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Synthesis of substrates 1-3 and (R, Sp)-9a-b 

Substrates 1-3 were prepared from (±)-S1 or (Sp)-S1[1] by following the route described on 

scheme S1. The bulky carboxamide was reduced using the borane·tetrahydrofuran (BH3·THF) 

complex toward the amino derivatives (±)-1 or (Sp)-1.[2] In our hands, yields were almost similar 

when using commercially available solution of BH3·THF or when it is prepared in situ from 

sodium borohydride and iodine. However, for practical reasons, we used the commercial 

solution on small scale (up to 1 g) and preferred to use the in situ prepared complex on larger 

scale. Substitution of similar bulky amines with an adjacent stable substituent was reported by 

Anderson although no experimental details were provided. Therefore, we set up an overnight 

reaction with a large excess of acetic anhydride at 80 °C. Surprisingly, only a modest conversion 

was observed (49.5% on starting material recycled) while we isolated the acetate (±)-2 and the 

unexpected aldehyde (±)-S2 in low yields (15.5 and 13%, respectively). To increase conversion 

and reduce the formation of (±)-S2, we increased the temperature and decrease the reaction 

time. Pleasingly, after 1 h at 160 °C, full conversion was noticed and the title product was 

isolated in 83.5% with traces of the aldehyde. Reacting (Sp)-1 in similar conditions afforded 

(Sp)-2 in 87% yield without erosion of the er (96:4 calculated by chiral HPLC). Other reported 

synthesis toward the same enantioenriched acetate (Sp)-2 were reported by Ito,[3] Widhalm[4] 

and Nicolosi[5] in 7, 6 and 4 steps, respectively. Saponification of the acetate using sodium 

hydroxide in a THF-water mixture finally afforded (±)-3 in a quantitative yield.  

 

Substrates (R, Sp)-9a-b were prepared from (R)-Ugi’s amine, with a modified protocol from 

Tucker.[6] 

 

(±)-1-Iodo-2-(N,N-diisopropylaminomethyl)iodoferrocene - (±)-1: A solution of iodine 

(9.75 g, 38.4 mmol, 2.40 equiv) in THF (60 mL) was added dropwise to a suspension of sodium 

borohydride (3.03 g, 80.0 mmol, 5.00 equiv) in THF (50 mL) at 0 °C. After addition, the 

reaction mixture was warmed to rt and stirred for 1 h. Compound (±)-S1 (7.03 g, 16.0 mmol, 

1.00 equiv) was added portionwise to the reaction mixture which was then heated at reflux 

overnight (heating mantel, external temperature 80 °C). Remark: the use of PTFE sleeve is 

strongly recommended to avoid blockage of the ground glass joints. The reaction mixture was 

cooled to 0 °C and a solution of NaOH (10%, 50 mL) was added dropwise. Caution: as a 

vigorous evolution of gas occurred, the first drops of NaOH solution should be added slowly. 

After addition, the reaction mixture was stirred at reflux for 1 h (heating mantel, external 

temperature 80 °C). The reaction mixture was cooled to rt and the layers were separated. The 
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aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were 

extracted with aqueous HCl (1.0 M, 3 x 50 mL). The combined aqueous layers were washed 

with Et2O (3 x 50 mL) before being basified with solid K2CO3 until pH 8-9. Caution: as 

vigorous evolution of gas occurred, only small portions of K2CO3 should be added each time. 

