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DRAFT

Antigenic waves of virus-immune co-evolution
Jacopo Marchia, Michael Lässigb, Aleksandra M. Walczaka,1, and Thierry Moraa,1

aLaboratoire de physique de l’École normale supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, 75005 Paris, France; bInstitute of Theoretical
Physics, University of Cologne, 50937 Cologne, Germany

The evolution of many microbes and pathogens, including circulat-
ing viruses such as seasonal influenza, is driven by immune pres-
sure from the host population. In turn, the immune systems of in-
fected populations get updated, chasing viruses even further away.
Quantitatively understanding how these dynamics result in observed
patterns of rapid pathogen and immune adaptation is instrumental
to epidemiological and evolutionary forecasting. Here we present a
mathematical theory of co-evolution between immune systems and
viruses in a finite-dimensional antigenic space, which describes the
cross-reactivity of viral strains and immune systems primed by pre-
vious infections. We show the emergence of an antigenic wave that
is pushed forward and canalized by cross-reactivity. We obtain ana-
lytical results for shape, speed, and angular diffusion of the wave. In
particular, we show that viral-immune co-evolution generates a new
emergent timescale, the persistence time of the wave’s direction in
antigenic space, which can be much longer than the coalescence
time of the viral population. We compare these dynamics to the ob-
served antigenic turnover of influenza strains, and we discuss how
the dimensionality of antigenic space impacts on the predictability
of the evolutionary dynamics. Our results provide a concrete and
tractable framework to describe pathogen-host co-evolution.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1. Introduction1

The evolution of viral pathogens under the selective pressure2

of its hosts’ immunity is an example of rapid co-evolution.3

Viruses adapt in the usual Darwinian sense by evading immu-4

nity through antigenic mutations, while immune repertoires5

adapt by creating memory against previously encountered6

strains. Some mechanisms of in-host immune evolution, such as7

the affinity maturation process, are important for the rational8

design of vaccines. Examples are the seasonal human influenza9

virus, where vaccine strain selection can be informed by pre-10

dicting viral evolution in response to collective immunity(1),11

as well as chronic infections such as HIV (2–5), where co-12

evolution occurs within each host. Because of the relatively13

short time scales of selection and strain turnover, these dy-14

namics also provide a laboratory for studying evolution and15

its link to ecology (6).16

It is useful to think of both viral strains and immune protec-17

tions as living in a common antigenic space (6), corresponding18

to an idealized “shape space” of binding motifs between an-19

tibodies and their cognate epitopes (7). While the space of20

molecular recognition is high-dimensional, projections onto21

a low-dimensional effective shape space have provided useful22

descriptions of the antigenic evolution. In the example of in-23

fluenza, neutralization data from hemagglutination-inhibition24

assays can be projected onto a two-dimensional antigenic space25

(8–10). Mapping historical antigenic evolution in this space26

suggests a co-evolutionary dynamics pushing the virus away27

from its past positions, where collective immunity has devel-28

oped. Importantly, the evolution of influenza involves compet-29

itive interactions of antigenically distinct clades in the viral30

population, generating a “Red Queen” dynamics of pathogen 31

evolution (11, 12). Genomic analysis of influenza data has 32

revealed evolution by clonal interference (13); this mode of 33

evolution is well-known from laboratory microbial populations 34

(14). In addition, the viral population may split into subtypes. 35

Such splitting or “speciation” events, which are marked by 36

a decoupling of the corresponding immune interactions, hap- 37

pened in the evolution of influenza B (15) and of noroviruses 38

(16). 39

The joint dynamics of viral strains and the immune systems 40

of the host population can be modeled using agent-based sim- 41

ulations (17, 18) that track individual hosts and strains. Such 42

approaches have been used to study the effect of competition 43

on viral genetic diversity (19), to study geographical effects 44

(20), and the effect of vaccination (21). Alternatively, systems 45

of coupled differential equations known as Susceptible-Infected- 46

Recovered (SIR) models may be adapted to incorporate evolu- 47

tionary mechanisms of antigenic adaptation (6, 22, 23). Agent- 48

based simulations in 2 dimensions were used to recapitulate 49

the ballistic evolution characteristic of influenza A (18), and 50

to predict the occurence of splitting and extinction events (24). 51

In parallel, theory was developed to study the Red Queen effect 52

(12, 25), based on the well established theory of the traveling 53

fitness wave (26–28). While effectively set in one dimension, 54

this class of models can nonetheless predict extinction and 55

splitting events assuming an infinite antigenic genome (12). 56

In this work, we propose a co-evolutionary theory in an 57

antigenic interaction space of arbitrary dimension d, which is 58

described by joint non-linear stochastic differential equations 59

coupling the population densities of viruses and of protected 60

hosts. We show that these equations admit a d-dimensional 61

antigenic wave solution, and we study its motion, shape, and 62
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stability, using simulations and analytical approximations.63

