ď n1{2`op1q ď n, and

• by (P1) above, P satisfies

relrkwpP q “
rankpMwpP qq
a

|MPw | ¨ |MNw |
“

mint|MPw |, |MNw |u
a

|MPw | ¨ |MNw |
“

d

mint|MPw |, |MNw |u
maxt|MPw |, |MNw |u

“ 2´|wrds|{2.

12Here, the union of functions is interpreted in terms of the underlying set-theoretic relation. I.e. if fi : Ai Ñ Bi
are defined on pairwise disjoint domains, then f “

Ť

i fi is the function with domain
Ť

iAi and range
Ť

iBi with
fpaq defined to be fipaq if a P Ai.
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As already noted at the start of the proof, this implies the statement of the lemma.
So it remains to prove Claim 27. For this, we will need the following technical claim that

follows from classical Dirichlet approximation (which is an easy application of the Pigeonhole
principle).

Claim 28. Let S Ď rds be of size at most t such that |wS | ď k. Then, for any ` ď
?
t, there

exists a partition of S as S1 Y S2 Y ¨ ¨ ¨Sr such that |Si| ď ` and |wSi | ď k for all i P rrs, and
řr
i“1 |wSi | ď 50kt{`2.

Proof. We refer to i P S such that wi “ ´k as negative indices and the other i as positive
indices.

We assume that ` ě 7, since otherwise we can simply take r “ t and each Si to be a singleton
(note that in this case each |wSi | ď k).

Let β “ tkαu

k ě α ´ 1{k.13 By Dirichlet’s approximation principle (see e.g. Theorem 1A
in [53]), we know that there exist positive integers p, q ď `{2 such that

|qβ ´ p| ď
2

`
ď

2

7
. (10)

By inspection, we must have q ě 2.
Fix this q, p for the rest of the proof. We claim that q “ Ωp`q. This is implied by the

following chain of inequalities that depend on Claim 17.

|qβ ´ p| ě |qα´ p| ´ q{k ě
1

4q ` 2
´
q

k
ě

1

5q
´

`

2k
ě

1

5q
´

1

20`
ě

1

5q
´

1

40q
ě

1

6q
.

Above, the second inequality is implied by Claim 17, the third by the fact that 2 ď q ď `{2 and
the fourth by the fact that `2 ď t ď d ď k{10. In particular, the above along with (10) implies
that q ě `{12.

Now, we repeatedly apply the following ‘pruning’ procedure to S. If possible, we choose a
set T Ď S with exactly p negative indices and exactly q positive indices. We remove T from S,
update S to SzT , and continue. Note that by definition we have |T | “ p` q ď ` and

|wT | “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPT

wi

ˇ

ˇ

ˇ

ˇ

ˇ

ď k ¨ |qβ ´ p| ď
2k

`
ď k. (11)

Let S1, . . . , Sa be the sets T chosen by the above process. As each Si has size at least
q ě `{12, we see that a ď 12t{`. When the procedure stops, we are left with a set S1 with

|wS1 | ď |wS | `
a
ÿ

i“1

|wSi | ď k `
24kt

`2
ď

25kt

`2
(12)

where the first inequality is just the triangle inequality, the second follows from (11), and the
third from the fact that ` ď

?
t.

As the pruning procedure is no longer applicable, it must be the case that S1 has fewer than
p ď `{2 negative indices or fewer than q ď `{2 positive indices (or both). We now proceed via
a case analysis.

13This parameter is just used to simplify some calculations. For all practical purposes, this parameter is
identical to α.
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• Assume |S1| ď ` and wS1 ě 0.

We first construct a subset S2 Ď S1 as follows. We start with S1 and repeatedly remove
positive indices while ensuring that the sum wS1 remains non-negative. At the end, we
are left with a set S2 Ď S1. Note that wS2 ě 0 by definition and also wS2 ď k since no
further indices could be removed.

We then partition S1zS2 (which only contains positive indices) into singletons S11, . . . , S
1
b.

Observe that |wS1 | “ |wS2 | ` |wS1zS2 | “ |wS2 | `
řb
i“1 |wS1i |.

We set r “ a` b` 1, Sa`1 “ S2 and Sa`1`i “ S1i for i P rbs. Note that each |wSi | ď k by
construction. We have thus constructed a partition of S into S1, . . . , Sr with |Si| ď ` and
|wSi | ď k for each i P rrs and satisfying

r
ÿ

i“1

|wSi | “
a
ÿ

i“1

|wSi | `
b`1
ÿ

i“1

|wSa`i | “
a
ÿ

i“1

|wSi | ` |wS1 | ď
24kt

`2
`

25kt

`2
ď

50kt

`2
.

