
HAL Id: hal-03367714
https://hal.science/hal-03367714v1

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On GNN explanability with activation patterns
Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline

Robardet

To cite this version:
Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline Robardet. On GNN
explanability with activation patterns. Data Mining and Knowledge Discovery, 2024, 38 (5), pp.3227-
3261. �10.1007/S10618-022-00870-Z�. �hal-03367714�

https://hal.science/hal-03367714v1
https://hal.archives-ouvertes.fr

On GNN explanability with activation patterns

Luca Veyrin-Forrer1, Ataollah Kamal1, Stefan Duffner1,
Marc Plantevit2 and Celine Robardet1

1 INSA Lyon, CNRS, LIRIS UMR5205
2 Université Lyon1, CNRS, LIRIS UMR5205

Abstract

GNNs are powerful models based on node representation learning that
perform particularly well in many machine learning problems related to
graphs. The major obstacle to the deployment of GNNs is mostly a prob-
lem of societal acceptability and trustworthiness, properties which require
making explicit the internal functioning of such models. Here, we pro-
pose to mine activation patterns in the hidden layers to understand how
the GNNs perceive the world. The problem is not to discover activation
patterns that are individually highly discriminating for an output of the
model. Instead, the challenge is to provide a small set of patterns that
cover all input graphs. To this end, we introduce the subjective activa-
tion pattern domain. We define an effective and principled algorithm to
enumerate patterns of activations in each hidden layer. The proposed
approach for quantifying the interest of these patterns is rooted in in-
formation theory and is able to account for background knowledge on
the input graph data. The activation patterns can then be redescribed
thanks to pattern languages involving interpretable features. We show
that the activation patterns provide insights on the characteristics used
by the GNN to classify the graphs. Especially, this allows to identify
the hidden features built by the GNN through its different layers. Also,
these patterns can subsequently be used for explaining GNN decisions.
Experiments on both synthetic and real-life datasets show highly compet-
itive performance, with up to 200% improvement in fidelity on explaining
graph classification over the SOTA methods.

1 Introduction

Graphs are a powerful and widespread data structure used to represent rela-
tional data. One of their specificity is that their underlying structure is not
in a Euclidean space and has not a grid-like structure (Bronstein et al., 2017),
characteristics facilitating the direct use of generic machine learning techniques.
Indeed, each node of a graph is characterized by its features, its neighboring
nodes, and recursively their properties. Such intrinsically discrete information
cannot be easily used by standard machine learning methods to either predict

1

a label associated with the graph or a label associated with each node of the
graph. To overcome this difficulty, Graph Neural Networks (GNNs) learn em-
bedding vectors hv ∈ RK to represent each node v as continuous vectors and
ease comparison between similar nodes. GNN methods (Defferrard et al., 2016;
Wu et al., 2021) employ a message propagation strategy that recursively ag-
gregates information from nodes to neighboring nodes. This method produces
vector representations of ego-networks from each node – with radii equal to
the recursion index – in such a way that the classification task, based on these
vectors, is optimized.

Although GNNs have achieved outstanding performance in many tasks, a
major drawback is their lack of interpretability. The last five years have wit-
nessed a huge growth in the definition of techniques for explaining deep neural
networks (Burkart and Huber, 2021; Molnar, 2020), particularly for image and
text data. However, the explainability of GNNs has been much less explored.
Two types of approaches have recently been proposed and have gained certain
visibility. Methods based on perturbation (Luo et al., 2020; Ying et al., 2019)
aim to learn a mask seen as an explanation of the model decision for a graph in-
stance. They obtain the best performance for instance explanation. It appears
that such masks can lead to unreliable explanations, and most importantly, can
lead to misleading interpretations for the end-user. One can be tempted to in-
terpret all the nodes or features of the mask as responsible for the prediction
leading to wrong assumptions. An example of misleading interpretations is when
a node feature is perceived as important for the GNN prediction, whereas there
is no difference between its distribution within and outside the mask. XGNN
(Yuan et al., 2020a) aims at providing model-level explanations by generating a
graph pattern that maximizes a GNN output label. Yet, this method assumes
that there is a single pattern for each target which is not the case in practice
when dealing with complex phenomena. Moreover, these two types of methods
query the GNN with perturbed input graphs to evaluate their impact on the
GNN decision and build their masks from the model output. They do not study
the internal mechanisms of the GNNs, especially the different embedding spaces
produced by the graph convolutions, while we are convinced that the study of
GNN activation vectors may provide new insights on the information used by
GNN to achieve the classification of graphs.

In this paper, we consider GNNs for graph classification. We introduce a new
method, called INSIDE-GNN, that aims at discovering activation patterns in each
hidden layer of the GNN. An activation pattern captures a specific configuration
in the embedding space of a given layer that is considered important in the GNN
decision, i.e., discriminant for an output label. The problem is therefore not only
to discover highly discriminant activation sets but also to provide a pattern set
that covers all the input graphs. To this end, we define a measure, rooted in
the FORSIED framework (De Bie, 2011) to quantify the quality of a pattern
with respect to specified background knowledge available about the embedding
space. This background knowledge is iteratively updated with the new informa-
tion acquired during the mining process, which allows INSIDE-GNN to identify a
set of non-redundant activation patterns for each hidden layer. The activation

2

pattern set can then support instance-level explanations as well as providing
insights about the hidden features captured and exploited by the GNN. Fig. 1

G
N

N

Model Output

ReLU

Input
Graphs

…

…

…

ReLU

ReLU

…

GID NID Activations layer 1 Output
…g1

g2

n1n2
nm

… …

… …
…
… +

-n1

…
…

…… …

GID NID Activations layer 2 Output
…g1

g2

n1n2
nm

… …

… …
…
… +

-n1

…

…
…… …

…

Activation
Patterns

Background
Knowledge

3

4

5

1

2

6

7

Figure 1: Overview INSIDE-GNN: For each layer (1), a background model captures
the activation distribution. (2) It is used to assess the interest of activation
patterns (3). The most relevant pattern is used to update the background
knowledge. It is then added to the pattern set (5). Steps (2-5) are repeated. The
activation patterns support instance level explanations (6) or allow to provide
insights on the model (7).

illustrates the main steps of the proposed method. From a trained GNN model
and a set of graphs (ideally following the same distribution as the training set),
(1) we retrieve, for each hidden layer, the embedding of the graph nodes as well
as the model decision. (2) INSIDE-GNN derives the background model that repre-
sents the probability of each embedding component to be activated for a node.
(3) This model is used to discover the most informative activation pattern. (4)
The background model is updated in order to consider the latter discovered
patterns that are added to the pattern set (5). Steps (2-5) are repeated until
no more informatives patterns are obtained or early termination conditions are
reached. (6) The activation pattern set is then used to provide instance-level
explanations. To this end, several mask strategies involving nodes that sup-
port activation patterns are devised. (7) For each activation pattern, we use
exploratory analysis techniques (e.g., subgroup discovery on graph proposition-

3

alization, subgraph mining) to characterize the nodes supporting the patterns
and provide interpretable insights on what the GNN really captures.

