open science

HFIP-Promoted Substitution in the Ferrocene Series: Smooth Approach towards Original Catalysts
 William Erb, Victor Carre, Thierry Roisnel

To cite this version:

William Erb, Victor Carre, Thierry Roisnel. HFIP-Promoted Substitution in the Ferrocene Series: Smooth Approach towards Original Catalysts. European Journal of Organic Chemistry, 2021, 2021 (41), pp.5702-5716. 10.1002/ejoc.202100824 . hal-03367746

HAL Id: hal-03367746

https://hal.science/hal-03367746

Submitted on 15 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HFIP-promoted substitution in the ferrocene series: smooth approach towards original catalysts**

Dr. William Erb,* Victor Carré, and Dr. Thierry Roisnel
Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France. william.erb@univ-rennes1.fr - https://iscr.univ-rennes1.fr/william-erb

** HFIP: Hexafluoroisopropanol
Supporting information for this article is given via a link at the end of the document.

Abstract

Pseudo-benzylic substitution is an important reaction in the ferrocene series, especially to reach ligands for catalysis. Here, we described new reactions conditions, using fluorinated alcohols as both solvent and promoter, able to deliver iodoferrocene derivatives faster than using classical solvents. Various N, O, P and C-nucleophiles were found compatible with this transformation which occurs with full retention of stereochemistry. Original P, N-ligands were finally prepared by using iodine/lithium exchange-chlorophoshine trapping sequences, and their properties were evaluated in Suzuki-Miyaura and Buchwald-Hartwig coupling as well as in ketone α-arylation reaction.

Introduction

Since its discovery in 1951, ${ }^{[1]}$ ferrocene has gained a major place in chemistry. ${ }^{[2]}$ While it can be involved in many transformations, three main reactions account for its large diversity of applications: aromatic electrophilic substitution, deprotometallationelectrophilic trapping and pseudo-benzylic substitution. The latter was first reported from achiral acetoxymethylferrocene by Richards who proposed the formation of an iron-stabilized pseudo-benzylic carbocation to explain the high reaction rate. ${ }^{[3]}$ Soon after, Bacskai and Richards found that the reaction occurs with stereoretention from chiral cyclic and acyclic ferrocenes, respectively. ${ }^{[4]}$ While the origin of the high stability of the carbocation has remained a matter of debate for years, ${ }^{[5]}$ Gleiter and Seeger validated in 1971 the structure of a fulvene bent towards the iron (Scheme 1) by using the extended Hückel model. ${ }^{[6]}$ Additional evidence of such structures was obtained in 1979 by Behrens who used X-ray diffraction analysis ${ }^{[7]}$ while detailed computational investigations were later described. ${ }^{[8]}$ Recently, Kronja revisited the early solvolysis studies, showing that the positive charge of the cation was mainly shifted to the organometallic core and that additional phenyl substituents have a limited impact on the cation stability. ${ }^{[9]}$

Scheme 1. Pseudo-benzylic substitution in the ferrocene series. LG: leaving group, NuH: nucleophile.

The synthetic value of this reaction was first demonstrated by Dixneuf in 1969 from achiral ferrocenemethanol derivatives, followed one year later by Ugi from chiral α-ferrocenylethylamine derivatives. ${ }^{[10]}$ The reaction was extended to other chiral substrates and nucleophiles by Dixneuf ${ }^{[11]}$ and Ugi[${ }^{[12]}$ while the use of ferrocenophane substrates was investigated with similar success by Tainturier. ${ }^{[13]}$ Over the years, the reaction was studied from a wide range of substrates, including ferrocenophanes, ${ }^{[14]}$ and various P_{-}, N-, O-, S - and C-based nucleophiles, ${ }^{[15]}$ in homogeneous or biphasic systems as developed by Boev and Snegur, ${ }^{[16]}$ mainly to reach chiral ligands ${ }^{[17]}$ but also biologically active products. ${ }^{[18]}$ An important feature of this reaction is its high level of stereoretention although partial inversion can occur on specific substrates, either mono-[14c, 19] or polysubstituted ${ }^{[20]}$, which could be rationalized by following the work of Weissensteiner. ${ }^{[21]}$ Although many reaction conditions have been reported, most of them involved prolonged heating at high temperatures. Looking for smoother alternatives, Šebesta reported in 2002 the successful substitution of an acetate in aqueous media, rationalized by the formation of hydrogen bonds able to facilitate the leaving group departure. ${ }^{[22]}$ Similarly, Cozzi reported in 2007 that ferrocenyl alcohols can react with nucleophiles in such substitution "on water" at $80^{\circ} \mathrm{C}$ for 24 h . Concerning alternative solvents able to establish hydrogen bonds, fluorinated alcohols emerged as promising candidates with their high hydrogen bond donating ability, increased acidity, low nucleophilicity and high dielectric constant. ${ }^{[23]}$ Therefore, they proved ideal to generate cations for both mechanistic studies ${ }^{[24]}$ and methodology development. ${ }^{[25]}$ Although fluorinated alcohols were recently used to promote reactions involving carbocations, ${ }^{[26]}$ to the best of our knowledge, only two unoptimized examples have been reported in the ferrocene series. ${ }^{[27]}$ Therefore, we decided to study the use of fluorinated alcohols to promote such pseudo-benzylic substitution.

Results and Discussion

The substrates ($\mathbf{\pm} \mathbf{)} \mathbf{- 1}-\mathbf{3}$ were selected to study the substitution in fluorinated alcohols (Scheme 2) as the presence of iodine would allow further functionalization. These compounds can be obtained from 2-iodo- N, N-diisopropylferrocenecarboxamide (see SI), accessible in both racemic and enantioenriched form. ${ }^{[28]}$ They were reacted with morpholine in an excess of hexafluoroisopropanol (HFIP) at $60^{\circ} \mathrm{C}$ for 1 h . While moderate conversions were observed with N, N-diisopropylamino ((\pm)-1) and
hydroxyl ((\pm)-3) as leaving groups, complete conversion was reached with the acetate (\pm)-2, and the title product ($\mathbf{\pm}$)-4a was isolated in a 91% yield.

Scheme 2. Evaluation of leaving groups.

We found possible to reduce the amount of HFIP to 10 equivalents without detrimental effect (Table 1, entries 1-2) while further reduction was accompanied by a major yield drop (entry 3). The use of 1 to 4 equivalents of morpholine led to similar results (entries 2, 4-5); however, for reproducibility reasons, two equivalents of nucleophile were preferred. Conducting the reaction at lower temperature was detrimental to the yield (entries $2,6-7$) while performing the reaction at $110^{\circ} \mathrm{C}$ in a sealed tube considerably fastened the reaction (entry 8). However, for safety reasons, performing reactions in regular glassware at $60^{\circ} \mathrm{C}$ was preferred. Other solvents were finally evaluated. With 4 equivalents of morpholine, similar results were obtained in trifluoroethanol (TFE) and HFIP (entries 2 and 9). However, when 2 equivalents of morpholine were employed in TFE or isopropanol, a major drop of the yield was observed (entries 10-11).

Table 1. Optimization of the reaction conditions.

	OAc $(\pm)-2$	Morpholine Solvent Temperature, 1		(\pm)-4a
Entry	Solvent (equiv)	Morpholine (equiv)	$\left.\mathrm{T}^{(}{ }^{\circ} \mathrm{C}\right)$	Yield (
1	HFIP (30)	4	60	94
2	HFIP (10)	4	60	93
3	HFIP (5)	4	60	8
4	HFIP (10)	2	60	88
5	HFIP (10)	1	60	92
6	HFIP (10)		40	72
7	HFIP (10)	4	25	72
$8{ }^{[a]}$	HFIP (10)	2	120	99
9	TFE (10)	4	60	86
10	TFE (10)	2	60	25
11	iPrOH (10)	2	60	Traces

[a] 10 min reaction time.

Our optimal conditions in hand, we evaluated the ability of other aliphatic amines to act as nucleophile in this HFIP-promoted substitution from both (\pm)- and (\boldsymbol{S}_{p})-2 (Scheme 3). As one could have expected, no erosion of the enantiomeric ratio (er) was observed in the reaction from (\boldsymbol{S}_{p})-2 (er96:4) to (\boldsymbol{S}_{p})-4a. Acting as a weakly acidic solvent, HFIP was found to tolerate tertbutoxycarbonyl (Boc) protecting group with compound ($\mathbf{\pm}$ - $\mathbf{4 b}$. Piperazine led to both the monosubstituted product (\pm)-4c (68% yield) and disubstituted product ($\mathbf{\pm}$)-4h (24% yield). However, moving to pyrrolidine resulted in a main drop of the yield in our standard conditions (compound (\pm)-4d, 14% yield). This unexpected result might result from the higher nucleophilicity of pyrrolidine when compared with morpholine, ${ }^{[29]}$ leading to the formation of ammonium salts. However, further optimization using an excess of amine resulted in moderate 36% yield. Similarly, when the reaction was carried out in the presence of 2 equivalents of diallylamine or dibenzylamine, expected to be as reactive, ${ }^{[29]}$ moderate yields were recorded for the compounds (\pm)-4e and \mathbf{f} (37 and 35%, respectively). Again, using 4 equivalents of nucleophile restored high yields while benzylamine gave 56% of compound ($\mathbf{~})-\mathbf{4 g}$ in our standard conditions. Diamines can also be used, as shown with the compounds ($\mathbf{\pm}$)-4h and (\pm)- or ($\boldsymbol{S}_{p}, \boldsymbol{S}_{p}$)$4 i$, obtained from piperazine and N, N^{\prime}-dimethylethylenediamine (DMEDA), respectively. However, for bulky diamines, we found better to react ($\mathbf{\pm}$)-2 with 1.8 equivalent of both amine and HFIP, as illustrated with the compounds 4 j and $\left(R, R, S_{p}\right)-4 \mathrm{j}$. Pleasingly, it was possible to scale up the reaction to $5.0 \mathrm{mmol}(2.3 \mathrm{~g}$ of compound (\pm)-4a isolated) with similar results.

Scheme 3. Reaction between the substrates ($\mathbf{\pm}$)- and (\boldsymbol{S}_{p})-2 and aliphatic amines. ${ }^{\text {a }} 4$ Equiv of amine used. ${ }^{\text {b }}$ Addition of $(\pm)-2$ onto a solution of pyrrolidine in HFIP. ${ }^{c} 0.5$ Equiv of amine used. ${ }^{d} 0.45$ Equiv of amine used. ${ }^{e} 1.8$ Equiv of amine and 1.8 equiv of HFIP used.

We further engaged a few azoles in our optimized conditions (Scheme 4). While the use of pyrazole led to the compounds (\pm)$\mathbf{4 k}$ and $\left(\boldsymbol{S}_{\boldsymbol{p}}\right)-\mathbf{4 k}$ in very good yields, only 50% of compound ($\mathbf{\pm}$)-41 was isolated when imidazole was used instead. A slightly improved yield (up to 66%) was recorded when 4 equivalents of imidazole were used. The compound (\pm)-4m was isolated in a good 84% yield by using 1,2,4-triazole while 2 mercaptobenzothiazole conducted to the isomeric products (\pm)$4 \mathbf{n}$ and ($\mathbf{\pm})-4 \mathbf{n}$. As previously observed in a related reaction, ${ }^{[30]} \mathrm{N}$ alkylation predominates over S-alkylation. Finally, as observed in other reaction conditions, ${ }^{[31]}$ reacting indazole with ($\mathbf{\pm}$)-2 afforded both the $N 1$ - and $N 2$-alkylated products (\pm)-40 and (\pm)-4o' in close yields (44 and 53%, respectively).

(\pm) $-4 n-76 \%$

(\pm)-40-44\%

$(\pm)-4 n^{\prime}-6 \%$

(\pm) $-40^{\prime}-53 \%$

Scheme 4. Reaction between the substrates ($\mathbf{\pm}$)- and ($\left.\boldsymbol{S}_{p}\right)$-2 and azoles. ${ }^{\text {a }} 4$ Equiv of azole used.

Then, a few other N-, $O-, P$ - and C-nucleophiles were selected to establish the limitations of this methodology (Scheme 5). In our classical conditions, tert-butylcarbamate was found reactive enough to give the targeted compound ($\mathbf{~}$)-4p while allylic alcohol led to the ether $(\pm)-4 \mathbf{q}$ and to the unexpected product ($\mathbf{\pm}$)-4r (32 and 24% yield, respectively). To validate the structure of the later, the substrates ($\mathbf{\pm}$)- and (\boldsymbol{S}_{p})-2 were heated in HFIP in the absence of any nucleophile. Full conversion was reached in only 10 min and the compounds ($\mathbf{\pm}$)- and $\left(\boldsymbol{S}_{p}\right)-4 \mathrm{r}$ were isolated in moderate yields. The use of diphenylphosphine as nucleophile afforded the corresponding phosphines (\pm)- and $\left(\boldsymbol{S}_{p}\right)$ - $4 \mathbf{s}$ in 89 and 98% yield, respectively. Indole and N -methylindole both afforded the expected C3-alkylated products ($\mathbf{\pm}$ - 4 t and (\pm)-4u in similar yields (81 and 80%, respectively). However, the yield dropped when benzothiophene and benzofurane were evaluated. The only products isolated were the C3-alkylated derivative ($\mathbf{~})-\mathbf{4 v}$ by starting from benzothiophene and the C2-alkylated product (\pm)4 w by starting from benzofuran, in line with the usual reactivity of these heterocycles.

(\pm) - or $\left(S_{p}\right)-2$

(\pm)-4

(\pm)-4q-32\%
(\pm) $-4 \mathrm{r}-64 \%^{a}$ $\left(S_{p}\right)-4 \mathrm{r}-42 \%^{\mathrm{a}}-96: 4$ er

$(\pm)-4 u-80 \%$
(\pm) $\mathbf{- 4 s}-89 \%^{b}$
(\pm) $\mathbf{- 4 t}-81 \%$

(\pm)-4w-36\%

Scheme 5. Reaction between the substrates (\pm)- and (S_{p})-2 and selected N-, O-, P - and C-nucleophiles. ${ }^{\text {a }} 30$ Equiv of HFIP used. ${ }^{\text {b }} 4$ Equiv of phosphine used.

Although a variety of nucleophiles were found to be compatible with this HFIP-promoted substitution, these reaction conditions were not suitable for some reagents such as anilines, aliphatic and aromatic thiols, pyrrole, carbazole and phenothiazine. In all these cases, various ill-defined products were formed from which we could not identified any of the desired product.
We were intrigued by the formation of the ether ($\mathbf{\pm})-4 \mathrm{r}$ as, with the lowest Mayr's nucleophilicity parameter ($N_{1}=-1.93$ for a $99: 1$ HFIP-water mixture), HFIP is not supposed to behave as a nucleophile. ${ }^{[32]}$ We were eager to verify if this reaction was specific to the acetate ($\mathbf{~})-\mathbf{2}$ and thus heated the amine ($\mathbf{~}) \mathbf{- 1}$ in pure HFIP (30 equivalents) for 14 h towards the same ether ($\mathbf{~}$)-4r (Scheme 6). Although we further found that similar yields could be obtained by using only 10 equivalents of HFIP, stopping the reaction after only 1 h led to a poor conversion (a ($\mathbf{\pm})-1-(\pm)-4 \mathrm{r}$ mixture was obtained in a $2.5: 1$ ratio).

$\left(S_{p}\right)-1-96: 4$ er
$\left(\boldsymbol{S}_{p}\right)-4 \mathrm{r}-\mathbf{8 7 \%}$-95:5er

Scheme 6. Reaction between the substrates ($\mathbf{\pm}$)- and $\left(\boldsymbol{S}_{p}\right)$-1 and HFIP.

As we previously reported the synthesis of the 1,1'- and 1,3disubstituted compounds (\pm)-5 and $6,{ }^{[33]}$ we were interested to evaluate the influence of the substitution pattern of ferrocene onto the reaction outcome (Scheme 7). The reaction between the 1,3disubstituted ferrocene (\pm)-5 and either morpholine, pyrazole or DMEDA led to the products (\pm)-7a-c in yields comparable to those obtained from 1-iodo-2-(acetoxymethyl)ferrocene ($\mathbf{\pm}$-2. However, the ether ($\mathbf{~})$ - $\mathbf{7 d}$ and the phosphine (\pm)-7e were obtained in slightly
lower yields when compared with their 1,2-disubstituted isomers. Finally, when the 1,1'-disubstituted ferrocene 6 was reacted with morpholine, the product $8 \mathbf{a}$ was isolated in a 96% yield, comparable to those obtained for the 1,2- and 1,3-disubstituted isomers. Therefore, it seems that the substitution pattern of these iodoferrocenes has a limited impact onto the substitution outcome.

Scheme 7. Reaction between the substrates (\pm)-5 and 6 and various nucleophiles. ${ }^{\text {a }} 0.45$ Equiv of amine used. ${ }^{b} 30$ Equiv of HFIP used. ${ }^{c} 4$ Equiv of phosphine used.

Since the ether ($\mathbf{\pm} \mathbf{)} \mathbf{- 4 r}$ can be formed in this HFIP-promoted substitution, its role as a potential intermediate raised. Therefore, the reaction between ($\mathbf{\pm})-4 \mathbf{r}$ and morpholine (2 equiv) in HFIP was attempted at $60^{\circ} \mathrm{C}$ for 1 h (Scheme 8, bottom). However, the title product ($\mathbf{\pm}$)-4a was only isolated in a low 34% yield. Therefore, considering the low 22% overall yield to reach (\pm)-4a through the ether $(\mathbf{\pm}) \mathbf{- 4 r}$, its role as the main intermediate can be ruled out.

$(\pm)-4 r-82 \%$

Scheme 8. Evaluation of compound ($\mathbf{\pm}$)-4r as intermediate in the synthesis of (\pm)-4a.

As the main application of the pseudo-benzylic substitution is to get ferrocene derivatives with both stereogenic plane and centre, derivatives of Ugi's amine were also used as substrates. Therefore, $\left(R, S_{p}\right)-9 \mathrm{a}$ (see SI$)^{[34]}$ was reacted with two equivalents of morpholine in HFIP at $60^{\circ} \mathrm{C}$ (Scheme 9). However, after 1 h contact, we only recycled up to 95% of enantiopure substrate. This lack of reactivity was predictable as, except for a few azoles, ${ }^{[35]}$ replacing an amine by another one usually requires activation of the leaving group by treatment with either acetic anhydride or methyl iodide. ${ }^{[15 \mathrm{~g}, 36]}$ However, the acetate $\left(\boldsymbol{R}, \mathbf{S}_{p}\right)-9 \mathrm{~b}$
was more reactive, affording the title product $\left(R, S_{p}\right)-10$ as a single diastereoisomer in a 78% yield with full retention of the stereochemistry, as confirmed by X-ray diffraction analysis (see SI).

Scheme 9. Reaction between substrates ($\boldsymbol{R}, \boldsymbol{S}_{p}$)-9a and ($\boldsymbol{R}, \boldsymbol{S}_{p}$)-9b with morpholine.