This implies the statement of the claim in this case.

• Assume |S1| ď ` and wS1 ď 0. A similar analysis to the one above works in this case.

• Now assume |S1| ą `. If S1 has p1 ă p ď `{2 negative indices, then it has q1 ą `{2 ě q
many positive indices. In particular, as |qβ| ě p ´ 1 ě p1, we see that |qβ| ą p1, which
implies in particular that wS1 ě 0. We can therefore pick an S2 Ď S1 with all the negative
indices of S1 and the smallest possible q2 ď q of positive indices such that wS2 ě 0. Note
that |S2| ď p1 ` q2 ď p ` q ď `. The set S1zS2 (containing only positive indices) is then
partitioned into singleton sets S11, . . . , S

1
b. Observe that |wS1 | “ |wS2 | `

řb
j“1 |wS1j |.

We now set r “ a ` b ` 1 and set Sa`1 “ S2 and Sa`1`i “ S1i for i P rbs. We thus again
get

r
ÿ

i“1

|wSi | ď
a
ÿ

i“1

|wSi | ` |wS1 | ď
50kt

`2

as above.

• We are left with the case when |S1| ą `, but there are q1 ă q positive indices. This is
handled similarly to the previous case.

Thus, we have proved the claim in each case. This finishes the proof.

We are now ready to prove Claim 27.

Proof of Claim 27. We proceed by induction on δ. The base case corresponds to δ “ 1. In this
case, we note that the trivial expression for the polynomial PpS,J`,J´,π,τq as a sum of monomials

yields a ΣΠ set-multilinear formula of size at most 1` 2kt ď d250kt. This immediately implies
the statement in this case.

We now consider some δ ą 1. Fix S as in the statement of the claim, and define k` :“
|IpS`q|, k´ :“ |IpS´q|. We assume that S is P-heavy (the other case is similar). We first see
how to partition S in a suitable way to apply the induction hypothesis.

Let ` “ tcδ´1{cδ . Note that ` ď
?
t. We apply Claim 28 to obtain a partition S “ S1Y¨ ¨ ¨YSr

where each |Si| ď `, each |wSi | ď k, and finally

r
ÿ

i“1

|wSi | ď 50kt{`2 “ 50kt1{cδ . (13)
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Without loss of generality, we may assume that S1, . . . , Sp are P-heavy and that Sp`1, . . . , Sr
are N -heavy, for some p P rrs. By the induction hypothesis, there exist Ji,`, Ji,´, πi such that
pSi, Ji,`, Ji,´, πiq are valid tuples and for each τi P t0, 1u

|ki,`´ki,´|, the polynomial PpSi,Ji,`,Ji,´,πi,τiq

has a set-multilinear formula Fi,τi of depth 2δ´2 and size si ď dδ´1250kpδ´1q`1{cδ´1
“ dδ´1250kpδ´1qt1{cδ .

Define

pS1, J 1`, J
1
´, π

1q “ p
ď

iPrps

Si,
ď

iPrps

Ji,`,
ď

iPrps

Ji,´,
ď

iPrps

πiq

pS2, J2`, J
2
´, π

2q “ p

r
ď

i“p`1

Si,
r
ď

i“p`1

Ji,`,
r
ď

i“p`1

Ji,´,
r
ď

i“p`1

πiq.

Then, by (P2) above, we see that pS1, J 1`, J
1
´, π

1q is a valid tuple with S1 being P-heavy and
pS2, J2`, J

2
´, π

2q is a valid tuple with S2 being N -heavy.

Let k1` “
ř

jPJ 1`
|IpSi,`q| and define k1´, k

2
`, k

2
´ similarly. Fix any τ 1 P t0, 1uk

1
`´k

1
´ and

τ2 P t0, 1uk
2
´´k

2
` . By (P2) above, we have

PpS1,J 1`,J 1´,π1,τ 1q “

p
ź

i“1

PpSi,Ji,`,Ji,´,πi,τiq PpS2,J2`,J2´,π2,τ2q “
r
ź

i“p`1

PpSi,Ji,`,Ji,´,πi,τiq (14)

where τi is the restriction of τ 1 to IpSi,`qzJi,` if i P rps, and the restriction of τ2 to IpSi,´qzJi,´
if i ą p.