Our main contributions are as follows. After discussing the most important
related work in Section 2 and introducing the novel problem of mining activa-
tion pattern sets in Section 3, we devise a branch-and-bound algorithm that
exploits upper-bound-based pruning properties to discover such patterns. We
explain how we characterize the activation patterns with graph properties in
Section 4. We report an empirical evaluation in Section 5 which studies the
performance and the potential of the proposed approach for providing instance-
level explanations or insights about the model. INSIDE-GNN is compared against
SOTA explanation methods and outperforms them by up to 200%. We also
study the characterization of activation patterns thanks to interpretable pat-
tern languages. We demonstrate that this allows to obtain good summaries of
the hidden features captured by the GNN. Based on this, we eventually compare
our approach against a model-level explanation method.

2 Related work

GNNs are attracting widespread interest due to their performance in several
tasks as node classification, link prediction, and graph classification (Wu et al.,
2020). Numerous sophisticated techniques allow to improve the performance
of such models as graph convolution (Kipf and Welling, 2017), graph attention
(Velickovic et al., 2018), and graph pooling (Wang and Ji, 2020). However, few
researchers have addressed the problem of the GNN explainability compared
to image and text domains where a plethora of methods have been proposed
(Burkart and Huber, 2021; Molnar, 2020). As stated in (Yuan et al., 2020b),
existing methods for image classification models explanation cannot be directly
applied to not grid-like data: the ones based on the computation of abstract im-
ages via back-propagation (Simonyan et al., 2014) would not provide meaningful
results on discrete adjacency matrices; those that learn soft masks to capture
important image regions (Olah et al., 2017) will destroy the discreteness prop-
erty when applied to a graph.

Nevertheless, there have been some attempts to propose methods for ex-
plaining GNNs in the last three years. Given an input graph, the instance-level
methods aim at providing input-dependent explanations by identifying the im-
portant input features on which the model builds its prediction. One can identify
four different families of methods. (1) The gradient/feature-based methods –
widely applied in image and text data – use the gradients or hidden feature
map values to compute the importance of the input features (Baldassarre and
Azizpour, 2019; Pope et al., 2019). (2) The perturbation-based methods aim at
learning a graph mask by investigating the prediction changes when perturbing
the input graphs. GNNExplainer (Ying et al., 2019) is the seminal perturbation
based method for GNNs. It learns a soft mask by maximizing the mutual in-
formation between the original prediction and the predictions of the perturbed
graphs. Similarly, PGExplainer (Luo et al., 2020) uses a generative probabilistic

4

model to learn succinct underlying structures from the input graph data as ex-
planations. (3) The surrogate methods explain an input graph by sampling its
neighborhood and learning an interpretable model. GrapheLime (Huang et al.,
2020) thus extends the LIME algorithm (Ribeiro et al., 2016) to GNN in the
context of node classification. It uses a Hilbert-Schmidt Independence Criterion
Lasso as a surrogate model. However, it does not take into account the graph
structure and cannot be applied to graph classification models. PGM-Explainer
(Vu and Thai, 2020) builds a probabilistic graphical model for explaining node
or graph classification models. Yet, it does not allow to take into consideration
edges in its explanations. These surrogate models can be misleading because the
user tends to generalize beyond its neighbourhood an explanation related to a
local model. Furthermore, the identification of relevant neighborhood in graphs
remains challenging. Finally, (4) the decomposition-based methods (Pope et al.,
2019; Schnake et al., 2020) start by decomposing the prediction score to the neu-
rons in the last hidden layer. Then, they back-propagate these scores layer by
layer until reaching the input space. XGNN (Yuan et al., 2020a) proposes to
provide a model-Level explanation of GNNs by training a graph generator so
that the generated graph patterns maximize the prediction of the model for a
given label. However, it relies on a strong assumption: each label is related
to only one graph generator which is not realistic when considering complex
phenomena. This is further discussed in Section 5 based on some empirical
evidence.

GNNExplainer, PGExplainer, and PGM-Explainer are the methods that re-
port the best performance on many datasets. We will compare our contribution
against these methods in the experimental study. Nevertheless, these methods
have some flaws when used in practice. Discretizing the soft mask (i.e., select-
ing the most important edges) requires choosing a parameter k which is not
trivial to set. Besides, based on such a mask, the explanation may be mislead-
ing because the user is tempted to interpret what is retained in the mask as
responsible for the decision, and this, even if a node label appears both inside
and outside the mask.

Our method aims to mine some activation patterns in the hidden layers of
GNNs. There exists in the literature some rule extraction methods for DNNs
(Tran and d’Avila Garcez, 2018), but not for GNNs. For example, (Tran and
d’Avila Garcez, 2018) mine association rules from Deep Belief Networks. Still,
their approach suffers from an explosion of the number of patterns, which makes
the results of frequency-based rule mining mostly unusable in practice. Also,
with its focus on DBNs, the method is not directly applicable to standard GNNs.

3 INSIDE-GNN method

3.1 Graph Neural Networks

We consider a set of graphs G that are classified in two categories {c0, c1} by a
GNN: GNN : G→ {c0, c1}. The GNN takes decisions at the level of each graph

5

on the basis of vectors computed at the level of the nodes. For each node, ego-
graphs of increasing radii are embedded in the Euclidean space in such a way
that similar ego-graphs are associated to similar vectors. More precisely, we
consider Graph Convolutional Networks (GCN) (Kipf and Welling, 2017) that
compute vectors h`

v associated to the ego-graph centered at vertex v with radius
`, recursively by the following formula:

h`
v = ReLU

W` ·
∑

w∈N (v)

ew,v√
dvdw

h`−1v

 ,

dv =
∑

w∈N (v)

ev,w.

h0
v is the initial feature vector for node v. N (v) is the set of neighboring nodes

of v including v, ev,w is the weight of the edge between nodes v and w, ReLU is
the rectified linear activation function, and W` are the parameters learnt during
the training phase of the model. Each vector is of size K and ` varies from 0 up
to L (the maximum number of layers). Thus, K and L are two hyperparameters
of the GNN which in our study are fixed as we consider already trained models.

For a trained GNN, the vectors h`
v capture the key characteristics of the

corresponding graphs on which the classification decision is made. When one of
the vector components is of high value, it plays a role in the decision process.
More precisely, activated components of the vectors – those for which (h`

v)k > 0
– are combined by the neural network in a path leading to the decision. For
a given layer `, the activated components of h`

v correspond to the part of the
ego-graph centered at v and of radius ` that trigger the decision. Therefore, we
propose in the following to identify the sets of components that are activated in
a discriminatory manner with respect to the decision taken by the GNN.