Aromatic iodides can easily be functionalized by lithium/halogen exchange, as demonstrated by Corey and Seebach ${ }^{[37]}$ toward a wide range of derivatives. ${ }^{[38]}$ Therefore, we treated the compounds (\pm)-4a and 8a with a two-fold excess of tertbutyllithium before adding chlorodiphenyl- or chlorodicyclohexylphosphine as electrophiles (Scheme 10). While the phosphines ($\mathbf{\pm}$-11a and ($\mathbf{\pm}$)-11b were isolated by column chromatography in 43 and 75% yields, respectively, the compound 11c required an intermediate protection as phosphine borane, leading to a reduced 21% overall yield.

(\pm)-4a; 8a

11c-21\%

Scheme 10. Functionalization of the iodinated ferrocenes ($\mathbf{~}$)-4a and $\mathbf{8 a}$.

Finally, we were curious about the ligating abilities of the ferrocene phosphines 11a-c which can behave as bidentate P, N ligands. ${ }^{[39]}$ Indeed, while related chiral ligands containing the morpholino moiety have been used in Kumada coupling and cyclobutanol opening, ${ }^{[40]}$ they have never been evaluated in other cross-couplings. As P, N ligands such as DavePhos, ${ }^{[41]}$ MorDalphos, ${ }^{[42]}$ CataCXium ${ }^{[43]}$ and an aminoferrocene derivative ${ }^{[44]}$ are efficient ligands in Suzuki-Miyaura, BuchwaldHartwig couplings or a-arylation of ketone, we selected these reactions as benchmark tests. To evaluate the coordination ability of $\mathbf{(} \mathbf{\pm} \mathbf{- 1 1 b}$, it was first reacted with $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature toward the complex ($\mathbf{\pm}$)-12 (Scheme 11), as demonstrated by NMR and high-resolution mass spectrometry (see SI).

Scheme 11. Formation of the complex ($\mathbf{\pm}$)-12.

Preliminary experiments were finally performed to evaluate the ability of the phosphines 11a-c to act as ligands in the selected reactions (Scheme 12). Furthermore, to establish whether the morpholine moiety was required, the simple (diphenylphosphino)ferrocene (13) was also tested. A SuzukiMiyaura cross-coupling between 4-chloroacetophenone (14) and 4-methoxyphenylboronic acid in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was first attempted and, while all our new ligands gave better results than 13, the best results were obtained with the bulky and electron-rich phosphine ($\mathbf{\pm} \mathbf{- 1 1 b}$. In the Buchwald-Hartwig amination of 4-chlorobenzonitrile (16) with morpholine, as well as in the α-arylation of acetone with 4-bromobenzonitrile (18), the 1,2-disubstituted phosphines ($\mathbf{\pm}$)-11a,b were the most efficient ligands, the latter being slightly better.

14

Scheme 12. Preliminary investigation of the use of the ligands 11a-c and 13 in palladium-catalysed transformations.

From these unoptimized experiments, the compound ($\mathbf{\pm}$ - $\mathbf{- 1 1 b}$ appears as the most promising of the three ligands prepared. However, although none of our ligands can currently outperform other reported P, N ligands, the rapid generation of many derivatives allowed by the easy variation of the amine and
phosphine groups would facilitate the search of better ligands, possibly enantioenriched by starting from ($\left.\boldsymbol{S}_{\boldsymbol{p}}\right) \mathbf{- 2}$.

Some of the obtained solid-state structures obtained in the course of this study deserve a few words. Indeed, we found that the geometry of the three isomers ($\mathbf{\pm}$)-4a, ($\mathbf{\pm}$-7a and 8a was not influenced by the position of iodine as indicated by the good overlay between ($\mathbf{\pm}$)-4a and ($\mathbf{\pm}$)-7a (RMS $0.0264 \AA$, Figure 1, left) and between (\pm)-4a and 8a (RMS $0.0144 \AA$ A. Figure 1, right). However, different intramolecular interactions were observed as the 1,1 '-substitution pattern of compound $8 \mathbf{a}$ allows the formation of a homodimer linked by two $1 \cdots$ O halogen bonds (Figure 2, top) while the 1,3 -substitution pattern of compound ($\mathbf{\pm}$)-7a favours the formations of strings of $\mathrm{l} \cdots \mathrm{O}$ halogen bonds (Figure 2, bottom). Similar halogen bonds were recently identified in the ferrocene series ${ }^{[45]}$ and result from an interaction between the lone pair of the oxygen and the σ-hole of the iodine atom. ${ }^{[46]}$ Further intermolecular interactions were also observed for the compounds ($\boldsymbol{R}, \mathbf{S}_{p}$)-10 and ($\mathbf{\pm}$)-4n. Indeed, for the former, we identified $\mid \cdots N$ interactions which form a zig zag bonding network (Figure 3, top) while halogen bonds ${ }^{[47]}$ between iodine and the exocyclic sulfur atom were observed for the latter (Figure 3, bottom).

Figure 1. Overlay of the compounds (\pm)-4a and (\pm)-7a (left) and (\pm)-4a and 8a (right). Thermal ellipsoids shown at the 30% probability level.

Figure 2. Halogen bond network observed for the compounds (\pm)-7a (top) and 8a (bottom). Thermal ellipsoids shown at the 30% probability level. Selected bond lengths and angles: $\operatorname{l\cdots O} 3.294(2) \AA$ and $\mathrm{C}-\mathrm{l} \cdots \mathrm{O}$ 165.26(9) ${ }^{\circ}$ for (\pm)-7a, $1 \cdots$ O $3.1069(18) \AA$ and $\mathrm{C}-\mathrm{l} \cdots \mathrm{O} 176.41(7)^{\circ}$ for 8 a .

Figure 3. Halogen bond network observed for the compounds ($\boldsymbol{R}, \boldsymbol{S}_{p}$)-10 (top) and ($\mathbf{\pm})-4 \mathrm{n}$ (bottom). Thermal ellipsoids shown at the 30% probability level. Selected bond lengths and angles: $\mid \cdots N 3.225(3) \AA$ and C-| $\cdots \mathrm{N} 160.71(10)^{\circ}$ for $\left(\boldsymbol{R}, \mathbf{S}_{\text {p }}\right)-\mathbf{1 0}, \mid \cdots \mathrm{N} 3.3584(8) \AA, \mathrm{C}-\mathrm{F} \cdot \mathrm{S}$ and C-S $\cdots 1176.34(7)^{\circ}$ and $83.91(9)^{\circ}$ for $(\pm)-4 \mathrm{n}$.

Conclusion

In conclusion, we have developed new reaction conditions, using fluorinated alcohols, to promote a pseudo-benzylic substitution in the ferrocene series. With smooth reaction conditions (moderate temperature and short reaction time), it was possible to replace an acetate by a variety of N, O, P, and C nucleophiles. The reaction occurs with a high degree of stereochemical retention for substrates having only a stereogenic plane or both stereogenic plane and centre. Furthermore, an original ferrocene substituted by a hexafluoropropyloxymethyl group was isolated, indicating that from specific substrates and under the right reaction conditions, HFIP can behave as a nucleophile, contrary to the general thought. Three original phosphinoferrocene derivatives were finally prepared and used as ligand in cross-couplings. From this preliminary evaluation, one ligand emerged as promising for this application. As pseudo-benzylic substitution is widely used in the ferrocene series, it makes little doubt that combining these easily set-up fast reaction conditions with further functionalization will find applications, especially in the preparation of libraries of ligands for applications in catalysis.

Experimental Section

General Considerations. All nucleophilic substitutions promoted by HFIP were performed under air. Unless otherwise stated, all the other reactions were performed under an argon atmosphere with anhydrous solvents using Schlenk technics. THF and dioxane were distilled over sodium/benzophenone, acetone was dried by prolonged contact over activated $3 \AA$ molecular sieve, ${ }^{[48]}$ toluene and dichloromethane were distilled over CaH_{2}. Unless otherwise stated, all reagents were used without prior purification. All organolithium reagents were titrated before use. ${ }^{[49]}$ Column chromatography separations were achieved on silica gel (40-63 $\mu \mathrm{m}$). PE refers to petroleum ether, rt refers to room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$. All Thin Layer Chromatographies (TLC) were performed on aluminium backed plates pre-coated with silica gel (Merck, Silica Gel 60

F254). They were visualized by exposure to UV light. Melting points were measured on a Kofler bench. IR spectra were taken on a Perkin-Elmer Spectrum 100 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ Nuclear Magnetic Resonance (NMR) spectra were recorded either (a) on a Bruker Avance III spectrometer at 300 MHz and 75.4 MHz , respectively, or (b) Bruker Avance III HD at 400 MHz and 100 MHz , respectively, or (c) on a Bruker Avance III HD at 500 MHz and 126 MHz , respectively. ${ }^{1} \mathrm{H}$ chemical shifts (δ) are given in ppm relative to the solvent residual peak and ${ }^{13} \mathrm{C}$ chemical shifts are relative to the central peak of the solvent signal. Elemental analyses were performed on a Thermo Fischer 1112 HT apparatus and HRMS were recorded on a Thermo Fisher Q-Exactive mass spectrometer at the Centre Régional de Mesures Physiques de l'Ouest. The numbering used in this Experimental Section is defined in Supporting Information. (R, R)-(-)-Cyclohexane-1,2-diamine was prepared according to Jacobsen. ${ }^{[50]} \quad(R, R)-N, N^{\prime}$-bis(1-naphthylmethyl)cyclohexane-1,2-diamine was prepared according to Smith. ${ }^{[51]}$

Safety Considerations. Due to its high pyrophoric character, tBuLi need to be used only under inert conditions (anhydrous, nitrogen or argon atmosphere) and by people well-trained to the manipulation of reactive organometallics.

Crystallography. For (\pm)-4a, (\pm)-4n, (\pm)-4s, (\pm)-4v, (\pm)-4w, (\pm)-7b, 8a and $(\pm)-11 \mathrm{~b}$, the X-ray diffraction data were collected using D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector. For ($\mathbf{\pm}$)-7a and ($\boldsymbol{R}, \boldsymbol{S}_{p}$)-10, the X-ray diffraction data were collected using APEXII Kappa-CCD (Bruker-AXS) diffractometer equipped with a CCD plate detector. The samples were studied with monochromatized MoK α radiation $(\lambda=0.71073 \AA)$ at the temperature given in the crystal data. The structure was solved by dual-space algorithm using the SHELXT program, ${ }^{[52]}$ and then refined with full-matrix least-square methods based on $F^{2}(S H E L X L)$. ${ }^{[53]}$ All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters. The molecular diagrams were generated by MERCURY 2020.3.0.

General procedure A: HFIP-promoted substitution. HFIP (10.0 equiv) was added to a mixture of the required substrate (1.00 equiv) and required nucleophile (2.00 equiv) and the reaction mixture was heated for 1 h at $60^{\circ} \mathrm{C}$ in a pre-heated oil bath. The reaction was cooled to rt and was poured onto a $\mathrm{NEt}_{3}-\mathrm{EtOAc}_{\mathrm{c}}$ mixture (1:1) and volatiles were removed under vacuum to give the crude product. This was purified by column chromatography over SiO_{2}, using $\mathrm{PE}-\mathrm{EtOAc}$ (eluent given in product description) to give the title product.
(\pm)-1-lodo-2-(N-morpholinomethyl)ferrocene ($(\pm)-4 \mathrm{a})$: By following the general procedure A from compound $(\pm)-2(115 \mathrm{mg}, 0.30 \mathrm{mmol})$ and morpholine ($52.5 \mu \mathrm{~L}, 52.3 \mathrm{mg}, 0.60 \mathrm{mmol}$) in HFIP ($316 \mu \mathrm{~L}$), ($\mathbf{\pm}$)-4a was obtained after column chromatography (PE-EtOAc, 40:60 with 1% of NEt_{3}) as an orange solid ($115 \mathrm{mg}, 93 \%$). Rf (eluent: PE/EtOAc 40:60, 5 drops of $\left.\mathrm{NEt}_{3}\right)=0.21$. $\mathrm{Mp} 63-65^{\circ} \mathrm{C}$. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2955,2935,2805,1455,1446$, 1331, 1285, 1263, 1243, 1222, 1111, 999, 918, 859, 809. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 4.43 (dd, $J=1.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.29 (dd, $J=1.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3), 4.21(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.11$ (s, 5H, Cp), $3.65\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.47(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHH}), 3.41$ ($\mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $2.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.40(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 84.1$ ($\mathrm{FcC}, \mathrm{C} 2$), 75.0 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.7 (Cp), 69.2 ($\mathrm{FcCH}, \mathrm{C} 4$), 69.1 ($\mathrm{FcCH}, \mathrm{C} 3$), 67.1 ($2 \times \mathrm{CH}_{2} \mathrm{O}$), $58.1\left(\mathrm{CH}_{2}\right), 53.3\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 46.5$ ($\mathrm{FcC}, \mathrm{C} 1$). Mass: 411 [M], 325 [M$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{NO}$]. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$ FeINO: C, 43.83; H, 4.41; N, 3.41. Found: C, 43.75; H, 4.36; N, 3.26. Crystal data for (\pm)-4a. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{FelNO}, M=$ 411.05, $T=150 \mathrm{~K}$; orthorhombic $P b$ b a (I.T.\#61), $a=11.233(2), b=$ 9.5399 (17), $c=27.474(6) \AA, V=2944.2(10) \AA^{3} . Z=8, d=1.855 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu$ $=3.113 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3376 unique intensities and 172 parameters converged at $\omega R_{F}{ }^{2}=0.0597\left(R_{F}=0.0252\right)$ for 3055 observed reflections with $I>2 \sigma(\Lambda)$. CCDC 2090455.
(S_{p})-1-lodo-2-(N-morpholinomethyl)ferrocene (($\left.S_{p}\right)$-4a): By following the general procedure A, starting from $\left(S_{p}\right)-\mathbf{2 a}(115 \mathrm{mg}, 0.30 \mathrm{mmol}, 96: 4$ er) and morpholine ($52.5 \mu \mathrm{~L}, 52.3 \mathrm{mg}, 0.60 \mathrm{mmol})$ in HFIP ($316 \mu \mathrm{~L}$), the title product was obtained as an orange solid ($113 \mathrm{mg}, 92 \%, 96: 4 \mathrm{er}$). Analytical data analogous to racemic compound. [α] +13.3 (c 0.01 in CHCl_{3}). The enantiomeric ratio was determined on Chiralpak IA-3 column, hexane with 0.1% of diethylamine $/ \mathrm{iPrOH}: 95: 5,1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, 10^{\circ} \mathrm{C}, \lambda=$ $254 \mathrm{~nm}, \mathrm{t}$ (major) $=6.94 \mathrm{~min}, \mathrm{t}(\mathrm{minor})=7.33 \mathrm{~min}$.

