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Abstract

We present a sharp interface approach for compressible two-phase flows that
preserves its accuracy in the low Mach regime. The interface between both fluids
is captured by a Level Set function via the Ghost Fluid method. In the low Mach
regime, classic Finite Volume compressible solvers lose accuracy on quadrangle
or hexahedral meshes and a low Mach correction is then necessary to reduce
the numerical dissipation. The sharp interface that separates both fluids, may
induce an important jump in the medium properties that induces additional
challenges for the design of a numerical scheme. Indeed, the well-known low
Mach fixes in the literature could lead to significant truncation errors when
the flow involves large density and sound speed ratios between both phases.
To preserve the accuracy of the numerical method, we propose a specific low
Mach fix for this interface problem that yields a uniform truncation error with
respect to the Mach number. Numerical results show significant evidences of
the efficiency and accuracy of the proposed low Mach correction.
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1. Introduction

In the present work, we are interested in flows that involve two phases both
represented by two compressible materials separated by an infinitely thin in-
terface. The interface is considered sharp and treated as a discontinuity [1].
The Ghost Fluid Method (GFM) [2, 3, 4, 5, 6, 7, 8] is a very popular family of
methods that propose discretization strategies for simulating such flows. They
rely on a Level Set function to describe the position of the interface [9, 10, 11].
A common approach in the GFM consists of coupling single-fluid numerical
schemes like Godunov-type methods across the interface in order to accurately
approximate the fluid motion in the vicinity of the interface.

Unfortunately, in the case of single-fluid flows it is now well-established that
standard Godunov-type methods may dramatically lose their accuracy when
the material velocity is small compared to the sound velocity of the medium
and when the computation domain is discretized over a quadrangle (resp. hex-
ahedral) grid in 2D (resp. 3D). This low-velocity regime is referred to as the
low Mach regime. This flaw has been extensively studied in the literature and
several possible fixes are available (see for example [12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22]). This question has also been addressed concerning two-phase
flows for diffuse interface models [23, 24] where the interface is considered as a
numerically diffused zone that can reduce the density and sound speed ratios.
Comparing with the sharp interface method, the challenge associated with large
discontinuities across the interface could be reduced as these discontinuities are
smoothed by the mixing layer.

In the case that we consider here, the properties of the medium may experi-
ence a severe jump across the interface. Therefore one cannot assume that the
orders of magnitude associated with the fluid parameters are the same for both
phases. Consequently, it is necessary to define a Mach regime that pertains to
each fluid separately. In this context, the classic low Mach fixes are no longer
sufficient to propose an accurate discretization of the flow equations when both
Mach numbers of each fluid are low.

In the present work, we propose a new low Mach regime analysis that is
adapted to compressible flows with sharp interfaces including surface tension
effects. Moreover, we also propose a new low Mach correction of the GFM
presented in [8] that accounts for the jump of characteristic magnitude with
respect to density and sound velocity that preserves its accuracy in the low
Mach regime. The truncation error is not only uniform with respect to the
Mach number as many low Mach corrections for two-phase flows [23, 24, 25],
but also uniform with respect to the density ratio and sound speed ratio between
both phases.

Before going any further, let us mention that the study of the low Mach
regime that we propose in the present work borrows elements from the analysis
of the Asymptotic Preserving properties (AP) [26, 27, 28, 29, 30, 31]. However,
we would like to emphasize that we do not claim that our method is a genuine
AP numerical scheme. Indeed, proposing an AP method would first require to
exhibit a clear limit system when the Mach number vanishes in both phases
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while accounting for discrepancies in the fluid properties and Mach numbers.
Such task is beyond the scope of this work: we choose here to focus on studying
the behavior of the error with respect to the Mach number and characteristic
quantities like the density and the sound velocity of each fluid.

The paper is structured as follows: the overall system is described in Sec-
tion 2. We briefly recall the numerical scheme proposed by [8] for this model in
Section 3 and define the low Mach regime in Section 4 for our interface model.
The low Mach behavior of the numerical scheme [8] far from the interface is
studied in Section 5, suggesting that the low Mach fixes proposed in [24, 23]
will enhance the behavior of the scheme far from the interface. In Section 6
we investigate these low Mach schemes in the vicinity of the interface and we
expose truncation errors that are driven by the jump of magnitude with respect
to both the density and the sound velocity of the material that dramatically
affects the accuracy of the low Mach schemes. A new low Mach scheme is then
proposed in Section 7 to address this issue. This new numerical method is tested
in Section 8 against several 2D tests that show significant improvement in the
simulation results over the previous low Mach fixes.

2. Governing equations for compressible two-phase flows

We consider a space volume D ⊂ Rd occupied by two compressible fluids
i = 1, 2 that are both equipped with a Stiffened Gas Equation of State (EOS)
of the form

(ρ, e) 7→ pEOS
i (ρ, e) = (γi − 1)ρe − π∞i γi, (1)

where ρ and e denote respectively the density and the specific internal energy
of the material. The parameter γi is the heat capacity ratio of fluid i, π∞i is
a constant pressure representing the molecular attraction between molecules of
fluid i. The sound speed ci is then defined for the fluid i by

c2
i = (∂pEOS

i /∂ρ) + (pEOS
i /ρ2)(∂pEOS

i /∂e) = γi
pi + π

∞
i

ρ
.

We suppose that both materials are separated by a sharp interface Γ(t) that is
defined at the instant t > 0 by the points x ∈ Rd where a function (x, t) 7→ ϕ(x, t)
vanishes, i.e. Γ(t) = {x ∈ D | ϕ(x, t) = 0}. The function ϕ is called the Level Set
function and we shall suppose that in the vicinity of Γ(t) the Level Set function
ϕ coincides with the signed distance to Γ(t) [9, 10, 11]. The domain where the
fluid i = 1, 2 lies will be noted Di(t) = {x ∈ D | (−1)iϕ(x, t) < 0}. In this stage, we
neglect the heat transfer phenomenon. We shall suppose that each fluid i = 1, 2
verifies the compressible Navier-Stokes in Di(t) that is to say:

t > 0, x ∈ Di(t)


∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇p = ∇ · S,
∂t (ρE) + ∇ · ((ρE + p)u) = ∇ · (Su),

(2a)
(2b)
(2c)
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where u is the fluid velocity and p = pEOS
i (ρ, e) is the fluid pressure. For the

sake of simplicity, we shall assume in the following that both fluid 1 and 2 share
the same viscosity µ1 = µ2 = µ so that the viscous stress tensor S is defined by
S = µ

(
∇u + (∇u)T

)
− 2

3µ(∇ · u)I in Di, i = 1, 2. The total energy per unit of mass
is noted E = e + 1

2 |u|2. If n is the unit normal vector to the interface oriented
from fluid 1 to fluid 2, we suppose that the motion equations for the fluid 1
and the fluid 2 are coupled across the interface thanks to the following three
hypotheses:

(H1) the fluid velocity normal to the interface (u · n) is continuous across the
interface,

(H2) no mass transfer occurs between the two fluids,

(H3) surface tension effects are accounted for by supposing that there is a pres-
sure jump across the interface that verifies the Laplace relation [32]:

lim
x→y
x∈D1

p − lim
x→y
x∈D2

p = σκ(y, t), for y ∈ Γ(t), (3)

where σ is the surface tension coefficient and κ is the curvature at point y of
the interface.

The hypotheses (H1) and (H2) imply that ϕ verifies an advection equation
with velocity u :

∂tϕ + u · ∇ϕ = 0, ∀x ∈ D, t > 0. (4)

Finally let us recall that the unit normal vector n and the curvature κ at the
interface can be computed as follows for x ∈ D

n =
∇ϕ
|∇ϕ| , κ = ∇ ·

(
∇ϕ
|∇ϕ|

)
. (5)

3. Numerical solver for compressible two-phase flows

In this work, both fluids 1 and 2 are considered compressible. To adapt the
global system to “all-regime Lagrange-Projection-like strategy ”proposed in [19],
acoustic, transport and viscous terms are split during a small time interval.

3.1. Acoustic/transport/viscous diffusion operator splitting
We will now exhibit three subsystems the original model is split into. The

first one is the acoustic system that is set by accounting for pressure-related
terms and surface tension effects. We consider the following acoustic subsystem
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defined on the whole domain D:

t > 0, x ∈ D



ρ∂t(1/ρ) − ∇ · (u) = 0,

ρ∂tu + ∇p =
(
σκ

|∇ϕ|

)
δ(ϕ)∇ϕ,

ρ∂tE + ∇ · (pu) =
(
σκ

|∇ϕ|

)
δ(ϕ)u · ∇ϕ,

∂tϕ = 0,

(6a)

(6b)

(6c)

(6d)

where δ(ϕ) is the Dirac measure whose support is Γ(t). System (6) allows to
encompass altogether both bulk fluid motion and the jump relation (3) thanks
to the introduction of the Dirac measure that handles the surface tension effects.

Then we consider a subsystem that involves the transport terms for both
fluids and the Level Set function:

t > 0, x ∈ Di


∂tρ + u · ∇ρ = 0,

∂t(ρu) + (u · ∇)ρu = 0,
∂t(ρE) + u · ∇(ρE) = 0,

∂tϕ + u · ∇ϕ = 0,

(7a)
(7b)
(7c)
(7d)

and a last subsystem for viscous effects:

t > 0, x ∈ Di


∂tρ = 0,

∂t (ρu) = ∇ · S,
∂t (ρE) = ∇ · (Su),

∂tϕ = 0.

(8a)
(8b)
(8c)
(8d)

The overall numerical solver proposed in [8] is a three-step strategy: given
a fluid state (ρ, ρu, ρE, ϕ)n

j at time tn = n∆t, the updated value (ρ, ρu, ρE, ϕ)n+1
j at

instant tn+1 is built as follows:

• Update the fluid state (ρ, ρu, ρE, ϕ)n
j to the value (ρ, ρu, ρE, ϕ)n+

j by approx-
imating the solution of the acoustic subsystem (6).

• Update the fluid state (ρ, ρu, ρE, ϕ)n+
j to the value (ρ, ρu, ρE, ϕ)n+1−

j by ap-
proximating the solution of the transport subsystem (7).

• Update the fluid state (ρ, ρu, ρE, ϕ)n+1−
j to the value (ρ, ρu, ρE, ϕ)n+1

j by
approximating the solution of the viscous subsystem (8).