3.2 Subjective subgroup sets of co-activated vector com-
ponents

We propose to adopt a subgroup discovery approach to identify sets of vector
components that are mostly activated in the graphs having the same GNN
decision. We say that a pattern A` ⊆ A` = {(h`)k, k ∈ 1 . . .K} is co-activated
for a graph gi = (Vi, Ei) ∈ G if it contains at least one node for which the pattern
components are co-activated, that is to say iff ∃v ∈ Vi such that ∀(h`)k ∈ A`,
(h`

v)k > 0. The graphs for which A` is co-activated form the support of A`:

supp(A`,G) = {gi = (Vi,Ei) ∈ G | ∃v ∈ Vi such that ∀(h`)k ∈ A`, (h`
v)k > 0} .

Hence, activated patterns are more interesting if their supports are largely ho-
mogeneous in term of GNN decisions, i.e. the graphs of the support are mainly
classified either in class c0 or in class c1. We propose to measure the interest-
ingness of these patterns in a subjective manner. It makes possible to take into
account a priori knowledge on activation components, but also to perform an

6

iterative extraction of the patterns and thus limiting the redundancy between
them. These notions are explained below.

3.2.1 Subjective activation patterns

We build our interestingness measure on the FORSIED framework (De Bie,
2011) that proposes to measure the subjective interest of a pattern using in-
formation theory to quantify both its informativeness and its complexity. In-
tuitively, the information content (IC) of an activation pattern should increase
when its components are unusually activated for the nodes in the graphs of its
support (it is unlikely that these components are activated when considering a
random node, while this probability increases when considering graphs support-
ing the pattern). Thus, if we are able to estimate the probability P ((h`)k, v)
that the component (h`)k is activated for a node v, we can evaluate the interest
of a pattern by the length of the code for communicating it to the user using the
sum of − log(P ((h`)k, v)) over all (h`)k in the pattern and v, an activated node
in its support graphs. The more probable the pattern – and therefore the less
interesting – the shorter the code. As there may exist several nodes activated in
a single graph, we choose the one that maximizes the negative log probability
of the pattern with respect to the background distribution P :

IC(A`,G) =
∑

gi=(Vi,Ei)∈supp(A`,G)

max
v∈Vi

−
∑

(h`)k∈A`

log(P ((h`)k, v))

To compute the initial background distribution P , we assume that the prior
knowledge the user has is: the frequency of activation of each component on
the nodes of the graphs P ((h`)k, .); and for each vertex, the average number of
activated components P (., v). P ((h`)k, v) is then coerced by two constraints

1

|
⋃

i Vi|
∑

v∈∪iVi

P ((h`)k, v) = P ((h`)k, .) ,

1

|K|

K∑
k=1

P ((h`)k, v) = P (., v) .

However, these constraints do not completely specify the probability matrix.
Among all the probability distributions satisfying these constraints, we choose
the one with the maximum entropy. Indeed, any distribution P with an en-
tropy lower than the maximum entropy distribution effectively injects additional
knowledge, reducing uncertainty unduly. The explicit mathematical MaxEnt
model solution can be found in (De Bie, 2009).

A pattern with a large IC is more informative, but it may be more difficult for
the user to assimilate it, especially when its description is complex. To avoid
this drawback, the pattern IC is contrasted by its description length which
measures the complexity of communicating the pattern to the user. The higher
the number of components in A`, the more difficult to communicate it to the
user. Therefore, we propose to measure the description length of an activation

7

Algorithm 1: INSIDE-GNN(D, s, nbPatt)

Input: D the activation matrix, s is the sign to specify the type of subgroup
searched, nbPatt the number of patterns.

Output: output, the up to nbPatt best activation subgroups w.r.t.
SI SG(A`, s).

1 output← ∅, minSI←∞
2 Stack ← [|A`|], A← ∅, A.Pot← A`, Stack[0]← A
3 P ← Compute Model(D)
4 while ((|output| < nbPatt) and (minSI > 0)) do
5 A,minSI← INSIDE-SI(D, Stack, P , s, minSI, 0)
6 output← output ∪A
7 Update Model(P,A)

pattern by DL(A`) = α(|A`|)+β with α the cost for the user to assimilate each
component and β a fixed cost for the pattern. We set β = 1 and α = 0.6, as the
constant parameter β does not influence the relative ranking of the patterns,
and with a value of 1, it ensures that the DL value is greater than 1. With
α = 0.6, we express a slight preference toward shorter patterns. Hence, the
subjective interestingness measure of an activation pattern is defined as the
trade-off between IC and DL:

SI(A`,G) =
IC(A`,G)

DL(A`)
.

3.2.2 Subjective activation subgroups

The subjective interestingness measure can be adapted to evaluate the quality of
a subgroup, that is to say the fact that a pattern is specific to a GNN decision.
If we denote by G0 (resp. G1) the graphs gi ∈ G such that GNN(gi) = c0

(resp. GNN(gi) = c1), the subjective interest of a subgroup can be eval-
uated by SI SG(A`, 0) = ω0SI(A`,G0) − ω1SI(A`,G1). Similarly, we have
SI SG(A`, 1) = ω1SI(A`,G1)− ω0SI(A`,G0). The weights ω0 and ω1 are used
to counterbalance the measure in unbalanced decision problems. The rational

is to reduce the SI values of the majority class. We set ω0 = max(1, |G
1|
|G0|) and

ω1 = max(1, |G
0|
|G1|).

3.2.3 Iterative extraction of subjective activation subgroups

We propose to compute the subjective activation subgroups with an enumerate-
and-rank approach. It consists to compute the pattern A` with the largest
SI SG(A`, 1) value (resp. SI SG(A`, 0)) and to integrate it in the background
distribution P to take into account this newly learnt piece of information. Algo-
rithm 1 sketches the method. First, it computes (line 3) the background model
P from the activation matrix D. Then, in a loop (lines 4 to 7), it computes
iteratively the subgroup A having the best SI SG(A`, s) value (with s the sign

8

of the subgroup). Then, the best subgroup is used to update the model P (line
7). Indeed, once the pattern A is known, its subjective interest falls down to 0.
This consists in setting the corresponding probabilities to 1.

Algorithm 2 presents INSIDE-SI that computes the best subgroup given the
background distribution P . It considers a pattern A stored in the stack at depth
depth. A has 5 attributes: A.Pot, the components that can be further added to
A during the enumeration process, A.Gs (resp. A.G1−s) the set of graphs from
Gs (resp. G1−s) that support A, and A.TGs (resp. A.TG1−s) the set of graphs
that are supporting A and all its descendants (there is a node in these graphs
that activates all the components of A∪A.Pot). Then, it computes the closure
of A using the function φ. It consists in adding components to A as long as the
set A.Gs stays unchanged. Furthermore, if a component has been removed from
A on line 12 but can be added later to A, A is not closed and the recursion stops.
If a graph of A.Gs supports the pattern A ∪ A.Pot, then it belongs to A.TGs.
A second criterion based on an upper bound UB SI makes the recursion stop
if its value is less that the one of the current best found subgroup. It relies on
the following property.