(\pm)-1-lodo-2-(\boldsymbol{N}-tert-butoxycarbonyl- N-piperazino)methylferrocene

$((\pm)-\mathbf{4 b})$: By following the general procedure A from compound (\pm)-2 (154 $\mathrm{mg}, 0.40 \mathrm{mmol}$) and N -tert-butoxycarbonylpiperazine ($149 \mathrm{mg}, 0.80 \mathrm{mmol}$) in HFIP $(421 \mu \mathrm{~L}),(\pm)-4 \mathbf{b}$ was obtained after column chromatography (PEEtOAc, 80:20 to 60:40 with 1% of NEt_{3}) as an orange solid ($180 \mathrm{mg}, 88 \%$). R_{f} (eluent: PE/EtOAc 80:20, 5 drops of NEt_{3}) $=0.28$. Mp $103-104^{\circ} \mathrm{C}$. $\mathrm{V}_{\text {max }}$ (film)/cm ${ }^{-1} 3008,2967,2929,2808,1683,1454,1420,1364,1296,1269$, 1229, 1171, 1160, 1144, 1117, 1000, 947, 866, 822, 810, 764. ¹H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.43$ (s, 1H, $\mathrm{FcCH}, \mathrm{H} 5$), 4.28 (s, $1 \mathrm{H}, \mathrm{FcCH}$, $\mathrm{H} 3), 4.22(\mathrm{t}, \underline{\mathrm{J}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.11(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.50(\mathrm{~d}, \underline{\mathrm{~J}}=13.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.44 ($\mathrm{d}, \underline{\mathrm{J}}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.39-3.36 (m, 4H, 2 x $\mathrm{CH}_{2} \mathrm{NC}(\mathrm{O})$), 2.47-2.45 (m, 2H, CH2N), 2.35-2.33 (m, 2H, CH2N), 1.43 (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 154.8(\mathrm{C}=\mathrm{O}), 84.1$
 69.1 ($\mathrm{FcCH}, \mathrm{C} 3$), 57.7 (CH 2), 52.5 ($2 \times \mathrm{CH} 2 \mathrm{~N}$), 46.5 ($\mathrm{FcC}, \mathrm{C} 1$), 44.0 $\left(\mathrm{CH}_{2} \mathrm{NC}(\mathrm{O})\right)$, $43.3\left(\mathrm{CH}_{2} \mathrm{NC}(\mathrm{O})\right)$, $28.6 \quad\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{FelN}_{2} \mathrm{O}_{2}$: C, 47.08; H, 5.33; N, 5.49. Found: C, 47.06; H, 5.20; N, 5.22 .
(\pm)-1-lodo-2-(N-piperazino)methylferrocene ($(\pm)-4 \mathrm{c})$: By following the general procedure A from compound (\pm)-2 ($154 \mathrm{mg}, 0.40 \mathrm{mmol}$) and piperazine ($68.9 \mathrm{mg}, 0.80 \mathrm{mmol}$) in HFIP ($421 \mu \mathrm{~L}$), (\pm)-4c was obtained after column chromatography (PE-EtOAc, 90:10 with 2% of NEt_{3}) as an orange oil $(112 \mathrm{mg}, 68 \%)$. R_{f} (eluent: EtOAc) $=0.15 . v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3365$, 2922, 2810, 1637, 1563, 1454, 1409, 1368, 1329, 1298, 1134, 1105, 998 , 806. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 4.74(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}), 4.40(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{FcCH}, \mathrm{H} 5$), 4.25 (s, 1H, FcCH, H3), 4.19 (s, 1H, FcCH, H4), 4.09 (s, 5H, Cp), 3.44 (s, 2H, CH2), 2.90 (br s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{NH}$), 2.56 (br s, 2H, CH2N), 2.46 (br s, 2H, CH2N). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 84.0(\mathrm{FcC}$, C2), 75.0 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.7 (Cp), 69.2 ($\mathrm{FcCH}, \mathrm{C} 4$), 69.1 ($\mathrm{FcCH}, \mathrm{C} 3$), 57.9 $\left(\mathrm{CH}_{2}\right), 52.5\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 46.4(\mathrm{FcC}, \mathrm{C} 1), 45.2\left(2 \times \mathrm{CH}_{2} \mathrm{NH}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19}$ FelN N_{2} : C, 43.93; H, 4.67; N, 6.83. Found: C, 43.82; H, 4.51; N, 6.76. Compound ($\mathbf{\pm}$)-4h was also isolated as an orange solid ($36 \mathrm{mg}, 24 \%$).
(\pm)-1-lodo-2-(N-pyrrolidinomethyl)ferrocene ((\pm)-4d): Compound ($\mathbf{~}$)-2 $(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) was added in four portions to a solution of pyrrolidine ($133 \mu \mathrm{~L}, 114 \mathrm{mg}, 1.6 \mathrm{mmol}, 4.00$ equiv) in HFIP ($421 \mu \mathrm{~L}, 672$ $\mathrm{mg}, 4.00 \mathrm{mmol}, 10.0$ equiv) at rt . After addition the reaction mixture was heated for 1 h at $60^{\circ} \mathrm{C}$ in a pre-heated oil bath. The reaction was cooled to rt and was poured onto a NEt_{3}-EtOAc mixture $(1: 1,2 \mathrm{~mL})$ and volatiles were removed under vacuum to give the crude product. This was purified by column chromatography over SiO_{2}, using PE-EtOAc (40:60 to 30:70 with 2% of NEt_{3}) to give the title product as an orange oil ($57 \mathrm{mg}, 36 \%$). Rf_{f} (eluent: PE/EtOAc $50: 50$, 5 drops of NE_{3}) $=0.55 . v_{\max }($ film $) / \mathrm{cm}^{-1} 3093$, 2961, 2925, 2780, 1673, 1457, 1374, 1346, 1314, 1258, 1236, 1105, 1059, $1028,999,875,818,804 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.41$ (dd, J $=1.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5), 4.32(\mathrm{dd}, J=1.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3)$, $4.20(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.11(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.62(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 3.47(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 2.68-2.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.52$2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 1.77-1.69 (m, 4H, $2 \times \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 85.8(\mathrm{FcC}, \mathrm{C} 2), 74.7(\mathrm{FcCH}, \mathrm{C} 5), 71.7(\mathrm{Cp}), 69.1(\mathrm{FcCH}$, C4), $68.7(\mathrm{FcCH}, \mathrm{C} 3), 54.8\left(\mathrm{CH}_{2}\right), 53.9\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 46.1(\mathrm{FcC}, \mathrm{C} 1), 23.6$ $\left(2 \times \mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$ Fein: C, $45.60 ; \mathrm{H}, 4.59 ; \mathrm{N}, 3.55$. Found: C, 45.73; H, 4.70; N, 3.72.
(\pm)-1-lodo-2-(\mathbf{N}, \mathbf{N}-diallylaminomethyl)ferrocene ((\pm)-4e): By following the general procedure A from compound (\pm)-2 $(154 \mathrm{mg}, 0.40 \mathrm{mmol})$ and diallylamine ($198 \mu \mathrm{~L}, 155 \mathrm{mg}, 1.60 \mathrm{mmol}$) in HFIP ($421 \mu \mathrm{~L}$), (\pm)-4e was obtained after column chromatography (PE-EtOAc, 95:5 with 2% of NEt_{3})
as an orange oil ($159 \mathrm{mg}, 94 \%$). R_{f} (eluent: PE/EtOAc 95:5, 5 drops of $\left.\mathrm{NE}_{3}\right)=0.54 . v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3075,2918,2800,1675,1641,1445,1416$, $1372,1350,1254,1105,997,975,915,820,806,749 .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): δ (ppm) 5.87 (ddt, $J=6.2,10.2,17.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}=\mathrm{CHH}, 5.20$ (d, $J=17.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}=\mathrm{CHH}), 5.14(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CH}=\mathrm{CHH}$), 4.41 (s, 1H, FcCH, H5), 4.30 (s,1H, FcCH, H3), 4.19 (s,1H, FcCH, H4), 4.09 (s, 5H, Cp), 3.55 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.42 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}$, CHH), 3.11 (dd, $J=6.2,14.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHH}$), 3.05 (dd, $J=6.2,14.0 \mathrm{~Hz}$, $2 \mathrm{H}, 2 \times \mathrm{CHH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 136.3(\mathrm{CH}=\mathrm{CHH})$, $117.4(\mathrm{CH}=\mathrm{CHH}), 85.9(\mathrm{FcC}, \mathrm{C} 2), 74.8(\mathrm{FcCH}, \mathrm{C} 5), 71.7(\mathrm{Cp}), 69.1(\mathrm{FcCH}$, $\mathrm{C} 3), 68.9(\mathrm{FcCH}, \mathrm{C} 4), 56.4\left(2 \times \mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{2}\right), 46.0(\mathrm{FcC}, \mathrm{C} 1)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20}$ FelN: C, 48.49; H, 4.79; N, 3.33. Found: C, 43.40; H, 4.73; N, 3.25.
(\pm)-1-lodo-2-(N, N-dibenzylaminomethyl)ferrocene ((\pm)-4f): By following the general procedure A from compound (\pm)-2 $(154 \mathrm{mg}, 0.40 \mathrm{mmol})$ and dibenzylamine ($307 \mu \mathrm{~L}, 316 \mathrm{mg}, 1.60 \mathrm{mmol}$) in HFIP ($421 \mu \mathrm{~L}$), ($\mathbf{\pm})-4 \mathrm{f}$ was obtained after column chromatography (PE-EtOAc, 95:5 with 2% of NEt_{3}) as an orange oil ($200 \mathrm{mg}, 91 \%$). R R_{f} (eluent: PE/EtOAc 95:5, 5 drops of $\left.\mathrm{NE}_{3}\right)=0.84 . v_{\max }($ film $) / \mathrm{cm}^{-1} 3024,2791,1493,1451,1368,1229,1105$, 1027, 1000, 973, 957, 821, 806, 732, 695. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) $\left.7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}, 4 \times \mathrm{H})^{\prime}\right), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArCH}$, $4 \times \mathrm{H} 3^{\prime}$), 7.24 (t, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}, 2 \times \mathrm{H} 4^{\prime}\right), 4.41$ (dd, $J=1.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.36 (dd, $J=1.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3$), $4.18(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 3.60(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHHPh}), 3.59(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.54 (d, $J=13.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHHPh}$), 3.45 (d, $J=13.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 139.9$ (ArC, $2 \times \mathrm{C} 1$ '), 128.9 ($\mathrm{ArCH}, 4 \times \mathrm{C} 2^{\prime}$), 128.3 ($\mathrm{ArCH}, 4 \times \mathrm{C}^{\prime}$), 126.9 ($\left.\mathrm{ArCH}, 2 \times \mathrm{C} 4^{\prime}\right), 86.1$ ($\mathrm{FcC}, \mathrm{C} 2$), 74.7 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.7 (Cp), 69.2 ($\mathrm{FcCH}, \mathrm{C} 3$), 68.7 ($\mathrm{FcCH}, \mathrm{C} 4$), 57.9 ($2 \times \mathrm{CH} 2 \mathrm{Ph}$), 53.4 (CH2), 45.6 (FcC, C1). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FeIN}$: C, 57.61; H, 4.64; N, 2.69. Found: C, 57.71; H, 4.60; N, 2.66.
(\pm)-1-lodo-2-(N-benzylaminomethyl)ferrocene ($(\pm \mathbf{)}-\mathbf{4 g})$: By following the general procedure A from compound (\pm)-2 ($154 \mathrm{mg}, 0.40 \mathrm{mmol}$) and benzylamine ($87.4 \mu \mathrm{~L}, 85.7 \mathrm{mg}, 0.80 \mathrm{mmol}$) in HFIP $(421 \mu \mathrm{~L})$, $(\pm)-4 \mathrm{~g}$ was obtained after column chromatography (PE-EtOAc, 90:10 with 1% of NEt_{3}) as an orange solid ($97 \mathrm{mg}, 56 \%$). Rf (eluent: PE/EtOAc 40:60, 5 drops of $\left.\mathrm{NE}_{3}\right)=0.74 . \mathrm{Mp} 66-67^{\circ} \mathrm{C} . v_{\max }($ film $) / \mathrm{cm}^{-1} 3084,3026,2939,2917,2833$, 1493, 1452, 1407, 1365, 1105, 1064, 1052, 1026, 997, 972, 957, 824, 811, 800, 731. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}, 2$ x H2' and $2 \times{ }^{\prime} 3^{\prime}$), 7.27-7.25 (m, 1H, ArCH, H4'), 4.42 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.28 (s, 1H, FcCH, H3), 4.19 (s, 1H, FcCH, H4), 4.11 (s, 5H, Cp), 3.84 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Ph}), 3.79(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Ph}), 3.70$ (d, $J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHN}), 3.53(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{~N}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 140.4$ ($\mathrm{ArC}, \mathrm{C}^{\prime}$ '), $128.5(\mathrm{ArCH}, 2 \times \mathrm{C} 2$ '), 128.3 ($\mathrm{ArCH}, 2 \times \mathrm{C}^{\prime}$), 127.1 ($\mathrm{ArCH}, \mathrm{C} 4$ '), 87.5 ($\mathrm{FcC}, \mathrm{C} 2$), 74.7 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.6 (Cp), 68.7 ($\mathrm{FcCH}, \mathrm{C} 4$), $68.1(\mathrm{FcCH}, \mathrm{C} 3), 53.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 48.7\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 44.8$ (FcC, C1). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FeIN}: \mathrm{C}, 50.15 ; \mathrm{H}, 4.21$; N, 3.25. Found: C, 50.11 ; H, 4.37; N, 3.36.
$\boldsymbol{N}, \boldsymbol{N}$-bis-(2-lodoferrocenylmethyl)piperazine (4h): By following the general procedure A from compound ($\mathbf{\pm})-\mathbf{2}(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and piperazine ($17.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.50$ equiv) in HFIP ($421 \mu \mathrm{~L}$), ($\mathbf{~}$)-4h was obtained after column chromatography (PE-EtOAc, 50:50 to $30: 70$ with 2% of NEt_{3}) as an orange solid ($121 \mathrm{mg}, 82 \%$). R_{f} (eluent: PE/EtOAc 50:50, 5 drops of NEt_{3}) $=0.55 . \mathrm{Mp}<50^{\circ} \mathrm{C}$. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3092$, 2929, 2805, 2767, 1645, 1453, 1368, 1328, 1285, 1151, 1132, 1105, 1001, 944, 806, 748. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{FcCH}, 2$ x H5), 4.27 (m, 2H, FcCH, $2 \times \mathrm{H} 3$), 4.18 (m, 2H, FcCH, $2 \times \mathrm{H} 4$), 4.09 (s, $10 \mathrm{H}, 2 \times \mathrm{Cp}$), 3.48 (d, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHH}), 3.39(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{CHH}$), 2.53 (br s, 4H, $2 \times \mathrm{CH}_{2} \mathrm{~N}$), 2.42 (br m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 84.4$ ($\mathrm{FcC}, 2 \times \mathrm{C} 2$), 74.9 ($\mathrm{FcCH}, 2 \times \mathrm{C} 5$), $71.7(2 \times \mathrm{Cp})$, $69.2(\mathrm{FcCH}, 2 \times \mathrm{C} 4)$, 69.1 ($\mathrm{FcCH}, 2 \times \mathrm{C} 3$), $57.5\left(2 \times \mathrm{CH}_{2}\right)$, $52.6\left(4 \times \mathrm{CH}_{2} \mathrm{~N}\right)$, 46.6 ($\mathrm{FcC}, 2 \times \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{l}_{2} \mathrm{~N}_{2}$: C, 42.54; H, 3.85; N, 3.82. Found: C, 42.60; H, 3.82; N, 3.90.
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl- $\mathbf{N}, \boldsymbol{N}$-bis-(2-iodoferrocenylmethyl)ethylenediamine
($\mathbf{\pm}$)-4i): By following the general procedure A from compound ($\mathbf{\pm}$)-2 (169
$\mathrm{mg}, 0.44 \mathrm{mmol}, 2.20$ equiv) and N, N-dimethylethylenediamine ($21.5 \mu \mathrm{~L}$, $17.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00$ equiv) in HFIP $(210 \mu \mathrm{~L})$, ($\mathbf{\pm})-4 \mathbf{i}$ was obtained after column chromatography (PE-EtOAc, 30:70 to 10:90 with 2% of NEt_{3}) as an orange oil ($109 \mathrm{mg}, 74 \%$). R_{f} (eluent: PE/EtOAc 50:50, 5 drops of $\left.\mathrm{NE}_{3}\right)=0.13 . v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3093,2939,2778,1452,1411,1371,1233$, 1217, 1105, 1019, 1000, 821, 807, 747. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 4.41 (s, 2H, FcCH, $2 \times \mathrm{H} 5$), 4.28 (s, 2H, FcCH, $2 \times \mathrm{H} 3$), 4.20 (s, 2H, $\mathrm{FcCH}, 2 \times \mathrm{H} 4), 4.10(\mathrm{~s}, 10 \mathrm{H}, 2 \times \mathrm{Cp}), 3.44\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}-\mathrm{Fc}\right), 2.51(\mathrm{~s}$, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}-\mathrm{N}$), $2.20\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 85.0 ($\mathrm{FcC}, 2 \times \mathrm{C} 2$), 74.9 ($\mathrm{FcCH}, 2 \times \mathrm{C} 5$), 71.7 ($2 \times \mathrm{Cp}$), 69.2 (FcCH , $2 \times \mathrm{C} 4), 69.1(\mathrm{FcCH}, 2 \times \mathrm{C} 3), 57.2\left(\mathrm{CH}_{2}-\mathrm{Fc}\right), 57.0\left(\mathrm{CH}_{2}-\mathrm{Fc}\right), 54.9\left(\mathrm{CH}_{2}-\mathrm{N}\right)$, $54.8\left(\mathrm{CH}_{2}-\mathrm{N}\right)$, $46.7(\mathrm{FcC}, 2 \times \mathrm{C} 1)$, $42.5\left(2 \times \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Fel}_{2} \mathrm{~N}_{2}$: C, 45.91; H, 4.45; N, 4.12. Found: C, 46.04; H, 4.56; N, 4.20.

$\left(S_{p}, S_{p}\right)$ - N, N-Dimethyl- N, N-bis-(2-

iodoferrocenylmethyl)ethylenediamine ($\left.\left(S_{p}, S_{p}\right)-4 i\right)$: By following the general procedure A from compound $\left(S_{p}\right)-2(169 \mathrm{mg}, 0.44 \mathrm{mmol}, 2.20$ equiv) and N, N-dimethylethylenediamine ($21.5 \mu \mathrm{~L}, 17.6 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.00 equiv) in HFIP ($210 \mu \mathrm{~L}$), $\boldsymbol{S}_{p}, \boldsymbol{S}_{p}$) $\mathbf{4 i}$ was obtained after column chromatography (PE-EtOAc, 30:70 to 10:90 with 2% of NEt_{3}) as an orange oil ($100 \mathrm{mg}, 68 \%, 94: 6 \mathrm{er}$). Analytical data analogous to racemic compound. [$\alpha]_{\mathrm{D}}+33.3$ (c 0.01 in CHCl_{3}). The enantiomeric ratio was determined on Chiralpak IA-3 column, hexane with 0.1% of diethylamine $/ \mathrm{iPrOH}: 97: 3,0.8 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, 5^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=15.85$ \min , t (minor) $=14.31 \mathrm{~min}$.

(1R,2R)- N, N^{\prime}-Bis(1-naphthylmethyl)- N-((\pm)-2-

iodoferrocenylmethyl)cyclohexane-1,2-diamine ((\pm)-4j): HFIP ($42.0 \mu \mathrm{~L}$, $67.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.80$ equiv) was added to a mixture of compound (\pm)$2\left(38.4 \mathrm{mg}, \quad 0.10 \mathrm{mmol}, 1.00\right.$ equiv) and $(R, R)-N, N^{\prime}$-bis ($1-$ naphthylmethyl)cyclohexane-1,2-diamine ($158 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.80$ equiv) in a dry tube under argon and the reaction mixture was heated overnight at $60^{\circ} \mathrm{C}$ (oil bath, external temperature). The reaction mixture was cooled to rt and HFIP ($42.0 \mu \mathrm{~L}, 67.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.80$ equiv) was added before the reaction mixture was heated for 4 more hours at $60^{\circ} \mathrm{C}$. The reaction mixture was cooled to rt , a buffered aqueous solution ($5 \mathrm{~mL}, \mathrm{pH} 7$) was added and the reaction mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO_{2}, using PE/EtOAc (10:1) with 2% of NEt_{3} to give the title product as an orange oil ($51.0 \mathrm{mg}, 71 \%$). Analytical data in agreement with enantioenriched compound.