3.2. Approximate Riemann solution for the acoustic subsystem
The structure of the acoustic system (6) shares similarities with the acoustic

system studied in [33]. This allows [8] to propose an approximate Riemann
solver WRP that is consistent in the integral sense with the full system (6)
including the surface tension terms.
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Let WT = (ρ, u, v,w, E, ϕ, π) where π acts as an approximated pressure value
for the system, we briefly recall hereafter the definition of WRP. We have

WRP(ζ; Wl,Wr) =


Wl, if ζ < −al,
W∗

l , if −al < ζ < 0,
W∗

r , if 0 < ζ < ar,
Wr, if ar < ζ,

(9)

for intermediate states W∗
l and W∗

r defined by

π∗l =
(al pr + ar pl)

al + ar
− alar(ur − ul)

al + ar
+
σκal

ar + al
[H (ϕr) − H (ϕl)], (10a)

π∗r =
(al pr + ar pl)

al + ar
− alar(ur − ul)

al − ar
− σκar

al + ar
[H (ϕr) − H (ϕl)], (10b)

1
ρ∗l
=

1
ρl
+

ar(ur − ul) + pl − πr − σκ[H(ϕr) − H(ϕl)]
al(al + ar)

, (10c)

1
ρ∗r
=

1
ρr
+

al(ur − ul) + pr − pl + σκ[H(ϕr) − H(ϕl)]
ar(al + ar)

, (10d)

u∗ = u∗l = u∗r =
alul + arur

al + ar
− pr − pl + σκ[H(ϕr) − H(ϕl)]

al + ar
, (10e)

v∗l = vl, v∗r = vr, (10f)
w∗l = wl, w∗r = wr, (10g)

E∗l = El −
π∗l u∗ − plul

al
, (10h)

E∗r = Er +
π∗r u∗ − prur

ar
, (10i)

where H is the Heaviside function and κ is the local value of interface curvature.
The parameters al and ar are user-chosen constants that need to be sufficiently
large approximations for ρlcl and ρrcr so as to satisfy stability constraints for the
numerical scheme. The Suliciu-type relaxation approximation adapted to the
vacuum that allows to derive WRP is recalled in Appendix A. Indeed, according
to Bouchut [34], if one notes {b}+ = max(b, 0), it is possible to show that defining
al and ar as follows

if πr − πl + σκ
[
H(ϕr) − H(ϕl)

] ≥ 0, set


al = ρlcl +

γl+1
2 ρl

{
πr − πl + σκ[H(ϕr) − H(ϕl)]

ρrcr
+ ul − ur

}
+

ar = ρrcl +
γr+1

2 ρr

{
πl − πr − σκ[H(ϕr) − H(ϕl)]

al
+ ul − ur

}
+

if pr − pl + σκ
[
H(ϕr) − H(ϕl)

] ≤ 0 set


ar = ρrcl +

γr+1
2 ρr

{
pl − pr − σκ[H(ϕr) − H(ϕl)]

clρl
+ ul − ur

}
+

al = ρlcl +
γl+1

2 ρl

{
pr − pl + σκ[H(ϕr) − H(ϕl)]

ar
+ ul − ur

}
+

ensures positivity for the density. In the present work we will consider two
alternate choices: a first simple choice that allows to recover the classic Suliciu
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relaxation solver [35, 36, 37, 34] by setting

al = ar = K max(ρlcl, ρrcr), (11)

where K > 1 is a constant and a second heuristic choice obtained by defining

al = K′ρlcl, ar = K′ρrcr, K′ = 1.1. (12)

3.3. Finite volume discretization
We now recall the finite volume approximation for each of the acoustic, trans-

port and viscous effect systems. We suppose that the computational domain is
discretized over a Cartesian grid. If Ω j and Ωk are two cells of the mesh, we
note ∂Ω jk = Ωk ∩Ω j. We define the neighbourhood of a cell Ω j thanks to the set
of indices N( j) = {k | ∂Ω jk , ∅} and we note n jk the unit normal vector to ∂Ω jk

oriented from Ω j to Ωk. The center of the cell Ω j will be denoted by x j and for
k ∈ N( j) the center of ∂Ω jk will be noted x jk = xk j as depicted in figure 1. With
a slight abuse of notation, for a function x 7→ b, when k ∈ N( j) we will note

b(x jk) = lim
x→x jk
x∈Ω j

b(x), b(xk j) = lim
x→x jk
x∈Ωk

b(x).

We define N±( j) = {k ∈ N( j) | ±ϕn
kϕ

n
j > 0} and we also note ∆x jk = x j −xk = ∆xk j,

so that ∆x jk/2 = x j − x jk = xk j − xk and ∆xk j/2 = xk − xk j = xk j − x j.

xk jx j

cell j

xk

cell k

Figure 1: Mesh for a multi-dimensional problem with an intersection point x jk at the cell face.

3.3.1. Approximation of the acoustic subsystem
By adapting the lines of Chalons et al. [33] thanks to the rotational invari-

ance of acoustic system, we use the approximate Riemann solver described in
Section 3.2 to build a Finite Volume approximation of the acoustic system. It
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reads

L jρ
n+
j = ρ

n
j ,

L j (ρu)n+
j = (ρu)n

j −
∆t
|Ω j|

∑
k∈N( j)

|∂Ω jk |π∗jkn jk,

L j (ρE)n+
j = (ρE)n

j −
∆t
|Ω j|

∑
k∈N( j)

|∂Ω jk |π∗jku∗jk,

ϕn+
j = ϕ

n
j ,

L j = 1 +
∆t
|Ω j|

 ∑
k∈N( j)

|∂Ω jk |u∗jk

 ,

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

where


u∗jk = n jk ·

(a jun
j + akun

k)

a j + ak
−

pn
k − pn

j + σκ
n
jk[H(ϕn

k) − H(ϕn
j )]

(a j + ak)
,

π∗jk =
ak pn

j + a j[pn
k + σκ

n
jk(H(ϕn

k) − H(ϕn
j )]

a j + ak
−

a jak

a j + ak
n jk · (un

k − un
j ).

(14a)

(14b)

The flux in (14) gives an explicit update for the acoustic system. The term κ jk

is an approximation of the interface curvature in the vicinity of ∂Ω jk. Using (5)
we note that κ can be evaluated by:

κ =
∇ · (∇ϕ)
|∇ϕ| =

2ϕxϕyϕxy − ϕ2
xϕyy − ϕ2

yϕxx

(ϕ2
x + ϕ

2
y)3/2 . (15)

Relation (15) is used to compute a value κ j for any cell Ω j in the vicinity of the
interface by approximating first and second derivatives of ϕ thanks to centered
second order discretizations. Then κ jk is defined as the following average value

κ jk =
κ j|ϕk | + κk |ϕ j|
|ϕ j| + |ϕk |

. (16)

The estimate κ jk of the curvature in the vicinity of ∂Ω jk allows to account for
surface tension effects thanks to the flux formula (14b).

A Courant-Friedrichs-Lewy (CFL) constraint on the time step choice for
(13)-(14) pertaining to the acoustic effects reads

∆tacoustic max
j, k∈N( j)

( |∂Ω jk |
|Ω j|

max
(

a j

ρ j
,

ak

ρk

))
≤ 1

2
. (17)
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Following the study of [38], a capillary wave with a wave number K travels at
velocity ccw given by

ccw =

√
σK
ρ1 + ρ2

. (18)

If we note Π the Archimedes’ constant, the largest wave number that can be de-
scribed over our mesh is K = Πmax j, k∈N( j) |∂Ω jk |/|Ω j|. Following [39] we impose
the stability for the approximation of the capillary waves by requiring that:

ccw∆tcapillary|∂Ω jk |
|Ω j|

≤ 1
2
. (19)

By injecting (18) into (19), we impose a restriction on the time step accounting
for surface tension effects:

∆tcapillary max
j, k∈N( j)

√
4Πσ

(ρ j + ρk)

( |∂Ω jk |
|Ω j|

)3

≤ 1. (20)

3.3.2. Approximation of the transport subsystem for the fluid variables
As a precise interface description is highly requested for two-phase flow sim-

ulations, the Level Set advection will be treated independently with a high-order
scheme and will be introduced later. We write the transport subsystem with
conservative variables which causes conservative terms to appear:

∂tb + ∇ · (bu) − b∇ · u = 0, b ∈ {ρ, ρu, ρv, ρw, ρE}.

This system is approximated with an upwind scheme using the values of the
normal velocities u∗jk computed at each cell edge ∂Ω jk during the acoustic step.
The discretized equations then read

bn+1−
j = bn+

j −
∆t
|Ω j|

∑
k∈N( j)

|∂Ω jk |u∗jkbn+
jk + bn+

j
∆t
|Ω j|

∑
k∈N( j)

|∂Ω jk |u∗jk, (21)

with bn+
jk =


bn+

j if u∗jk > 0, for k ∈ N( j),
bn+

k if u∗jk ≤ 0, for k ∈ N+( j),
bn+

k,ghost if u∗jk ≤ 0, for k ∈ N−( j),
(22)

where bn+
k,ghost is a ghost value that associated with the so-called ghost-cells Ωk

when k ∈ N−( j) as represented in figure 2. Let us briefly recall how the ghost
values are computed (see [40] for a detailed presentation). For the sake of
simplicity we shall suppose here that the computational domain is discretized
over a uniform Cartesian grid of space step ∆x. We consider b ∈ {ρ, ρE} and we
note (bn) = (n · ∇b) the differential of b along n. The values of b are propagated
from the regions where ϕ j < 0 to the ϕ j > 0 regions using the following steps:

9



Figure 2: Ghost cell representation

• compute an approximate value (bn) j = (n · ∇b) j for (bn) in the cell Ω j for j
such that ϕ j < −∆x thanks to second-order central differences formulas,

• extrapolate the value of bn in the region ϕ > −∆x by solving the evolution
equation

∂tbn + H(ϕ + ∆x)n · ∇bn = 0, (23)

thanks to a WENO5 scheme as presented in [41],

• propagate the value of b in the ghost region ϕ > 0 by solving the PDE

∂tb + H(ϕ)(n · ∇b − bn) = 0, (24)

with a method of lines [40].

Stability is ensured under the following classic CFL that only involves u∗jk:

∆ttransport max
j, k∈N( j)

( |∂Ω jk |
|Ω j|

max(|u j|, |u∗jk |)
)
≤ 1

2
. (25)

Let us note that in the low Mach regime, (25) is less restrictive than the acoustic
CFL (17).

3.3.3. Approximation of the transport for the Level Set function
As detailed in [8, 42], the discrete values of the Level Set function ϕ are

updated by means of a high-order one-step numerical method. This method
provides 5th-order accuracy with respect to both time and space approximation
of (7d). Stability for this numerical scheme is also granted under the CFL condi-
tion (25). This advection step requires to be completed by a classic redistancing
stage. Following [41], we achieve this task by performing a numerical resolution
of a Hamilton-Jacobi equation with a WENO5-RK3 scheme.

Cell state update
As the interface is advected by the fluid velocity, the value of ϕ evolves with

time and may change its sign. For a cell that changes its sign, its real state is
replaced by its ghost state in that cell.
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3.3.4. Viscous subsystem discretization
The viscous subsystem is approximated by using a classic centered second-

order finite-volume method.
The time step constraint for the viscous step reads

∆tviscosity max
j, k∈N( j)

(
µ

ρ j

|∂Ω jk |2

|Ω j|2

)
≤ 1

2
. (26)

In the next sections, we will examine the behavior of the present scheme and
propose a low Mach fix to limit the truncation error in this regime.

4. Definition of the low Mach regime for the two-phase flows with interface

By following the work of [43, 44, 13], the behavior of this system of equa-
tion (2) will be investigated with respect to the Mach regime at continuous
level. We will perform an asymptotic analysis in the regime Mi ≪ 1 that will
provide a set of conditions that must be fulfilled by the flow parameters during
the motion and also at the initial conditions [17, 26, 28].