The aqueous layer was extracted with Et2O (2 x 60 mL). The combined organic layers were 

washed with water (50 mL), brine (50 mL), dried over MgSO4, filtrated on cotton wool and 

concentrated under vacuum using a rotary evaporator to give the pure product as an orange oil 

(6.63 g, 97%). Rf (eluent: PET/EtOAc 10:1 with 5 drops of NEt3) = 0.55. νmax (film)/cm−1 2961, 

1676, 1461, 1380, 1361, 1202, 1181, 1150, 1116, 1000, 952, 818, 804. 1H NMR (300 MHz, 

CDCl3): δ (ppm) 4.37 (dd, J = 2.3, 1.4 Hz, 1H, FcCH, H5), 4.33 (br s, 1H, FcCH, H3), 4.14 (t, 

J = 2.3 Hz, 1H, FcCH, H4), 4.10 (s, 5H, Cp), 3.59 (d, J = 14.5 Hz, 1H, CHH), 3.39 (d, J = 14.5 

Hz, 1H, CHH), 3.01 (sept, J = 6.7 Hz, 2H, 2 x CH), 1.03 (d, J = 6.7 Hz, 6H, 2 x CH3), 1.02 (d, 

J = 6.7 Hz, 6H, 2 x CH3). 
13C NMR (75.4 MHz, CDCl3): δ (ppm) 89.4 (FcC, C2), 74.1 (FcCH, 

C5), 71.7 (Cp), 69.1 (FcCH, C3), 68.2 (FcCH, C4), 47.3 (2 x CH), 45.4 (FcC, C1), 44.6 (CH2), 

21.6 (2 x CH3), 20.6 (2 x CH3). Mass: 425 [M], 325 [M-NiPr2]. 

(Sp)-1-Iodo-2-(N,N-diisopropylaminomethyl)ferrocene - (Sp)-1: By following a similar 

protocol, starting from (Sp)-S1 (1.40 g, 3.01 mmol, 1.00 equiv, 96:4 er) and BH3.THF complex 

in THF (1.0 M, 15.5 mL, 15.5 mmol, 5.00 equiv), the title product was obtained as an orange 

oil (1.0 g, 77%). Analytical data analogous to racemic compound. [α]D +20.5 (c 0.01 in CHCl3). 

(±)-1-Iodo-2-(acetoxymethyl)ferrocene - (±)-2: Compound (±)-1 (10.6 g, 25.0 mmol, 1.00 

equiv) was dissolved into acetic anhydride (95.3 mL, 103 g, 1.00 mol, 40.0 equiv) at rt and the 

resulting solution was stirred at 160 °C (heating mantel, external temperature) for 1 h. The 

reaction mixture was cooled to 0 °C and EtOAc (100 mL) was added before pouring the reaction 

mixture onto ice (200 mL). Solid K2CO3 was added under stirring until pH 8 was reached. 

Caution: as vigorous evolution of gas occurred, only small portions of K2CO3 should be added 

each time. The layers were separated and the aqueous layers was extracted with EtOAc (50 

mL). The combined organic layers were washed with water (2 x 50 mL), brine (1 x 50 mL), 

dried over MgSO4, filtrated over cotton wool and concentrated under vacuum using a rotary 

evaporator to give the crude product. Remark: if acetic acid remains at this stage, it can be 

easily removed by distillation with cyclohexane using a rotary evaporator. The crude product 

was purified by column chromatography over SiO2, using PET/EtOAc (10:1) with 1% NEt3 to 

give the title product as an orange oil which solidifies upon standing (8.2 g, 85%). Analytical 

data analogous to those reported previously.[3b] Rf (eluent: PET/EtOAc 10:1) = 0.48. Mp 47-52 

°C. νmax (film)/cm−1 3093, 1731, 1438, 1411, 1366, 1220, 1106, 1064, 1019, 999, 943, 823, 809. 
1H NMR (300 MHz, CDCl3): δ (ppm) 5.03 (d, J = 12.1 Hz, 1H, CHH), 4.86 (d, J = 12.1 Hz, 

1H, CHH), 4.47 (s, 1H, FcCH, H3), 4.35 (s, 1H, FcCH, H5), 4.25 (s, 1H, FcCH, H4), 4.16 (s, 

5H, Cp), 2.04 (s, 3H, CH3). 
13C NMR (75.4 MHz, CDCl3): δ (ppm) 170.8 (C=O), 82.8 (FcC, 

C2), 75.6 (FcCH, C3), 71.6 (Cp), 69.7 (FcCH, C4), 69.2 (FcCH, C5), 63.0 (CH2), 44.7 (FcC, 

C1), 21.0 (CH3). Mass: 384 [M]. 