(1R,2R)-N,N'Bis(1-naphthylmethyl)-N-(($\left.S_{p}\right)$-2-

iodoferrocenylmethyl)cyclohexane-1,2-diamine ((R,R, $\left.\left.S_{p}\right)-4 \mathrm{j}\right): ~ B y$ following a similar protocol, starting from $\left(S_{p}\right)-\mathbf{2}(38.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv, 96:4 er) and (R, R)- N, N^{\prime}-bis(1-naphthylmethyl)cyclohexane-1,2diamine ($158 \mathrm{mg}, 0.40 \mathrm{mmol}, 4.00$ equiv), the title product was obtained as an orange oil $(40.0 \mathrm{mg}, 55.5 \%)$. Attempts to determine the enantiomeric ratio by chiral HPLC failed to provide any separation. [a] $]_{D}-39.8$ (c 0.01 in CHCl_{3}). Rf (eluent: PE/EtOAc 80:20, 5 drops of NEt_{3}) $=0.66$. $\mathrm{V}_{\text {max }}$ (film)/cm ${ }^{-1}$ 2929, 2855, 1597, 1510, 1449, 1216, 1106, 1001, 791, 773, 754. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}$, H27), 7.81 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 14$ or H16 or H21), 7.80 (d, $J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 14$ or H 16 or H 21), 7.75-7.72 (m, 2H, $2 \times \mathrm{ArCH}, \mathrm{H} 24$ and H 14 or H21), 7.64 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 11$), 7.44-7.39 (m, 3H, $3 x$ $\mathrm{ArCH}, \mathrm{H} 11$ and H 20 and H 22), $7.37-7.31$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}, \mathrm{H} 25$ and H 14 or H21), 7.22 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 10), 7.16$ (dt, $J=1.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}, \mathrm{H} 26$), 6.88 (br s, $1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 9$), 4.33 (s, 1H, $\mathrm{FcCH}, \mathrm{H} 32$), 4.27 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}, \mathrm{H} 18), 3.99(\mathrm{~s}, 7 \mathrm{H}, \mathrm{Cp}$ and $\mathrm{FcCH}, \mathrm{H} 35$ and H 33 and H34), 3.96 (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{H} 7$), 3.88 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$, H18), 3.78 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}, \mathrm{H} 29$), 3.52 ($\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$, H29), $3.48(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H, \mathrm{H} 7), 2.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.76(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHN}, \mathrm{H} 1), 2.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}, \mathrm{H} 6), 2.18\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ca}_{\mathrm{a}} H \mathrm{H}\right.$, H5), 2.09 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{b} H \mathrm{H}, \mathrm{H} 2$), 1.91 (dd, $J=2.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{\mathrm{c}} H \mathrm{H}, \mathrm{H} 3$), $1.73\left(\mathrm{dd}, J=2.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cd}_{\mathrm{d}} H \mathrm{H}, \mathrm{H} 4\right), 1.62(\mathrm{dq}, J=3.2$, $\left.12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{b}} \mathrm{HH}, \mathrm{H} 2\right)$, 1.33-1.25 (m, 2H, $\mathrm{C}_{\mathrm{c}} \mathrm{HH}, \mathrm{C}_{\mathrm{d}} \mathrm{HH}, \mathrm{H} 3$ and H 4$), 1.04$
(dq, $\left.J=2.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{a}} \mathrm{HH}, \mathrm{H} 5\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 136.7 (ArC, C8), 135.6 (ArC, C19), 134.0 (ArC, C12), 133.5 (ArC, C23), 132.6 (ArC, C28), 131.6 (ArC, C17), 128.5 (ArCH), 128.4 (ArCH), 128.1 ($\mathrm{ArCH}, \mathrm{C} 24$), 127.8 ($\mathrm{ArCH}, \mathrm{C} 20$), 126.6 ($\mathrm{ArCH}, \mathrm{C} 11$), 126.0 (ArCH , C26), 125.6 ($3 \times \mathrm{ArCH}$), 125.2 (ArCH), 125.1 (ArCH), 125.0 (ArCH, C27), 124.3 ($\mathrm{ArCH}, \mathrm{C} 9$), 123.5 (ArCH), 86.6 ($\mathrm{FcC}, \mathrm{C} 30$), 75.0 ($\mathrm{FcCH}, \mathrm{C} 32$), 71.7 (Cp), 70.0 ($\mathrm{FcCH}, \mathrm{C} 34$), 69.1 ($\mathrm{FcCH}, \mathrm{C} 33$), 64.0 (CHN, C1), 58.5 (CHN, $\mathrm{C} 6), 53.2\left(\mathrm{CH}_{2}, \mathrm{C} 18\right), 49.5\left(\mathrm{CH}_{2}, \mathrm{C} 29\right), 47.6\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 45.4(\mathrm{FcC}, \mathrm{C} 31)$, $32.1\left(\mathrm{C}_{\mathrm{a}} \mathrm{H}_{2}, \mathrm{C} 5\right), 26.0\left(\mathrm{C}_{\mathrm{c}} \mathrm{H}_{2}, \mathrm{C} 3\right), 24.9\left(\mathrm{C}_{d} \mathrm{H}_{2}, \mathrm{C} 4\right), 22.8\left(\mathrm{C}_{b} \mathrm{H}_{2}, \mathrm{C} 2\right)$. Recovery of the remaining (R, R)- N, N^{\prime}-bis(1-naphthylmethyl)cyclohexane-1,2-diamine by column chromatography afforded 69.0 mg of pure product.
(\pm)-1-lodo-2-(N-pyrazolinomethyl)ferrocene ($(\pm)-\mathbf{4 k}$): By following the general procedure A from compound ($\mathbf{\pm})-2(23 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.00$ equiv) and pyrazole ($16.3 \mathrm{mg}, 0.24 \mathrm{mmol}, 4.00$ equiv) in HFIP $(63 \mu \mathrm{~L})$, $(\pm)-4 \mathbf{k}$ was obtained after column chromatography (PE-EtOAc, 80:20 with 1% of NEt_{3}) as an orange oil (23.2 mg , quant). R_{f} (eluent: PE/EtOAc 80:20, 5 drops of $\left.\mathrm{NEt}_{3}\right)=0.55 . v_{\max }($ film $) / \mathrm{cm}^{-1} 3095,2923,2851,1718,1510,1408,1390$, $1369,1273,1106,1086,1045,1000,965,824,809,745 .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.49\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 7.43(\mathrm{~d}, J=2.2$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 3^{\prime}\right), 6.21\left(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 5.16$ (d, $J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}), 5.11(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.48(\mathrm{dd}, J=1.3,2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5), 4.39$ (dd, $J=1.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3), 4.26(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.17$ (s, $5 \mathrm{H}, \mathrm{Cp}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 139.2 ($\mathrm{ArCH}, \mathrm{C} 1^{\prime}$), 128.9 ($\mathrm{ArCH}, \mathrm{C} 3^{\prime}$), 105.6 ($\mathrm{ArCH}, \mathrm{C} 2$ '), 84.4 (FcC , C2), 75.3 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.9 (Cp), 69.8 ($\mathrm{FcCH}, \mathrm{C} 4$), 68.6 ($\mathrm{FcCH}, \mathrm{C} 3$), 51.9 (CH_{2}), 44.7 ($\mathrm{FcC}, \mathrm{C} 1$). Mass: 392 [M], $327\left[\mathrm{Fc}(\mathrm{I}) \mathrm{CH}_{3}+\mathrm{H}\right], 265$ [M-I]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FelN} 2$: C, 42.89; H, 3.34; N, 7.15. Found: C, 42.92; H, 3.39; N, 7.18.
(S_{p})-1-lodo-2-(N-pyrazolinomethyl)ferrocene (($\left.S_{p}\right)$-4k): By following the general procedure A from compound $\left(S_{p}\right)-2(38.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv) and pyrazole ($27.3 \mathrm{mg}, 0.40 \mathrm{mmol}, 4.00$ equiv) in HFIP ($63 \mu \mathrm{~L}$), $\left(S_{p}\right)-\mathbf{4 k}$ was obtained after column chromatography (PE-EtOAc, 80:20 with 1% of NEt_{3}) as an orange oil ($36.0 \mathrm{mg}, 92 \%$, $94: 6 \mathrm{er}$). Analytical data analogous to racemic compound. $[\alpha]_{\mathrm{D}}+10.9$ (c 0.01 in CHCl_{3}). The enantiomeric ratio was determined on Chiralpak IC-3 column, hexane/ $/ \mathrm{PrOH}: 90: 10,0.8 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, 20^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.86$ \min , t (minor) $=13.36 \mathrm{~min}$.
(\pm)-1-lodo-2-(N-imidazolinomethyl)ferrocene (($\mathbf{\pm}$)-4I): By following the general procedure A from compound ($\mathbf{\pm})-\mathbf{2}(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and imidazole ($109 \mathrm{mg}, 1.60 \mathrm{mmol}, 4.00$ equiv) in HFIP ($421 \mu \mathrm{~L}$), $\mathbf{(\pm) - 4 1}$ was obtained after column chromatography (PE-EtOAc, 60:40 to 20:80 with 2% of NE_{3}) as an orange solid ($104 \mathrm{mg}, 66 \%$). Mp $100-102^{\circ} \mathrm{C}$. R_{f} (eluent: PE/EtOAc 50:50, 5 drops of NEt_{3}) $=0.41 . v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3095$, 1504, 1437, 1366, 1276, 1242, 1227, 1104, 1066, 1026, 999, 969, 906, 831, 817, 809, 768, 741. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.56$ (br s, $1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 7.04 (br s, 1H, ArCH, H2'), 6.99 (br s, 1H, ArCH, H3'), 4.97 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.89(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 4.49(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{FcCH}, \mathrm{H} 4$ or H 5$), 4.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 3$ and H 4 or H 5$), 4.17(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 137.2$ ($\mathrm{ArCH}, \mathrm{C} 1^{\prime}$), 129.6 ($\left.\left.\mathrm{ArCH}, \mathrm{C}\right)^{\prime}\right)$, 119.2 ($\mathrm{ArCH}, \mathrm{C} 3$) $), 84.4$ ($\mathrm{FcC}, \mathrm{C} 2$), 75.5 ($\mathrm{FcCH}, \mathrm{C} 4$ or C5), 71.9 (Cp), 69.7 ($\mathrm{FcCH}, \mathrm{C} 4$ or C 5), 68.1 ($\mathrm{FcCH}, \mathrm{C} 3$), $47.1\left(\mathrm{CH}_{2}\right), 44.2$ ($\mathrm{FcC}, \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13}$ FelN N_{2} : C, 42.89; H, 3.34; N, 7.15. Found: C, 42.80; H, 3.31; N, 7.05.
(\pm)-1-lodo-2-($\mathbf{N - 1 , 2 , 4 - t r i a z o l i n o m e t h y l) f e r r o c e n e ~ ((~} \mathbf{\pm}$)-4m): By following the general procedure A from compound $(\pm)-2(115 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) and $1,2,4$-triazole ($41.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 2.00$ equiv) in HFIP (316 $\mu \mathrm{L}$), (\pm)-4m was obtained after column chromatography (PE-EtOAc, 80:20 with 2% of NEt_{3}) as an orange solid ($99 \mathrm{mg}, 84 \%$). Mp $115-117{ }^{\circ} \mathrm{C}$. R_{f} (eluent: PE/EtOAc 70:30, 5 drops of NE_{3}) $=0.29$. $\mathrm{V}_{\max }($ film $) / \mathrm{cm}^{-1} 3113$, 2990, 1503, 1429, 1371, 1347, 1279, 1239, 1201, 1133, 1105, 1019, 1000, $957,869,843,825,808,778,711 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ 8.08 (s, 1H, ArCH, H2'), 7.91 (s, 1H, ArCH, H1'), 5.20 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHH}), 5.14(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.51$ (dd, $J=1.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}$, H5), 4.41 (dd, $J=1.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), $4.30(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4)$,
4.18 (s, 5H, Cp). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 151.9$ (ArCH , C1'), 142.8 ($\mathrm{ArCH}, \mathrm{C} 2$ '), 82.5 ($\mathrm{FcC}, \mathrm{C} 2$), 75.6 ($\mathrm{FcCH}, \mathrm{C} 5$), 72.0 (Cp), 70.1 ($\mathrm{FcCH}, \mathrm{C} 4$), 68.7 ($\mathrm{FcCH}, \mathrm{C} 3$), $49.9\left(\mathrm{CH}_{2}\right), 44.4$ ($\mathrm{FcC}, \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FelN}_{3}$: C, 39.73; H, 3.08; N, 10.69. Found: C, 40.17; H, 2.94; N, 10.37.
(\pm)-1-lodo-2-(N-2-thionobenzothiazolomethyl)ferrocene ($\mathbf{\pm}$)-4n): By following the general procedure A from compound (\pm)-2 (115 mg, 0.30 mmol, 1.00 equiv) and 2-mercaptobenzothiazole ($52.3 \mathrm{mg}, 0.60 \mathrm{mmol}$, 2.00 equiv) in HFIP ($316 \mu \mathrm{~L}$), (\pm)-4n was obtained after column chromatography (PE-EtOAc, 80:20 with 1% of NEt_{3}) as an orange solid ($113 \mathrm{mg}, 76 \%$). Mp $159-160^{\circ} \mathrm{C}$. Rf (eluent: PE/EtOAc 90:10) $=0.48 . \mathrm{V}_{\text {max }}$ (film)/cm ${ }^{-1} 3089,2930,1461,1431,1386,1369,1316,1292,1237,1202$, 1141, 1129, 1053, 969, 822, 804, 757. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $7.44\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 5^{\prime}\right), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}, \mathrm{H} 2$ ' and H3'), 7.24 (m, 1H, ArCH, H4'), 6.34 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.82 (d, $J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.44 (s, 1H, FcH, H5), 4.43 (s, 1H, FcCH, H3), 4.25 (s, $5 \mathrm{H}, \mathrm{Cp}), 4.15(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcH}, \mathrm{H} 4) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 189.9$ (C=S), 141.3 ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 127.5 ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 127.0 ($\left.\mathrm{ArCH}, \mathrm{C} 3^{\prime}\right)$, 124.9 (ArCH, C4'), 121.3 ($\mathrm{ArCH}, \mathrm{C}^{\prime}$), 113.7 ($\mathrm{ArCH}, \mathrm{C} 2$ '), 83.6 ($\mathrm{FcC}, \mathrm{C} 2$), 74.2 ($\mathrm{FcCH}, \mathrm{C} 5$), 72.6 (Cp), 69.5 ($\mathrm{FcCH}, \mathrm{C} 4$), 68.3 ($\mathrm{FcCH}, \mathrm{C} 3$), $46.2\left(\mathrm{CH}_{2}\right)$, 43.9 (FcC, C1). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14}$ FelNS 2 : C, 44.01 ; H, 2.87; N, 2.85; S, 13.06. Found: C, $43.77 ; \mathrm{H}, 2.91 ; \mathrm{N}, 2.35 ; \mathrm{S}, 12.58$. Crystal data for (\pm)4n. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{FeINS}_{2}, M=491.17, T=150 \mathrm{~K}$; monoclinic $C 2 / c$ (I.T.\#15), $a=$ 18.761(2), $b=14.6448(15), c=12.5847(14) \AA, \beta=95.803(4)^{\circ}, V=$ $3440.0(6) \AA^{3} . Z=8, d=1.897 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=2.911 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3908 unique intensities and 209 parameters converged at $\omega R F^{2}$ $=0.0533\left(R_{F}=0.0245\right)$ for 3581 observed reflections with $I>2 \sigma(\Lambda)$. CCDC 2090456. (\pm)-1-lodo-2-(S-2-thionobenzothiazolomethyl)ferrocene (\pm)$4^{\prime} \mathrm{n}$) was also isolated as an orange oil ($9 \mathrm{mg}, 6 \%$). Rf (eluent: PE/EtOAc $90: 10)=0.66 . v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 2918,1455,1424,1308,1237,1105,1075$, 990, 956, 821, 806, 752, 724. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.93(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 2$ '), 7.76 (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}{ }^{\prime}$), 7.43 (dt, J $\left.=0.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 7.30\left(\mathrm{dt}, J=0.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right)$, $4.64(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.47 (dd, $J=1.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5)$, 4.45 (dd, $J=1.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3$), 4.34 ($\mathrm{d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.21 (s, $6 \mathrm{H}, \mathrm{Cp}$ and $\mathrm{FcCH}, \mathrm{Cp}$ and H 4$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 166.5(\mathrm{C}=\mathrm{N}), 153.4$ ($\mathrm{ArC}, \mathrm{C}^{\prime}$) , 135.6 ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 126.2 (ArCH , C3'), 124.4 ($\mathrm{ArCH}, \mathrm{C}{ }^{\prime}$ '), 121.6 ($\mathrm{ArCH}, \mathrm{C} 2^{\prime}$), 121.2 ($\mathrm{ArCH}, \mathrm{C} 5$ '), 84.7 (FcC , $\mathrm{C} 2), 75.0(\mathrm{FcCH}, \mathrm{C} 5), 72.0(\mathrm{Cp}), 69.3(\mathrm{FcCH}, \mathrm{C} 4), 68.4$ ($\mathrm{FcCH}, \mathrm{C} 3$), 45.2 (FcC, C1), $34.5\left(\mathrm{CH}_{2}\right)$.
(\pm)-1-lodo-2-(N-indazolomethyl)ferrocene ($(\pm)-40)$: By following the general procedure A from compound (\pm)-2 ($154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and indazole ($94.5 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP ($421 \mu \mathrm{~L}$), $(\pm)-40$ was obtained after column chromatography (PE-EtOAc, 90:10 to 70:30 with 2% of NEt_{3}) as an orange oil ($79 \mathrm{mg}, 44 \%$). R_{f} (eluent: $\mathrm{PE} / E t O A c 90: 10,5$ drops of NEt_{3}) $=0.48 . v_{\max }($ film $) / \mathrm{cm}^{-1} 3093,1614,1498$, 1463, 1417, 1368, 1252, 1168, 1105, 1059, 1028, 1001, 904, 823, 762, 737. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.03$ (s, 1H, ArCH, H1'), 7.73 (d, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 7.60\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 7.38(\mathrm{t}, J$ $\left.=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 5^{\prime}\right), 7.14\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 4^{\prime}\right), 5.44$ (d, $J=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 5.34 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.45 (dd, $J=1.4,2.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3$), 4.32 (dd, $J=1.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.19 (t, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.14(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 139.4$ (ArC, C7'), 133.3 ($\mathrm{ArCH}, \mathrm{C}^{\prime}$ '), 126.3 ($\mathrm{ArCH}, \mathrm{C}{ }^{\prime}$), 124.1 (ArC, C2'), 121.1 ($\mathrm{ArCH}, \mathrm{C} 3^{\prime}$), 120.6 ($\mathrm{ArCH}, \mathrm{C} 4$ '), 109.8 ($\mathrm{ArCH}, \mathrm{C} 5^{\prime}$), 85.5 ($\mathrm{FcC}, \mathrm{C} 2$), 74.8 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.9 (Cp), 69.4 ($\mathrm{FcCH}, \mathrm{C} 4), 68.2(\mathrm{FcCH}, \mathrm{C} 3)$, $49.1\left(\mathrm{CH}_{2}\right)$, 44.1 ($\mathrm{FcC}, \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FelN} \mathrm{N}_{2}$: C, 48.90; H, 3.42; N, 6.34. Found: C, 48.95; H, 3.49; N, 6.37. ($\mathbf{\pm}$)-1-lodo-2-(N'indazolomethyl)ferrocene ((\pm)-40') was also isolated as an orange solid ($94 \mathrm{mg}, 53 \%$). Mp $111-113^{\circ} \mathrm{C}$. R_{f} (eluent: PE/EtOAc 90:10, 5 drops of $\left.\mathrm{NE}_{3}\right)=0.34 . v_{\max }($ film $) / \mathrm{cm}^{-1} 3095,1624,1512,1465,1434,1423,1375$, 1333, 1294, 1145, 1129, 1105, 1002, 821, 810, 785, 755. ¹H NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 7.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, ArCH, H6'), 7.61 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), $7.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{ArCH}, \mathrm{H} 5^{\prime}\right), 7.05(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 4$ '), 5.44 (s, 2H, CH2), 4.51 (dd, $J=1.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5), 4.49$ (dd, $J=1.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3)$, 4.29 (t, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.20(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.4
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 148.7$ ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 125.9 ($\mathrm{ArCH}, \mathrm{C} 5^{\prime}$), 122.3 (ArCH , C^{\prime}), 121.9 ($\mathrm{ArC}, \mathrm{C} 2$ '), 121.7 ($\left.\mathrm{ArCH}, \mathrm{C} 4^{\prime}\right), 120.3$ ($\mathrm{ArCH}, \mathrm{C} 3^{\prime}$), 117.6 (ArCH , C6'), 84.4 ($\mathrm{FcC}, \mathrm{C} 2$), 75.5 ($\mathrm{FcCH}, \mathrm{C} 5$), 72.0 (Cp), 70.1 ($\mathrm{FcCH}, \mathrm{C} 4$), 68.9 ($\mathrm{FcCH}, \mathrm{C} 3$), $53.5\left(\mathrm{CH}_{2}\right), 44.9$ ($\mathrm{FcC}, \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FelN}_{2}$: C, 48.90; H, 3.42; N, 6.34. Found: C, 48.81; H, 3.35; N, 6.21.
(\pm)-1-lodo-2-(tert-butoxycarbonylaminomethyl)ferrocene ((\pm)-4p): By following the general procedure A from compound ($\mathbf{\pm}$)-2 (154 mg, 0.40 mmol, 1.00 equiv) and tert-butylcarbamate ($93.7 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP ($421 \mu \mathrm{~L}$), (\pm)-4p was obtained after column chromatography (PE-EtOAc, 90:10) as an orange oil ($79 \mathrm{mg}, 45 \%$). R_{f} (eluent: PE/EtOAc $95: 5)=0.77 . V_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 3090,2931,1461,1369,1316,1292,1202$, 1141, 1129, 1052, 969, 822, 804, 757. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}^{6}$): δ (ppm) 7.14 (t, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 4.42 (s, 1H, FcCH, H5), 4.29 (s, 1H, $\mathrm{FcCH}, \mathrm{H} 3$), 4.21 (s, 1H, $\mathrm{FcCH}, \mathrm{H} 4$), 4.14 (s, $5 \mathrm{H}, \mathrm{Cp}$), 4.03 (dd, $J=6.6$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.76 (dd, $J=6.6,15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 1.14 (s, 9H, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO-d ${ }^{6}$): $\delta(\mathrm{ppm}) 155.5(\mathrm{C}=\mathrm{O}), 87.8$ ($\mathrm{FcC}, \mathrm{C} 2$), 77.7 (Cq), 73.6 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.2 (Cp), 68.2 ($\mathrm{FcCH}, \mathrm{C} 4$), 67.2 ($\mathrm{FcCH}, \mathrm{C} 3$), $43.0(\mathrm{FcC}, \mathrm{C} 1)$, $\left.39.7\left(\mathrm{CH}_{2}\right), 28.3 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FelNO}_{2}$: C, 43.57; H, 4.57; N, 3.18. Found: C, 43.70; H, 4.71; N, 3.29.
($\mathbf{\pm}$-1-lodo-2-(allyloxymethyl)ferrocene (($\pm \mathbf{)} \mathbf{- 4 q})$: By following the general procedure A from compound ($\mathbf{\pm}$) $-2(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and allyl alcohol ($54.5 \mu \mathrm{~L}, 46.5 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP ($421 \mu \mathrm{~L}$), $\mathbf{(~} \mathbf{)} \mathbf{- 4 q}$ was obtained after column chromatography (PE-EtOAc, 95:5) as an orange oil (49 mg, 32\%). Rf (eluent: PE/EtOAc 95:5) $=0.63$. $V_{\text {max }}$ (film)/cm ${ }^{-1} 3090,2850,1645,1446,1410,1368,1287,1252,1230,1191$, $1105,1077,1055,1000,921,819,745 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) $5.94\left(\mathrm{~m}, 1 \mathrm{H}, H \mathrm{C}=\mathrm{CH}_{2}\right), 5.32(\mathrm{dq}, J=1.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHH})$, 5.20 (dq, $J=1.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHH}$), 4.45 (dd, $J=1.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{FcCH}, \mathrm{H} 5)$, 4.37-4.32 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}$ and $\mathrm{FcH}, \mathrm{CH}_{2}-\mathrm{Fc}$ and H 3), $4.23(\mathrm{t}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.14$ (s, 5H, Cp), 4.03 (m, 2H, CH2-CH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 135.1\left(\mathrm{HC=}=\mathrm{CH}_{2}\right), 117.1\left(\mathrm{HC}=\mathrm{CH}_{2}\right), 85.0$ ($\mathrm{FcC}, \mathrm{C} 2$), 75.3 ($\mathrm{FcCH}, \mathrm{C} 5$), $71.6(\mathrm{Cp}), 71.3\left(\mathrm{CH}_{2}-\mathrm{CH}\right), 69.4(\mathrm{FcCH}, \mathrm{C} 4)$, 68.8 ($\mathrm{FcCF}, \mathrm{C} 3$), $68.4\left(\mathrm{CH}_{2}-\mathrm{Fc}\right)$, 45.0 ($\mathrm{FcC}, \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{FelO}: \mathrm{C}, 44.02 ; \mathrm{H}, 3.96$. Found: C, 44.05; H, 4.00 .
(\pm)-1-lodo-2-(1,1,1,3,3,3-hexafluoro-2-propoxymethyl)ferrocene ((\pm)$\mathbf{4 r}$): A solution of compound ($\mathbf{\pm})-\mathbf{2}(50.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv) in HFIP ($410 \mu \mathrm{~L}, 665 \mathrm{mg}, 3.90 \mathrm{mmol}, 30.0$ equiv) was heated at $60^{\circ} \mathrm{C}$ for 1 h in a pre-heated oil bath. The reaction mixture was cooled to rt and was poured onto 2 mL of EtOAc and 1 mL of NEt_{3}. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO_{2}, using $\mathrm{PE} / \mathrm{EtOAc}$ (14:1 to $10: 1)$ with 1% of NE_{3} to give the title product (($\left.\mathbf{\pm}\right)-4 \mathrm{r}$ as an orange solid $(41.0 \mathrm{mg}, 64 \%)$. Alternatively, ($\mathbf{\pm}$)-4r can also be prepared from ($\mathbf{\pm})-\mathbf{1}$: A solution of compound ($\mathbf{\pm}$) $\mathbf{- 1}(55.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv) in HFIP (410 $\mu \mathrm{L}, 665 \mathrm{mg}, 3.90 \mathrm{mmol}, 30.0$ equiv) was heated at $60^{\circ} \mathrm{C}$ for 1 h in a preheated oil bath. The reaction mixture was cooled to $r t$ and was poured onto 2 mL of EtOAc and 1 mL of NEt_{3}. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO_{2}, using $\mathrm{PE} / \mathrm{EtOAc}$ (12:1 to 10:1) with 1% of NE_{3} to give the title product as an orange solid ($59.0 \mathrm{mg}, 92 \%$). R_{f} (eluent: PE/EtOAc 14:1, 5 drops of NEt_{3}) $=0.69 . \mathrm{Mp} 53-55^{\circ} \mathrm{C} . \mathrm{V}_{\text {max }}$ (film)/cm ${ }^{-1} 3097,2932,1455,1371,1284,1262,1216,1185,1099,1000$, 971, 895, 870, 825. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.74$ (d, $J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.72(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.53(\mathrm{dd}, J=1.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.37 (dd, $J=1.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3$), 4.32 (t, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4$), 4.21 (sept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.17 (s, $5 \mathrm{H}, \mathrm{Cp}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 121.7$ (dq, $J=30.6,284 \mathrm{~Hz}, 2 \mathrm{x}$ CF_{3}), 82.1 (s, $\mathrm{FcC}, \mathrm{C} 2$), 76.0 (s, $\mathrm{FcCH}, \mathrm{C} 5$), 74.2 (sept, $J=32.7 \mathrm{~Hz}, \mathrm{CH}$), 72.4 (s, CH_{2}), 71.8 (Cp), 70.3 (s, $\mathrm{FcCH}, \mathrm{C} 2$), 69.2 ($\left.\mathrm{s}, \mathrm{FcCH}, \mathrm{C} 3\right), 44.6$ (s, $\mathrm{FcC}, \mathrm{C} 1) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($283 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-73.6\left(\mathrm{~m}, 2 \times \mathrm{CF}_{3}\right)$. Mass: 492 [M]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FeF}_{6} \mathrm{IO}: \mathrm{C}, 34.18$; H, 2.25. Found: C, 34.53; H, 2.41. Crystal data for ($\mathbf{\pm}$)-4r. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{FelO}, M=491.98, T=$ 150 K ; monoclinic $C 2 / c$ (I.T.\#15), $a=42.045(8), b=7.5013(14), c=$ 10.080(2) $\AA, \beta=102.947(7)^{\circ}, V=3098.3(11) \AA^{\circ} . Z=8, d=2.109 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$,