Based on these results, we discuss how canalization and pre-64

dictability of antigenic evolution depend on the dimensionality65

d.66

2. Results67

A. Coarse-grained model of viral-immune co-evolution. Our68

model describes the joint temporal evolution of populations69

of viruses and immune protections in some effective antigenic70

space of dimension d. Both viral strains and immune pro-71

tections are labeled by their position x = (x1, . . . , xd) (or72

“phenotype”) in that common antigenic space (Fig. 1A). In73

that space, viruses randomly move as a result of antigenic74

mutations and proliferate through infections of new hosts. Im-75

mune memories are added at the past positions of viruses.76

Immune memories distributed across the host population pro-77

vide protection that reduces the effective fitness of the virus.78

We coarse-grain that description by summarizing the viral pop-79

ulation by a density n(x, t) of hosts infected by a particular80

viral strain x, and immunity by a density h(x, t) of immune81

memories specific to strain x in the host population.82

At each infection cycle, each host may infect R0 unpro-83

tected hosts, where R0 is called the basic reproduction number.84

However, a randomly picked host is susceptible to strain x85

with probability (1− c(x, t))M , where c(x, t) is the coverage86

of strain x by immune memories of the population, and the87

numberM of immune memories carried by each host. Because88

of cross-reactivity, which allows immune memories to confer89

protection against closeby strains, immune coverage is given90

as a function of the density of immune memories:91

c(x, t) = 1
M

∫
dx′h(x′, t)H(x− x′), [1]92

where H(x−x′) = exp(−|x−x′|/r) is a cross-reactivity kernel93

describing how well memory x′ protects against strain x, and94

r is the range of the coverage provided by cross-reactivity. In95

summary, the effective growth rate, or “fitness”, of the virus96

is given by f(x, t) ≡ ln[R0(1− c(x, t))M ].97

The coupled dynamics of viruses and immune memories is
then described by the stochastic differential equations (with
time in units of infection cycles throughout):

∂tn(x, t) = f(x, t)n(x, t) +D∂2
xn+

√
n(x, t)η(x, t) [2]

∂th(x, t) = 1
Nh

[
n(x, t)−N(t)h(x, t)

M

]
. [3]

Here η is a Gaussian white noise in time and space,98

〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′), accounting for demo-99

graphic noise (29). This stochastic term is crucial, as it will100

drive the evolution of the wave. The diffusion constant D de-101

scribes the effect of infinitesimal mutations on the phenotype,102

D = µ〈δx2
1〉/2, where µ is the mean number of mutations per103

cycle, and 〈δx2
1〉 the mean squared effect of each mutation along104

each antigenic dimension (assuming that mutations do not105

have a systematic bias, 〈δx1〉 = 0). The continuous-diffusion106

assumption implied by Eq. 2 is only valid when there are107

many small mutation effects, µ� 1 and δx� r, in constrast108

with regimes where mutations are rare but have a substantial109

fitness effect drawn from a distribution (25, 30). Our choice110

is simpler in that it describes the mutation process through111

virus immune memory
viral fitness

D

Fig. 1. A simple model of viral-host co-evolution predicts the
emergence of an antigenic wave. A. Schematic of the co-evolution model.
Viruses proliferate while effectively diffusing in antigenic space (here in 2 dimensions)
through mutations, with coefficient D. Past virus positions are replaced by immune
protections (light blue). Immune protections create a fitness gradient for the viruses
(green gradient) favoring strains at the front. Both populations of viruses and immune
populations are coarse-grained into densities in antigenic space. B. Snapshot of a
numerical simulation of Eq. 2-3 showing the existence of a wave solution. The blue
colormap represents the density of immune protections h(x, t) left behind by past
viral strains. The current virus density n(x) is shown in red. C. Close-up onto the
viral population, showing fitness isolines. The wave moves in the direction of the
fitness gradient (arrow) through the enhanced growth of stains at the edge of the wave
(black dots). D. Distribution of fitness across the viral population (corresponding to
the projection of B. along the fitness gradient). Parameters for B-D:D/r2 = 3·10−9,
Nh = 108, lnR0 = 3, M = 1.

a single parameter D. Along with the choice of the cross- 112

reactivity kernel H, it also naturally preserves the isotropy of 113

the antigenic space. 114

The total viral population size, or number of infected hosts, 115

N(t) =
∫
dxn(x, t) is subject to fluctuations. At the same 116

time, the host population size Nh, remains constant because 117

newly added memories (first term of right-hand side of Eq. 3) 118

overwrite existing ones picked uniformly at random (second 119

term of r.h.s. of Eq. 3). Since each host carries M immune 120

receptors, we have
∫
dxh(x, t) = M . 121

If we assume that the system reaches an evolutionary steady 122

state, with stable viral population size N(t) = N , then Eq. 3 123

can be integrated explicitly: 124

h(x, t) = M

N

∫ t

−∞

dt′

τ
e−

t−t′
τ n(x, t′), [4] 125

with τ = MNh/N . This equation shows how the density of 126

protections reflects the past evolution of the viral population. 127

B. Antigenic waves. We simulated Eq. (2)-Eq. (3) on a square 128

lattice (Methods) and found a stable wave solution (Fig. 1B- 129

D). The wave has a stable population size N , and moves 130

approximately ballistically through antigenic space, pushed 131

from behind by the immune memories left in the trail of 132

past viral strains (Fig. 1B). These memories exert an immune 133

pressure on the viruses, forming a fitness gradient across the 134

width of the wave (Fig. 1C), favoring the few strains that are 135

furthest from immune memories, at the edge of the wave. 136

2 | Marchi et al.
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We assume that the solution of the coupled evolution equa-137