Property 1 ∀B such that A ⊆ B, we have SI SG(B, s) ≤ UB SI(A,P, s)
with

UB SI(A,P, s) = ws

∑
g∈A.Gs maxv∈Vg

∑
h∈A∪A.Pot P (h, v)

α(|A|) + β

−w1−s

∑
g∈A.TG1−s maxv∈Vg

∑
h∈A P (h, v)

α(|A ∪A.Pot|) + β

Proof 1 To upper bound the measure SI SG(B, s), we follow the strategy ex-
plained in (Cerf et al., 2009). Let

SI SG(B, s) = ws
X

Y1
− w1−s

Z

Y2

with

• X = IC(B,Gs) =
∑

gi=(Vi,Ei)∈supp(B,Gs) maxv∈Vi
−
∑

h∈B log(P (h, v));

• Y1 = Y2 = DL(B) = α(|B|) + β;

• Z = IC(B,G1−s) =
∑

gi=(Vi,Ei)∈supp(B,G1−s) maxv∈Vi
−
∑

h∈B log(P (h, v)).

Similarly, we denote the upper bound function by

UB SG(B, s) = ws
γ

δ
− w1−s

ε

η
.

We have B ⊆ A ∪A.Pot. Therefore, in the worst case, we have:

• X that is computed over A∪A.Pot, and all the graphs from Gs that support
A, also support A∪A.Pot and γ =

∑
g∈A.Gs maxv∈Vg

∑
h∈A∪A.Pot P (h, v);

9

• Y1 that, in the worst case, has the value α(|A|) + β, denoted δ (more
elements in B will decrease the fraction value);

• Z that, in the worst case, is computed over A, and on the graphs from Gs
that support A and all its descendants (A.TG1−s) ε =

∑
g∈A.TG1−s maxv∈Vg

∑
h∈A P (h, v);

• Y2 that, in the worst case, has the value α(|A ∪ A.Pot|) + β, denoted η
(less elements in B will decrease the value of the function);

It results in the upper bound definition.

If there are no more component to enumerate, and if the SI SG value of the
current subgroup is better than the one already found, Best is updated as well
as minSI. Otherwise, the enumeration continues by either adding a component
from A.Pot to A (line 10) or not (line 12).

Algorithm 2: INSIDE-SI(D, Stack, P , s, minSI, depth)

Input: D the activation matrix, Stack a stack of recursively enumerated
patterns at depth depth, P the background distribution, s the sign of
the measure, minSI a dynamic threshold on SI SG(A`, s).

Output: Best, the best activation subgroup w.r.t. SI SG(A`, s).
1 A← Stack[depth]
2 if ((φ(D, A) = False) or (UB SI(A,P, s) < minSI) then
3 return
4 if (A.Pot = ∅) then
5 if (SI SG(A, s) > SI SG(Best, s)) then
6 Best← A, minSI← SI SG(Best, s)

7 else
8 a← A.Pot.pop()
9 Stack[depth+ 1]← A ∪ {a}

10 INSIDE-SI(D, Stack, P , s, minSI, depth+1)
11 Stack[depth+ 1]← A \ {a}
12 INSIDE-SI(D, Stack, P , s, minSI, depth+1)

13 return Best, minSI

4 Activation pattern characterisation

Once the activation patterns are found, we aim to describe them in an intelligible
and accurate way. We believe that each activation pattern can be linked to
hidden features of the graphs, that are captured by the model as being related
to the class to be predicted. The objective here is to make these features explicit.
For this, we seek to characterize the nodes that support the activation pattern,
and more precisely to describe the singular elements of their neighborhoods.
Many pattern domains can be used to that end. In the following, we consider
two of them: one based on numerical descriptions and the other one based on
common subgraphs. In order to characterize the subgraphs centered on the

10

nodes of the activation pattern support (called ego-graphs) in a discriminating
way compared to the other subgraphs, we adopt an approach based on subgroup
discovery.

4.1 Numerical subgroups

In this approach, we propose to describe each node that supports a given activa-
tion pattern by some topological properties1. We choose to consider its degree,
its betweenness centrality value, its clustering-coefficient measure, and the num-
ber of triangles it is involved in, as characteristic features. These properties can
be extended to the whole ego-network by aggregating the values of the neigh-
bors. We consider two aggregation functions: the sum and the mean. Thanks
to these properties, we make a propositionalization of the nodes of the graphs
and we consider as target value the fact that the node belongs to the support
of the activation pattern (labeled as a positive example) or not (labeled as a
negative example). To identify the specific descriptions of the support nodes,
we propose to use a subgroup discovery method in numerical data. It makes
it possible to find restrictions on numerical attributes (less or greater than a
numerical value) that characterize the presence of a node within the support of
the activation pattern.

4.2 Graph subgroups

Another approach consists to characterize activation patterns by subgraphs that
are common among positive examples in contrast to the negative ones. To this
end, we consider as positive examples the ego-networks (with a radius equal to
the layer) of nodes that support the activation pattern of interest. By taking
the radius into account, we are not going beyond what the model can actually
capture at this layer. The negative examples are the graphs in G for which none
of their vertices support the activation pattern.

4.3 Quality measure and algorithms

As for the identification of activation patterns, we could have used subjective
interestingness measure to characterize the supporting ego-graphs of the activa-
tion patterns. However, we opt for a more usual measure, the Weighted Relative
Accuracy (Lavrač et al., 1999):

WRAcc(P, c+) =
supp(P,D)

|D|

(
supp(P,D+)

supp(P,D)
− |D

+|
|D|

)
,

in order to be able to use off-the-shelf algorithms to discover the best subgroups.
For the numerical subgroups, we use Pysubgroup library (Lemmerich and

Becker, 2018). For graph subgroup dicovery, we integrate the WRAcc measure
into the GSPAN algorithm (Yan and Han, 2002). As WRAcc measure is not

1These attributes are computed with Networkx Python Library https://networkx.org/.