$\mu=3.029 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3540 unique intensities and 184 parameters converged at $\omega R\left(F^{2}\right)=0.0688(R(F)=0.0304)$ for 3074 observed reflections with $I>2 \sigma(I)$. CCDC 1898629.
(S_{p})-1-lodo-2-(1,1,1,3,3,3-hexafluoro-2-propoxymethyl)ferrocene
$\left(\left(S_{p}\right)-4 r\right)$: By following a similar protocol, starting from compound $\left(S_{p}\right)-\mathbf{2}$ ($50.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv, er $96: 4$), the title product was obtained as an orange solid ($27.0 \mathrm{mg}, 42 \%$, er $96: 4$). Analytical data analogous to racemic compound. [$\alpha]_{D}-18.5$ (c 0.01 in CHCl_{3}). The enantiomeric ratio was determined on Chiralpak IA-3 column, hexane/iPrOH: 99:1, 0.5 $\mathrm{mL} / \mathrm{min}, 5{ }^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.64 \mathrm{~min}, \mathrm{t}($ minor $\left.)=10.84 \mathrm{~min}\right)$. Alternatively, $\left(S_{p}\right)-4 r$ can also be prepared from $\left(S_{p}\right)$-1: By following a similar protocol, starting from compound (\boldsymbol{S}_{p}) $\mathbf{- 1}(55.0 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.00$ equiv), the title product was obtained as an orange solid ($56.0 \mathrm{mg}, 87.5 \%$, er 95:5). Analytical data analogous to racemic compound. The enantiomeric ratio was determined on Chiralpak IA-3 column, hexane/iPrOH: 99:1, $0.5 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, 5^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.72 \mathrm{~min}$, $t($ minor $)=10.97 \mathrm{~min}$.
(\pm)-1-lodo-2-(diphenylphosphinomethyl)ferrocene (($\pm \mathbf{)}-4 \mathrm{~s})$: By following the general procedure A from compound ($\mathbf{\pm}$)-2 ($57.6 \mathrm{mg}, 0.15$ $\mathrm{mmol}, 1.00$ equiv) and diphenylphosphine ($104 \mu \mathrm{~L}, 112 \mathrm{mg}, 0.60 \mathrm{mmol}$, 4.00 equiv) in HFIP ($160 \mu \mathrm{~L}$), ($\mathbf{\pm}$)-4s was obtained after column chromatography (PE-EtOAc, 50:1) as an orange oil ($68 \mathrm{mg}, 89 \%$). R_{f} (eluent: PE/EtOAc 20:1) $=0.67 . v_{\max }($ film $) / \mathrm{cm}^{-1} 3069,2921,2245,1952$, $1885,1724,1585,1479,1432,1408,1365,1105,1026,999,950,908$, 818, 737, 693. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}$, $\left.4 \times \mathrm{H} 2^{\prime}\right), 7.36-7.31\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArCH}, 4 \times \mathrm{H} 3^{\prime}\right.$ and $\left.2 \times \mathrm{H} 4{ }^{\prime}\right), 4.37(\mathrm{dd}, J=2.2$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5), 4.09(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.05(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}$, H4), 3.82 (s, 1H, FcCH, H3), 3.22 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.19 (d, $J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 138.8(\mathrm{~d}, J=$ $15.3 \mathrm{~Hz}, \operatorname{ArC}, \mathrm{C} 1$ '), 138.2 (d, $J=15.3 \mathrm{~Hz}, \mathrm{ArC}, \mathrm{C} 1$) $), 133.7$ (d, $J=19.8 \mathrm{~Hz}$, ArCH, $2 \times$ C2'), 132.5 (d, $\left.J=17.9 \mathrm{~Hz}, \mathrm{ArCH}, 2 \times \mathrm{C} 2^{\prime}\right), 129.1$ (s, ArCH, $2 \times$ C4'), 128.5 (d, $\left.J=4.5 \mathrm{~Hz}, \mathrm{ArCH}, 4 \times \mathrm{C} 3^{\prime}\right), 86.1$ (d, $J=15.4 \mathrm{~Hz}, \mathrm{FcC}, \mathrm{C} 2$), 74.1 (s, FcCH, C5), 71.9 (s, Cp), 68.3 (s, FcCH, C4), 67.9 (d, J=5.7 Hz, FcCH, C3), 48.7 (d, $J=3.3 \mathrm{~Hz}, \mathrm{FcC}, \mathrm{C} 1$), 30.6 ($\mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{CH}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})-13.8$.
$\left(S_{p}\right)$-1-lodo-2-(diphenylphosphinomethyl)ferrocene $\quad\left(\left(S_{p}\right)-4 s\right)$: By following the general procedure A from compound $\left(S_{p}\right)-2(38.4 \mathrm{mg}, 0.1$ mmol, 1.00 equiv) and diphenylphosphine ($69.6 \mu \mathrm{~L}, 74.5 \mathrm{mg}, 0.40 \mathrm{mmol}$, 4.00 equiv) in HFIP $(106 \mu \mathrm{~L}),\left(S_{p}\right)$-4s was obtained after column chromatography (PE-EtOAc, 50:1) as an orange oil ($50.0 \mathrm{mg}, 98 \%$, 95:5 er). Analytical data analogous to racemic compound. $[\alpha]_{D}+3.54$ ($c 0.01$ in CHCl_{3}). The enantiomeric ratio was determined on Chiralpak IA-3 column, hexane/iPrOH: 99:1, $0.8 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, 20^{\circ} \mathrm{C}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (major) $=6.21 \mathrm{~min}$, $\mathrm{t}($ minor $)=6.80 \mathrm{~min}$.
(\pm)-1-lodo-2-(3-(N-indolyl)methyl)ferrocene ((\pm)-4t): By following the general procedure A from compound $(\pm)-2(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and indole ($94.0 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP $(421 \mu \mathrm{~L})$, (\pm)4t was obtained after column chromatography (PE-EtOAc, 95:5 with 2\% of NEt_{3}) as an orange solid ($143 \mathrm{mg}, 81 \%$). Rf_{f} (eluent: PE/EtOAc 95:5) $=$ 0.32 . Mp 170-171 ${ }^{\circ} \mathrm{C}$. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3411,3089,3053,2892,1615,1455$, 1418, 1403, 1354, 1335, 1221, 1102, 1088, 1011, 996, 958, 829, 804, 752. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.67(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 4$ '), 7.34 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 7.20 (dt, $J=1.1$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H6}$) , 7.13 (dt, $\left.J=0.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 5^{\prime}\right), 6.92$ (m, $\left.1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 1^{\prime}\right), 4.42$ (dd, $\left.J=1.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5\right), 4.22$ (dd, $J=1.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3), 4.15(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.13(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}$, $\mathrm{H} 4), 3.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 136.3$ (ArC, C8'), 127.4 ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 122.3 ($\mathrm{ArCH}, \mathrm{C}^{\prime}$), 122.1 ($\mathrm{ArCH}, \mathrm{C} 6^{\prime}$), 119.5 ($\mathrm{ArCH}, \mathrm{C} 5^{\prime}$), 115.8 ($\mathrm{ArC} ; \mathrm{C}^{\prime}$), 111.2 ($\mathrm{ArCH}, \mathrm{C} 7$ '), 89.5 ($\mathrm{FcC}, \mathrm{C} 2$), 74.2 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.8 (Cp), 68.3 ($\mathrm{FcCH}, \mathrm{C} 4$), 67.9 ($\mathrm{FcCH}, \mathrm{C} 3$), 45.7 ($\mathrm{FcC}, \mathrm{C} 1$), $26.3\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FeIN}$: C, $51.74 ; \mathrm{H}, 3.66 ; \mathrm{N}, 3.18$. Found: C, 51.54; H, 3.53; N, 2.98 .
(\pm)-1-lodo-2-(N-methyl-3-indolylmethyl)ferrocene ((\pm)-4u): By following the general procedure A from compound $(\pm)-2(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and N -methylindole ($105 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP (421 $\mu \mathrm{L}$), ($\mathbf{\pm}$)-4u was obtained after column chromatography (PE-EtOAc, 95:5 with 2% of NEt_{3}) and trituration in pentane as an orange solid (146 mg , 80%). It can also be prepared on a larger scale by following the general procedure A from compound ($\mathbf{~})-\mathbf{2}(499 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.00$ equiv) and N-methylindole ($341 \mathrm{mg}, 2.60 \mathrm{mmol}, 2.00$ equiv) in HFIP (1.40 mL). Compound (\pm)-4u was obtained as an orange solid ($499 \mathrm{mg}, 84 \%$). R_{f} (eluent: PE/EtOAc 95:5) $=0.53 . \mathrm{Mp} 136-137{ }^{\circ} \mathrm{C}$. $v_{\max }($ film $) / \mathrm{cm}^{-1} 3093$, 2929, 1614, 1472, 1432, 1368, 1328, 1231, 1204, 1156, 1102, 1030, 997, $961,807,742 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}, \mathrm{H} 4^{\prime}$), 7.28 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 7.22 (dt, $J=0.8,7.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}\right), 7.12$ (dt, $J=1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 6.76 (s, 1H, ArCH, H1'), 4.42 (dd, $J=1.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5), 4.23$ (dd, $J=1.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3), 4.16(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.14(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{C} 4), 3.90$ (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $3.86(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$), 3.72 (s, 3H, CH_{3}). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 137.0$ ($\mathrm{ArC}, \mathrm{C}{ }^{\prime}$), 127.7 (ArC, C3'), 127.0 (ArCH, C1'), 121.6 (ArCH, C6'), 119.2 ($\mathrm{ArCH}, \mathrm{C} 4$ '), 118.8 ($\mathrm{ArCH}, \mathrm{C} 5^{\prime}$), 114.3 ($\mathrm{ArC}, \mathrm{C} 2^{\prime}$), 109.3 ($\mathrm{ArCH}, \mathrm{C} 7$ '), 89.7 ($\mathrm{FcC}, \mathrm{C} 2$), 74.2 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.8 (Cp), 68.3 ($\mathrm{FcCH}, \mathrm{C} 4$), 67.9 ($\mathrm{FcCH}, \mathrm{C} 3$), 45.7 ($\mathrm{FcC}, \mathrm{C} 1$), $32.8\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FelN}$: C, 52.78 ; H, 3.99; N, 3.08. Found: C, $52.90 ; \mathrm{H}, 4.01$; N, 3.15. Crystal data for (\pm)-4u. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FelN}, M=455.10, T=150 \mathrm{~K}$; monoclinic $P 2_{1 / c}$ (I.T.\#14), $a=$ 12.3344(7), $b=11.2470(6), c=12.5667(7) \AA, \beta=95.672(2)^{\circ}, V=$ 1734.78(17) $\AA^{3} . Z=4, d=1.743 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=2.647 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3895 unique intensities and 209 parameters converged at $\omega R\left(F^{2}\right)=0.0774(R(F)=0.0355)$ for 3384 observed reflections with $I>$ 2б(). CCDC 2090457.
(\pm)-1-lodo-2-(3-benzothiophenylmethyl)ferrocene ((\pm)-4v): By following the general procedure A from compound (\pm) $-2(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and benzothiophene ($107 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP (421 $\mu \mathrm{L}$), ($\mathbf{\pm}$)-4v was obtained after column chromatography (PE-EtOAc, 15:1) as an orange solid ($45 \mathrm{mg}, 24 \%$). Rf (eluent: PE/EtOAc 90:10) $=0.80 \mathrm{Mp}$ $133-135{ }^{\circ} \mathrm{C}$. $v_{\max }($ film $) / \mathrm{cm}^{-1} 3088,1456,1426,1406,1281,1252,1133$, 1104, 1018, 998, 958, 861, 825, 807, 758, 742, 727. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 7$ '), $7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 4^{\prime}\right), 7.41\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}\right), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}$, H5'), 6.96 (s, 1H, ArCH, H1'), 4.46 (s, 1H, FcCH, H5), 4.19 (s, 1H, FcCH, $\mathrm{H} 3), 4.18$ (s, 1H, H5), 4.16 (s, 5H, Cp), 3.96 (s, 2H, CH 2). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 140.6$ ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 138.8 ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 135.5 (ArC , C2'), 124.3 ($\mathrm{ArCH}, \mathrm{C}{ }^{\prime}$), 124.0 ($\mathrm{ArCH}, \mathrm{C}{ }^{\prime}$), 123.0 ($\mathrm{ArCH}, \mathrm{C} 7$ '), 122.9 ($\mathrm{ArCH}, \mathrm{C}^{\prime}$ '), 121.9 ($\mathrm{ArCH}, \mathrm{C} 4$ '), 87.9 ($\mathrm{FcC}, \mathrm{C} 2$), 74.6 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.9 (Cp), 68.6 and 68.1 ($\mathrm{FcCH}, \mathrm{C} 3$ and C4), 45.7 ($\mathrm{FcC}, \mathrm{C} 1$), $29.7\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15}$ FelS: C, 49.81 ; H, 3.30; S, 7.00. Found: C, 49.96; H, 3.28; $\mathrm{N}, 6.82$. Crystal data for (\pm)-4v. $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FelS}, M=458.12, T=150 \mathrm{~K}$; monoclinic $P 2_{1 / c}$ (I.T.\#14), $a=10.3379(9), \quad b=11.6871$ (9), $c=$ 13.8680(12) $\AA, \beta=101.121(3)^{\circ}, V=1644.1(2) \AA^{3} . Z=4, d=1.851 \mathrm{~g} \cdot \mathrm{~cm}^{-}$ ${ }^{3}, \mu=2.915 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3730 unique intensities and 169 parameters converged at $\omega R\left(F^{2}\right)=0.1460(R(F)=0.0628)$ for 3196 observed reflections with $I>2 \sigma(\Lambda)$. CCDC 2090458.
(\pm)-1-lodo-2-(2-benzofuranylmethyl)ferrocene ((\pm)-4w): By following the general procedure A from compound $(\pm)-2(154 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and benzofurane ($94.5 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.00$ equiv) in HFIP (421 $\mu \mathrm{L}$), ($\mathbf{\pm}$)-4w was obtained after column chromatography (PE-EtOAc, 20:1) as an orange oil $(65 \mathrm{mg}, 36 \%)$. R_{f} (eluent: PE/EtOAc $\left.90: 10\right)=0.82$. $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3087,1599,1586,1453,1418,1252,1167,1105,1000,950$, 907, 823, 801, 729. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.49$ (d, $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 4$ '), 7.45 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 7.23 (dt, $J=1.2$, $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 6^{\prime}\right), 7.19$ (t, $J=0.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 5$ '), 6.39 (s, $1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 2$ '), 4.45 (dd, $J=1.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.28 (dd, $J=1.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3), 4.19$ (t, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4$), 4.15 (s, 5H, $\mathrm{Cp}), 3.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 157.1$ ($\mathrm{ArC}, \mathrm{C} 1^{\prime}$), 154.8 ($\mathrm{ArC}, \mathrm{C} 8^{\prime}$), 128.9 ($\mathrm{ArC}, \mathrm{C}^{\prime}$), 123.5 ($\left.\mathrm{ArCH}, \mathrm{C} 6^{\prime}\right), 122.7$ (ArCH, C5'), 120.6 ($\mathrm{ArCH}, \mathrm{C4}$ '), 111.0 ($\mathrm{ArCH}, \mathrm{C7}$ '), 103.2 ($\mathrm{ArCH}, \mathrm{C} 2$ '), 85.9 ($\mathrm{FcC}, \mathrm{C} 2$), $74.5(\mathrm{FcCH}, \mathrm{C} 5), 71.9(\mathrm{Cp}), 68.6(\mathrm{FcCH}, \mathrm{C} 4), 67.9(\mathrm{FcCH}, \mathrm{C} 3)$,
45.2 ($\mathrm{FcC}, \mathrm{C} 1$), $29.9\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{FelO}: \mathrm{C}, 51.62 ; \mathrm{H}, 3.42$. Found: C, 51.89; H, 3.37.
(\pm)-1-lodo-3-(N-morpholinomethyl)ferrocene ((\pm)-7a): By following the general procedure A from compound (\pm)-5 ($115 \mathrm{mg}, 0.30 \mathrm{mmol}$) and morpholine ($52.5 \mu \mathrm{~L}, 52.3 \mathrm{mg}, 0.60 \mathrm{mmol}$) in HFIP ($316 \mu \mathrm{~L}$), ($\mathbf{\pm}$)-7a was obtained after column chromatography (PE-EtOAc, 80:20 to 20:80 with 1% of NEt_{3}) as an orange solid ($111 \mathrm{mg}, 90 \%$). Rf (eluent: PE/EtOAc 80:20, 5 drops of NE_{3}) $=0.22 . \mathrm{Mp} 99-100^{\circ} \mathrm{C}$. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2928,2861,1799$, 2751, 1449, 1349, 1330, 1284, 123, 1155, 1104, 1070, 1029, 997, 907, 871, 861, 851, 819, 800. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.44(\mathrm{t}, \mathrm{J}=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 2), 4.38$ (dd, $J=1.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$); 4.17 (dd, $J=1.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 4.14(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.65(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, 2$ x CH2O), $3.30(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 3.24(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H)$, $2.38\left(t, \mathrm{~J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 83.6 ($\mathrm{FcC}, \mathrm{C} 3$), 76.6 ($\mathrm{FcCH}, \mathrm{C} 2$), 74.7 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.8 (Cp), 71.0 (FcCH , C4), $67.0\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 58.5\left(\mathrm{CH}_{2}\right), 53.3\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$, $39.7(\mathrm{FcC}, \mathrm{C} 1)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$ FelNO: C, 43.83; H, 4.41; N, 3.41. Found: C, 43.82; H, 4.34; N, 3.31. Crystal data for ($\mathbf{\pm}$)-7a. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{FeINO}, M=411.05, T=150$ K; monoclinic $P 2_{1 / n}$ (I.T.\#14), $a=6.8814(4), b=26.8918(16), c=$ $7.9563(5) \AA, \beta=94.774(2)^{\circ}, V=1467.23(15) \AA^{3} . Z=4, d=1.861 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, $\mu=3.123 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3326 unique intensities and 172 parameters converged at $\omega R\left(F^{2}\right)=0.0603(R(F)=0.0309)$ for 3018 observed reflections with $I>2 \sigma(I)$. CCDC 2090459.
(\pm)-1-lodo-3-(N-pyrazolinomethyl)ferrocene ((\pm)-7b): By following the general procedure A from compound (\pm)-5 ($38.4 \mathrm{mg}, 0.10 \mathrm{mmol}$) and pyrazole ($13.7 \mathrm{mg}, 0.20 \mathrm{mmol}$) in HFIP ($106 \mu \mathrm{~L}$), ($\mathbf{\pm})-7 \mathbf{b}$ was obtained after column chromatography (PE-EtOAc, $75: 25$ with 1% of NEt_{3}) as an orange solid (39.1 mg , quant). Rf_{f} (eluent: PE/EtOAc 80:20, 5 drops of NEt_{3}) $=0.38$. Mp 92-94 ${ }^{\circ} \mathrm{C} . v_{\max }($ film $) / \mathrm{cm}^{-1} 2923,1511,1444,1395,1353,1272,1237$, $1216,1105,1085,1049,998,968,871,826,764,706 .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 7.48\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H} 1^{\prime}\right), 7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 6.21 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}, \mathrm{H}^{\prime}$), 4.98 ($\mathrm{d}, \mathrm{J}=14.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHH}), 4.94(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.49 (s, 1H, FcCH, H2), 4.40 (dd, $J=1.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.24 (t, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4$), 4.15 (s, 5H, Cp). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 139.3$ (ArCH , H1'), 128.6 ($\mathrm{ArCH}, \mathrm{C}^{\prime}$), 105.8 ($\mathrm{ArCH}, \mathrm{C} 2$ '), 84.4 ($\mathrm{FcC}, \mathrm{C} 3$), 75.2 and 75.1 ($\mathrm{FcCH}, \mathrm{C} 2$ and C5), 72.1 (Cp), 69.6 ($\mathrm{FcCH}, \mathrm{C} 4$), $51.2\left(\mathrm{CH}_{2}\right), 39.6$ (FcC , C1). Mass: 392 [M], 265 [M-I]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FelN}_{2}$: C, 42.89; H, 3.34; N, 7.15. Found: C, 42.95; H, 3.48; N, 7.18. Crystal data for (\pm)-7b. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FelN} 2, M=392.01, T=150 \mathrm{~K}$; monoclinic $P 2_{1} / c$ (I.T.\#14), $a=$ 17.842(3), $b=7.5959(11), c=9.9836(19) \AA$, $\beta=92.201(8)^{\circ}, V=1352.0$ (4) $\AA^{3} . Z=4, d=1.926 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=3.381 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 3091 unique intensities and 139 parameters converged at $\omega R\left(F^{2}\right)=0.0984$ $(R(F)=0.0395)$ for 2694 observed reflections with $I>2 \sigma(I)$. CCDC 1898630.
N, N-Dimethyl- N, N-(3-iodoferrocenylmethyl)ethylenediamine ((\pm)7c): By following the general procedure A from compound (\pm)-5 (84.5 mg , $0.22 \mathrm{mmol}, 1.00$ equiv) and N, N-dimethylethylenediamine ($11.0 \mu \mathrm{~L}, 8.81$ $\mathrm{mg}, 0.10 \mathrm{mmol}, 0.45$ equiv) in HFIP $(210 \mu \mathrm{~L}),(\pm)-7 \mathrm{c}$ was obtained after column chromatography (PE-EtOAc, 50:50 to 0:100 with 2% of NE_{3}) as an orange oil ($52 \mathrm{mg}, 70 \%$). Rf (eluent: PE/EtOAc 20:80, 5 drops of NEt_{3}) $=0.18 . v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2775,1454,1410,1358,1344,1318,1270,1237$, $1157,1118,1103,1029,1013,868,834,821 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm}) 4.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{FcCH}, 2 \times \mathrm{H} 2), 4.35$ (m, 2H, FcCH, $2 \times \mathrm{H} 5$), 4.11 (s, $12 \mathrm{H}, \mathrm{Cp}$ and $\mathrm{FcCH}, 2 \times \mathrm{Cp}$ and $2 \times \mathrm{H} 4$), 3.31 ($\mathrm{d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHH}$), 3.24 (d, J=13.3 Hz, 2H, $2 \times \mathrm{CHH}$), 2.33 (s, 4H, $2 \times \mathrm{CH}_{2} \mathrm{~N}$), 2.12 (s, 6H, 2 $\mathrm{x} \mathrm{CH} 3) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 84.0(\mathrm{FcCH}, 2 \times \mathrm{C} 3), 76.7$ ($\mathrm{FcCH}, 2 \times \mathrm{C} 2$), 74.6 ($\mathrm{FcCH}, 2 \times \mathrm{C} 5$), 71.8 ($2 \times \mathrm{Cp}$), 71.0 ($2 \times \mathrm{FcCH}, \mathrm{C} 4$), $57.2\left(\mathrm{CH}_{2}-\mathrm{Fc}\right), 57.1\left(\mathrm{CH}_{2}-\mathrm{Fc}\right), 54.0\left(\mathrm{CH}_{2} \mathrm{~N}\right), 53.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 42.4\left(\mathrm{CH}_{3}\right), 42.3$ $\left(\mathrm{CH}_{3}\right)$, 39.8 ($\mathrm{FcC}, 2 \times \mathrm{C} 1$). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{Fe}_{2} \mathrm{I}_{2} \mathrm{~N}_{2}$: C, 42.43; H, 4.11; N, 3.81. Found: C, 42.50; H, 4.21; N, 3.87.
(\pm)-1-lodo-3-(((1,1,1,3,3,3-hexafluoro-2-propoxymethyl)ferrocene ((\pm)$7 \mathrm{~d})$: A solution of compound (\pm)-5 $(38.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv) in HFIP ($315 \mu \mathrm{~L}, 504 \mathrm{mg}, 3.00 \mathrm{mmol}, 30.0$ equiv) was heated at $60^{\circ} \mathrm{C}$ for 1
h in a pre-heated oil bath. The reaction mixture was cooled to rt and was poured onto 2 mL of EtOAc and 1 mL of NEt_{3}. Volatiles were removed under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO_{2}, using $\mathrm{PE} / \mathrm{EtOAc}(20: 1)$ with 2% of NEt_{3} to give the title product as an orange solid ($26.1 \mathrm{mg}, 53 \%$). R_{f} (eluent: PE/EtOAc 10:1) $=0.69 . M p 124-126^{\circ} \mathrm{C} . v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2924$, 1462, 1399, 1367, 1288, 1206, 1195, 1117, 1093, 1031, 1000, 963, 895, 873, 827, 758, 737, 683. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 4.62(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.58 ($\mathrm{d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $4.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{FcCH}$, $\mathrm{H} 2), 4.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5), 4.29(\mathrm{~s}, \mathrm{FcCH}, \mathrm{H} 4), 4.22(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.14$ (sept, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 121.7$ (d, $J=284.0 \mathrm{~Hz}, 2 \times \mathrm{CF}_{3}$), 81.6 ($\mathrm{s}, \mathrm{FcC}, \mathrm{C} 3$), 75.8 and 75.7 ($\mathrm{s}, 2 \times \mathrm{FcH}, \mathrm{C} 2$ and C5), 74.4 (sept, $J=32.5 \mathrm{~Hz}, \mathrm{CH}$), 72.0 (s, CH2), 71.9 (s, Cp), 70.2 (s, $\mathrm{FcCH}, \mathrm{C} 4), 39.6$ (s, $\mathrm{FcC}, \mathrm{C} 1) .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})-$ 73.7 ($\mathrm{m}, 2 \times \mathrm{CF}_{3}$). Mass: 492 [M]. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}$ FelO: C, 34.18; H, 2.25. Found: C, 34.22; H, 2.31.
(\pm)-1-lodo-3-(diphenylphosphinomethyl)ferrocene
((\pm)-7e): By following the general procedure A from compound ($\mathbf{\pm})-\mathbf{2}(57.6 \mathrm{mg}, 0.15$ $\mathrm{mmol}, 1.00$ equiv) and diphenylphosphine ($104 \mu \mathrm{~L}, 112 \mathrm{mg}, 0.60 \mathrm{mmol}$, 4.00 equiv) in HFIP ($160 \mu \mathrm{~L}$), (\pm)-7e was obtained after column chromatography (PE-EtOAc, 50:1) as an orange oil ($60 \mathrm{mg}, 78 \%$). R_{f} (eluent: PE/EtOAc 20:1) $=0.79$. $v_{\max }($ film $) / \mathrm{cm}^{-1} 3070,3051,2923,1584$, $1480,1460,1432,1409,1376,1105,1067,1025,999,933,870,738,721$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.38-7.34(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}), 7.32-7.30$ (m, 6H, ArCH), 4.22 (dd, $J=1.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 5$), 4.16 (s, 1H, FcCH, H2), 4.10 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{Cp}$), 3.87 (t, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4$), 3.07 ($\mathrm{d}, J=14.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHH}), 3.03(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 138.6\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, \mathrm{ArC}, \mathrm{C}^{\prime}\right)$), $138.5(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $\operatorname{ArC}, C^{\prime}$), 133.1 (d, $J=19.5 \mathrm{~Hz}, \operatorname{ArCH}, 2 \times$ C2' $^{\prime}$, 132.9 ($\mathrm{d}, J=19.0 \mathrm{~Hz}$, ArCH, $2 \times$ C2'), $^{129.0(d, J=5.2 ~ H z, ~ A r C H, ~} 2 \times 4^{\prime}$), 128.6 ($d, J=6.6 \mathrm{~Hz}$, ArCH, $4 \times$ C3'), 85.6 (d, $J=15.6 \mathrm{~Hz}, \mathrm{FcC}, \mathrm{C} 3$), 75.7 (d, $J=4.2 \mathrm{~Hz}, \mathrm{FcCH}$, C2), 73.9 ($\mathrm{s}, \mathrm{FcCH}, \mathrm{C} 5$), 72.1 (s, Cp), 69.9 (d, $J=4.4 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 4$), 39.8 (s, FcC, C1), 30.1 (d, $\left.J=15.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})$-12.6.