(Sp)-1-Iodo-2-(acetoxymethyl)ferrocene - (Sp)-2: By following a similar protocol, starting 

from (Sp)-1 (1.00 g, 2.35 mmol, 1.00 equiv, 96:4 er) and acetic anhydride (8.90 mL, 9.70 g, 

94.0 mmol, 40.0 equiv), the title product was obtained as an orange oil (785.0 mg, 87%, 96:4 

er). Analytical data analogous to racemic compound. [α]D -4.75 (c 0.01 in CHCl3). The 

enantiomeric ratio was determined on Chiralpak IC-3 column, hexane/iPrOH: 99:1, 0.9 

mL/min, 5 °C, λ = 254 nm, t (major) = 16.76 min, t (minor) = 17.35 min). 

(±)-1-Iodo-2-(hydromethyl)ferrocene - (±)-3: NaOH (240 mg, 6.00 mmol, 3.00 equiv) was 

dissolved in H2O (6.5 mL) and THF (3.5 mL) at rt. Compound (±)-2 (750 mg, 2.00 mmol, 1.00 

equiv) was added and the reaction mixture was heated overnight (heating mantel, external 

temperature 80 °C). The reaction mixture was cooled to rt, water (10 mL), followed by EtOAc 
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(10 mL) were added. The layers were separated and the aqueous layer was extracted with 

EtOAc (10 mL). The combined organic layers were dried over MgSO4, filtrated over cotton 

wool and concentrated under vacuum using a rotary evaporator to give the crude product. This 

was purified by column chromatography over SiO2, using PET/EtOAc (80:20 to 70:30) to give 

the title product as an orange solid (682 mg, quant). Analytical data analogous to those reported 

previously.[3b, 5] Rf (eluent: PET/EtOAc 70:30) = 0.57. Mp 89-90 °C. νmax (film)/cm−1 3250 (br), 

1365, 1308, 1246, 1103, 1060, 996, 972, 940, 815, 752. 1H NMR (500 MHz, CDCl3): δ (ppm) 

4.49 (dd, J = 3.4, 12.3 Hz, 1H, CHH), 4.47 (dd, J = 1.2, 2.1 Hz, 1H, FcCH, H5), 4.38 (dd, J = 

3.4, 12.3 Hz, 1H, CHH), 4.32 (dd, J = 1.2, 2.1 Hz, 1H, FcCH, H3), 4.24 (t, J = 2.4 Hz, 1H, 

FcCH, H4), 4.17 (s, 5H, Cp), 1.64 (br t, J = 4.5 Hz, 1H, OH). 13C NMR (125 MHz, CDCl3): δ 

(ppm) 88.3 (FcC, C2), 75.2 (FcCH, C5), 71.5 (Cp), 69.2 (FcCH, C4), 67.8 (FcCH, C3), 61.5 

(CH2), 43.9 (FcC, C1). 

(R,Sp)-1-Iodo-2-(α,N,N-trimethylaminomethyl)ferrocene - (R, Sp)-9a: sBuLi (1.1 M in 

cyclohexane-hexane (92:8), 3.80 mL, 4.20 mmol, 1.40 equiv) was added dropwise to a solution 

of (R)-Ugi’s amine (772 mg, 3.00 mmol, 1.00 equiv) in Et2O (11 mL) at 0 °C. After addition, 

the reaction was stirred for 1 h at the same temperature before being cooled to -78 °C. After 5 

min, a solution of iodine (1.07 g, 4.20 mmol, 1.40 equiv) in THF (10 mL) was added and the 

reaction mixture was stirred at the same temperature for 15 min before being warmed to rt. 