11

https://networkx.org/

anti-monotone, we use the following upper-bound instead of the WRAcc for
pruning:

UB(P, c+) =
supp(P,D)

|D|

(
1− max (min sup, |D+|)

|D|

)
If min sup < |D+|, then we have UB(P, c+) = supp(P,D)

|D|

(
1− |D

+|
|D|

)
. Since

supp(P,D+)
supp(P,D) ≤ 1, WRAcc(P, c+) ≤ UB(P, c+). In the other case, we have:

supp(P,D+)

supp(P,D)
− |D

+|
D
≤ supp(P,D)

supp(P,D)
− min sup

|D|
⇔

min sup

|D|
− |D

+|
|D|

≤ supp(P,D)

supp(P,D)
− supp(P,D+)

supp(P,D)
⇔

1

|D|
(min sup− |D+|) ≤ 1

supp(P,D)
(supp(P,D)− supp(P,D+))

The last inequality holds since 1
|D| ≤

1
supp(P,D) , min sup ≤ supp(P,D), and

finally |D+| ≥ supp(P,D+).
Since UB is not dependent to the supp(P,D+), when |D+| is much lower

than the |D|, this upper bound is not tight. We can use another upper bound
which is dependent to the |D+|. Let us call this upper bound UB2:

UB2(P, c+) =
supp(P,D+)

|D|
− min sup

|D|
× |D

+|
|D|

Since except supp(P,D+) everything is constant, and supp(P,D+) is anti-monotone,
UB2 is anti-monotone too. To show that UB2 is an upper bound for WRAcc,

note that min sup
|D| × |D

+|
|D| ≤

supp(P,D)
|D| × |D

+|
|D| and the first terms of WRAcc and

UB2 are equal. In our algorithm we use UB3(P, c+) = min{UB2(P, c+), UB(P, c+)}
as upper bound for the WRAcc.

5 Experimental study

In this section, we evaluate INSIDE-GNN through several experiments. We first
describe synthetic and real-world datasets and the experimental setup. Then
we present a quantitative study of the patterns provided by INSIDE-GNN. Next,
we show the experimental results on explanations of graph classification against
several SOTA methods. Finally, we report results on the characterization of
activation patterns by human understandable descriptions of what GNN models
capture. INSIDE-GNN has been implemented in Python and the experiments have
been performed on a machine equipped with 8 Intel(R) Xeon(R) W-2125 CPU
@ 4.00GHz cores 126GB main memory, running Debian GNU/Linux. The code
and the data are available2.

2https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0

12

https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0
https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0
https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0

5.1 Datasets and experimental setup

Experiments are performed on six graph classification datasets whose main char-
acteristics are given in Table 1. BA2 (Ying et al., 2019) is a synthetic dataset
generated with Barabasi-Albert graphs and hiding either a 5-cycle (negative
class) or a “house” motif (positive class). The other datasets (Aids (Morris et al.,
2020), BBBP(Wu et al., 2017), Mutagen (Morris et al., 2020), DD (Dobson and
Doig, 2003), Proteins (Borgwardt et al., 2005)) depict real molecules and the
class identifies important properties in Chemistry or Drug Discovery (i.e., pos-
sible activity against HIV, permeability and mutagenicity). A 3-convolutional
layer GNN (with K = 20) is trained on each dataset. INSIDE-GNN mines the cor-
responding GNN activation matrices to discover subjective activation pattern
set. We extracted at most ten patterns per layer and for each output value,
with a SI SG value greater than 10.

Table 1: Main characteristics of the datasets.

Dataset #Graphs (#neg,#pos) Avg. Nodes Avg. Edges Acc. (train) Acc. (test) Acc. (val)
BA2(syn) 1000 (500, 500) 25 50.92 0.995 0.97 1.0

Aids 2000 (400, 1600) 15.69 32.39 0.989 0.99 0.975
BBBP 1640 (389, 1251) 24.08 51.96 0.855 0.787 0.848

Mutagen 4337 (2401, 1936) 30.32 61.54 0.815 0.786 0.804
DD 1168 (681, 487) 268 1352 0.932 0.692 0.760

Proteins 1113 (663, 450) 39 145 0.754 0.768 0.784

5.2 Quantitative study of activation patterns

Table 2 reports general indicators about the discovery of activation patterns by
INSIDE-GNN. The execution time ranges from few minutes for simple task (i.e.,
synthetic graphs) to two days for more complex ones (i.e., DD). It shows the
feasibility of the proposed method. Notice that this process is performed only
once for each model. We used the discovered patterns as features to described
the input graphs and learnt a decision tree to mimic the GNN output. The
resulting accuracy measures exhibit very good performance. Obviously, we do
not provide an interpretable model yet, since the decision tree is based on the
patterns that capture sets of activations of the GNN. Nevertheless, the results
demonstrate that the pattern set returned by INSIDE-GNN captures the inner
workings of GNNs well.

The general characteristics of the activation patterns for each dataset are
provided in Figs. 2–5. One can observe – in Fig. 2 – that a pattern is usually
supported by more than one vertex within a graph. Patterns from the first
layer of the GNN tend to involve a higher number of vertices than those in the
following layers. It may be due to the fact that the first layer captures some
hidden common features about the direct neighborhood of the vertices. The
features captured by the GNN become more discriminant with layer indexes,

13

Table 2: Execution time, number of discovered patterns by INSIDE-GNN and the
ability of the pattern set to mimic GNN (the accuracy on a test set of 20%
of the data, of a simple decision tree using patterns as features to predict the
model output yi. The closer Acc(DTP , yi) to 1, the better the mimicry.)

Dataset Time(s) #Patterns Acc(DTP , yi)

BA2(syn) 180 20 0.98
Aids 5160 60 0.96

BBBP 6000 60 0.89
Mutagen 41940 60 0.87

DD 212400 47 0.86
Proteins 8220 29 0.87

as evidenced by the increasing SI SG score with layers in Fig. 4. For certain
datasets (e.g., BA2, AIDS, DD, Proteins), some patterns have high discrimina-
tive power for the positive class (bottom right corner in Fig. 5) or the negative
class (top left corner). Their discriminative power is less effective for Mutagen
and BBBP datasets. The most discriminant patterns come from the last layer
of the GNN. Some patterns are not discriminant (i.e., around the diagonal) but
remains subjectively interesting. These patterns uncover activations that cap-
ture general properties of the studied graphs. It is important to note that we
study here the discriminative power of a pattern according to its presence in
graphs. These patterns can be more discriminant if we take into account the
number of occurrences of the patterns in the graphs. For instance, a pattern
that is not discriminant can becomes highly discriminant if we add a condition
on its number of occurrences in graph, as we did when learning the decision
trees in Table 2.

5.3 Comparison with competitors for explainability of GNN
output

We now assess the ability of activation patterns to provide good explanations
for the GNN decisions. According to the literature, the best competitors are
GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020) and PGM-
Explainer (Vu and Thai, 2020). We consider all of them as baseline methods.
Furthermore, we also consider a gradient-based method (Pope et al., 2019) ,
denoted Grad, even if it has been shown that such method is outperformed
by the three others. Therefore, we compare INSIDE-GNN against these 4 single-
instance-explanation methods in our experiments.

Evaluating the reliability of an explanation is not trivial due to the lack of
ground truths. In our case, only BA2 is provided with ground truths by con-
struction. When we have ground truths, we expect a good explanation to match
it perfectly, but sometimes the model captures a different explanation that is
just as discriminating. Moreover, if fully present, ground truths contain only
simple relationships (e.g., BA2) which are not sufficient for a full assessment.