1-lodo-1'-(N-morpholinomethyl)ferrocene (8a): By following the general procedure A from compound $6(768 \mathrm{mg}, 2.00 \mathrm{mmol}$) and morpholine (350 $\mu \mathrm{L}, 349 \mathrm{mg}, 4.00 \mathrm{mmol}$) in HFIP (2.10 mL), 8a was obtained after column chromatography (PE-EtOAc, 50:50 to $30: 70$ with 1% of NEt_{3}) as an orange solid ($787 \mathrm{mg}, 96 \%$). Rf (eluent: PE/EtOAc 50:50, 5 drops of NEt_{3}) $=0.38$. Mp 73-74 ${ }^{\circ} \mathrm{C}$. $v_{\max }($ film $) / \mathrm{cm}^{-1} 2922,2864,2793,1446,1392,1344,1326$, 1283, 1265, 1126, 1107, 1071, 1002, 859, 819, 801. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 4.33(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 2$ and H5), $4.16(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3^{\prime}$ and $\left.\mathrm{H} 4^{\prime}\right), 4.13\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 2\right.$ ' and $\left.\mathrm{H} 5^{\prime}\right)$, 4.11 (t, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3$ and H4), $3.66(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{x}$ $\mathrm{CH}_{2} \mathrm{O}$), $3.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41\left(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 83.9 ($\mathrm{FcC}, \mathrm{C} 1$ '), 75.3 ($\mathrm{FcCH}, \mathrm{C} 2$ and C5), 73.5 ($\mathrm{FcCH}, \mathrm{C} 2^{\prime}$ and C^{\prime}), 71.4 ($\mathrm{FcCH}, \mathrm{C} 3^{\prime}$ and C 4 '), 69.5 ($\mathrm{FcCH}, \mathrm{C} 3$ and C 4), $67.0\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 58.1$ (CH2), 53.3 ($2 \times \mathrm{CH} 2 \mathrm{~N}$), 40.4 (FcC, C1). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18}$ FeINO: C, 43.83; H, 4.41; N, 3.41. Found: C, 43.67; H, 4.06; N, 3.52. Crystal data for 8a. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{FeINO}, M=411.05, T=150 \mathrm{~K}$; monoclinic $P 2_{1} / n$ (I.T.\#14), $a=6.2155(5), b=9.6683(6), c=24.5900(18)$ $\AA, \beta=94.916(2)^{\circ}, V=1472.26(18) \AA^{3} . Z=4, d=1.854 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=3.112$ mm^{-1}. A final refinement on F^{2} with 3357 unique intensities and 172 parameters converged at $\omega R\left(F^{2}\right)=0.0550(R(F)=0.0228)$ for 3183 observed reflections with $I>2 \sigma(I)$. CCDC 2090460.
(R, S_{p})-1-lodo-2-(N-morpholinoethyl)ferrocene ((R, S_{p})-10): By following the general procedure A from compound $\left(\boldsymbol{R}, \boldsymbol{S}_{p}\right)-9 \mathbf{b}(119 \mathrm{mg}, 0.30 \mathrm{mmol})$ and morpholine ($52.5 \mu \mathrm{~L}, 52.3 \mathrm{mg}, 2.00 \mathrm{mmol})$ in HFIP $(316 \mu \mathrm{~L})$, ($\left.\boldsymbol{R}, \boldsymbol{S}_{p}\right)$ 10 was obtained after column chromatography (PE-EtOAc, 90:10 to 70:30 with 2% of NEt_{3}) as an orange solid ($100 \mathrm{mg}, 78 \%$). R (eluent: PE/EtOAc 80:20, 5 drops of NEt 3) $=0.62$. Mp 115-116 ${ }^{\circ} \mathrm{C}$. [α]D -32.4 ($c 0.01$ in CHCl_{3}). $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2945,2884,2844,2826,1438,1378,1283,1253,1229$, 1128, 1116, 1029, 1002, 958, +20, 854, 819, 762, 725. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 4.47$ (s, 1H, $\left.\mathrm{FcCH}, \mathrm{H} 5\right), 4.23$ (s, 1H, FcCH, H4), 4.13 (s, $1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3), 4.12(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.67(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.60(\mathrm{t}, J=$
$4.3 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{O}$), 2.49-2.45 and 2.39-2.36 (m, 2H, $2 \times \mathrm{CH}_{2} \mathrm{~N}$), 1.51 (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 89.7$ (FcC, C2), 74.7 ($\mathrm{FcCH}, \mathrm{C} 5$), 71.8 (Cp), 68.3 ($\mathrm{FcCH}, \mathrm{C} 4$), 67.5 ($2 \times \mathrm{CH}_{2} \mathrm{O}$), $66.0(\mathrm{FcCH}, \mathrm{C} 3), 58.2(\mathrm{CH}), 49.3\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{~N}\right), 45.6(\mathrm{FcC}, \mathrm{C} 1), 15.6\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20}$ FelNO: C, 45.21; H, 4.74; N, 3.29. Found: C, 45.29; H, 4.79; N, 3.33. Crystal data for (R, S_{p})-10. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FeINO}, M=425.08, T$ $=150$ K; orthorhombic $P 2{ }_{1}{ }_{21} 2{ }_{1}$ (I.T.\#19), $a=7.3714(5), b=11.6599(6)$, $c=18.1493(12) \AA, V=1559.93(17) \AA^{3} . Z=4, d=1.810 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=2.941$ mm^{-1}. A final refinement on F^{2} with 3564 unique intensities and 182 parameters converged at $\omega R_{F}{ }^{2}=0.0446\left(R_{F}=0.0202\right)$ for 3456 observed reflections with $/>2 \sigma(I)$. CCDC 2090461.