Aqueous Na2S2O3 solution (sat., 15 mL) was added and the reaction mixture was extracted with 

EtOAc (3 x 20 mL). The combined organic layers were dried over MgSO4, filtrated over cotton 

wool and concentrated under vacuum using a rotary evaporator to give the crude product. This 

was purified by column chromatography over neutralized SiO2, using PET-EtOAc (80:20) with 

2% of NEt3 to give the title product as an orange oil (993 mg, 86%). Analytical data analogous 

to those reported previously.[6] Rf (TLC plate dipped in NEt3 and dried prior to use, eluent: 

PET/EtOAc 80:20 with 5 drops of NEt3) = 0.50. [α]D -8.32 (c 0.01 in CHCl3). νmax (film)/cm−1 

3093, 2970, 2933, 2855, 2815, 2771, 1449, 1372, 1260, 1192, 1106, 1088, 1071, 1000, 918, 

818. 1H NMR (500 MHz, CDCl3): δ (ppm) 4.46 (dd, J = 1.3, 2.3 Hz, 1H, FcCH, H5), 4.24 (t, J 

= 2.5 Hz, 1H, FcCH, H4), 4.15 (dd, J = 1.3, 2.5 Hz, 1H, FcCH, H3), 4.12 (s, 5H, Cp), 3.62 (q, 

J = 6.8 Hz, 1H, CH), 2.14 (s, 6H, N(CH3)2), 1.50 (d, J = 6.8 Hz, 3H, CH3). 
13C NMR (125 MHz, 

CDCl3): δ (ppm) 90.4 (FcC, C2), 74.5 (FcCH, C5), 71.8 (Cp), 68.3 (FcCH, C4), 65.7 (FcCH, 

C3), 57.7 (CH), 45.6 (FcC, C1), 41.3 N(CH3)2), 16.1 (CH3). 

 

(R,Sp)-1-Iodo-2-(acetoxyethyl)ferrocene - (R,Sp)-9b: a solution of (R, Sp)-9a (693 mg, 1.80 

mmol, 1.00 equiv) in acetic anhydride (6.90 mL, 7.40 g, 72.0 mmol, 40.0 equiv) was heated at 

80 °C for 1 h in a pre-heated oil bath. The reaction mixture was cooled to rt, cyclohexane (50 

mL) was added and volatiles were removed under vacuum using a rotary evaporator. 

Cyclohexane (50 mL) was added and removed under vacuum. The same procedure was 

repeated until all acetic anhydride is removed. The crude reaction mixture was purified by 

column chromatography over neutralized SiO2, using PET-EtOAc (90:10) with 2% of NEt3 to 

give the title product as an orange solid (547 mg, 76%). Analytical data analogous to those 

reported previously.[6] Rf (eluent: PET/EtOAc 90:10 with 5 drops of NEt3) = 0.59. [α]D -98.9 (c 

0.01 in CHCl3). Mp 66-67 °C. νmax (film)/cm−1 3093, 2986, 1731, 1718, 1366, 1227, 1107, 

1045, 1018, 1000, 949, 928, 840, 821. 1H NMR (500 MHz, CDCl3): δ (ppm) 5.89 (q, J = 6.5 

Hz, 1H, CH), 4.54 (dd, J = 1.3, 2.2, 1H, FcCH, H5), 4.33 (dd, J = 1.3, 2.4 Hz, 1H, FcCH, H3), 

4.28 (t, J = 2.5 Hz, 1H, FcCH, H4), 4.15 (s, 5H, Cp), 2.01 (s, 3H, CH3CO), 1.66 (s, 3H, CH3). 
13C NMR (125 MHz, CDCl3): δ (ppm) 170.4 (C=O), 87.7 (FcC, C2), 75.8 (FcCH, C5), 71.9 

(Cp), 69.8 (CH), 69.1 (FcCH, C4), 65.9 (FcCH, C3), 44.2 (FcC, C1), 21.8 (CH3CO), 18.8 

(CH3). 
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Solid-state structures of compounds (±)-4a, (±)-4n, (±)-4r, (±)-4u, (±)-4v, (±)-7a, (±)-7b, 8a, 

(R,Sp)-10 and (±)-11b. 