4.1. Definition of non-dimensional variables
In order to study the behavior of numerical schemes in the low Mach regime,

we first need to characterize the flow with respect to the Mach number. To that
end, we introduce characteristic values for length, time and velocity that will
be respectively noted x̂, û, t̂ = x̂/û. This allows to define the following non-
dimensional quantities and nabla operator that are common to both fluids

t̃ = t/t̂, x̃ = x/x̂, κ̃ = κx̂, ũ = u/û, ∇̃ =
(
∂

∂x̃1
, . . . ,

∂

∂x̃d

)T

= x̂ ∇.

The non-dimensional domain occupied by the fluid i and the interface will be
respectively noted D̃i and Γ̃.

We now define a set of non-dimensional variables for each fluid i = 1, 2 by
setting

⌊ρ̃⌋i = ρ/ρ̂i, ⌊p̃⌋i = p/ p̂i, ⌊c̃⌋i = c/ĉi, ⌊ẽ⌋i = e/êi, ⌊σ̃⌋i = σ/(p̂i x̂),
⌊
S̃
⌋

i
=

1
Rei

S/(ρ̂iû2)

(27)

where ρ̂i, ĉi, p̂i = ρ̂iĉ2
i , êi = p̂i/ρ̂i, σ̃i and Rei denote respectively a characteristic

density, sound velocity, pressure, internal energy, surface tension coefficient and
Reynolds number associated with the fluid i = 1, 2. In the following, we will
enclose an expression between the signs ⌊·⌋i in order to indicate that it has to
be considered as a non-dimensional expression with respect to the characteristic
quantities of the fluid i. For example, ⌊ρ̃⌋1 is the dimensionless density variable
with respect to the characteristic density ρ̂1 of fluid 1. We note Mi the Mach
number associated with the fluid i that is defined by

Mi = û/ĉi.
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The dimensionless total energy is then defined as:⌊
Ẽ
⌋

i
= E/êi = ⌊ẽ⌋i + M2

i . (28)

Furthermore, we introduce the following non dimensional parameters αi ∈ R+
and βi ∈ R+ that characterize the magnitude of characteristic densities and
sound velocities with respect to the fluid 1

αi = ρ̂i/ρ̂1, βi = ĉi/ĉ1.

And finally, we also note

αm = min(α2, 1/α2) ≤ 1, βm = min(β2, 1/β2) ≤ 1. (29)

4.2. Dimensionless evolution equation and low Mach regime
For the sake of readability, when there is no ambiguity, we shall replace ⌊·⌋i

by ·̃ to refer to a non-dimensional expression with respect to the fluid i. With
this simplified notation, the governing equation (2) for the bulk flow in Di can
be written in a dimensionless form:

t̃ > 0, x̃ ∈ D̃i(t)



∂t̃ρ̃ + ∇̃ · (ρ̃ũ) = 0,

∂t̃(ρ̃ũ) + ∇̃ · (ρ̃ũ ⊗ ũ) +
1

M2
i

∇̃p̃ =
1

Rei
∇̃ · S̃,

∂t̃(ρ̃Ẽ) + ∇̃ · ((ρ̃Ẽ + p̃)ũ) =
M2

i

Rei
∇̃ · (S̃ũ).

(30a)

(30b)

(30c)

In this work, we aim at deriving a numerical method that preserves its
accuracy in the low Mach regime. In order to clearly distinguish between the
improvement of our method and possible damping of spurious effects due to
the viscosity, we only consider flows that involve small viscosity effects. More
precisely we shall suppose that O(Re) = 1/Mi. In this case, one can see that
the discretization of the dissipative terms is uniform with respect to the Mach
number and does not affect the performance of the scheme. Therefore for the
sake of brevity, we shall only consider the analysis of the convective and capillary
terms.

The non-dimensional form of the interface evolution (4) is

∂t̃ϕ + ũ · ∇̃ϕ = 0, t̃ > 0, x̃ ∈ D̃. (31)

Concerning the boundary conditions across the interface Γ̃: (H1) implies
that (ũ · ñ) is continuous across Γ̃ and the relation (3) yields a non-dimensional
jump relation that reads lim

x̃→ỹ
x̃∈D̃1

p̃


1

−

 lim
x̃→ỹ
x̃∈D̃2

p̃


1

= ⌊σ̃⌋1κ̃(ỹ, t̃), for ỹ ∈ Γ̃(t̃). (32)
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We want to note that as the capillary effects are treated as the jump condition,
the non-dimensional jump relation is always valid whether the reference is fluid
1 or 2. Indeed, we have also: lim

x̃→ỹ
x̃∈D̃1

p̃


2

−

 lim
x̃→ỹ
x̃∈D̃2

p̃


2

= ⌊σ̃⌋2κ̃(ỹ, t̃), for ỹ ∈ Γ̃(t̃). (33)

Before going any further, let us underline that the overall two-phase system
formed by (30), (31) and the boundary conditions on Γ̃ depends on both M1
and M2.

In this context, we will now characterize what will be referred to in this
paper as the low Mach regime for our two-phase interface model. We suppose
that M1 ≪ 1 and M2 ≪ 1, and for a dimensionless variable Ãi of fluid i, we
consider an asymptotic expansion with respect to Mi as follows:

Ãi(x̃, t̃) = M0
i Ã

(0)
i (x̃, t̃)+M1

i Ã
(1)
i (x̃, t̃)+M2

i Ã
(2)
i (x̃, t̃)+· · · , x̃ ∈ D̃i(t̃), t̃ > 0. (34)

We now examine the behavior of Ã(k)
i in the limit regime Mi → 0: introducing

expression (34) in (30) and collecting the terms with equal power of Mi, we
obtain:

• Order M−2
i :

∇̃p̃(0) = 0, x̃ ∈ D̃i(t̃), t̃ > 0, (35)

• Order M−1
i :

∇̃p̃(1) = 0, x̃ ∈ D̃i(t̃), t̃ > 0, (36)

• Order M0
i :

t̃ > 0, x̃ ∈ D̃i(t)


∂t̃ρ̃

(0) + ∇̃ · (ρ̃(0)ũ(0)) = 0,

∂t̃(ρ̃(0)ũ(0)) + ∇̃ · (ρ̃(0)ũ(0) ⊗ ũ(0)) + ∇̃ p̃(2) =
1

Rei
∇̃ · S̃(0),

∂t̃(ρ̃(0)Ẽ(0)) + ∇̃ · ((ρ̃(0)Ẽ(0) + p̃(0))ũ(0)) = 0,

(37a)

(37b)

(37c)

where p̃(2) is the dynamic pressure related to the fluid motion, and p̃(0) is the
thermodynamic pressure. Thanks to (28), we can see that Ẽ(0)

i = ẽ(0)
i , so that

p̃(0) can be expressed as a function of ρ̃(0) and Ẽ(0) thanks to the EOS (1):

p̃(0) = pEOS
i (ρ̃(0), Ẽ(0)), in D̃i(t̃), t̃ > 0. (38)
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Then, using (38) and (37c) we obtain

∂t̃ p̃(0) + ũ · ∇̃p̃(0) + ρ̃c̃2(ρ̃(0), ẽ(0))∇̃ · ũ(0) = 0, in D̃i(t̃), for t̃ > 0. (39)

We can now further characterize the limit regime Mi → 0: equations (35) and
(36) that pertain respectively to terms of order M−2

i and M−1
i imply that the

pressure is homogeneous with respect to the space variable up to a fluctuation
of magnitude of M2

i :

∇̃p̃ = O(M2
i ), x̃ ∈ D̃i(t̃), t̃ > 0. (40)

We now add two supplementary hypotheses. First, we assume that the
boundary conditions are chosen such that the space-homogeneous p̃(0) is also
independent of t̃. Consequently, (39) implies that

∇̃ · ũ(0) = 0 in D̃i(t̃), for t̃ > 0. (41)

Let us emphasize that if such hypothesis is classic in the case of single-material
flow, it is much stronger in our case due to the presence of the two-phase in-
terface. Second, we suppose that the above property is also true across the
interface, that is to say:⌊

∇̃ · ũ(0)
⌋

1,2
= 0, on Γ̃. (42)

Before going any further, let us sum up what shall be referred to as a flow in
the low Mach regime for our two-phase interface model : such flow shall verify

ũ is regular (C1 function) in D,
p̃ and ρ̃ are regular (C1 function) in Di(t),

∇̃ · ũ = O(Mi), t > 0, x ∈ Di(t),

∇̃p̃ = O(M2
i ), t > 0, x ∈ Di(t),⌊

∇̃ · ũ
⌋

1,2
= O(Mi), t > 0, x ∈ Γ(t).

(43a)
(43b)
(43c)
(43d)
(43e)

An accurate scheme for low Mach two-phase flows should be able to preserve
the low Mach regime as previously defined. In the following sections, we will
examine the behavior for initial data that verifies a discrete equivalent of (43).

5. Low Mach behavior of the numerical scheme

In this section we will present a set of conditions that the discretization
strategy of Section 3 needs to verify in order to accurately approximate the
two-phase flow presented in Section 2 when the flow matches the low Mach
definition (43). Let us mention that we employ an uniform Cartesian mesh,
which implies ∆x jk = ∆x.
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We first recast the first two subsystem (6) and (7) we considered in Sec-
tion 3 using non-dimensional form in each domain D̃i. With non-conservative
dimensionless variables (

1
ρ̃
, ũ, Ẽ, ϕ), the acoustic system (6) for bulk flows reads

t̃ > 0, x̃ ∈ D̃i



ρ̃∂t̃(1/ρ̃) − ∇̃ · ũ = 0,

ρ̃∂t̃ũ +
1

M2
i

∇̃p̃ = 0,

ρ̃∂t̃Ẽ + ∇̃ · (p̃ũ) = 0,
∂t̃ϕ = 0.

(44a)

(44b)

(44c)
(44d)

As the Mach number Mi is explicitly involved in (44), it is also interesting to
consider the evolution of ρ̃(0), ũ(0) and Ẽ(0) through the acoustic phase. We get

t̃ > 0, x̃ ∈ D̃i


∂t̃ρ̃

(0) = 0,

ρ̃(0)∂t̃ũ(0) + ∇̃ p̃(2) = 0,

∂t̃Ẽ(0) = 0,
∂t̃ϕ = 0.

(45a)
(45b)
(45c)
(45d)

The transport subsystem (7) in non-dimensional form becomes

t̃ > 0, x̃ ∈ D̃i ∂t̃b̃ + ∇̃ · (b̃ũ) − b̃(∇̃ · ũ) = 0, b̃ ∈ {ρ̃, ρ̃ũ, ρ̃ṽ, ρ̃w̃, ϕ}. (46)

In order to examine the behavior of the numerical scheme, we will follow the lines
of [19] by considering smooth solutions of (30) that fulfill the low Mach regime
requirements (43). We note (x̃, t̃) 7→ b̃ any rescaled fluid parameter associated
with this solution. We commit an abuse of notation by setting b̃(x̃ j, t̃) = b̃ j. Then
we shall inject such solutions into the rescaled numerical scheme and study the
resulting truncation error.