General procedure B : Li / I exchange-trapping sequence. tBuLi (1.6 M , 2.00 equiv) was added dropwise to a solution of the required substrate (1.00 equiv) in THF (10 mL per mmol) at $-80^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 10 min before the required electrophile was added. After addition, the reaction mixture was stirred at the same temperature for 10 min before being warmed to rt . Methanol was added and volatiles were removed under vacuum to give the crude product. This was purified by column chromatography over SiO_{2} (eluant given in the product description) to give the title product.
(\pm)-1-Diphenylphosphino-2-(N-morpholinomethyl)ferrocene ($(\pm$)-11a): By following the general procedure B from compound (\pm)-4a ($205 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 1.00$ equiv) and diphenylchlorophosphine ($111 \mu \mathrm{~L}, 132 \mathrm{mg}, 0.6$ $\mathrm{mmol})$, ($\mathbf{~}$)-11a was obtained after column chromatography (PE/EtOAc, 70:30 to $50: 50$ with 1% of NEt_{3}) as an orange solid ($101 \mathrm{mg}, 43 \%$). R_{f} (eluent: PE/EtOAc 50:50, 5 drops of NEt_{3}) $=0.66$. Mp 140-142 ${ }^{\circ} \mathrm{C}$. $v_{\text {max }}$ (film)/cm ${ }^{-1}$ 2956, 2928, 2861, 2796, 1475, 1431, 1348, 1327, 1289, 1132, $1110,1004,861,809,751,698 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 7.58-$ 7.55 (m, 2H, ArCH, $2 \times \mathrm{H} 2^{\prime}$), 7.38-7.36 (m, 3H, ArCH, $2 \times \mathrm{H} 3^{\prime}$ and H4'), 7.25-7.20 (m, 5H, ArCH, $2 \times \mathrm{H} 2^{\prime}$ and $2 \times \mathrm{H} 3^{\prime}$ and H^{\prime}), $4.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{FcCH}$, H3), 4.25 (t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4), 3.99(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.87$ (dd, $J=12.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.81 (s, 1H, $\mathrm{FcCH}, \mathrm{H} 5$), 3.25-3.22 (m, 2H, CH2O), 3.11$3.09\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHH}+\mathrm{CH}_{2} \mathrm{O}\right), 2.23-2.15\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 140.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{ArC}, \mathrm{C} 1$) $) 137.9$ (d, $J=$ $\left.8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC}, \mathrm{C} 1^{\prime}\right), 135.1$ (d, $J=21.1 \mathrm{~Hz}, \mathrm{ArCH}, 2 \times \mathrm{C} 2$ '), 132.8 ($\mathrm{d}, J=$ $\left.19.0 \mathrm{~Hz}, \mathrm{ArCH}, 2 \times \mathrm{C} 2^{\prime}\right), 129.1$ (s, ArCH, C4'), 128.1 (d, $J=7.6 \mathrm{~Hz}, \mathrm{ArCH}$, $2 \times \mathrm{C}^{\prime}$), 127.9 (d, J = 5.6 Hz, ArCH, $2 \times \mathrm{C}^{\prime}$), 127.8 ($\left.\mathrm{s}, \mathrm{ArCH}, \mathrm{C} 4^{\prime}\right), 89.5$ (d, $J=24.9 \mathrm{~Hz}, \mathrm{FcC}, \mathrm{C} 2$), 77.3 (multiplicity hidden, $\mathrm{FcC}, \mathrm{C} 1$), 73.3 (d, $J=$ $3.6 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 3$), 72.1 (d, $J=4.3 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 5), 69.8$ (s, Cp), 69.1 (s, FcCH, C4), $66.8\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 57.7$ (d, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 53.1\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})-23.9$.
(\pm)-1-Dicyclohexylphosphino-2-(N-morpholinomethyl)ferrocene (\pm)11b): By following the general procedure B from compound ($\mathbf{\pm}$)-4a (411 $\mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) and dicyclohexylchlorophosphine ($265 \mu \mathrm{~L}, 279$ $\mathrm{mg}, 1.20 \mathrm{mmol}$), ($\mathbf{\pm} \mathbf{)} \mathbf{- 1 1 b}$ was obtained after column chromatography (PE/EtOAc, 95:5 to 90:10 with 1% of NEt_{3}) as an orange solid (360 mg , 75%). Rf_{f} (eluent: PE/EtOAc 95:5, 5 drops of NE_{3}) $=0.25$. Mp 145-147 ${ }^{\circ} \mathrm{C}$. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2919,2848,2794,1442,1348,1327,1286,1264,1115$, $1069,1030,1005,988,852,825,803 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ 4.26 (s, 1H, FcCH, H3), 4.23 (t, J = $2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 4$), 4.08 ($\mathrm{s}, 1 \mathrm{H}$, $\mathrm{FcCH}, \mathrm{H} 5), 4.06$ (s, 5H, Cp), 3.80 (dd, $J=2.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.66$3.58\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.01(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 2.49-2.47(m, 2H, $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, 2.38-2.33 (m, 3H, $\mathrm{CH}_{2} \mathrm{~N}$ and CH$), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 2.03$1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.65(\mathrm{~m}$, $3 \mathrm{H})$, 1.62-1.58 (m, 2H), 1.45-1.35 (m, 4H), 1.32-1.25 (m, 2H), 1.22-1.04 $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 87.5(\mathrm{~d}, J=20.6 \mathrm{~Hz}$, FcC, C1), 79.7 (d, $J=16.7 \mathrm{~Hz}, \mathrm{FcC}, \mathrm{C} 2)$, 72.6 (d, $J=2.4 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 3$), 70.6 (d, J = $2.0 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 5$), 69.9 (s, Cp), 68.2 ($\mathrm{FcCH}, \mathrm{C} 4$), 67.1 (s, 2 x $\left.\mathrm{CH}_{2} \mathrm{O}\right), 57.9\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 53.5\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right), 36.5(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, CH), 34.0 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 32.9 (d, $J=19.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), 31.8 (d, J $\left.=14.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 30.7\left(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 29.2\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.2$ (d, $J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), $27.9\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 27.5(\mathrm{~d}, J=$ $\left.8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.6\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2}\right) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})-$ 12.3. Crystal data for (\pm)-11b. $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{FeNOP}, M=481.42, T=150 \mathrm{~K}$; triclinic $P-1$ (I.T.\#2), $a=8.1886(9), b=11.7712(11), c=13.0146(13) \AA, a$
$=91.501(4), \beta=94.190(3), \gamma=101.417(3)^{\circ}, V=1225.3(2) \AA^{3} . Z=2, d=$ $1.305 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mu=0.700 \mathrm{~mm}^{-1}$. A final refinement on F^{2} with 5543 unique intensities and 280 parameters converged at $\omega R\left(F^{2}\right)=0.1025(R(F)=$ 0.0406) for 4968 observed reflections with $I>2 \sigma(I)$. CCDC 2090462.

1-Diphenylphosphino-1'-(N-morpholinomethyl)ferrocene (11c): By following the general procedure B from compound $8(308 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1.00 equiv) and diphenylchlorophosphine ($166 \mu \mathrm{~L}, 199 \mathrm{mg}, 0.9 \mathrm{mmol}$), the crude product was obtained after column chromatography (PE/EtOAc, 60:40 to $40: 60$ with 2% of NEt_{3}). This was dissolved in THF (9 mL) at rt and BH_{3}. THF complex (1 M in THF, $4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}, 6.00$ equiv) was added and the reaction mixture was stirred at it for 2 h . Water was added to the reaction mixture which was extracted with EtOAc. The combined organic layers were dried over MgSO_{4}, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography, using PE-EtOAc ($90: 10$ to $70: 30$) to give the phosphine-borane adduct (125 mg). This was dissolved in diethylamine (7.30 mL) at it and the reaction mixture was stirred for 16 h . Volatiles were removed under vacuum to give the crude product. This was purified by column chromatography, eluting with PEEtOAc (73:30 to $50: 50$, with $1 \% \mathrm{NEt}_{3}$) to give the title product as a yellow solid after trituration in pentane (2 mL) ($72 \mathrm{mg}, 21 \%$ over three steps). R_{f} (eluent: PE/EtOAc 70:30, 5 drops of NEt_{3}) $=0.43$. Mp 119-120 ${ }^{\circ} \mathrm{C} . v_{\max }$ (film)/cm ${ }^{-1}$ 2965, 2924, 2859, 2805, 1478, 1452, 1433, 1329, 1287, 1270, 1116, 1071, 1027, 1005, 909, 866, 825, 811, 745. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta(\mathrm{ppm}) 7.38-7.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}, 4 \times \mathrm{H} 2$ "), $7.31-7.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArCH}$, $4 \times \mathrm{H} 3$ " and $2 \times \mathrm{H} 4$ "), $4.33(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3$ and H4), $4.10(\mathrm{t}, J$ $=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 2^{\prime}$ and H5'), $4.05(\mathrm{q}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 2$ and H5), 4.03 (t, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{FcCH}, \mathrm{H} 3^{\prime}$ and H4'), $3.64(\mathrm{t}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, 2$ $x \mathrm{CH}_{2} \mathrm{O}$), 3.07 (s, 2H, CH_{2}), 2.32 (s, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 139.3$ (d, $J=9.7 \mathrm{~Hz}, \operatorname{ArC}, 2 \times \mathrm{C1}$ "), 133.4 (d, $J=$ $19.6 \mathrm{~Hz}, \mathrm{ArCH}, 4 \times \mathrm{C} 2$ "), 128.7 (s, ArCH, $2 \times \mathrm{C} 4$ "), 128.3 (d, $J=6.8 \mathrm{~Hz}$, ArCH, $4 \times$ C3"), 8.1 (s, FcC, C1'), 76.3 (d, $J=6.4 \mathrm{~Hz}, \mathrm{FcC}, \mathrm{C} 1$), 73.6 (d, J $=14.9 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 2$ and C5), $71.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}, \mathrm{FcCH}, \mathrm{C} 3$ and C4), 71.5 (s, $\mathrm{FcCH}, \mathrm{C} 2$ ' and C5'), 69.5 (s, $\mathrm{FcCH}, \mathrm{C} 3^{\prime}$ and C4'), 66.9 (s, $2 \times \mathrm{CH}_{2} \mathrm{O}$), $58.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 53.2\left(\mathrm{~s}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ -16.9.
(\pm)-1-Dicyclohexylphosphino-2-(N-morpholinomethyl)ferrocene palladium dichloride complex ($\mathbf{\pm} \mathbf{)}$-12): Compound ($\mathbf{\pm}$)-11b (48.1 mg , $1.00 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{PdCl}_{2} . \mathrm{MeCN}_{2}(25.9 \mathrm{Mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) were charged in a Schlenk tube which was subjected to three cycles of vacuum/argon. Anhydrous $\mathrm{CH} 2 \mathrm{Cl} 2(1 \mathrm{~mL})$ was added and the reaction mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 16 h . Volatiles were removed under vacuum and the resulting solids were triturated with pentane $(2 \times 2 \mathrm{~mL})$ to afford the title product ($\mathbf{\pm}$)-12 as a red solid ($55.1 \mathrm{mg}, 84 \%$). Mp 130-131 ${ }^{\circ} \mathrm{C}$ (decomp). $v_{\max }$ (film)/ $/ \mathrm{cm}^{-1}$ 2923, 2851, 1446, 1248, 1214, 1163, 1110, $1003,909,849,820,725 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 5.56$ (dt, J $=3.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{Cp}), 4.22(\mathrm{dd}, J=6.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dt}, J=$ $2.6,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72-3.67 (m, 2H), 3.40 (d, J $=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.69-2.62 (m, 1H), 2.45-2.43 (m, $1 \mathrm{H})$, 2.36-2.32 (m, 1H), $2.28(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $2.05(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.65(\mathrm{~m}, 1 \mathrm{H})$, 1.45-1.39 (m, 4H), 1.27-1.16 (m, 4H). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 28.2. HRMS (ESI-) m/z: [M+CI] Calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}^{35} \mathrm{Cl}_{3} \mathrm{P}^{56} \mathrm{Fe}^{106} \mathrm{Pd}$ 692.03028; Found 692.0304. HRMS (ESI ${ }^{+}$) m/z: $[\mathrm{M}-\mathrm{Cl}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}^{35} \mathrm{CIP}^{56} \mathrm{Fe}^{106} \mathrm{Pd} 622.09147$; Found 622.0915.

4-(4-Methoxyphenyl)acetophenone (15): 4-Methoxyphenylboronic acid ($114 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.50$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.24 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.020$ equiv), ligand ($\mathbf{\pm}$)-11b ($9.63 \mathrm{mg}, 0.020 \mathrm{mmol}, 0.040$ equiv) and CsF (228 $\mathrm{mg}, 1.50 \mathrm{mmol}, 3.00$ equiv) were charged in a Schlenk tube which was subjected to three cycles of vacuum/argon. 4-Chloroacetophenone (65.0 $\mu \mathrm{L}, 77.3 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.00$ equiv) and dioxane (2.5 mL) were added and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ overnight (oil bath, external temperature). The reaction mixture was cooled to rt , water (4 mL) and EtOAc (2 mL) were added and the layers were separated. The aqueous
layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO_{2}, using $\mathrm{PE} / \mathrm{EtOAc}(90: 10)$ to give the title product as a white solid ($109 \mathrm{mg}, 96 \%$). Analytical data analogous to those reported previously. ${ }^{[54]} \mathrm{R}_{\mathrm{f}}$ (eluent: PE/EtOAc 10:1) = 0.21 . Mp 156-158 ${ }^{\circ} \mathrm{C} . v_{\max }($ film $) / \mathrm{cm}^{-1} 2958,2841,1673,1597,1578,1527$, 1495, 1400, 1359, 1291, 1269, 1252, 1197, 1184, 1031, 1010, 998, 957, 814. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 8.01$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}\right)$, 7.65 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}), 7.00$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}$), 3.87 (s, 3H, $\mathrm{CH}_{3} \mathrm{O}$), $2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 197.8 (C=O), 160.1 (ArCO), 145.5 (ArC), 135.5 (ArC-CO), 132.4 (ArC), 129.1 ($2 \times \mathrm{ArCH}$), 128.6 ($2 \times \mathrm{ArCH}$), 126.8 $(2 \times \mathrm{ArCH}), 114.6(2 \times \mathrm{ArCH}), 55.5\left(\mathrm{CH}_{3} \mathrm{O}\right), 26.8\left(\mathrm{CH}_{3}\right)$. Mass: $226[\mathrm{M}], 211$ [$\mathrm{M}-\mathrm{CH}_{3}$].

4-Morpholinobenzonitrile (17): 4-Chlorobenzonitrile ($68.8 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 1.00$ equiv), $\mathrm{Pd}(\mathrm{dba})_{2}(5.75 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.020$ equiv), ligand ($\mathbf{\pm}$ - $\mathbf{1 1 b}$ ($9.60 \mathrm{mg}, 0.020 \mathrm{mmol}, 0.040$ equiv) and tBuOK ($78.5 \mathrm{mg}, 0.70$ mmol, 1.40 equiv) were charged in a Schlenk tube which was subjected to three cycles of vacuum/argon. Morpholine ($52.5 \mu \mathrm{~L}, 52.3 \mathrm{mg}, 0.60 \mathrm{mmol}$, 1.20 equiv) and toluene (1.0 mL) were added and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ overnight (oil bath, external temperature). The reaction mixture was cooled to rt , water $(4 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 2 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by column chromatography over SiO_{2}, using $\mathrm{PE} / E t \mathrm{OAc}\left(70: 30\right.$, with 1% of NEt_{3}) to give the title product as a light yellow solid ($43 \mathrm{mg}, 45 \%$). Analytical data analogous to those reported previously. ${ }^{[55]} \mathrm{R}_{\mathrm{f}}$ (eluent: PE/EtOAc 70:30) = 0.32 . Mp 74-76 ${ }^{\circ} \mathrm{C}$. $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2831,2216,1604,1515,1453,1383$, 1266, 1244, 1180, 1113, 927, 833, 815. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (ppm) 7.51 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}$), 6.86 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}$), $3.84\left(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.27 (t, $J=5.0 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 153.6$ (ArCN), 133.6 ($2 \times \mathrm{ArCH}$), 120.0 (CN), 114.2 ($2 \times \mathrm{ArCH}$), 101.1 (ArCCN), $66.6\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 47.4$ (2 x $\mathrm{CH}_{2} \mathrm{~N}$). Mass: 188 [M], 130, 102 [M-C4H8NO].
$\boldsymbol{\alpha}$-(4-Cyanophenyl)acetone (19): 4-Bromobenzonitrile ($91.0 \mathrm{mg}, 0.50$ mmol, 1.00 equiv), $\left[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}_{2}(2.70 \mathrm{mg}, 7.50 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%)\right.$, ligand (\pm)-11b ($9.60 \mathrm{mg}, 30.0 \mu \mathrm{~mol}, 6.0 \mathrm{~mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(329 \mathrm{mg}, 1.00 \mathrm{mmol}$, 2.00 equiv) were charged in a Schlenk tube which was subjected to three cycles of vacuum/argon. Acetone ($367 \mu \mathrm{~L}, 290 \mathrm{mg}, 5.00 \mathrm{mmol}, 10.0$ equiv) and dioxane $(1.00 \mathrm{~mL})$ were added and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ overnight (oil bath, external temperature). The reaction mixture was cooled to rt, water $(4 \mathrm{~mL})$ and EtOAc $(2 \mathrm{~mL})$ were added and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 2 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, filtrated over cotton wool and concentrated under vacuum using a rotary evaporator to give the crude product. This was purified by preparative TLC over SiO_{2}, using PE/EtOAc (80:20 to 70:30) to give the title product as a white solid (39 mg , 49%). Rf (eluent: PE/EtOAc $80: 20$) $=0.18$. Analytical data analogous to those reported previously. ${ }^{[56]} \mathrm{Mp} 80-82{ }^{\circ} \mathrm{C}$. $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 3405,3072$, 2955, 2893, 2225, 1706, 1608, 1513, 1504, 1419, 1407, 1355, 1333, 1313, 1213, 1153, 1019, 979, 959, 911, 855, 789, 734. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{ArCH}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, $2 \times \mathrm{ArCH}), 3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75.4 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 204.4(\mathrm{C}=\mathrm{O}), 139.5(\mathrm{ArC}), 132.5(2 \times \mathrm{ArCH}), 130.5(2 \times$ ArCH), $118.8(\mathrm{CN})$, $111.2(\mathrm{ArC}-\mathrm{CN})$, $50.5\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3}\right)$. Mass: 159 [M], $117\left[\mathrm{NC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{3}\right]$.