Finally, we define the valid tuple pS, J`, J´, πq using pS1, J 1`, J
1
´, π

1q and pS2, J2`, J
2
´, π

2q as
in (P3) above. Then by (9), we see that for any τ P t0, 1uk`´k´ , we get

PpS,J`,J´,π,τq “
ÿ

τ 1 extends τ

PpS1,J 1`,J 1´,π1,τ 1q ¨ PpS2,J2`,J2´,π2,τ2q

where τ2 is defined as in (9). Plugging in (14) and using the formulas Fi,τi constructed by
induction, we see that PpS,J`,J´,π,τq has a set-multilinear formula of depth at most 2δ and size
at most

r ¨ 2k
2
´´k

2
` ¨max

iPrrs
si ď d ¨ 2

ř

i |wSi | ¨ dδ´1250kpδ´1qt1{cδ ď dδ ¨ 250kt1{cδ ¨ 250kpδ´1qt1{cδ “ dδ ¨ 250kδt1{cδ .

This proves the induction hypothesis and hence completes the proof of the claim.
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A Why previous results give FPT bounds

We sketch why previous lower bounds for set-multilinear circuits of large (say constant) depth
do not yield non-FPT bounds.

Nisan and Wigderson’s technique. We start with the result of Nisan and Wigderson [41]
which yields non-FPT bounds for set-multilinear circuits of product-depth 1 computing IMMn,d

but an FPT bound of exppΩpd1{∆qq for product-depth ∆ ą 1. Assume d is even. Denote by
FsmrpX1, . . . , Xdqs the space of set-multilinear polynomials w.r.t. the partition pX1, . . . , Xdq. A
ΣΠΣ set-multilinear formula for such a polynomial is an expression of the form

F pXq “
s
ÿ

i“1

d
ź

j“1

`i,jpXjq (15)

where each `i,j is a homogeneous linear polynomial in the variables Xj . We want to show that
IMMn,d P FsmrpX1, . . . , Xdqs cannot be computed by a small ΣΠΣ set-multilinear formula.

To do this, we associate with each polynomial a matrix obtained as follows. Assume that we
partition the set rds into two sets P and N respectively, and let MP and MN denote the sets
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of multilinear monomials over the variable partitions pXi : i P Pq and pXj : j P N q respectively.
Note that any set-multilinear monomial m over pX1, . . . , Xdq can be written uniquely as m1 ¨m2

where m1 PMP and m2 PMN . We associate with any set-multilinear polynomial P the matrix
MP with rows labelled by m1 PMP and columns labelled by m2 PMN , where the pm1,m2qth
entry of Mf is the coefficient of m1 ¨m2 in P . We use the rank of MP (denoted simply rankpP q)
to measure the complexity of P .

This is useful because of the following observation. Consider any summand
śd
j“1 `i,jpXjq on

the right hand side of (15). It is easy to check that the matrix associated with the corresponding
polynomial has rank at most 1. As rank is sub-additive, it follows that rankpMF q ď s for a
formula F with at most s such summands. On the other hand, note that as |Xi| “ n for
i P t1, du and |Xi| “ n2 for i P rdszt1, du, and setting P and N to be the sets of even and odd
numbers in rds respectively, then we see that Mf is a matrix of dimensions nd´1ˆnd´1. On the
other hand, one can easily check that for P “ IMMn,d, the matrix MP is a permutation matrix
and thus has full rank. Our observation above then implies that any ΣΠΣ formula for IMMn,d

must have size at least nd´1, which is NΩpdq as long as d ď NOp1q. This yields a strong (and
in fact optimal: IMMn,d is the sum of exactly nd´1 monomials) non-FPT lower bound against
product-depth 1 set-multilinear formulas.

Unfortunately, this method as it is does not work for larger product depths. Consider
the following “Product of Inner Products” polynomial, which is an example due to Nisan and
Wigderson. Assume that each Xi “ txi,1, . . . , xi,nu for i P t1, du and Xi “ txi,1, . . . , xi,n2u for
i R t1, du. Define

PIPpX1, . . . , Xdq “

˜

n
ÿ

k“1

x1,kxd,k

¸

¨

d{2´1
ź

j“1

˜

n2
ÿ

k“1

x2j,kx2j`1,k

¸

.

The above is a formula of product-depth 2 and it can be checked that, for P and N being the set
of odd and even numbers respectively, MPIP is also a permutation matrix, and hence full-rank.