tions Eq. (2)-Eq. (3) takes the form of a moving quasispecies138

in a d-dimensional antigenic space,139

n(x, t) = N√
2πσ2

exp
[
− (x1 − vt)2

σ2

]
ρ(x2, . . . , xd). [5]140

Here, we have written the solution in a co-moving frame, in141

which a motion with constant speed v takes place in the di-142

rection of the coordinate x1, and fluctuations in the other143

dimensions, ρ(x2, . . . , xd, t), centered around xi = 0 for i > 1,144

are assumed to be independent. In the next sections, we will145

analyse solutions of this form. First, we will project the d-146

dimensional antigenic wave onto the one-dimensional fitness147

space; this projection produces a travelling fitness wave (26–148

28, 31, 32) that determines the antigenic speed v and the mean149

pair coalescence time 〈T2〉 of the viral genealogy. Second, we150

will study the shape of the d-dimensional quasispecies and151

determine the fluctuations in the transverse directions. These152

fluctuations produce a key result of this paper: immune in-153

teractions canalize the evolution of the antigenic wave; this154

constraint can be quantified by characteristic time scales gov-155

erning the transverse antigenic fluctuations. Canalization is156

most pronounced in spaces of low dimensionality d and, as we157

discuss below, affects the predictability of antigenic evolution.158

C. Speed of antigenic evolution. Projected onto the fitness159

axis f = f(x, t), the solution is approximately Gaussian160

(Fig. 1D). This representation suggests a strong similarity to161

the fitness wave solution found in models of rapidly adapting162

populations with an infinite reservoir of beneficial mutations163

(26–28, 31, 32). To make the analogy rigorous, we must assume164

that the fitness gradient in antigenic space is approximately165

constant, meaning that fitness isolines are straight and equidis-166

tant. Mutations along the gradient direction have a fitness167

effect that is linear in the displacement, while mutations along168

perpendicular directions are neutral and can be treated inde-169

pendently. Note that while we will use this projection onto170

fitness to compute the speed of the antigenic wave, the under-171

lying antigenic wave remains in d dimensions; we will come172

back to transverse fluctuations in the next sections.173

There are several models of fitness waves that differ in
the assumptions on the statistics of mutational effects. Our
assumption of diffusive motion makes our projected dynamics
equivalent to that studied in ref. (32), which itself builds on
earlier work (27). This equivalence results from the two key
assumptions of the mutation model in antigenic space: muta-
tions have a small effect, and their distribution is isotropic,
meaning that there are as many deleterious as beneficial mu-
tations. In the limit where the wave is small compared to the
adaptation time scale, vτ � σ, the wave may be replaced by
a Dirac delta function at x = (vt, 0, . . . , 0) in Eq. 4. One can
then calculate explicitly the immune density (upstream of the
wave) and coverage (downstream of the wave, using Eq. 1):

h(x, t) ≈ M

vτ
e−

vt−x1
vτ Θ(vt− x1)δ(x2) · · · δ(xd), [6]

c(x, t) ≈ e−(x1−vt)/r

1 + vτ/r
, x1 ≥ vt, xi>1 � r [7]