14

BA2 Aids BBBP

0 1 2
Layer

0

5

10

15

20

25

0 1 2
Layer

2

4

6

8

0 1 2
Layer

2

4

6

8

10

12

0 1 2
Layer

0

100

200

300

400

0 1 2
Layer

0

100

200

300

400

500

600

0 1 2
Layer

0

100

200

300

400

500

600

Mutagen DD Proteins

Figure 2: Average number of supporting vertices per graph for layers 0, 1, and
2.

Therefore, to be able to consider synthetic and real-world datasets, we consider
a ground truth free metric. We opt for Fidelity (Pope et al., 2019) which is
defined as the difference of accuracy (or predicted probability) between the pre-
dictions on the original graph and the one obtained when masking part of the
graph based on the explanations:

Fidacc =
1

N
×

N∑
i=1

(1− δ
(ŷ

gi\mi
i =yi)

),

where yi is the original prediction of graph gi, mi is the mask and gi \mi is the

complementary mask, ŷ
gi\mi

i is the prediction for the complementary mask and
δ
(ŷ

gi\mi
i =yi)

equals 1 if both predictions are equal.

The fidelity can also be measured by studying the raw probability score given
by the model for each class instead of the accuracy:

Fidprob =
1

N
×

N∑
i=1

(f(gi)yi − f(gi \mi)yi),

with f(g)yi
is the prediction score for class yi.

15

BA2 Aids BBBP

0 1 2
Layer

2

4

6

8

10

0 1 2
Layer

2

4

6

8

10

0 1 2
Layer

2

4

6

8

10

12

Mutagen DD Proteins

0 1 2
Layer

2

4

6

8

10

0 1 2
Layer

2

4

6

8

10

0 1 2
Layer

2

4

6

8

10

12

14

Figure 3: Number of components per pattern for layers 0, 1, and 2.

Similarly, we can study the prediction change by keeping important features
(i.e., the mask) and removing the others as Infidelity measures do:

Infidacc =
1

N
×

N∑
i=1

(1− δ(ŷmi
i =yi)

)

Infidprob =
1

N
×

N∑
i=1

(f(gi)yi − f(mi)yi).

The higher the fidelity, the lower the infidelity, the better the explainer.
Obviously, masking all the input graph would have important impact to

the model prediction. Therefore, the former measures should not be studied
without considering the Sparsity metric that aims to measure the fraction of
graph selected as mask by the explainer:

Sparsity =
1

N

N∑
i=1

(
1− |mi|

|gi|

)
,

where |mi| denotes the size of the mask mi and |gi| is the size of gi (the size
includes the number of nodes, of edges and the attributes associated to them).
Based on these measures, a better explainability method achieves higher fidelity,
lower infidelity while keeping a sparsity close to 1.

16

BA2 Aids BBBP

0 1 2
Layer

0

100

200

300

400

0 1 2
Layer

0

200

400

600

800

1000

1200

1400

0 1 2
Layer

0

200

400

600

800

1000

1200

Mutagen DD Proteins

0 1 2
Layer

0

500

1000

1500

2000

0 1 2
Layer

0

200

400

600

0 1 2
Layer

0

100

200

300

400

500

600

Figure 4: SI SG scores of patterns for layers 0, 1, and 2.

We devise four policies to build a mask from an activation pattern:

(1) node: the simplest policy which takes only the nodes that are covered by
the activation pattern and the edges adjacent to these nodes.

(2) ego: the ego-graphs of radius ` centered on activated nodes, with ` the
layer associated to the pattern.

(3) decay: a continuous mask with a weight associated to the edges that
depends on the distance of its end-points to the activated nodes:

wv =
∑
a∈VA

1

21+d(v,a)
if d(v, a) ≤ `, 0 otherwise

with VA the set of activated nodes, d(v, a) the geodesic distance between
nodes v and a and w(u,v) = wu + wv.

(4) top k: a discrete mask containing only the k edges from decay mask with
the highest weights (k = 5 or k = 10 in our experiments).

For each policy, we select the mask (and the related pattern) that maximises
the fidelity. As GNNExplainer and PGExplainer provide continuous masks, we
report, for fair comparisons, the performance with both continuous and discrete
masks built with the k best edges. Note that the average time to provide an

17

BA2 Aids BBBP

0.0 0.2 0.4 0.6 0.8 1.0
% Positive class covered

0.0

0.2

0.4

0.6

0.8

1.0

%
 N

eg
at

iv
e

cla
ss

 c
ov

er
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
ye

r

0.0 0.2 0.4 0.6 0.8
% Positive class covered

0.0

0.2

0.4

0.6

0.8

1.0

%
 N

eg
at

iv
e

cla
ss

 c
ov

er
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
ye

r

0.0 0.2 0.4 0.6 0.8 1.0
% Positive class covered

0.0

0.2

0.4

0.6

0.8

1.0

%
 N

eg
at

iv
e

cla
ss

 c
ov

er
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
ye

r

Mutagen DD Proteins

0.0 0.2 0.4 0.6 0.8 1.0
% Positive class covered

0.0

0.2

0.4

0.6

0.8

1.0

%
 N

eg
at

iv
e

cla
ss

 c
ov

er
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
ye

r

0.0 0.2 0.4 0.6 0.8 1.0
% Positive class covered

0.0

0.2

0.4

0.6

0.8

1.0

%
 N

eg
at

iv
e

cla
ss

 c
ov

er
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
ye

r

0.0 0.2 0.4 0.6 0.8 1.0
% Positive class covered

0.0

0.2

0.4

0.6

0.8

1.0

%
 N

eg
at

iv
e

cla
ss

 c
ov

er
ed

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
ye

r

Figure 5: Coverage of positive and negative classes, coloured according to dif-
ferent layers. A “perfect” discriminating pattern for the positive class (resp.
negative class) would be projected to the lower right corner (resp. upper left
corner).

18

explanation ranges from 8ms to 84ms for INSIDE-GNN. This is faster than PGM-
Explainer (about 5s), GNNExplainer (80ms to 240ms) and Grad (300ms). It
remains slightly slower than PGExplainer (6ms to 20ms). Table 3(a) summarises
the performance of the explainers based on the Fidelity measures. Results show
that INSIDE-GNN outperforms the baselines regardless of policy. On average, the
gain of our method against the best baseline is 231% for Fidprob and 207%
for Fidacc. These results must be analysed while considering the sparsity (see
Table 3(c)). In most of the cases, INSIDE-GNN provides sparser explanation than
the baselines. Furthermore, at equal sparsity (top k), INSIDE-GNN obtains higher
fidelity values than both competitors. Notice that PGM-Explainer fails on BA2
because this dataset does not have labeled nodes and this method investigate
only the nodes of the graphs.