5.1. Low Mach behavior of the acoustic step in the bulk
We start by examining the acoustic step by considering a cell Ω j ⊂ Di. Let us

note ai = max
{r | Ωr⊂Di}

(ρrcr), for the sake of simplicity we suppose that the artificial
acoustic impedance are defined using (11) with the uniform choice a j = ai for
all cell Ω j ⊂ Di. Then, the non-dimensional form of (13) is



ρ̃n
j

 1
ρ̃n+

j
− 1
ρ̃n

j

 − ∆t̃
∑

k∈N( j)

|∂Ω̃ jk |
|Ω j|

ũ∗jk = 0,

ρ̃n
j (ũ

n+
j − ũn

j ) +
∆t̃
M2

i

∑
k∈N( j)

|∂Ω̃ jk |
|Ω j|

π̃∗jkn jk = 0,

ρ̃n
j (Ẽ

n+
j − Ẽn

j ) + ∆t̃
∑

k∈N( j)

|∂Ω̃ jk |
|Ω j|

π̃∗jkũ∗jk = 0,

(47a)

(47b)

(47c)
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where


ũ∗jk =

n jk · (ũn
j + ũn

k)

2
+

1
Mi

π̃n
j − π̃n

k

2ãi
,

π̃∗jk =
π̃n

j + π̃
n
k

2
− Mi

ãi(ũn
k − ũn

j )

2
n jk.

(48a)

(48b)

The low Mach hypothesis (43) implies that there exists three smooth functions
Ai, Bi and Ci of magnitude O(M0

i ) such that we have

t̃n > 0, for any x̃k and x̃ j in D̃i

ũ(x̃k, t̃n) · n = ũ(x̃ j, t̃n) · n + Ai(x̃ j, x̃k, t̃n,n)|x̃k − x̃ j|,
p̃(x̃k, t̃n) = p̃(x̃ j, t̃n) + M2

i Bi(x̃ j, x̃k, t̃n)|x̃k − x̃ j|.

(49a)
(49b)

Relations (48) and (49) yield that
ũ∗jk = ũ(x̃ jk, t̃n) · n jk −

1
2ãi

MiBi(x̃ j, x̃k, t̃n)|x̃k − x̃ j| + O(Mi∆x̃) + O(∆x̃2),

π̃∗jk = p̃(x̃ jk, t̃n) − ãi

2
MiAi(x̃ j, x̃k, t̃n,n)|x̃k − x̃ j| + O(M2

i ∆x̃2),

π̃∗jkũ∗jk = p̃(x̃ jk, t̃n)ũ(x̃ jk, t̃n) · n jk − MiCi(x̃ j, x̃k, t̃n,n)|x̃k − x̃ j| + O(∆x̃2),

(50a)

(50b)

(50c)

so that by injecting (50) into (47), we get

ρ̃n
j

ρ̃n+
j
− 1 − ∆t̃

∆x̃

∑
k∈N j

ũn
jk · n jk + O(Mi∆x̃) + O(∆x̃2)

 = 0,

(ũn+
j − ũn

j ) +
∆t̃

ρn
j∆x̃M2

i

∑
k∈N j

p̃n
jk + O(Mi∆x̃) + O(M2

i ∆x̃) + O(M2
i ∆x̃2)

 = 0,

(Ẽn+
j − Ẽn

j ) +
∆t̃
ρ̃n∆x̃

 ∑
k∈N( j)

p̃n
jkũn

jk · n jk + O(Mi∆x̃) + O(∆x̃2)

 = 0.

(51a)

(51b)

(51c)

Classic computations yield∑
k∈N( j)

ũ(x̃ jk, t̃n) · n jk =∇̃ · ũ(x̃ j, t̃n)∆x̃ + O(∆x̃2),∑
k∈N( j)

p̃(x jk, t̃n) · n jk =∇̃ p̃(x̃ j, t̃n)∆x̃ + O(M2
i ∆x̃2),∑

k∈N( j)

p̃(x jk, t̃n)ũ(x̃ jk, t̃n) · n jk =∇̃ ·
(
p̃(x jk, t̃n)ũ(x jk, t̃n)

)
∆x̃ + O(∆x̃2).

(52a)

(52b)

(52c)
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With (52) at t̃n, we get:

ρ̃n+
j = ρ̃

n
j/

(
1 + ∆t̃∇̃ · ũ + O(∆t̃Mi∆x̃) + O(∆t̃∆x̃2)

)
,

ũn+
j = ũn

j −
∆t̃

M2
i ρ̃ j
∇̃p̃ + O(

∆t̃∆x̃
Mi

) + O(∆x̃2∆t̃),

Ẽn+
j = Ẽn

j −
∆t̃
ρ̃ j
∇̃ · ( p̃ũ) + O(Mi∆x̃∆t̃) + O(∆x̃2∆t̃).

(53a)

(53b)

(53c)

In the low Mach regime, the rescaled discretization of the acoustic system is
consistent with:

t̃ > 0, x̃ ∈ D̃i



∂t̃ρ̃ + ρ̃∇̃ũ = O(∆x̃Mi) + O(∆t̃),

∂t̃ũ +
1

M2
i ρ̃
∇̃p̃ = O(∆x̃M0

i ) + O
(
∆x̃
Mi

)
+ O(∆t̃),

∂t̃Ẽ +
1
ρ̃
∇̃ · ( p̃ũ) = O(∆x̃Mi) + O(∆t̃).

(54a)

(54b)

(54c)

5.2. Low Mach behavior of the transport step in the bulk
The transport step in non-dimensional form for a cell Ω j ⊂ Di reads

Ω̃ j∩D̃i , ∅, b̃n+1−
j = b̃n+

j −
∆t̃
|Ω̃ j|

∑
k∈N j

|∂Ω̃ jk |ũ∗jkb̃n+
jk + b̃n+

j
∆t̃
|Ω̃ j|

∑
k∈N j

|∂Ω̃ jk |ũ∗jk, (55)

where b̃n+
jk are non-dimensional form of (22) with respect to the fluid i. By

injecting the low Mach solution into (55), standard computations show that:

b̃n+1−
j = b̃n+

j −
∆t̃
∆x̃

∑
k∈N j

(
ũn

jk · n jk + O(Mi∆x̃) + O(∆x̃2)
)

b̃n+
jk +b̃n+

j
∆t̃
∆x̃

∑
k∈N j

ũn
jk · n jk + O(Mi∆x̃) + O(∆x̃2)

 ,
(56)

hence

b̃n+1−
j = b̃n+

j − ∆t̃∇̃ · (ũb̃) + ∆t̃b̃∇̃ · ũ + O(∆x̃∆t̃) + O(x̃Mi∆t̃). (57)

In the low Mach regime, the rescaled transport system is consistent with:

t̃ > 0, x̃ ∈ D̃i, ∂t̃b̃+∇̃·(ũb̃)−b̃(∇̃·ũ) = O(Mi
0∆x̃)+O(∆t̃)+O(Mi∆x̃), b̃ ∈ {ρ̃, ρ̃ũ, ρ̃ṽ, ρ̃w̃, ϕ}.

(58)
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5.3. Low Mach regime accuracy analysis and fix for the bulk flow
Results presented in Sections 5.1 and 5.2 are coherent with the literature: in

the acoustic step, a truncation error term of magnitude O(∆x̃/Mi) that appears
in (54b) suggests that important loss of accuracy may occur when Mi ≪ 1, while
in the transport step, the truncation error remains uniform with respect to Mi.

Many works over the past years have proposed low Mach corrections for
single-fluid flows [13, 14, 18, 45, 19]. The fix usually amounts to use a centered
pressure evaluation at the cell interfaces in the low Mach regime. In the case of
a two-phase flow, let us recall two modifications that have been proposed in the
literature.

Noting (Mi) jk a local evaluation of the Mach number Mi at the interface ∂Ω jk

and setting θ jk = min((M1) jk, (M2) jk, 1), Peluchon et al. [24] proposed to replace
π∗ by altering terms related to velocity jump as follows:

π∗,θ,AW
jk =

akπ j + a j(πk +
[
H(ϕk) − H(ϕ j)

]
σκ)

a j + ak
− θ jk

a jak

a j + ak
n jk(uk − u j). (59)

Chalons et al. [23] studied a slightly different low Mach correction with a cen-
tered pressure that can be expressed as:

π∗,θ,CP
jk = (1 − θ jk)

π j + πk +
[
H(ϕk) − H(ϕ j)

]
σκ

2
+ θ jkπ

∗
jk. (60)

Let us underline that the two-phase models studied in both Peluchon et al. [24]
and Chalons et al. [23] are different from our framework as they involve potential
mixture regions where both fluids can simultaneously be present. Applying
either (59) or (60) in our case succeeds in controlling the error term in the
momentum update of the acoustic step in pure fluid i region. Indeed, either
correction will enable a new truncation error estimate

t̃ > 0, x̃ ∈ D̃i ρ̃∂t̃ũ +
1

M2
i

∇̃p̃ = O(∆x̃M0
i ) + O

(
θ∆x̃
Mi

)
+ O(∆t̃), (61)

where θ is an upper bound for all θ jk.
Proof. For the bulk flow of fluid i, both low Mach corrections can take the
simple form:

π̃∗,θjk =
π̃n

j + π̃
n
k

2
− Miθ jk

ãi(ũn
k − ũn

j )

2
n jk. (62)

There exists a function Di of magnitude 1 with respect to Mi such that:

π̃∗,θjk = p̃(x̃ jk, t̃n) − Diãi

2
MiAi(x̃ j, x̃k, t̃n,n)|x̃k − x̃ j| + O(M2

i ∆x̃2). (63)

Following the similar analysis given in (50)-(54), then we can get:

ũn+
j = ũn

j −
∆t̃

M2
i ρ̃ j
∇̃ p̃ + O(θ jk

∆t̃∆x̃
Mi

) + O(∆x̃2∆t̃). (64)

18



6. Asymptotic behavior of existing low Mach schemes across the interface

We have seen in Section 5 that in the low Mach regime, our discretization
strategy may suffer a loss of accuracy in each pure fluid region Di of the com-
putational domain. This drawback is a classic pathology in the case of single
fluid flows that can be improved by modifying the pressure discretization. We
shall now investigate in the present section the behavior of the numerical scheme
across the two-phase interface in the low Mach regime. We will see that the ap-
proximation of several flow parameters will be impacted in the low Mach regime
due to the abrupt jump of the medium properties across the interface.

Figure 3: 1-D sketch of a cell j across the interface Γ, separating domains Di, with its full
neighborhood V and partial neighborhoods N±( j). Level Set function ϕ, positive at cell j.
Discontinuous pressure field p across the interface with non-dimensional values at cells j and
k.