where Θ(x) = 1 for x ≥ 0 and 0 otherwise. This idealized174

exponential trail of immune protections h(x, t) corresponds to175

the blue trace of Fig. 1B, and the coverage or fitness gradient 176

to the isolines of Fig. 1C. 177

In the moving frame of the wave, (u, x2, . . . , xd), with u = 178

x1 − vt, the local immune protection and viral fitness can 179

be expanded locally for u, xi � vτ (see (25) for a similar 180

treatment in a one-dimensional antigenic space): 181

f((u, xi>1); t) ≈ ln

[
R0

(
1− e−u/r

1 + vτ/r

)M]
≈ f0 + su, [8] 182

where f0 = lnR0 −M ln[1 + r/(vτ)] is the average population 183

fitness, and 184

s = |∂x1f | =
M

r

(
R

1/M
0 − 1

)
[9] 185

is the fitness gradient. Rescaling the antigenic variable x1 as 186

sx1, this process is equivalent to the evolution of a population 187

where mutation effects are described by diffusion in fitness 188

space with coefficient Ds2. This is precisely the model from 189

which the fitness wave solution of Ref. (27, 32) was described 190

(see SI Appendix). In the following we will use results from 191

these works to describe the antigenic wave. However, we 192

note that in the usual fitness wave theory, population is kept 193

constant by construction, which implies that fitness is only 194

relevant when compared to the mean of the population. By 195

contrast, in our model population size is itself a dynamical 196

variable, and fitness is defined as an absolute growth rate. 197

In this version of the model, the fitness of the whole viral 198

population undergoes continuous negative drift due to the 199

constant adaptation of immune systems, encoded in the −svt 200

term in Eq. 8. This negative fitness drift has an analogous 201

effect to subtracting the mean fitness in models with constant 202

population size, making the equivalence possible. 203

The fitness wave theory allows us to make analytical pre- 204

diction about the properties of the antigenic wave. Let us 205

start with its population size N , which is regulated by how 206

fast the immune system catches up with the wave. The im- 207

mune turnover time τ in Eq. 4 is inversely proportional to N : 208

the larger the population size, the faster immune memories 209

are updated, increasing the immune pressure on current viral 210

strains (lower f0), and thus decreasing N . As the moving wave 211

reaches a stable moving state, its size N becomes stable over 212

time, giving the condition (1/N)dN/dt = f0 = 0, which in 213

turn constraints the ratio between the wave’s size and speed: 214

N

v
= MNh

r

(
R

1/M
0 − 1

)
= Nhs. [10] 215

But the fitness wave theory predicts that the speed of the 216

wave itself depends on the population size. The larger N , 217

the more outliers at the nose of the fitness wave, and the 218

further out they may jump in antigenic space, establishing 219

fitter ancestors of the future population. This results in a 220

fitness wave whose speed depends only weakly on population 221

size and mutation rate (see (32) and SI Appendix), 222

vF ≈ D2/3
F

[
24 ln(ND1/3

F )
]1/3

, [11] 223

where DF = s2D and vF = sv are the diffusivity and wave 224

speed in fitness space, which are related to their counterparts 225

in antigenic space through the scaling factor s. Replacing this 226

scaling into Eq. 11 yields a relation between antigenic speed 227

and population size, 228

v ≈ D2/3s1/3 [24 ln(N(Ds2)1/3)
]1/3

, [12] 229
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Fig. 2. Analytical prediction of wave properties. Shown are the nu-
merical versus analytical predictions for the wave’s population size N (A), speed v
(B), width σ along the wave’s direction of motion (C), and width σ⊥ in the direction
perpendicular to motion (D), with d = 2 dimensions. Length are in units of the cross-
reactivity range (so that r = 1, with no loss of generality). Parameters: Nh = 108

(squares), 1010 (circles), or 1012 (triangles); lnR0 = 1 (filled symbols) or 3 (empty
symbols); M = 1 (small symbols) or 5 (large symbols).

which closes the system of equations: using the definition of s230

(Eq. 9), Eqs. 10 and 12 completely determine N and v as a231

function of the model’s parameters (through a transcendental232

equation, see SI Appendix). We validated these theoretical233

predictions for N and v by comparing them to numerical234

simulations, which show good agreement over a wide range of235

parameters (Fig. 2A-B). We note that the alternative fitness236

wave model of Desai and Fisher (28) predicts different scaling237

relations between speed and population size, including for238

an arbitrary distribution of fitness effects (30). The major239

difference with our description is that we assume infinitesimal240

and reversible fitness effects. Relaxing that assumption to241

account for rare but strong mutational effects would affect242

Eq. 12, but the dependence on N would still be logarithmic243

at most.244

D. Shape of the antigenic wave. The width σ of the wave in245

the direction of motion is given by Fisher’s theorem, which246

relates the rate of change of the average fitness to its variance247

in the population: ∂tf = Var(f). In our description fitness and248

the antigenic dimension x1 are linearly related with coefficient249

s, implying s2σ2 = sv. The result of that prediction for σ is250

validated against numerical simulations in Fig. 2C.251

The wave is led by an antigenic ‘nose’ formed by few out-252

lying strains of reduced cross-reactivity with the concurrent253

immune population, generating high fitness. These strains254

have phenotype uc = sσ4/4D = v2/(4Ds) and fitness suc.255

They serve as founder strains from which the bulk of the fu-256

ture population will derive some time ∼ uc/v = σ2/4D later257

(see SI Appendix). As a result, two strains taken at random258

can trace back their most recent common ancestor to some 259

average time 〈T2〉 = ασ2/2D in the past, where α ≈ 1.66 is a 260

numerical factor estimated from simulations (32). 261

To explain the width σ⊥ of the wave in the other pheno- 262

typic dimensions than that of motion (xi>1), we note that 263

in these directions evolution is neutral. Two strains taken at 264

random in the bulk are expected to have drifted, or ‘diffused’ 265

in physical language, by an average squared displacement 266

〈∆x2
i 〉 = 2DT2 from their common ancestor, so that their 267

mean squared distance is 4D〈T2〉 = 2ασ2 along xi. If one 268

assumes an approximately Gaussian wave of width σ⊥, the 269

mean square distance between two random strains along xi 270

should be equal to 2σ2
⊥. Equating the two estimates yields 271

σ2
⊥ = ασ2. Fig. 2D checks the validity of this prediction 272

against simulations. 273

Both longitudinal and transversal fluctuations in antigenic 274

space are instances of quantitative traits under interference 275

selection generated by multiple small-effect mutations. The 276

width of these traits is governed by the common relation 277

〈∆x2
i 〉 = 2D〈T2〉 ∼ σ2, which expresses the effective neutrality 278

of the underlying genetic mutations (33). This relation says 279

that antigenic variations in all dimensions scale in the same 280

way with the model parameters, and the wave should have an 281

approximately spherical shape. Consistently, here we find a 282

wave with a fixed ratio α ≈ 1.66 between transverse and lon- 283

gitudinal variations. This implies a slightly asymmetric shape 284

(which may be non-universal and depend on the microscopic 285

assumptions of our mutation model). 286

In what parameter regime is our theory valid? The fitness 287

wave theory we built upon is meant to be valid in the large 288

population size, N � 1. In addition, we assumed that the 289

fitness landscape was locally linear across the wave. This ap- 290

proximation should be valid all the way up to the tip of wave, 291

given by uc, since this is where the selection of future founder 292

strains happen. This condition translates into uc � r, im- 293

plying D � r2/ ln(N)2 (using uc = v2/(4Ds) and Eqs. 9,12), 294

where D is in antigenic unit squared per infection cycle. This 295

result means that one infection cycle will not produce enough 296

mutations for the virus to leave the cross-reactivity range. 297

In that limit, another assumption is automatically fulfilled, 298

namely that the width of the wave be small compared to the 299

span of immune memory: σ � vτ . Our simulations, which run 300

in the regime of very slow effective diffusion (D/r2 . 10−6) 301

and have relatively large population sizes (N & 104), satisfy 302

these conditions. This explains the good agreement between 303

analytics and numerics. 304

E. Equations of motion of the wave’s position. The wave so-
lution allows for a simplified picture. The wave travels in the
direction of the fitness gradient (or equivalent the gradient of
immune coverage) with speed v (Fig. 3A). Occasionally the
population splits into two separate waves that then travel away
from each other and from their common ancestor (Fig. 3B).
The tip of the wave’s nose, which contains the high-fitness
individual that will seed the future population, determines its
future position in antigenic space. In the directions perpendic-
ular to the fitness gradient, this position diffuses neutrally with
coefficient D. This motivates us to write effective equations