To get around this, Nisan and Wigderson combined the product-depth 1 lower bound with
random restrictions. More precisely, we choose a (random) set I Ď rds and set all the variables
in the set

Ť

jRI Xj to constants. Restricting a formula F this way ensures that we get a set-
multilinear formula F 1 w.r.t. the variable partition pXi : i P Iq. In the example of the PIP
polynomial above, it can be seen that if I is chosen randomly, with probability 1´ expp´Ωpdqq
we have ` “ Ωpdq many terms in the products that become linear polynomials, which turns
out to imply that the rank of the corresponding formula F 1 is at most n|I|´`. A similar fact
can be proved for formulas of any product-depth ∆, and this can be used to prove that for any
set-multilinear formula F of product-depth ∆ and size exppOp∆d1{∆qq, there is a restriction
under which the rank of F is small. On the other hand, it is possible to show that under such a
family of restrictions, the polynomial IMMn,d retains its structure and remains full rank. This
implies a size lower bound of exppΩp∆d1{∆qq for computing this polynomial.

Note that the lower bound obtained above is an FPT lower bound. Unfortunately, this
limitation is inherent to this technique, as it is easy to show that this method outlined above
cannot prove a lower bound greater than exppOpdqq¨polypNq. This is because there are essentially
only 2d distinct restrictions (one for each I Ď rds).14 It is possible to construct, for each such
restriction, a single “PIP-type” polynomial that is full-rank even after this restriction. A suitable
linear combination of these polynomials yields a formula of product-depth 2 which remains full-
rank after any restriction. Hence, to prove a non-FPT lower bound even for product-depth 2,
a new idea is necessary.

14Strictly speaking, this is an undercount, as we also have the choice of the underlying constants. However,
one can show that the constants do not significantly affect the argument.
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Shifted Partial Derivatives. More recently, non-FPT lower bounds are also proved [15]
against ΣΠΣΠ set-multilinear formulas, which are a special case of product-depth 2. In fact, it
is known that any such formula computing IMMn,d must have size nΩp

?
dq, which is tight. This

method is based on an extension of the Partial Derivative technique, called the Shifted Partial
Derivative technique, due to Kayal [28]. Kayal defines a new complexity measure and shows
that this measure is small even for products of low-degree polynomials. This implies a lower
bound against set-multilinear15 ΣΠΣΠrts formulas, which are sums of products of polynomials
of degree at most t, for small t.

To obtain a lower bound against ΣΠΣΠ set-multilinear formulas, we again apply a random
restriction that sets each variable to 0 with high probability. This ensures that each product
gate that involves many variables is set to 0 with high probability, and hence that the formula
restricts to a ΣΠΣΠrts formula with high probability. At this point, the previous lower bound
idea applies.

Unfortunately, it is unclear how to use this idea to prove even a lower bound against ΣΠΣΠΣ
formulas, as these formulas are resistant to the random restriction idea (a generic sum gate does
not vanish under random restrictions except with negligible probability).

Raz’s technique. Raz [44] generalized Nisan and Wigderson’s results in a different direction
by showing lower bounds for multilinear (not just set-multilinear) formulas. The heart of Raz’s
lower bound technique (and also followups [63, 13]) deals with multilinear polynomials on a set
of variables X of n variables which is partitioned into two sets Y and Z of size n{2 each. Any
multilinear monomial m over X factors uniquely as m1 ¨m2 where m1 and m2 are multilinear
monomials over Y and Z respectively. Similar to the set-multilinear case above, we define
the matrix M 1

P (for a multilinear polynomial P P FrXs) to be the 2n{2 ˆ 2n{2 matrix whose
pm1,m2qth entry is the coefficient of m “ m1 ¨m2 in P .

The rank of M 1
P is used as a measure of the complexity of P . In order to prove lower bounds,

this matrix has to be of large rank, in fact, at least 2n{2´opnq. However, it can be easily checked
that if P is a polynomial of degree at most d, then the rank of M 1

P is at most
`n{2
ďd

˘

“ 2opnq if
d “ opnq. So this method cannot prove lower bounds in this regime.

However, we can prove lower bounds for polynomials of degree d “ opnq by setting most
variables to constants in the underlying field. In this situation, we again have reduced to the
case when the number of variables n1 “ Opdq. However, in this situation, we can only hope to
prove a lower bound of the form fpn1q “ f 1pdq, which is an FPT lower bound.

15More generally, this technique also works for homogeneous formulas.
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