Once again, we consider a smooth solution of (30) that fulfill the low Mach
regime requirements (43). We consider a cell Ω j such that ϕn

j > 0 that lies in
the vicinity of Γ so that N−( j) , ∅. Let V be a neighborhood of x j so that
V∩D1 , ∅ and V∩D2 , ∅. Thanks to the smoothness of the velocity we know
that ⌊ũ⌋i and its derivatives are of magnitude O(M0

i ) within the entire region V
for i = 1, 2. Thus there exist a smooth function A such that the variation of the
normal velocity at the boundary Ω j reads

⌊
ũ(x̃ j, t̃n) · n jk

⌋
1
=

⌊
ũ(x̃ jk, t̃n) · n jk + A(x̃ jk, x̃ j, t̃n,nk j)

|∆x̃ jk |
2
+ O(∆x̃2)

⌋
1

for k ∈ N( j),

⌊
ũ(x̃k, t̃n) · n jk

⌋
1
=

⌊
ũ(x̃k j, t̃n) · n jk + A(x̃k j, x̃k, t̃n,n jk)

|∆x̃k j|
2
+ O(∆x̃2)

⌋
1

for k ∈ N+( j),

⌊
ũ(x̃k, t̃n) · n jk

⌋
2
=

⌊
ũ(x̃k j, t̃n) · n jk + A(x̃k j, x̃k, t̃n,n jk)

|∆x̃k j|
2
+ O(∆x̃2)

⌋
2

for k ∈ N−( j).

(65a)

(65b)

(65c)

Similarly according to (43d),
⌊
∇̃ p̃

⌋
i

is of magnitude O(M2
i ) within V ∩ Di

so that there exist two smooth functions B1 and B2 respectively of magnitude
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O(M0
1) and O(M0

2) such that

⌊
p̃(x̃ j, t̃n)

⌋
1
=

⌊
p̃(x̃ jk, t̃n) + M2

1 B1(x̃ jk, x̃ j, t̃n)
|∆x̃ jk |

2
+ O(M2

1∆x̃2)
⌋

1
for k ∈ N( j),

⌊
p̃(x̃k, t̃n)

⌋
1 =

⌊
p̃(x̃k j, t̃n) + M2

1 B1(x̃ jk, x̃k, t̃n)
|∆x̃k j|

2
+ O(M2

1∆x̃2))
⌋

1
for k ∈ N+( j),

⌊
p̃(x̃k, t̃n)

⌋
2 =

⌊
p̃(x̃k j, t̃n) + M2

2 B2(x̃ jk, x̃k, t̃n)
|∆x̃k j|

2
+ O(M2

2∆x̃2))
⌋

2
for k ∈ N−( j).

(66a)

(66b)

(66c)

The jump condition across the interface can be expressed as:⌊
p̃(x̃ jk, t̃) − p̃(x̃k j, t̃)

⌋
1
=

⌊[
H(ϕ j) − H(ϕk)

]
σ̃κ̃(x̃ jk, t̃)

⌋
1
=

⌊
σ̃κ̃(x̃ jk, t̃)

⌋
1

when k ∈ N−( j).

(67)

It is important to note that ⌊
p̃(x̃k, t̃)

⌋
1 (resp. ⌊ãk⌋1 ) when k ∈ N−( j) is not of

magnitude O(1) as p(x̃k) (resp. ak) is evaluated in D2 but it is rescaled using
the characteristic values of the fluid 1. Nevertheless when k ∈ N−( j), one can
express ⌊p(x̃k)⌋1 and ⌊ãk⌋1 using terms of magnitude O(1) as follows:⌊

p̃(x̃k, t̃)
⌋

2 =
⌊
p̃(x̃k, t̃)

⌋
1/(α2β

2
2), (68)

and

⌊ãk⌋1 = ⌊ãk⌋2(α2β2). (69)

Thus (66c) can now be expressed using characteristic values of the fluid 1, that
is to say

⌊
p̃(x̃k, t̃)

⌋
2 =

⌊
p̃(x̃k, t̃)

⌋
1/(α2β

2
2) =

⌊
p̃(x̃k j, t̃) + M2

1 B2(x̃ jk, x̃k, t̃)
|∆x̃k j|

2
α2 + O(M2

1∆x̃2)α2

⌋
1
.

(70)

Following the same standard lines as in Section 5 for the bulk flow, we can
now reinject the low Mach solution into the expression of the numerical scheme
in order to express the truncation error. We examine the cell Ω j and consider
that it is mostly occupied by the fluid 1 as we supposed that ϕ j > 0. We will
study the behavior of two elements of the numerical scheme: the discretized
pressure at ∂Ω jk and the update of ρ̃(0)

j when k ∈ N−( j) , ∅.

6.1. Low Mach flow across the interface: behavior of the pressure near the
interface during the acoustic step

Let us consider π̃∗,θ,CP
jk the non-dimensional form of corrected flux defined by

(60), for k ∈ N−( j) , ∅ we have that

⌊
π̃∗,θ,CP

jk

⌋
1
=

 π̃n
j + π̃

n
k +

[
H(ϕn

k) − H(ϕn
j )
]
σ̃κ̃njk

2


1

+θ jk

π̃∗jk − π̃n
j + π̃

n
k +

[
H(ϕn

k) − H(ϕn
j)
]
σ̃κ̃njk

2


1

.
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(71)

By (65), (66), (67), (69), (70) and (60), tedious calculations show that

⌊
π̃∗,θ,CP

jk, j

⌋
1
=
⌊
p̃(x̃ jk, j, t̃n)

⌋
1
+ O(M2

1∆x̃2) + θ jk M1

⌊
ã j

⌋
1
⌊ãk⌋2α2β2⌊

ã j

⌋
1
+ ⌊ãk⌋2α2β2

A(x̃ j, x̃k, t̃n,n jk)|x̃k − x̃ j|

−θ jk

 ⌊ãk⌋2α2β2⌊
ã j

⌋
1
+ ⌊ãk⌋2α2β2

B1(x̃ j, x̃ jk, t̃n)|x̃ jk − x̃ j| −

⌊
ã j

⌋
1
α2⌊

ã j

⌋
1
+ ⌊ãk⌋2α2β2

B2(x̃ jk, x̃k, t̃n)|x̃k − x̃ jk |

M2
1

−
(1 − θ jk)

2

(
B1(x̃ j, x̃ jk, t̃n)|x̃ jk − x̃ j| − B2(x̃k, x̃ jk, t̃n)α2|x̃k − x̃ jk |

)
M2

1 .

(72)

Then we can see that in the third line of (72), when α2 becomes large, it may
produce important errors for the estimation of the pressure gradient in Ω j.
Indeed, let us consider⌊
π̃∗,θ,CP

jk − π j

⌋
1

∆x̃
=

⌊
p̃(x̃ jk) − p̃(x̃ j)

⌋
1

∆x̃
+ O(α2M2

1) + O(M2
1) + O(θ jk M1) + O(θ jkα2M2

1).

Using (66) we get⌊
π̃∗,θ,CP

jk − π j

⌋
1

∆x̃
= O(α2M2

1) + O(M2
1) + O(θ jk M1) + O(θ jkα2M2

1). (73)

Therefore, when α2 = O(1/M1), this suggests that the discrete gradient estima-
tion in the vicinity of the interface may grow to reach a O(1/M1) magnitude
which violates the low Mach hypothesis (43d). The analysis given in Appendix
B shows that the AW type correction could involve a truncation error of mag-
nitude O(α2) to the discrete pressure gradient in the momentum update, which
also contravenes the low Mach hypothesis (43d).

6.2. Low Mach flow across the interface: evolution of the density near the in-
terface during the acoustic step

We now evaluate the discretized normal velocity
⌊
ũ∗jk

⌋
1

for k ∈ N−( j): by
combining (65), (66), (67), (69), (70) and (14a) we obtain

⌊
ũ∗jk

⌋
1
=
⌊
ũ(x̃ jk, t̃n)

⌋
1
· n jk +

 ⌊ãk⌋2α2β2⌊
ã j

⌋
1
+ ⌊ãk⌋2α2β2

− 1
2

A(x̃ j, x̃k, t̃n,n jk)|∆x̃k j| + O(∆x̃M1) + O(∆x̃2)

− 1⌊
ã j

⌋
1
+ ⌊ãk⌋2β2α2

(
B1(x̃ j, x̃ jk, t̃n)

|∆x̃k j|
2
+ B2(x̃k, x̃ jk, t̃n)α2

|∆x̃k j|
2

)
M1.

(74)
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We can now inject (74) and (50a) into (47a), we get

ρ̃n+
j = ρ̃

n
j/

1 + ∆t̃∇̃ · ũ +
∑

k∈N−( j)

 ⌊ãk⌋2α2β2⌊
ã j

⌋
1
+ ⌊ãk⌋2α2β2

− 1
2

 + O(∆t̃Mi∆x̃) + O(∆t̃∆x̃)

 .
(75)

Compared with (53a), one can then see that due to the discrepancy of charac-
teristic quantities that occurs when α2 ≫ 1 and β2 ≫ 1, relation (75) suggests
that the leading order of density ρ̃(0) can no longer remain constant up to a term
of magnitude O(1). This error is associated with the estimation of the velocity
divergence:

1
∆x̃

∑
k∈N( j)

⌊
ũ∗,θ,Njk

⌋
1
= ∇̃ · ũ + O(1) + O(M1). (76)

Without detailed analysis, in the acoustic step update the CP type or AW
type correction gives the same truncation error on density and energy update
because the same intermediate velocity u∗ is employed. The CP type interme-
diate pressure π∗,θ,CP or AW type intermediate pressure π∗,θ,AW could involve a
truncation error of magnitude of O(α2) to the momentum update.

6.3. Truncation error for the transport update in the vicinity of the interface
We now turn to the transport step and by using (74) we first remark that

the normal velocity estimation verifies⌊
ũ∗jk

⌋
1
=

⌊
ũ(x̃ jk, t̃n)

⌋
1
· n jk +

⌊
O(∆x̃M0

1α
0
mβ

0
m) + O(∆x̃Mi)

⌋
1
. (77)

Now, for b ∈ {ρ, ρu, ρv, ρw, ρE} and k ∈ N−( j), following (22) we know that
bn+

jk is obtained either by the upwind choice within the same fluid either by a
linear Ghost Fluid extrapolation. This means that in either case

b̃n+
jk = b̃(x̃ jk, t̃n) + O(∆x̃M0

1α
0
mβ

0
m). (78)

Therefore, in the neighborhood of Γ, we obtain a similar truncation error as
in the bulk fluid case (58), if b̃ ∈ {ρ̃, ρ̃ũ, ρ̃ṽ, ρ̃w̃, ϕ}, we have

b̃n+1−
j = b̃n+

j −
∆t̃
∆x̃

∑
k∈N j

(
ũn

jk · n jk + O(Mi∆x̃) + O(∆x̃)
)

b̃n+
jk +b̃n+

j
∆t̃
∆x̃

∑
k∈N j

ũn
jk · n jk + O(Mi∆x̃) + O(∆x̃)

 ,
(79)

hence

b̃n+1−
j = b̃n+

j − ∆t̃∇̃ · (ũb̃) + ∆t̃b̃∇̃ · ũ + O(∆x̃∆t̃) + O(Mi∆t̃). (80)

Consequently, (80) suggests that the transport step does not perturb the low
Mach regime, the resealed transport system is also consistent with (58).
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7. New low Mach correction

We have seen in Section 6 that within cells neighboring the interface Γ, even
the classic low Mach corrected schemes failed to preserve the low Mach regime
defined by (43). The cause of the error seems to originate from the jump of
the characteristic values that are associated with the fluid across Γ. Indeed, if
one considers the expression of the dimensional pressure in Di, we get from the
asymptotic expansion with respect to Mi that

p = p̂i p̃ = p̃(0)ρ̂iĉ2
i + p̃(1)ρ̂iĉiû + p̃(2)ρ̂iû2 + · · · in Di. (81)