4 | Marchi et al.
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D

Fig. 3. Stochastic behaviour of the wave: diffusive motion, splits,
and extinctions. A. The wave moves forward in antigenic space but is driven by
its nose tip, which undergoes antigenic drift (diffusion) in directions perpendicular to
its direction of motion. These fluctuations deviate that direction, resulting in effective
angular diffusion. B. When antigenic drift is large, the wave may randomly split into
subpopulations, creating independent waves going in different directions. Each wave
can also go extinct as size fluctuations bring it to 0. C. Cartoon illustrating the wave’s
angular diffusion. Selection and drift combine to create a inertial random walk of
persistence time tpersist. D. Analytical prediction (Eq. 17) for the persistence time,
versus estimates from simulations. Symbols and colors are the same as in Fig. 2.

of motion for the mean position of the wave:

dx
dt

= −
(
v +

√
2D‖ξ‖(t)

) ∂xc

|∂xc|
+
√

2Dξ⊥(t), [13]

c(x, t) =
∫ t

−∞

dt′

τ
e−

t−t′
τ
− |x−x(t′)|

r , [14]

where ξ‖ and ξ⊥ are Gaussian white noises in the directions305

along, and perpendicular to, the fitness gradient ∂xf/|∂xf | =306

−∂xc/|∂xc|. D‖ is an effective diffusivity in the direction of307

motion resulting from the fluctuations at the nose tip. These308

fluctuations are different than suggested by D, as they involve309

feedback mechanisms between the wave’s speed v, size N , and310

advancement of the fitness nose uc. In the following, we do311

not consider these fluctuations, and focus on perpendicular312

fluctuations instead.313

F. Angular diffusion and persistence of the antigenic wave.314

In the description of Eqs. 13-14, the viral wave is pushed by315

immune protections left in its trail. The fitness gradient, and316

thus the direction of motion, points in the direction that is set317

by the wave’s own path. This creates an inertial effect that318

stabilizes forward motion. On the other hand, fluctuations in319

perpendicular directions are expected to deviate the course of320

that motion, contributing to effective angular diffusion. To321

study this behaviour, we assume that motion is approximately322

straight in direction x1 = vt, and study small fluctuations in323

the perpendicular directions, x⊥ = (x2, . . . , xd), with |x⊥| � r324

(as illustrated in Fig. 3C). Eqs Eq. (13)-Eq. (14) simplify to325

(see SI Appendix):326

∂tx⊥(t) =
∫ +∞

0

dt′

T

x⊥(t)− x⊥(t− t′)
t′

e−t
′/T +

√
2Dξ⊥(t),

[15]327

where T = (v/r+1/τ)−1 = (r/v)R−1/M
0 is an effective memory 328

timescale combining the host’s actual immune memory, and 329

the cross-reactivity with strains encountered in the past. 330

Eq. 15 may be solved in Fourier space. Defining x̃⊥(ω) = 331∫ +∞
−∞ dteiωtx⊥(t), it becomes: 332

− iωx̃⊥(ω)
(

1 + ln(1− iωT )
iωT

)
=
√

2Dξ̃⊥(ω). [16] 333

To understand the behaviour at long times � T , we expand 334

at small ω: −ω2x⊥(ω) ≈
√

8Dξ̃⊥(ω)/T or equivalently in 335

the temporal domain ∂2
t x⊥ ≈

√
8Dξ⊥(t)/T . This implies 336

that the direction of motion, ê ∼ ∂xf/|∂xf | ∼ ∂tx/|∂tx|, 337

undergoes effective angular diffusion in the long run: ∂tê = 338√
8Dξ⊥(t)/(vT ). The persistence time of that inertial motion, 339