We provide additional information on the Fidelity in Table 4. The Fidelity
aims to measure the percentage of times that a model decision is changed when
the input graphs is obfuscated by the mask m. In Table 4, we report a polarized
version of the Fidelity for which we count the number of changes between the two
possible decisions of the model. For instance, F−→+ measures the percentage
of graphs initially classified as ‘false’ by the model that become classified as
’true’ when obfuscating the graph with a mask. We can observe a dissymmetry
between the class changes. As an example, INSIDE-GNN has a perfect fidelity
on BA2 and DD when considering only the positive examples, i.e., the mask
provided by INSIDE-GNN makes the model change its decision. When dealing
with the negative examples, we obtain much lower score. Intuitively, some class
changes cannot be done by only removing some vertices or edges. Regarding
BA2, it is impossible to obtain a house motif from a cycle without adding an
edge to form a triangle.

The quality of the explanations are also assessed with the Infidelity met-
rics in Table 3(b). INSIDE-GNN achieves excellent performance on BA2. On
the other datasets, INSIDE-GNN is outperformed by GNNExplainer. INSIDE-GNN

obtain similar scores or outperforms the other competitors (i.e., PGExplainer,
PGM-Explainer, Grad) at equal sparsity on most of the datasets. Notice that,
in these experiments, we made the choice to build mask based on a single activa-
tion pattern which is not enough to obtain fully discriminant mask for complex
datasets. This is in agreement with what we observed in Fig. 5. We have
no fully discriminant activation pattern for the positive and negative classes.
Hence, it would be necessary to combine activation patterns to build a more
discriminant mask and thus better optimise the Infidelity.

5.4 Model insights via the (re)description of activation
patterns

We argue that activation patterns also help provide insight into the model, es-
pecially what the GNN model captures. As discussed in Section 4, this requires
characterizing the nodes (and their neighborhood) that support a given activa-
tion pattern. In this experimental study, we investigate the obtained numerical

19

subgroups for BA2 and the subgraph characterizing the activation patterns re-
trieved for Mutagen, BBBP and Aids datasets.

5.4.1 Numerical subgroups

Each node can be easily described with some topological properties (e.g., its
degree, the number of triangles it is involved in). Similarly, we can describe
its neighborhood by aggregating the values of the neighbors. Thanks to such
properties, we make a propositionalization of nodes of the graphs. Considering
the two most discriminant activation patterns3, we use a subgroup discovery
algorithm to find the discriminating conditions of the nodes supporting these
two patterns. Fig. 6 reports a visualisation of two graphs with activated nodes
in red. The best description based on WRAcc measure of pattern p+ (Fig.
6 left) and p− (Fig. 6 right) are given below. For the House motif (positive
class of BA2), the nodes that support activation patterns are almost perfectly
described (the WRacc equals to 0.24 while maximum value is 0.25) with the
following conditions: Nodes connected to two neighbors (degree=2) that are not
connected between them (clustering coefficient=0), not involved in a triangle and
one of its neighbors is involved in a triangle (triangle2=1). In other words, the
activation pattern captures one node of the floor of the “house motif”. We have
similar conditions to identify some nodes of the 5-node cycle (negative class of
BA2): nodes without triangle in their direct neighborhood (clustering2=0) and
whose sum of neighbors’ degree (including itself) equal 7 (degree2 ∈[7:8[).

clustering=0.0 AND degree=2 clustering2=0.0 AND degree2: [7:8[

AND triangle2=1 AND triangle=0 WRAcc=0.12

WRAcc=0.24

Figure 6: Nodes (in red) in the support of two activation patterns that are
discriminant for p+ support, related to the positive target (left), and for p−

support, related to the negative target (right).

We report the description in terms of numerical subgroups of the activation
patterns in Table 5. It is important to note that even if some activation pat-
terns were found as subjectively interesting according to a specific output of the
model, they may capture some general properties of the BA2 graph that are not

3p+ = {a3, a6, a7, a9, a10, a15}, |suppp(p+,G+)| = 474, |supp(p+,G−)| = 16 and p− =
{a0, a1, a2, a4, a5, a8, a11, a17, a18, a19}, |supp(p−,G+)| = 137, |supp(p−,G−)| = 506

20

so specific of one of the classes. For instance, the second subgroup is related
to the positive class (i.e., house motif) but what it captured is not specific to
house motif (degree=2, absence of triangle).

5.4.2 Subgraph patterns

Similarly, we can characterize activation patterns with subgraph patterns. We
investigate the interest of such pattern language for three datasets: Aids, BBBP
and Mutagen. In Fig. 7, we report the WRAcc values of the discovered sub-
graphs that aim to characterize the activation patterns. We can observe that
the WRAcc values are rather high which demonstrates that these subgraphs
well describe what the parts of the GNN identified by the activation patterns
actually captured.

Aids

BBBP

Mutagen

Figure 7: WRAcc values of subgraph subgroups related to activation patterns
by layer (left column) or by both layer and model decision (right column) for
Aids (first row), BBBP (second row) and Mutagen (third row).

The subgraphs obtained for Mutagen dataset are summarised in Fig. 8. For
each layer and decision, we display the subgraphs whose WRAcc is greater than

21

0.1 layer by layer. The negative class is related to mutagenic molecules. Several
things can be observed from this figure. First, some subgraphs are known as
toxicophores or fragment of toxicophores in the literature (Kazius et al., 2005).
For instance, the subgraph with two hydrogen and one azote atoms is a part of an
aromatic amine. Similarly, the subgraph with one azote and two oxygen atoms
is an aromatic nitro. The subgraph involving 6 carbon atoms is a fragment of a
bay region or a k-region. Second, some subgraphs appear several times. It means
that several activation patterns are described with the same subgraphs. This
can be explained in several ways. Neural networks are known to have a lot of
redundant information, as evidenced by the numerous papers in the domain that
aim to compress or simplify deep neural networks (Chen et al., 2018; Pan et al.,
2016; Pasandi et al., 2020; Xu et al., 2018). Accordingly, this is not surprising
to have several parts of the GNN that are similar and described by the same
subgraphs. Notice that this problem could be an interesting perspective for
our work. Another explanation is that the subgraphs well describe the hidden
features captured by the GNN but from different perspective, i.e., the center
is different. For instance, for a simple chemical bond C-N, one may have the
same graph with one centered in C and the other in N. A last explanation
could be that the subgraph language is not enough powerful to capture the
subtle differences between the activation patterns. Once again, the definition of
more sophisticated and appropriate languages to describe the hidden features
captured by the GNN is a promising perspective of research.

These latter experiments show that INSIDE-GNN represents a valuable alter-
native to GNN explainability methods. In addition to providing single instance
explanations, INSIDE-GNN can provide insights about what the GNN perceives.
Especially, it allows to build a summary of the hidden features captured by
the model (e.g., Fig. 8). In relation to this, our method is quite analogous to
model explanation methods such as XGNN (Yuan et al., 2020a). This deserves
a discussion and a comparison with XGNN.