In the low Mach regime defined by (43) we know that the first two terms in (81)
are constant in Di so that the variations of p are dominated by the dynamic
pressure with a magnitude ρ̂iû2. Across the interface Γ, the dynamic pressure
undergoes a jump that is characterized by

ρ̂2û2

ρ̂1û2 = α2. (82)

This corroborates the fact that the error term of magnitude O
(

1
αm

)
in (73) is

issued from the discretized centered pressure term. For similar reasons, rela-
tion (76) shows that the the presence of α2 and β2 in (74) does not allow to
recover an accurate estimate of ∇̃ · (ũ(0)) = 0 in the acoustic step. This results
in variations of ρ̃(0) of magnitude O(1) that generate spurious oscillations in the
thermodynamic pressure. In order to cure these problems, we propose to use a
new numerical discretization for the pressure and the normal velocity terms at
the cell interfaces. Our new numerical scheme should account for the variation
of characteristic values associated with the dynamic pressure and also provide a
reliable discretization of ∇̃ · (ũ(0)) in the vicinity of Γ. We introduce the following
discretization of the pressure and the normal velocity at the interface ∂Ω jk of a
cell Ω j for k ∈ N( j)

u∗,θ,Njk = (1 − θ jk)n jk ·
un

j + un
k

2
+ θ jkn jk ·

aiun
j + akun

k

ai + a j
+
πn

j − πn
k

a j + ak
, (83a)

π∗,θ,Njk = (1 − θ jk)
ρn

kπ
n
j + ρ

n
j [π

n
k + σκ

n
jk(H(ϕn

k) − H(ϕn
j )]

ρn
j + ρ

n
k

+ θ jkπ
∗
jk. (83b)

We can now apply the lines presented in Section 6. Supposing that the flow
verifies the low Mach hypotheses (43) and considering a cell Ω j that is crossed
by Γ, if k ∈ N−( j) we have that

⌊
ũ∗,θ,Njk

⌋
1
=
⌊
ũ(x̃ jk, t̃)

⌋
1
· n jk + θ jk

 ⌊ãk⌋2α2β2⌊
ã j

⌋
1
+ ⌊ãk⌋2α2β2

− 1
2

A(x̃ j, x̃k, t̃,n jk)|∆x̃k j| + O(∆x̃M1) + O(∆x̃2)

− 1⌊
ã j

⌋
1
+ ⌊ãk⌋2β2α2

(
B1(x̃ j, x̃ jk, t̃)

|∆x̃k j|
2
+ B2(x̃k, x̃ jk, t̃)α2

|∆x̃k j|
2

)
M1,
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(84)

and

⌊
π̃∗,θ,Njk, j

⌋
1
=
⌊
p̃(x̃ jk, j, t̃)

⌋
1
+ O(M2∆x̃2) + θ jk M1

⌊
ã j

⌋
1
⌊ãk⌋2α2β2⌊

ã j

⌋
1
+ ⌊ãk⌋2α2β2

A(x̃ j, x̃k, t̃,n jk)|∆x̃k j|

−θ jk

 ⌊ãk⌋2α2β2⌊
ã j

⌋
1
+ ⌊ãk⌋2α2β2

B1(x̃ j, x̃ jk, t̃)
|∆x̃ jk |

2
−

⌊
ã j

⌋
1
α2⌊

ã j

⌋
1
+ ⌊ãk⌋2α2β2

B2(x̃ jk, x̃k, t̃)
|∆x̃k j|

2

M2
1

−
α2(1 − θ jk)

1 + α2

(
B1(x̃ j, x̃ jk, t̃)

|∆x̃k j|
2
− B2(x̃k, x̃ jk, t̃)

|∆x̃k j|
2

)
M2

1 .

(85)

Relation (85) gives a discrete pressure gradient:⌊
π̃∗,θ,Njk − π̃ j

⌋
1

∆x̃
=

⌊
p̃(x̃ jk) − p̃(x̃ j)

⌋
1

∆x̃
+ O(M2

1) + O(θ jk M1) + O(θ jkα2M2
1). (86)

The truncation error is now uniform with respect to the density ratio, sound
speed ratio and Mach number. Injecting the estimates (84) into (47) yields a
discrete velocity divergence to the density evolution for the acoustic step:

1
∆x̃

∑
k∈N( j)

⌊
ũ∗,θ,Njk

⌋
1
= ∇̃ · ũ + O(M1) + O(M2

1). (87)

Compared with (76), the error that disturbs the constant thermodynamic pres-
sure profile is eliminated. As a conclusion, (86) and (87) provides a truncation
error that is uniform respect to M1, αm and βm to the discrete gradient estima-
tion and density evolution, the low Mach hypothesis (43) is generally maintained
without truncation error of large magnitude such as O(

1
M1

) and O(
1
αm

).
As for the transport step, the dimensionless corrected intermediate velocity

ũθ,Njk (85) can be written into the same form as (50a). Therefore, we can get
the same conclusion about the transport step: the discrete transport step with
the new low Mach correction is capable of satisfying preserving the low Mach
regime defined by (43).

An important feature of the new low Mach corrected solver for the acoustic
step is that it can be associated with an approximate Riemann solver (ζ; Wl,Wr) 7→
WN

RP(ζ; Wl,Wr), defined by

WN
RP(ζ; Wl,Wr) =


Wl, if ζ < −al,
W∗,N,θ

l , if −al < ζ < 0,
W∗,N,θ

r , if 0 < ζ < ar,
Wr, if ar < ζ,

(88)
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with intermediate states W∗,N,θ
l and WN,θ,∗

r defined by

u∗,θ,N = u∗,θ,Nl = u∗,θ,Nr = (1 − θ)
un

l + un
r

2
+ θ jk

alun
l + arun

r

al + ar
+
πn

l − πn
r − σκnlr[H(ϕn

r ) − H(ϕn
l )]

al + ar
,

(89a)

π∗,θ,Nl = (1 − θ)
ρn

rπ
n
l + ρ

n
l [πn

r + σκ
n
lr[H(ϕn

r ) − H(ϕn
l )]

ρn
l + ρ

n
r

+ θπ∗l , (89b)

π∗,θ,Nr = (1 − θ)
ρn

l π
n
r + ρ

n
r [πn

l − σκnlr[H(ϕn
r ) − H(ϕn

l )]
ρn

l + ρ
n
r

+ θπ∗r , (89c)

1

ρ∗,θ,Nl

=
1
ρl
+

al+ar
2 (ur − ul) + πl − πr + σκ

[
H(ϕl) − H(ϕr)

]
al(al + ar)

, (89d)

1

ρ∗,θ,Nr
=

1
ρr
+

al+ar
2 (ur − ul) + πr − πl − σκ

[
H(ϕl) − H(ϕr)

]
ar(al + ar)

, (89e)

v∗,θ,Nl = vl, v∗,θ,Nr = vr, (89f)
w∗,θ,Nl = wl, w∗,θ,Nr = wr, (89g)

E∗,θ,Nl = El −
π∗,θ,Nl u∗,θ,N − πlul

al
, (89h)

E∗,θ,Nr = Er +
π∗,θ,Nr u∗,θ,N − πrur

ar
. (89i)

In Appendix C, it is shown that the following constraints for the acoustic
impedance al and ar:

if pr − pl + σκ[H(ϕr) − H(ϕl)] ≥ 0,


al = ρlcl + Υlρl

{
2

pr − pl + σκ[H(ϕr) − H(ϕl)]
ρrcr + ρlcl

+ ul − ur

}
+

,

ar = ρrcr + Υrρr

{
2

pl − pr − σκ[H(ϕr) − H(ϕl)]
al + ρrcr

+ ul − ur

}
+

,

(90)

if pr − pl + σκ[H(ϕr) − H(ϕl)] < 0,


ar = ρrcr + Υrρr

{
2

pl − pr − σκ[H(ϕr) − H(ϕl)]
clρl + crρr

+ ul − ur

}
+

,

al = ρlcl + Υlρl

{
2

pr − pl + σκ[H(ϕr) − H(ϕl)]
ar + ρlcl

+ ul − ur

}
+

,

(91)

ensures the positivity of ρ∗,θ,Nl and ρ∗,θ,Nr . In the low Mach regime, the second
terms on the RHS of equation (90) and (91) can reach a magnitude of O(M)
with respect to the characteristic value ρ̂ĉ. With the definition in (90) and (91),
the acoustic impedance constraints in (12) are sufficient to preserve the density
positiveness. In practice, we use the artificial acoustic impedance defined by
(12).

As the same acoustic impedance is employed for low Mach schemes with AW,
PC or the new correction, the same constraints on the time step ∆t are adopted.
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No significant difference in terms of CPU time can be observed between the three
low Mach corrections. The accuracy of these three methods will be compared
in the next section.

8. Numerical results of low Mach corrections

For the simulations that will be presented in this section, the time step ∆t
in order to account for (17), (20), (25) and (26) is set by following constraint

∆t = min(∆tacoustic,∆tcapillary,∆ttransport,∆tviscosity). (92)

The analysis derived in the previous sections suggests that the acoustic
impedance weighted or centered pressure type corrections may generate im-
portant errors in the vicinity of the interface while the new low Mach correction
should preserve its accuracy. The performance of these schemes will be tested
against two classic tests: a two-phase Gresho vortex and a static bubble simu-
lation.

8.1. Two-phase Gresho vortex problem
The Gresho vortex [46, 47] is a rotating flow with a time-independent solution

of homogeneous Euler equations. Here we adapt this problem to two-phase flow
and the surface tension effects are neglected. An incompressible fluid 1 is placed
inside an incompressible fluid 2, with a vortex centered at (x, y) = (0.5, 0.5). By
using polar coordinates (r, ϑ), the density distribution can be expressed as:

ρ(r, ϑ) =

ρ0
1 r < 0.2,
ρ0

2 r > 0.2,
(93)

We keep the same angular velocity distribution as proposed in [47]:

(ur, uϑ) =


(0, 5r) 0 ≤ r < 0.2,
(0, 2 − 5r) 0.2 ≤ r < 0.4,
(0, 0) r ≥ 0.4.

(94)

The velocity reaches its maximum value of uϑ,max = 1 at the interface between
two different fluids (r = 0.2). As the centrifugal force is exactly balanced by
pressure gradient, the pressure distribution can be given by:

p(r, ϑ) =


p0 + 12.5ρ1r2 0 ≤ r < 0.2,
p0 + 0.5ρ1 + 12.5ρ2(r2 − 0.04) + 4ρ2(1 − 5r + ln(5r)) 0.2 ≤ r < 0.4,
p0 + 0.5ρ1 − 2.5ρ2 + 4ρ2 ln 2 r ≥ 0.4,

(95)

where the reference pressure p0 satisfies:

p0 =
ρ0

1

γ1M2
1,max

− π∞1 =
ρ0

2

γ2M2
2,max

− π∞2 , (96)
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where π∞1 and π∞2 are two constant pressures related to the EOS of fluids 1 and 2.
As presented in Table. 1 and Table. 2, we define Problem #1 − #4 with different
fluid properties. Problem #1 is the original test case from [47] where two fluids

Fluid 1 Fluid 2
# ρ1 M1,max γ1 ρ2 M2,max γ2 αm βm

Gresho
vortex

1 1 10−3 1.666 1 10−3 1.666 1 1
2 1 10−3 1.666 100 10−3 7.14 0.01 1
3 1 10−3 1.666 1 10−5 7.14 1 0.01
4 1 10−5 1.666 100 10−3 7.14 0.01 0.01

Table 1: Numerical parameters of Gresho vortex test problems.