tpersist = v2T 2

4D = r2

4DR
−2/M
0 , [17] 340

does not depend explicitly on speed, population size, or the 341

dimension of antigenic space. However, a larger diffusivity 342

implies larger N and v while reducing the persistence time. 343

Likewise, a larger reproduction number R0 or smaller memory 344

capacity M speeds up the wave and increases its size, but also 345

reduces its persistence time. This implies that, for a fixed 346

number of hosts Nh, larger epidemic waves not only move 347

faster across antigenic space, but also change course faster. 348

This persistence time scales as the time it would take a 349

single virus drifting neutrally to escape the cross-reactivity 350

range, r2/D. For comparison, the much shorter timescale for a 351

population of viruses to escape from the cross-reactivity range 352

r, 353

tescape = r

v
= TR

1/M
0 = NhM

N
(R1/M

0 − 1), [18] 354

scales with the inverse incidence rate Nh/N . This is consis- 355

tent with the whole population having been infected at least 356

one every ∼ Nh/N infection cycles. This separation of time 357

scales is consistent with the observation that evolution in the 358

transverse directions is driven by neutral drift, which is much 359

slower than adaptive evolution in the longitudinal direction. 360

Both tpersist and tescape are longer than the coalescence time 361

of the viral population, uc/v ∼ σ2/4D, since they reflect 362

long-term memory from the immune system. However, while 363

tescape ∼ Nh/N is related to the re-infection period and is thus 364

bounded by the hosts’ immune memory (itself bounded by 365

their lifetime, which we do not consider), tpersist can be longer 366

than that. This is possible thanks to inertial effects, which are 367

allowed by the high-order dynamics of Eq. 15 generated by the 368

immune system. This very much like when, in mechanics, a 369

massive object set in motion in a given direction will keep that 370

direction without the need for an external force to maintain 371

it. 372

The high-frequency behaviour of Eq. (16) has a logarithmic 373

divergence, meaning that the total power of ê is infinite unless 374

we impose a (ultraviolet) cutoff. Such a regularization emerges 375

from the fine structure of the wave. While the motion of 376

the wave is driven by its nose tip, the immune pressure only 377

extends back to the recent past of the bulk of the distribution, 378

which stands at a distance uc away from the nose. In other 379

words, there is a lag (and thus an gap uc in antigenic space) 380

between the most innovative variants that drive viral evolution, 381

and the majority of currently circulating variants which drive 382

host immunity. Mathematically, this implies that the domain 383
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of integration of the first term in the right-hand side of Eq. (15)384

should start at tc = uc/v, which regularizes the divergence.385

A more careful analysis provided in the SI Appendix shows386

that this regularization does not affect the long-term diffusive387

behaviour of the wave.388

G. Canalization, speciations, and predictability of antigenic389

evolution. We now examine how deflections of the wave in390

the transverse direction determines the predictability and391

stability of the viral quasi-species. Assuming t� T , angular392

diffusion causes motion to be deflected as (see SI Appendix)393

〈x2
⊥〉 = 8(d−1)D

3T2 t3. Crucially, this deflection depends on the394

dimension of the antigenic space, because the displacement395

acts additively in each of the transversal coordinates. Higher396

dimension means more deviation from the predictable course397

of the wave, and thus less predictability. We can define a398

predictability time scale399

tpredict ∼ [8(d− 1)/3]−1/3T 2/3(r2/D)1/3, [19]400

which is the time it takes for prediction errors to become of401

the order of the cross-reactivity range. In low dimensions, this402

time scales as a weighted geometric mean between tescape ∼ T403

and tpersist ∼ r2/D. However, at high dimensions tpredict may404

be significantly reduced, causing loss of predictability even405

below tescape. The prediction timescale is distinct from the406

previously discussed persistence time: tpredict involves the inte-407

grated displacement in the transversal direction, while tpersist408

quantifies the diffusion of the tangent velocity vector. Thus,409

tpredict may be interpreted as quantifying the predictability of410

the actual location of the next viral population in antigenic411

space, while tpersist gives the predictability of the general di-412

rection of evolution, which changes more slowly. Therefore,413

the persistence time is both harder to extract from data and414

less relevant for actionable predictions.415

To get a sense of numbers, we can compare our results with416

epidemiological data, taking the evolution of influenza as an417

example, with an infection cycle time of 3 days. It is assumed418

that individuals lose immunity to the circulating strain of the419

flu within ∼ 5 years ∼ 500 cycles, meaning that the wave420

would travel a distance r in t = 500, i.e. v/r ∼ 2 · 10−3.421

For instance, with Nh = 109-1010, R0 = 2, and M = 1,422

we may choose D/r2 = 3 · 10−6 to get a speed of the same423

order, v/r ∼ 1.3 · 10−3, and tpersist ∼ 2 · 104 ∼ 200 years. By424

contrast, the predictability timescale tpredict is much shorter425

and depends on dimension, albeit slowly, ranging from ∼ 20426

years for d = 2 to about 2 years for d = 1000. We stress that427

these numbers are obtained by scaling laws, and should not428

be taken as precise quantitative predictions.429

Large deflections may also cause speciations, or splits, which430

occur when two substrains co-exist long enough to become431

independent from the immune standpoint. This happens when432

two sub-lineages see the difference of their transverse positions433

∆x⊥ become larger than ∆x0 ∼ r, within some limited period434

given by the coalescence time. We estimated the rate of such435

splitting events using a saddle-point approximation (see SI436

Appendix):437

ksplit ≈
√

3
8
v2

4De−L, L = α

(
s3R

−2/M
0 D2r4

(d− 1)v5

)1/4

[20]438

with α some numerical factor. Simulations confirmed the439

validity of this scaling (Fig. 4a).440
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Fig. 4. Rate of speciation. A. Rescaled rate of splitting events, defined as the
emergence of two substrains at distance ∆x0 = 0.1r from each other in antigenic
space, meaning that they are becoming antigenically independent. The predicted
scaling, ksplit ∼ (v2/D)e−L, as well as the definition of the collective variable
L as a function of the model parameters, are given by Eq. 20. The line shows a
linear fit of the logarithm of the ordinate. B. Predicted rate of splitting as a function
of the dimension d, for R0 = 2, M = 1, Nh = 109, and D/r2 = 3 · 10−6, with
∆x0 = r.