 

 

Figure S1. Molecular structure of compound (±)-4a (thermal ellipsoids shown at the 30% probability level). CCDC 2090455. 

 

 

Figure S2. Molecular structure of compound (±)-4n (thermal ellipsoids shown at the 30% probability level). CCDC 

2090456. 
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Figure S3. Molecular structure of compound (±)-4r (thermal ellipsoids shown at the 30% probability level). CCDC 1898629. 

 

 

Figure S4. Molecular structure of compound (±)-4u (thermal ellipsoids shown at the 30% probability level). CCDC 

2090457. 

  



S7 

 

 

Figure S5. Molecular structure of compound (±)-4v (thermal ellipsoids shown at the 30% probability level). CCDC 2090458. 

 

 

Figure S6. Molecular structure of compound (±)-7a (thermal ellipsoids shown at the 30% probability level). CCDC 2090459. 
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Figure S7. Molecular structure of compound (±)-7b (thermal ellipsoids shown at the 30% probability level). CCDC 

1898630. 

 

 

Figure S 8. Molecular structure of compound 8a (thermal ellipsoids shown at the 30% probability level). CCDC 2090460. 
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Figure S9. Molecular structure of compound (R,Sp)-10 (thermal ellipsoids shown at the 30% probability level). CCDC 

2090461. 

 

 

Figure S10. Molecular structure of compound (±)-11b (thermal ellipsoids shown at the 30% probability level). CCDC 

2090462. 
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NMR Spectra 

Compound (±)-1 
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Compound (Sp)-1 
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Compound (±)-2 
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Compound (Sp)-2 
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Compound (±)-3 
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Compound (±)-4a 
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Compound (Sp)-4a 
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Compound (±)-4b 
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Compound (±)-4c 
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Compound (±)-4d 
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Compound (±)-4e 
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Compound (±)-4f 
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Compound (±)-4g 
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Compound 4h 
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Compound 4i 
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Compound (Sp,Sp)-4i 
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Compound 4j 

 
Compound (R,R,Sp)-4j 
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Compound (±)-4k 
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Compound (Sp)-4k 
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Compound (±)-4l 
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Compound (±)-4m 
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Compound (±)-4n 
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Compound (±)-4n’ 
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Compound (±)-4o 
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Compound (±)-4o’ 
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Compound (±)-4p 
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Compound (±)-4q 
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Compound (±)-4r 
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Compound (Sp)-4r 
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Compound (±)-4s 
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Compound (Sp)-4s 
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Compound (±)-4t 
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Compound (±)-4u 
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Compound (±)-4v 
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Compound (±)-4v 

 

 

  



S111 

 

 

 

  



S112 

 

 

 

  



S113 

 

 

  



S114 

 

Compound (±)-7a 
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Compound (±)-7b 
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Compound 7c 
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Compound (±)-7d 
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Compound (±)-7e 
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Compound 8a 
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Compound (R,Sp)-9a 
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Compound (R,Sp)-9b 
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Compound (R,Sp)-10 
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Compound (±)-11a 
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Compound (±)-11b 
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Compound 11c 
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Compound (±)-12 
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Compound 15 
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Compound 17 
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Compound 19 
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Selected NMR NOESY correlations 
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HPLC Chromatograms 

Compounds (±)- and (Sp)-2 
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Compounds (±)- and (Sp)-4a 
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Compounds 4i (mixture of stereoisomers and (Sp,SP)) 
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Compounds (±)- and (Sp)-4k 
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Compounds (±)- and (Sp)-4r 
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Compounds (±)- and (Sp)-4s 
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