# test case
1 2 3 4

Gresho
vortex

π∞1 0 0 0 5988395358
π∞2 0 13405362 1399959983 0

Table 2: Constant pressure π∞ of Gresho vortex test problems.

with the same fluid property are considered. Problem #2 is dedicated to testing
the ability of the low Mach correction in the case of large density ratio, while
the initial sound speeds of different phases remain the same. Problem #3 is
devoted to checking the ability of the low Mach correction that takes account
of a large Mach variation, while the initial density remains the same at each
phase. Problem #4 is a test case with both large density ratio and large Mach
number variation.

(a)

t=0.1 t=0.1

(b) (c)

t=0.1 t=0.1

(d)

0

0.94

Figure 4: Magnitude of the velocity field of two-phase Gresho vortex problem #1 with a
resolution of 100 × 100. (a): without low Mach correction; (b) AW type correction; (c) CP
type correction; (d) new low Mach correction.

Fig. 4 shows snapshots of Problem #1 at t = 0.1 for the numerical scheme
without and with low Mach correction respectively. Without low Mach cor-
rection, the effect of dissipation is obvious and the vortex has completely dis-
appeared. All of the presented low Mach corrections give the same numerical
results for problem #1 since the properties of the two fluids are the same. With
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(a)

t=0.1 t=0.1

(b) (c)

t=10−3 t=0.1

(d)

0

0.94

Figure 5: Magnitude of the velocity field of two-phase Gresho vortex problem #2 with a
resolution of 100 × 100. (a): without low Mach correction; (b) AW type correction; (c) CP
type correction; (d) new low Mach correction.

a low Mach correction, the vortex is not degraded, showing the efficiency of low
Mach correction.

Fig. 5 – Fig. 7 present numerical results of the Gresho test case with different
fluid properties. From these figures, we can get a global conclusion: numerical
scheme without low Mach fix can not preserve the vortex while the new low
Mach correction always provides a satisfactory prediction.

Fig. 5 presents numerical results of Problem #2 with large density ratio.
For the numerical result related to the CP type correction, there are some
instabilities as soon as t = 10−3. As presented in the asymptotic analysis, the
CP type correction provides an error of magnitude of O(

1
αm

) for two fluids with
the same sound speed. The acoustic impedance weighted correction can well
preserve the vortex as well as new the low Mach correction since the new low
Mach fix gives the same truncation error on the momentum equation as the AW
low Mach correction. The correction on u∗ does not seem to play an important
role in this test case.

(a)

t=0.1 t=0.1

(b) (c)

t=0.1 t=0.1

(d)

0

0.94

Figure 6: Magnitude of the velocity field of two-phase Gresho vortex problem #3 with a
resolution of 100 × 100. (a): without low Mach correction; (b) AW type correction; (c) CP
type correction; (d) new low Mach correction.

Fig. 6 shows the numerical results of Problem #3. All these low Mach correc-
tions can well preserve the vortex. For two fluids of the same initial density and
large sound speed ratio, all these low Mach corrections provide with errors of
magnitude O(1), uniform with respect with M, αm and βm, but the asymptotic-
preserving conditions are not strictly respected by AW or CP type correction.
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Figure 7: Magnitude of the velocity field of two-phase Gresho vortex problem #4 with a
resolution of 100 × 100. (a): without low Mach correction; (b) AW type correction; (c) CP
type correction; (d) new low Mach correction.
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Figure 8: Velocity magnitude profile on the horizontal line passing through the center of the
vortex. Red line: AW or CP correction; blue line: new correction.

For the Problem #4, a low Mach scheme with AW or CP type correction
provides the same results since the initial acoustic impedance ratio of two dif-
ferent fluids is set to 1. A global view of the vortex at t = 0.1 is presented
in Fig. 7(b) or Fig. 7(c), we can find that the vortex is maintained. With the
velocity magnitude profile on the horizontal line passing through the center of
the vortex given in Fig. 8, we can see a more quantitative result: compared with
the new correction, the velocity field of either AW or CP type correction is no
more smooth, the vortex is distorted.

From the results of the Gresho vortex problem we conclude with a qualitative
analysis that either the AW or the CP type low Mach scheme cannot preserve the
two-phase vortex with large density ratio as a truncation error of magnitude of
O(

1
αm

) is involved. Let us mention that the results of this test case seem robust in
the sense that even if the low Mach initial condition (43) is not strictly respected,
the new low Mach succeeds in preserving the vortex with good accuracy.
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8.2. Static bubble
To indicate the influence of existing low Mach corrections on scheme tem-

poral stability with capillary effects, the ”Static bubble” test case is certainly
the first case of rudimentary simulation to implement. The simplicity of this
case of simulation makes it possible to well isolate the capillary phenomenon,
the theoretical solution being simply dictated by Laplace’s law.

Fluid 1 Fluid 2
# ρ1 π∞1 γ1 La1 ρ2 π∞2 γ2 La2 αm βm

Static
bubble

5 1 0 1.4 12000 1 0 1.4 12000 1 0.63
6 100 17 7.14 1200001 0 1.4 1200 0.01 1
7 1 300 7.14 12000 1 0 1.4 12000 1 0.025
8 100 0 7.14 1200001 1292 1.4 1200 0.01 0.01

Table 3: Numerical parameters of static bubble test problems

0 0.5 1 1.5 2
tμ/(ρ2μ2)

10−15

10−13

10−11

10−9

10−7

10−5

10−3

|u
m
ax
|(ρ

2μ
/σ
)1/

2

without  correction
AW         correction
CP          correction
New       correction

(a) Problem #5: αm = 1 βm = 0.63
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(c) Problem #7: αm = 1 βm = 0.025
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(d) Problem #8: αm = 0.01 βm = 0.01

Figure 9: Temporal evolution of dimensionless velocity fluctuations of a 2D bubble (La=12000)
at resolution of R = 12.8∆x.

A 2D bubble with a radius of R = 0.4 containing fluid 1 is placed in fluid 2,
which are both incompressible. The initial pressure into fluid 2 is p0

2 = 1. To
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satisfy the Laplace’s law, the initial pressure in fluid 1 is given by: p0
1 = p0

2+σ/R0.
The surface tension coefficient of σ is set to 0.6144, and the Laplace number is
defined as La = 2ρRσ/µ2. For problems with different densities in each phase,
we keep the same dynamic viscosity and different Laplace numbers in each fluid.
Problems #5−#8 are designed with different fluid properties (see Table 3). With
the same design as the Gresho vortex problem, Problem #5 considers two fluids
with the same EOS and initial density. Problem #6 aims at checking the ability
of low Mach correction that takes into account large density ratios. While
Problem #7 takes into account the variation of Mach number while the initial
density of each phase remains the same. Problem #8 is a more complicated case
with a large density ratio and a large Mach number variation.

The existence of discretization errors on the curvature act as an initial im-
pulse that makes the bubble oscillate. With the effect of physical viscosity, the
velocity amplitude of bubble oscillation decreases and the bubble should return
to rest. In order to test the scheme numerical stability, configurations with high
Laplace numbers should be considered, corresponding to low physical viscosity.
In the present study, the Laplace is set to around 12000. As presented in [48],
the redistancing step tends to perturb the curvature and prevents the system
from reaching an exact balance. For this test case, this step is not activated.

Numerical results for Problems #5−#8 are presented in Fig. 9. In this figure,
we can find that the numerical results of some configurations are absent. From
local zoom, we can find that these absences correspond to the divergence of the
numerical result, the scheme stability is not ensured. With results presented in
Fig. 9, we can get a global conclusion: numerical schemes without correction and
with new low Mach correction reach equilibrium and the velocity fluctuations
are reduced to machine precision. Low Mach scheme with AW or CP type
correction can not always reach steady state and maintain the scheme stable.
For configurations in which the velocity fluctuations are reduced to machine
precision, the low Mach scheme can always reduce the velocity fluctuations at
a lower rate than without correction, proving that the numerical dissipation is
clearly weakened.

For two fluids with the same EOS and initial density (Problem #5), all of
the present low Mach corrections show good behavior of recovering fluctuations
with a machine precision magnitude. But the numerical results of these low
Mach corrections are a little different as the pressure jump across the interface
leads to different sound speeds.

For Problem #6 with a large density ratio, the acoustic impedance weighted
type and the new low Mach corrections can reach low velocity fluctuations, as
they provide the same truncation error for the momentum update which is inde-
pendent of density ratio αm. While the CP type correction involves a truncation
error of magnitude O(

1
αm

), the numerical result shows an immediate growth in
velocity fluctuations. When the velocity fluctuations amplitude is reduced to
around machine precision, the low Mach scheme with AW type correction starts
to diverge. Compared to the new low Mach correction, the AW type correction
provides an extra truncation error of magnitude of O(1) on mass and energy
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update associated with u∗, showing the impact of the correction for u∗ on pre-
serving a constant thermodynamic pressure profile.

While for the Problem #7, we can observe similar results as Problem #6. At
the beginning of the simulation, the numerical scheme with CP type and new
low Mach correction can decrease velocity fluctuations. Compared to the CP
type correction, the AW type correction provides an extra error of magnitude
of O(1) related to the first term of RHS of π∗,θ,AW in (59) as presented in the
second line of (B.2), the numerical equilibrium is not observed. For the CP
type correction, the magnitude of dimensionless velocity fluctuations starts to
decrease down to 10−8 before suddenly increasing, as the necessary condition is
not satisfied according to the asymptotic analysis in (75).

As for Problem #8, both AW and CP types corrections provides the trun-
cation error of magnitude O(

1
αm

). As expected, these two low Mach corrections
cannot give satisfactory numerical results.

9. Conclusion

In this work, we studied the simulation of a compressible two-phase flows
model with sharp interface in the low Mach regime. We proposed a definition
of the low Mach regime that accounts for possible great discrepancies between
the orders of magnitude that are associated with the fluid properties of each
phase. We showed that classic low Mach fixes of the literature for Godunov-
type solvers provide accurate results on Cartesian grids far from the interface.
However, focusing on the numerical method proposed in [8], we analyzed the
behavior of the scheme in the vicinity of the interface. We found out that the
abrupt changes of the order of magnitude of the flow parameters across the
interface dramatically impact the precision of the method. Indeed, one could
see that for an initial condition that verifies the low Mach regime defined in this
work, the computed solution will rapidly stop to satisfy the low Mach regime
requirements in the vicinity of the interface. We then proposed a new numerical
solver that can cope with these important variations and that preserve low Mach
regime approximated solutions.

Numerical results were presented for the Gresho vortex test case that showed
good performance of the proposed low Mach correction. The new methods
were able to successfully capture static bubble equilibrium with a high Laplace
number.