The splitting rate grows with the dimension (Fig. 4b), 441

consistent with the intuition that departure from canalized 442

evolution is easier when more directions of escape are available. 443

Splitting events are expected to strongly affect our ability to 444

predict the future course of the wave. However, the rarity 445

of such events (exponential scaling of ksplit) means that they 446

will have a lower impact on predictability than deflections. 447

These results provide a theoretical and quantitative basis from 448

which to assess the effect of dimension on predictability, and 449

possibly estimate d from antigenic time course data of real 450

viral populations. 451

3. Discussion 452

In this work, we have developed an analytical theory for 453

studying antigenic waves of viral evolution in response to 454

immune pressure. We showed that predictabilty is limited 455

by two features of antigenic evolution, transversal diffusion 456

and lineage speciations of the antigenic wave, both of which 457

explicitly depend on the dimensionality of antigenic space. 458

To derive these results, we explicitly embedded the anti- 459

genic phenotype in a d-dimensional Euclidean space. This 460

description is different from previous work that considered one- 461

(25) or infinite-dimensional antigenic spaces (12). It allows 462

for the possibility of compensatory mutations, and makes it 463

easier to compare results with empirical studies of viral evo- 464

lution projected onto low-dimensional spaces (8, 9). Unlike 465

these studies, however, our work does not address the question 466

how an effective dimension of antigenic space arises from the 467

molecular architecture of immune interactions. Rather, we 468

focused on the implications of the dimensionality of antigenic 469

space for phenotypic evolution and its predictability. 470

Our results suggest a hierarchy of time scales for viral 471

evolution. The shortest is the coalescence time 〈T2〉, which 472

determines population turnover. Then comes tescape, which 473

is the time it takes the viral population to escape immunity 474

elicited at a previous time point. The longest timescale is the 475

persistence time tpersist, which governs the angular diffusion 476

of the wave’s direction, but has no bearing on the prediction 477

of the actual position of the dominant strain in antigenic 478
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space. That time scale is due to inertial effects. It does479