CCDC deposition numbers. 2090455 (for 4a), 2090456 (for 4n), 1898629 (for 4r), 2090457 (for 4u), 2090458 (for 4v), 2090459 (for 7a), 1898630 (for 7b), 2090460 (for 8a), 2090461 (for 10), 2090462 (for 11b).

Acknowledgements

This work was supported by the Université de Rennes 1 and CNRS. We gratefully acknowledge the Fonds Européen de Développement Régional (FEDER; D8 VENTURE Bruker AXS diffractometer), Rennes Métropole and Thermofisher (generous gift of (R)-(-)- N, N-dimethyl-1-ferrocenyl-ethylamine (L)-tartrate). W.E. would like to thank Prof. F. Mongin for support, critically reviewing this document and making valuable suggestions.

Keywords: Cross-coupling • Ferrocene • Fluorinated solvent • Ligand design • Substitution
[1] a) T. J. Kealy, P. L. Pauson, Nature 1951, 168, 10391040; b) S. A. Miller, J. A. Tebboth, J. F. Tremaine, J. Chem. Soc. 1952, 632-635.
[2] a) Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science (Eds.; A. Togni, T. Hayashi), Wiley-VCH, Weinheim, 1995; b) Ferrocenes: Ligands, Materials and Biomolecules (Ed.: P. Štěpnička), WileyChichester, 2008; c) Chiral Ferrocenes in Asymmetric Catalysis (Eds.; L.-X. Dai, X.-L. Hou), Wiley-VCH, Weinheim, 2010.
[3] J. H. Richards, E. A. Hill, J. Am. Chem. Soc. 1959, 81, 3484-3485.
[4] a) D. S. Trifan, R. Bacskai, Tetrahedron Lett. 1960, 1, 1-8; b) E. A. Hill, J. H. Richards, J. Am. Chem. Soc. 1961, 83, 3840-3846; c) E. A. Hill, J. H. Richards, J. Am. Chem. Soc. 1961, 83, 4216-4221.
[5] a) J. C. Ware, T. G. Traylor, Tetrahedron Lett. 1965, 6, 1295-1302; b) M. Cais, Organometal. Chem. Revi. 1966, 4, 435.
R. Gleiter, R. Seeger, Helv. Chim. Acta 1971, 54, 12171220.
U. Behrens, J. Organomet. Chem. 1979, 182, 89-98.
[8] a) R. Gleiter, C. Bleiholder, F. Rominger, Organometallics 2007, 26, 4850-4859; b) C. Bleiholder, F. Rominger, R. Gleiter, Organometallics 2009, 28, 1014-1017; c) H. Goodman, L. Mei, T. L. Gianetti, Frontiers in Chemistry 2019, 7.
M. Marijan, S. Jurić, Z. Mihalić, O. Kronja, Eur. J. Org. Chem. 2019, 2019, 537-546.
[10] a) P. Dixneuf, C. R. Acad. Sci. paris, Ser. C 1969, 269, 424-426; b) G. Gokel, P. Hoffmann, H. Klusacek, D. Marquarding, E. Ruch, I. Ugi, Angew. Chem. Int. Ed. Engl. 1970, 9, 64-65; c) D. Marquarding, H. Klusacek, G. Gokel, P. Hoffmann, I. Ugi, J. Am. Chem. Soc. 1970, 92, 53895393.
[11] a) P. Dixneuf, Tetrahedron Lett. 1971, 12, 1561-1563; b) P. Dixneuf, R. Dabard, Bull. Soc. Chim. Fr. 1972, 7, 28472854.
[12] a) G. W. Gokel, I. K. Ugi, Angew. Chem. Int. Ed. Engl. 1971, 10, 191-191; b) G. W. Gokel, D. Marquarding, I. K. Ugi, J. Org. Chem. 1972, 37, 3052-3058.
[13] a) G. Tainturier, K. C. Y. Sok, B. Gautheron, C. R. Acad. Sci. paris, Ser. C 1973, 277, 1269-1270; b) K. C. Y. Sok, G. Tainturier, B. Gautheron, C. R. Acad. Sci. paris, Ser. C 1974, 278, 1347-1348; c) K. C. Y Sok, G. Tainturier, B. Gautheron, J. Organomet. Chem. 1977, 132, 173-189.
[14] a) M. Hillman, J. D. Austin, Organometallics 1987, 6, 1737-1743; b) I. Yamaguchi, T. Sakano, H. Ishii, K. Osakada, T. Yamamoto, J. Organomet. Chem. 1999, 584, 213-216; c) N. Fleury-Brégeot, A. Panossian, A. Chiaroni, A. Marinetti, Eur. J. Inorg. Chem. 2007, 2007, 3853-3862; d) A. Voituriez, A. Panossian, N. Fleury-Brégeot, P. Retailleau, A. Marinetti, J. Am. Chem. Soc. 2008, 130, 14030-14031; e) A. Voituriez, A. Panossian, N. FleuryBrégeot, P. Retailleau, A. Marinetti, Adv. Synth. Catal. 2009, 351, 1968-1976; f) E. M. Barreiro, D. F. D. Broggini, L. A. Adrio, A. J. P. White, R. Schwenk, A. Togni, K. K. Hii, Organometallics 2012, 31, 3745-3754; g) G. Kutschera, C. Kratky, W. Weissensteiner, M. Widhalm, J. Organomet. Chem. 1996, 508, 195-208; h) D. P. Huber, G. Kehr, K. Bergander, R. Fröhlich, G. Erker, S. Tanino, Y. Ohki, K.

Tatsumi, Organometallics 2008, 27, 5279-5284; i) P. Štěpnička, K. Škoch, I. Císařová, Organometallics 2013, 32, 623-635.
a) H. Tamio, M. Takaya, F. Motoo, K. Masahiro, N. Nobuo, H. Yuji, M. Akira, K. Sota, K. Mitsuo, Y. Keiji, K. Makoto, Bull. Chem. Soc. Jpn. 1980, 53, 1138-1151; b) A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert, A. Tijani, J. Am. Chem. Soc. 1994, 116, 4062-4066; c) M. Lotz, T. Ireland, K. Tappe, P. Knochel, Chirality 2000, 12, 389-395; d) R. J. Kloetzing, M. Lotz, P. Knochel, Tetrahedron: Asymmetry 2003, 14, 255-264; e) P. Vicennati, P. G. Cozzi, Eur. J. Org. Chem. 2007, 2007, 2248-2253; f) J. F. Buergler, A. Togni, Organometallics 2011, 30, 4742-4750; g) R. Schuecker, A. Zirakzadeh, K. Mereiter, F. Spindler, W. Weissensteiner, Organometallics 2011, 30, 4711-4719; h) R. Mazzoni, M. Salmi, S. Zacchini, V. Zanotti, Eur. J. Inorg. Chem. 2013, 2013, 3710-3718; i) L. A. Oparina, A. V. Artem'ev, O. V. Vysotskaya, O. A. Tarasova, V. A. Shagun, I. Y. Bagryanskaya, B. A. Trofimov, Tetrahedron 2016, 72, 4414-4422; j) E. V. Shevaldina, K. A.
Opredelennova, O. A. Chichvarina, Y. Y. Spiridonov, A. F. Smol'yakov, P. V. Dorovatovskii, S. K. Moiseev, Appl. Organomet. Chem. 2019, 33, e5228; k) M. Zábranský, I. Císařová, P. Štěpnička, Dalton Trans. 2015, 44, 1449414506; I) L. V. Snegur, A. A. Simenel, A. N. Rodionov, V. I. Boev, Russ. Chem. Bull. 2014, 63, 26-36.
[16] V. I. Boev, L. V. Snegur, V. N. Babin, Y. S. Nekrasov, Russian Chemical Reviews 1997, 66, 613-636.
a) R. C. J. Atkinson, V. C. Gibson, N. J. Long, Chem. Soc. Rev. 2004, 33, 313-328; b) P. Barbaro, C. Bianchini, G. Giambastiani, S. L. Parisel, Coord. Chem. Rev. 2004, 248, 2131-2150; c) R. Gómez Arrayás, J. Adrio, J. C. Carretero, Angew. Chem. Int. Ed. 2006, 45, 7674-7715; d) L. Cunningham, A. Benson, P. J. Guiry, Org. Biomol. Chem 2020, 18, 9329-9370.
[18] a) M. Patra, K. Ingram, V. Pierroz, S. Ferrari, B. Spingler, J. Keiser, G. Gasser, J. Med. Chem. 2012, 55, 8790-8798; b) N. Wambang, N. Schifano-Faux, A. Aillerie, B. Baldeyrou, C. Jacquet, C. Bal-Mahieu, T. Bousquet, S. Pellegrini, P. T. Ndifon, S. Meignan, J.-F. Goossens, A. Lansiaux, L. Pélinski, Biorg. Med. Chem. 2016, 24, 651 660; c) J. Hess, G. Panic, M. Patra, L. Mastrobuoni, B. Spingler, S. Roy, J. Keiser, G. Gasser, ACS Infectious Diseases 2017, 3, 645-652; d) S. Pedotti, M. Ussia, A. Patti, N. Musso, V. Barresi, D. F. Condorelli, J. Organomet. Chem. 2017, 830, 56-61; e) V. Raičević, N. Radulović, L. Jovanović, M. Rodić, I. Kuzminac, D. Jakimov, T. Wrodnigg, T.-O. Knedel, C. Janiak, M. Sakač, Appl. Organomet. Chem. 2020, 34, e5889.
[19] a) H. Seo, B. Y. Kim, J. H. Lee, H.-J. Park, S. U. Son, Y. K. Chung, Organometallics 2003, 22, 4783-4791; b) Z.-Y. Tang, Y. Lu, Q.-S. Hu, Org. Lett. 2003, 5, 297-300.
[20] a) N. Taniguchi, M. Uemura, Tetrahedron Lett. 1998, 39, 5385-5388; b) S.-i. Fukuzawa, T. Suzuki, Eur. J. Org. Chem. 2006, 2006, 1012-1016; c) S.-i. Fukuzawa, M. Yamamoto, S. Kikuchi, J. Org. Chem. 2007, 72, 15141517; d) T. Takahashi, T. Konno, K. Ogata, S.-i. Fukuzawa, J. Org. Chem. 2012, 77, 6638-6642; e) W. Erb, T. Roisnel, Chem. Commun. 2019, 55, 9132-9135.
[21] R. Schuecker, W. Weissensteiner, K. Mereiter, M. Lotz, F. Spindler, Organometallics 2010, 29, 6443-6458.
R. Šebesta, Š. Toma, M. Sališová, Eur. J. Org. Chem. 2002, 2002, 692-695.
a) J.-P. Bégué, D. Bonnet-Delpon, B. Crousse, Synlett 2004, 2004, 18-29; b) I. Colomer, A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat. Rev. Chem. 2017, 1, 0088; c) V. Pozhydaiev, M. Power, V. Gandon, J. Moran, D. Lebœuf, Chem. Commun. 2020, 56, 11548-11564. a) R. A. McClelland, Tetrahedron 1996, 52, 6823-6858; b) H. Mayr, S. Minegishi, Angew. Chem. Int. Ed. 2002, 41, 4493-4495.
a) I. A. Shuklov, N. V. Dubrovina, A. Börner, Synthesis 2007, 2007, 2925-2943; b) S. K. Sinha, T. Bhattacharya, D. Maiti, Reaction Chemistry \& Engineering 2019, 4, 244253.
[28] a) M. Tsukazaki, M. Tinkl, A. Roglans, B. J. Chapell, N. J. Taylor, V. Snieckus, J. Am. Chem. Soc. 1996, 118, 685686; b) W. Erb, T. Roisnel, V. Dorcet, Synthesis 2019, 51, 3205-3213; c) M. Hedidi, G. Dayaker, Y. Kitazawa, Y. Tatsuya, M. Kimura, W. Erb, G. Bentabed-Ababsa, F. Chevallier, M. Uchiyama, P. C. Gros, F. Mongin, New J. Chem. 2019, 43, 14898-14907.
[29] T. Kanzian, T. A. Nigst, A. Maier, S. Pichl, H. Mayr, Eur. J. Org. Chem. 2009, 2009, 6379-6385.
[30] A. N. Rodionov, K. Y. Zherebker, L. V. Snegur, A. A. Korlyukov, D. E. Arhipov, A. S. Peregudov, M. M. Ilyin, M. M. Ilyin, O. M. Nikitin, N. B. Morozova, A. A. Simenel, J. Organomet. Chem. 2015, 783, 83-91.
[31] V. V. Gumenyuk, Z. A. Starikova, Y. S. Nekrasov, V. N. Babin, Russ. Chem. Bull. 2002, 51, 1894-1899.
[32] a) S. Minegishi, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2004, 126, 5174-5181; b) J. Ammer, H. Mayr, J. Phys. Org. Chem. 2013, 26, 59-63.
[33] a) W. Erb, L. Kadari, K. Al-Mekhlafi, T. Roisnel, V. Dorcet, P. Radha Krishna, F. Mongin, Adv. Synth. Catal. 2020, 362, 832-850; b) L. Kadari, T. Roisnel, W. Erb, P. R. Krishna, F. Mongin, Synthesis 2020, 52, 3153-3161.
[34] H. V. Nguyen, A. Sallustrau, J. Balzarini, M. R. Bedford, J. C. Eden, N. Georgousi, N. J. Hodges, J. Kedge, Y. Mehellou, C. Tselepis, J. H. R. Tucker, J. Med. Chem. 2014, 57, 5817-5822.
a) U. Burckhardt, L. Hintermann, A. Schnyder, A. Togni, Organometallics 1995, 14, 5415-5425; b) D.-Y. Wang, X.P. Hu, C.-J. Hou, J. Deng, S.-B. Yu, Z.-C. Duan, J.-D. Huang, Z. Zheng, Org. Lett. 2009, 11, 3226-3229.
[36] M. Spescha, N. W. Duffy, B. H. Robinson, J. Simpson, Organometallics 1994, 13, 4895-4904.
[37] a) E. J. Corey, D. J. Beames, J. Am. Chem. Soc. 1972, 94, 7210-7211; b) D. Seebach, H. Neumann, Chem. Ber. 1974, 107, 847-853.
[38] a) Organolithiums: Selectivity for Synthesis, J. Clayden, Ed. Pergamon: 2001; b) M. Schlosser, Angew. Chem. Int. Ed. 2005, 44, 376-393.
a) Privileged Chiral Ligands and Catalysts, Q.-L. Zhou, Ed. Wiley-VCH: Weinheim, 2011; b) P. J. Guiry, C. P.
Saunders, Adv. Synth. Catal. 2004, 346, 497-537; c) T. Noël, J. Van der Eycken, in Green Processing and Synthesis, Vol. 2, 2013, p. 297; d) M. P. Carroll, P. J. Guiry, Chem. Soc. Rev. 2014, 43, 819-833.
[40] a) T. Hayashi, M. Konishi, M. Fukushima, T. Mise, M. Kagotani, M. Tajika, M. Kumada, J. Am. Chem. Soc. 1982, 104, 180-186; b) T. Nishimura, S. Matsumura, Y. Maeda, S. Uemura, Tetrahedron Lett. 2002, 43, 3037-3039; c) T. Nishimura, S. Matsumura, Y. Maeda, S. Uemura, Chem. Commun. 2002, 50-51; d) S. Matsumura, Y. Maeda, T. Nishimura, S. Uemura, J. Am. Chem. Soc. 2003, 125, 8862-8869.
[41] D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722-9723.
a) R. J. Lundgren, B. D. Peters, P. G. Alsabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 4071-4074; b) R. J. Lundgren, A. Sappong-Kumankumah, M. Stradiotto, Chem. Eur. J. 2010, 16, 1983-1991; c) K. D. Hesp, R. J. Lundgren, M. Stradiotto, J. Am. Chem. Soc. 2011, 133, 5194-5197; d) B. J. Tardiff, R. McDonald, M. J. Ferguson, M. Stradiotto, J. Org. Chem. 2012, 77, 1056-1071.
a) F. Rataboul, A. Zapf, R. Jackstell, S. Harkal, T. Riermeier, A. Monsees, U. Dingerdissen, M. Beller, Chem. Eur. J. 2004, 10, 2983-2990; b) A. Zapf, R. Jackstell, F. Rataboul, T. Riermeier, A. Monsees, C. Fuhrmann, N.

Shaikh, U. Dingerdissen, M. Beller, Chem. Commun. 2004, 38-39.
[44] C. Metallinos, J. Zaifman, L. Dodge, Org. Lett. 2008, 10, 3527-3530.
[45] a) V. Mamane, P. Peluso, E. Aubert, R. Weiss, E. Wenger, S. Cossu, P. Pale, Organometallics 2020, 39, 3936-3950;
b) M. Wen, W. Erb, F. Mongin, Y. S. Halauko, O. A. Ivashkevich, V. E. Matulis, T. Roisnel, V. Dorcet, Organometallics 2021, 40, 1129-1147.
[46] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 24782601.
[47] E. Bartashevich, S. Mukhitdinova, I. Yushina, V. Tsirelson, Acta Crystallographica Section B 2019, 75, 117-126.
[48] D. B. G. Williams, M. Lawton, J. Org. Chem. 2010, 75, 8351-8354.
A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281-283. J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C. M. Zepp, J. Org. Chem. 1994, 59, 1939-1942.
N. Duguet, A. Donaldson, S. M. Leckie, J. Douglas, P. Shapland, T. B. Brown, G. Churchill, A. M. Z. Slawin, A. D. Smith, Tetrahedron: Asymmetry 2010, 21, 582-600.
G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
G. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
S. Bernhardt, G. Manolikakes, T. Kunz, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 9205-9209.
[55] J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 6054-6058.
[56] S. Inaba, R. D. Rieke, J. Org. Chem. 1985, 50, 1373-1381.