Future investigations will focus on improving the accuracy of the method by
implementing higher-order discretization, deriving large time step stable meth-
ods by implementing an implicit update on the acoustic subsystem and enriching
the physical settings of the model by accounting for additional effects like heat
and mass transfer.
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Appendix A. Acoustic relaxation approximation

We present an approximate Riemann solution to solve the acoustic subsys-
tem within the Eulerian framework. The acoustic subsystem (6) is a quasilinear
system. In order to derive the resolution of this system, we will perform several
approximations.

We notice that for a smooth solution (6), the pressure verifies: ∂t p+ (ρc)2τ∇·
u = 0. We thus perform a Suliciu-type relaxation adapted to vacuum [34] of (6)
by introducing a surrogate pressure π and considering following relaxed system
by using non-conservative variables with τ = 1/ρ:

∂tτ − τ∇ · u = 0,

∂tu + τ∇π = τ
(
σκ

|∇ϕ|

)
δ(ϕ)∇ϕ,

∂tE + τ∇ · (πu) = τ
(
σκ

|∇ϕ|

)
δ(ϕ)∇ϕ · u,

∂tπ + a2τ∇ · u = χ(p − π),
∂ta = 0,
∂tϕ = 0.

(A.1)

In regime χ → ∞, we formally recover (6). In our numerical solver context, we
classically mimic χ→ ∞ regime by enforcing at each time step πn

i = pEOS (τn
i , e

n
i )

(given by (1)) and then solving (A.1) with χ = 0.
Assuming a one-dimensional problem in x-direction, we have ρ(x, t)∂t ≈

ρ(x, tn)∂t, then if we define a mass variable m by dm(x)
dx

= ρ(x, tn), we obtain
up to a slight abuse of notation, a system that is written in vector form:
∂tW + A∇mW = 0, where

W =



τ
u
π
E
a
v
w
ϕ


, A =



0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 −
(
σκ

|∇ϕ|

)
δ(ϕ)

0 a2 0 0 0 0 0 0

0 π u 0 0 0 0 −
(
σκ

|∇ϕ|

)
δ(ϕ)u

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

The matrix A is diagonalizable

det(A − λId) = −λ6(λ2 − a2),

and its eigenvalues are: (−a, 0, 0, 0, 0, 0, 0,+a). Fields involved in this system are
all linearly degenerated. Considering a discontinuity that propagates at celerity
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D, let ⟦b⟧ be the jump of the variable b across the interface. Following the
Rankine-Hugoniot relationships we get the jump conditions:

−D⟦τ⟧ − ⟦u⟧ = 0,
−D⟦u⟧ + ⟦π⟧ − q⟦ϕ⟧ = 0,

−D⟦π⟧ + a2⟦u⟧ = 0,
−D⟦E⟧ + ⟦πu⟧ − q′⟦ϕ⟧ = 0,

−D⟦a⟧ = 0,
−D⟦v⟧ = 0,
−D⟦w⟧ = 0,
−D⟦ϕ⟧ = 0,

(A.2a)
(A.2b)
(A.2c)
(A.2d)
(A.2e)
(A.2f)
(A.2g)
(A.2h)

with D taking the same value as eigenvalues of matrix A. The parameters q
and q′ are weight associated with the Dirac masses M and Mu, their definition
will be given latter. D = 0 yields that u is an independent Riemann invariant
for the wave λ = 0 and brings in the jump conditions ⟦π⟧ = q⟦ϕ⟧ and ⟦a⟧ ∈ R
in (A.2c) and (A.2e). Thus a is not required to be continuous across the wave
λ = 0, and the jump condition on π should conform the Laplace equation (3).

Appendix B. Behavior of the pressure near the interface with AW type correc-
tion

Let us consider π̃∗,θ,AW
jk the non-dimensional form of corrected flux defined by

(60), for k ∈ N−( j) , ∅ we have that

⌊
π̃∗,θ,AW

jk

⌋
1
=

 ãkπ̃
n
j + ã j

(
π̃n

k +
[
H(ϕn

k) − H(ϕn
j )
]
σ̃κ̃ jk

)
ã j + ãk


1

+θ jk M1

⌊
ã jãk

ã j + ãk
n jk(ũn

k − ũn
j )
⌋

1
.

(B.1)

By (65), (66), (67), (69), (70) and (59), tedious calculations show that

⌊
π̃∗,θ,AW

jk

⌋
1
=
⌊
p̃(x̃ jk, t̃n)

⌋
1
+ O(M2

1∆x̃2) + θ jk M1

⌊
ã j

⌋
1
⌊ãk⌋2α2β2⌊

ã j

⌋
1
+ ⌊ãk⌋2α2β2

A(x̃ j, x̃k, t̃n,n jk)|∆x̃k j|

−

 ⌊ãk⌋2α2β2⌊
ã j

⌋
1
+ ⌊ãk⌋2α2β2

B1(x̃ j, x̃ jk, t̃n)
|∆x̃k j|

2
−

⌊
ã j

⌋
1
α2⌊

ã j

⌋
1
+ ⌊ãk⌋2α2β2

B2(x̃ jk, x̃k, t̃n)
|∆x̃k j|

2

M2
1 .

(B.2)

Then we can see that when α2 becomes large, it may produce important errors
for the estimate of the pressure gradient in Ω j. Indeed, let us consider⌊

π̃∗,θ,AW
jk − π j

⌋
1

∆x̃
=

⌊
p̃(x̃ jk) − p̃(x̃ j)

⌋
1

∆x̃
+ O(

α2

1 + α2β2
M2

1) + O(M2
1) + O(θ jk M1).
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Using (66), we get⌊
π̃∗,θ,AW

jk − π j

⌋
1

∆x̃
= O(

α2

1 + α2β2
M2

1) + O(M2
1) + O(θ jk M1). (B.3)

The error term of magnitude O(
α2

1 + α2β2
) is issued from the first part of RHS

of π̃∗,θ,AW
jk in (59) and it may become significantly large. For example when

α2β2 ≤ O(1) then the error becomes of magnitude O(α2).

Appendix C. Subcharacteristic conditions for density positivity

We follow the work presented in [34]. With intermediate densities presented
in (89), the acoustic impedances al and ar should satisfy the following conditions:

∀ρ ∈ [ρl, ρ
∗,θ,N
l ], ρ2 p′(ρ) ≤ a2

l ,

∀ρ ∈ [ρr, ρ
∗,θ,N
r ], ρ2 p′(ρ) ≤ a2

r ,
(C.1)

then the approximate Riemann solver could preserve positiveness of densities
ρl, ρr, ρ

∗,θ,N
l , ρ∗,θ,Nr . With the second law of thermodynamics, we have

Tds = cpdT − τdp, (C.2)

where s, cp and τ are the entropy, specific heat capacity at constant pressure
and specific volume respectively. According to the equation of state, cp can be
expressed as:

cp =
γ

γ − 1
p + π∞

ρT
. (C.3)

Combining (C.2) and (C.3), we can obtain that:

∆s =
cp

γ
ln

p + π∞

p0 + π∞
+ cp ln

(
ρ0

ρ

)
. (C.4)

For a polytropic fluid, we have:

p + π∞ = Eργ, (C.5)

where E = p0+π
∞

ρ
γ
0

. With (C.5), we can make the following assumptions:

∀ρ > 0,
d

dρ

(
ρ
√

p′(ρ)
)
> 0,

d
dρ

(ρ
√

p′(ρ)) ≤ Υ
√

p′(ρ), (C.6)

with Υ = 1 + γ
2

. An inverse function ζ can be defined that:

ρ
√

p′(ρ) = a⇔ ρ = ζ(a). (C.7)
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With assumptions in (C.6), we can derive the following relationship:

ζ′(a) ≥ ζ(a)/(aΥ). (C.8)

Writing that d
da

(ζ(a)a−1/Υ) ≥ 0, we get that

∀υ > 1, ζ(υa) ≥ υ1/Υζ(a). (C.9)

According to the monotonicity of ζ and (89), the conditions (C.1) can be ex-
pressed as:

ρl
√

p′(ρl) ≤ al,
1
ρl
+

al+ar
2 (ur − ul) + πl − πr − σκ[H(ϕr) − H(ϕl)]

al(al + ar)
≥ 1
ζ(al)

;

ρr
√

p′(ρr) ≤ ar,
1
ρr
+

al+ar
2 (ur − ul) + πr − πl + σκ[H(ϕr) − H(ϕl)]

ar(al + ar)
≥ 1
ζ(ar)

.

(C.10)

These conditions (C.10) include the positivity of ρ∗,θ,Nl and ρ∗,θ,Nr and can be
satisfied with the following acoustic impedances:

if πr−πl+σκ[H(ϕr)−H(ϕl)] ≥ 0,


al = ρlcl +

γl + 1
2
ρl

{
2
πr − πl + σκ[H(ϕr) − H(ϕl)]

ρrcr + ρlcl
+ ul − ur

}
+

,

ar = ρrcr +
γr + 1

2
ρr

{
2
πl − πr − σκ[H(ϕr) − H(ϕl)]

al + ρrcr
+ ul − ur

}
+

,

(C.11)

if πr−πl+σκ[H(ϕr)−H(ϕl)] ≤ 0,


ar = ρrcr +

γr + 1
2
ρr

{
2
πl − πr − σκ[H(ϕr)−,H(ϕl)]

clρl + crρr
+ ul − ur

}
+

al = ρlcl +
γl + 1

2
ρl

{
2
πr − πl + σκ[H(ϕr) − H(ϕl)]

ar + ρlcl
+ ul − ur

}
+

.

(C.12)

Proof:
Here we give the proof for the constraint on acoustic impedance al. The

definition of al always satisfies the first condition at the first line of (C.10). To
derive required constraint on the second condition, we define a variable X

X =
2(πr − πl − σκ

[
H(ϕl) − H(ϕr)

]
)

ar + al
+ ul − ur. (C.13)

If X ≤ 0, the second condition at the first line of (C.10) is always satisfied. As-
sume that X ≥ 0, then al can be rewritten as: al = ρl(

√
p′(ρl)+ΥX). Multiplying

by ρl, the second condition at first line of (C.10) reads:

1 − 1
2

X√
p′(ρ) + ΥX

≥ ρl

ζ(al)
. (C.14)
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By defining a variable ϖ that:

ϖ =

√
p′(ρl)√

p′(ρl) + ΥX
, 1 −ϖ = ΥX√

p′(ρl) + ΥX
, (C.15)

with (C.9), we can always have:

1− 1
2

X√
p′(ρl) + ΥX

− ρl

ζ(al)
≥ 1− 1 −ϖ

Υ
− ρl

ζ(ρl
√

p′(ρl)/ϖ)
≥ 1− 1 −ϖ

Υ
−ϖ(1/Υ) ≥ 0,

(C.16)

where 0 < ϖ ≤ 1 and Υ ≥ 1. Thus the definition of al can always satisfy (C.14),
the positivity of ρ∗,θ,Nl is then guaranteed. With the same analysis, we can justify
that constraints on ar presented in (C.11) and (C.12) can preserve the positivity
of ρ∗,θ,Nr .
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