not rely directly on the hosts’ immune memories, and may480

thus exceed their individual lifetimes. Finally, the prediction481

timescale tpredict, beyond which prediction accuracy falls below482

the resolution of cross-reactivity, scales between tescape and483

tpersist at low dimensions. This time scales measures the484

predictability of transversal fluctuations, and is thus the most485

relevant for actual predictions of future dominant strains in486

antigenic space. Importantly, it decreases with the dimension487

of the antigenic space, and may become arbitrarily low at488

very high dimensions. The fact that the evolution of influenza489

strains are hard to predict beyond a year suggests that the490

effective dimension may indeed be large.491

Our solution builds on the fitness wave solution for a diffu-492

sion model of mutation effects (27, 32). It implies a particular493

dependence of the wave’s speed on the population size, Eq. 12.494

General distribution of non-infinitesimal mutational effects,495

such as considered in (30), would yield different expressions496

for the speed. However, we expect most of our other results497

to hold—in particular, all expression that do not carry an498

explicit logarithmic dependence on N , as well the effective499

equations of motion for the wave. Our results strongly rely on500

the assumption of a homogeneous, isotropic antigenic space.501

We expect our results to be affected by anisotropies (e.g. in502

the mutational or the cross-reactivity Kernels), or by structure503

in the intrinsic fitness landscape (i.e. not linked to immunity).504

Such structure may funnel the wave in preferred directions,505

hinder it, or favor its splitting. Generally, the local geometry506

and metric of the space is expected to determine the evolu-507

tionary behaviour. For instance, Yan et al. (12) assumed a508

Hamming distance metric in an effectively infinite antigenic509

space, meaning that any mutation is both an escape mutation510

and a candidate for a lineage split. By contrast, in our geome-511

try, escape happens only in the direction of the wave, while512

splits originate from mutations perpendicular to that direction,513

due to the choice of a Euclidean metric. While our results514

emphasize the role of the effective dimension d, studying other515

geometrical effects is an interesting topic for future work.516

Despite these caveats, it is interesting to ask whether the517

effective antigenic dimension d can be extracted from data. A518

possible scheme for doing so starts by inferring the effective519

model parameters. R0 may be estimated from exponential520

epidemic growth in a susceptible population. Dependence of521

key quantities on M such as s is weak. M may be assumed522

to be of the order of the number of antigenically distinct523

infections encountered during a host’s lifetime, ∼ 4-6 (every524

15 years). D/r2 may be inferred from v/r, which can be525

estimated from cross-immunity assays or from the incidence526

rate N/Nh. Alternatively, since D/r2 is the inverse time it527

takes for mutations to neutrally evade immunity, it could528

be estimated directly from genomic data by computing the529

time for unselected mutations (whose rate is inferred from530

synonymous mutations) to affect antigenic sites. Interestingly,531

if v/r and D/r2 can be inferred independently, predictions532

about the wave’s shape, width, angular diffusion and splitting533

do not depend on the particular choice of fitness wave theory.534

Assuming that all these parameters are known, the splitting535

rate, which depends sensitively on d (Fig. 4b), could be used to536

infer an effective dimension. Since splitting is rare and may not537

be observed in practice, one could define instead partial splits,538

where a sublineage diverges an antigenic distance ∆x0 < r539

from the main lineage, for which the same scaling as Eq. 20 540

holds (see SI Appendix). Alternatively, our results could 541

be used to check the consistency of dimensionality-reduction 542

schemes based on serological assays (8–10), by testing our 543

predicted relations between the speed of the wave, its width 544

and length, and angular diffusion properties, and ask what 545

choice of dimension best agrees with our theory. 546

Our framework should be applicable to general host- 547

pathogens systems. For instance, co-evolution between viral 548

phages and bacteria protected by the CRISPR-Cas system 549

(34) is governed by the same principles of escape and adap- 550

tation as vertebrate immunity. Even more generally, our 551

theory (Eqs. 2,3) may be relevant to the coupled dynamics 552

of predators and preys interacting in space (geographical or 553

phenotypic), opening potential avenues for experimental tests 554

of these theories in synthetic microbial systems. Given the 555

current context of the global SARS-CoV-2 pandemic, it is 556

natural to ask whether our results could be applicable to pre- 557

dict its evolution. While our theory describes the long-term 558

co-evolution of viral strains with the hosts’ immune systems, 559

in which most hosts have been exposed to at least on strain of 560

the virus, SARS-CoV-2 is still in a phase of growth, and has 561

not exhausted the reservoir of susceptible hosts. As the situa- 562

tion develops, it will be interesting to see whether its future 563

evolution follows a Red Queen type of evolution like influenza, 564

goes extinct, or splits into many antigenically independent sub- 565

lineages. While our model may shed light on these questions, 566

fine microscopic details such as geographical and population 567

structure impose additional challenges for predictions. 568

4. Methods 569

We simulated discrete population dynamics of infected hosts 570

n(x, t)) and immune protections nh(x, t) ≡ Nhh(x, t) (all inte- 571

gers) on a 2D square lattice with lattice size ∆x ranging from 572

10−5r to 0.1r. Each time step corresponds to a single infection 573

cycle, ∆t = 1. At each time step: (1) viral fitness f is com- 574

puted at each occupied lattice site from the immune coverage 575

Eq. 1; (2) viruses at each occupied lattice site are grown accord- 576

ing to their fitness, n(x, t+ 1) ∼ Poisson[(1 + f∆t)n(x, t)]; (3) 577

viruses are mutated by jumping to nearby sites on the lattice; 578

(4) the immune system is updated according to a discrete ver- 579

sion of Eq. 3, by implementing nh(x, t+ 1) = nh(x, t) +n(x, t) 580

and then removing N(t) protections at random (so that Nh 581

remains constant). 582

To implement (1), we used a combination of exact compu- 583

tation of Eq. 1 and approximate methods, including one based 584

on non-homogeneous fast Fourier transforms (35, 36). Details 585

are given in the SI Appendix. 586

To implement (3), we drew the number of mutants at each 587

occupied site from a binomial distribution Binomial(n(x, t), 1− 588

e−µ∆t). The number of new mutations m affecting each 589

of these mutants is drawn from a Poisson distribution of 590

mean µ∆t conditioned on having at least 1 mutation. The 591

new location of each mutant is drawn as x + δx, with 592

δx = round(
∑m

i=1 εi) (rounding is applied to each dimen- 593

sion), where εi is a vector of random orientation and modulus 594

drawn from a Gamma distribution of mean δ ∼ 2∆x and shape 595

parameter 20. This distribution was chosen so as to maximize 596

the number of non-zero jumps while maintaining isotropy. We 597

then define D = µ〈δx2
1〉/2. 598

To find the wave solution more rapidly, the viral population 599

Marchi et al. PNAS | May 31, 2021 | vol. XXX | no. XX | 7



DRAFT

was initialized as a Gaussian distribution centered at (0, 0)600

with size N and width σ in all dimensions, to which 0.1%601

additional viruses are randomly added within the interval602

(0;uc) along x1 (N , σ, and uc being all given by the theory603

prediction). Immune protections are placed according to Eq. 6.604

The first 20,000 time steps serve to reach steady state and are605

discarded from the analysis. When a population extinction606

(N = 0) or explosion (N = Nh/2) occurs, the simulation607

is resumed at an earlier checkpoint to avoid re-equilibrating.608

Simulations are ended after 5 ·106 steps or after 20 consecutive609

extinctions or explosions from the same checkpoint.610

In order to analyze the organization of viruses in phenotypic611

space, we save snapshots of the simulation at regular time612

intervals. For each saved snapshot we take all the coordinates613

with n > 0 and then cluster them into separate lineages614

through the python scikit-learn DBSCAN algorithm (37) (38)615

with the minimal number of samples min_samples = 10. The ε616

parameter defines the maximum distance between two samples617

that are considered to be in the neighborhood of each other.618

We perform the clustering for different values of ε and select619

the value that minimizes the variance of the 10th nearest620

neighbor distance. Clustering results are not sensitive to621

this choice. This preliminary clustering step is refined by622

merging clusters if their centroids are closer than the sum of623

the maximum distances of all the points in each cluster from624

the corresponding centroid.625

From the clustered lineages we can easily obtain a series of626

related observables, such as its speed v obtained as the deriva-627

tive of the center’s position. The width of the lineage profile628

in the direction of motion σ as well as in the perpendicular629

direction σ⊥ are obtained by taking the standard deviaton630

of the desired component of the distances of all the lineage631

viruses from the lineage centroid. Reported numbers are time632

averages of these observables. We can track their separate633

trajectories in antigenic space. A split of a lineage into two634

new lineages is defined when two clusters are detected where635

previously there was one, and their distance is larger than636

∆x0, the chosen threshold for calling a split.637

To estimate the persistence time, we first subsample the638

trajectory so that the distance between consecutive points639

is bigger than 6(〈σ〉 + std(σ)) so that fast fluctuations in640

the population size do not affect the inference. We take the641

resulting trajectory angles and smooth them with a sliding642

window of 5. Then we divide the trajectory into subsegments,643

and compute the angles mean squared displacement (MSD)644

over all lineages and all subsegments. We consider time lags645

only bigger than twice the typical smoothing time, and if the646

MSD trace is long enough we also require the time lag to647

be bigger than 2T . Finally we only keep time lag bins with648

at least 10 datapoints. We fit the resulting time series to a649

linear function ax+ b, and get the persistence time as 2
a
. We650

compute the reduced χ2 as a goodness-of-fit score. Results are651

shown for simulations that had enough statistics to perform652

the fit, lasted at least 105 cycles, and had a reduced χ2 below653
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