5.4.3 Comparison to XGNN

XGNN (Yuan et al., 2020a) is a method rooted in reinforcement learning that
generates graphs that maximise the model decision for a given class. For Mu-
tagen, we generate 20 graphs for each class with a maximum size equal to 6.
Considering the 40 generated graphs, we observe that only one of them is a sub-
graph of at least one graph of the dataset. The other graphs have on average
60% of partial inclusion: the maximum common subgraph with molecules from
Mutagen uncovers 60% of a generated graph. Therefore, we can conclude that
XGNN generates graphs that are not enough realistic. The only graph that
appears within the dataset involves a carbon atom bonded to 2 others carbon
atoms and one hydrogen atom. With INSIDE-GNN, we obtained two subgraphs
characterizing some activation patterns that are super-graphs of this one (see
Fig. 8). Notice that, we also found this subgraph for some activation patterns.
We did not report it in Fig. 8 because its WRAcc value is lower than 0.1. Nev-
ertheless, this graph appears in 21100 ego-graphs in the dataset. It describes a

22

fragment of molecule that is very common. One can wonder if such a fragment
can be mutagenic or if XGNN has just captured it a biased of the GNN. Further-
more, XGNN has generated graphs that are not planar, which is not common
in Chemistry. Based on these evidences, we argue that XGNN does not return
realistic graphs while our approach – by construction – provides subgraphs from
the dataset.

We search for each pattern produced by INSIDE-GNN the closest pattern in
XGNN according to the Graph Edit Distance (GED) and vice versa. We note
that the previously described prototype graph (i.e., 3 carbons and 1 hydrogen)
is found in most of the cases as being the closest to the patterns produced by
INSIDE-GNN. In average, the distance between each XGNN prototype and the
closest pattern of INSIDE-GNN is 4.6 while the mean distance between INSIDE-GNN

subgraphs and the closest from XGNN is 3.7. This is rather important since the
graphs provided by XGNN have at most 6 nodes.

We believe that a model decision for a class cannot be summarized into a
single prototype. Several different phenomena can lead to the same class. Fur-
thermore, as we observed, this can lead to unrealistic prototype even if domain
knowledge is integrated within the graph generation. INSIDE-GNN allows to have
deeper insights from the GNN by considering each hidden feature separately.

6 Discussion and Conclusion

We have introduced a novel method for the explainability of GNNs. INSIDE-GNN

is based on the discovery of relevant activation patterns in each hidden layer of
the GNN. Prior beliefs are used to assess how contrastive a pattern is. We have
proposed an algorithm that efficiently and iteratively builds a set of activation
patterns, limiting the redundancy between them. Extensive empirical results
on several real-world datasets confirm that the activation patterns capture in-
teresting insights about how the internal representations are built by the GNN.
Based on these patterns, INSIDE-GNN outperforms the SOTA methods for GNN
explainability. Furthermore, the consideration of pattern languages involving
interpretable features (e.g., numerical subgroups on node topological proper-
ties, graph subgroups) is promising since it makes possible to summarise the
hidden features built by the GNN through its different layers.

This paper opens up several avenues for research such as the consideration of
several layers in activation patterns which implies to carefully model the related
priors to deal with redundancy issues. Assessing explanations without ground
truth is not trivial. Our experimental evaluation relies on Fidelity, Infidelity
and Sparsity metrics. Fidelity assumes that the GNN decision would change
if key part of the graphs are removed. However, it is not always the case in
practice. For instance, it is difficult to obtain a toxic molecule from a non-toxic
one by only removing some atoms. That would be interesting to investigate
other evaluation measures that take into account the negation (i.e., absence
of important features) and evaluation measures based on the addition of sub-
graphs. Nevertheless, even with simple activation patterns based on activation

23

conjunctions, our experiments witness the effectiveness of local pattern sets to
capture the hidden features built by the GNN. We believe that more sophisti-
cated pattern languages are possible for GNNs. For instance, we observed that
taking into account the number of occurrences within a graph leads to better
characterizations. This can be integrated to the pattern language. Considering
the absence of activation is also promising. Experiments have highlighted some
redundancies in the studied GNN models. Their identification is the first step
toward the general simplification of such models.

References

Baldassarre F, Azizpour H (2019) Explainability for GCNs. arXiv:190513686

Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ, Kriegel
H (2005) Protein function prediction via graph kernels. In: Proceedings Thir-
teenth International Conference on Intelligent Systems for Molecular Biol-
ogy 2005, Detroit, MI, USA, 25-29 June 2005, pp 47–56, DOI 10.1093/
bioinformatics/bti1007, URL https://doi.org/10.1093/bioinformatics/

bti1007

Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2017) Geometric
deep learning. IEEE Signal Processing Magazine 34(4):18–42, DOI 10.1109/
MSP.2017.2693418

Burkart N, Huber MF (2021) A survey on the explainability of supervised ma-
chine learning. Journal of Artificial Intelligence Research 70:245–317

Cerf L, Besson J, Robardet C, Boulicaut J (2009) Closed patterns meet n-
ary relations. ACM Trans Knowl Discov Data 3(1):3:1–3:36, DOI 10.1145/
1497577.1497580, URL https://doi.org/10.1145/1497577.1497580

Chen C, Tung F, Vedula N, Mori G (2018) Constraint-aware deep neural net-
work compression. In: Proceedings of the European Conference on Computer
Vision (ECCV), pp 400–415

De Bie T (2009) Finding interesting itemsets using a probabilistic model for
binary databases. Tech. rep., University of Bristol

De Bie T (2011) An information theoretic framework for data mining. In: Apté
C, Ghosh J, Smyth P (eds) SIGKDD 2011, ACM, pp 564–572, DOI 10.1145/
2020408.2020497, URL https://doi.org/10.1145/2020408.2020497

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural
networks on graphs with fast localized spectral filtering. In: NeurIPS,
pp 3837–3845, URL https://proceedings.neurips.cc/paper/2016/hash/

04df4d434d481c5bb723be1b6df1ee65-Abstract.html

24

https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1145/1497577.1497580
https://doi.org/10.1145/2020408.2020497
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html

Dobson PD, Doig AJ (2003) Distinguishing enzyme structures from non-
enzymes without alignments. Journal of Molecular Biology 330(4):771–783,
DOI https://doi.org/10.1016/S0022-2836(03)00628-4, URL https://www.

sciencedirect.com/science/article/pii/S0022283603006284

Huang Q, Yamada M, Tian Y, Singh D, Yin D, Chang Y (2020) Graphlime:
Local interpretable model explanations for GNNs. arXiv:200106216

Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores
for mutagenicity prediction. Journal of medicinal chemistry 48(1):312–320

Kipf T, Welling M (2017) Semi-supervised classification with GCN. In: ICLR,
URL https://openreview.net/forum?id=SJU4ayYgl

Lavrač N, Flach P, Zupan B (1999) Rule evaluation measures: A unifying view.
In: International Conference on Inductive Logic Programming, Springer, pp
174–185

Lemmerich F, Becker M (2018) pysubgroup: Easy-to-use subgroup discovery in
python. In: Brefeld U, Curry E, Daly E, MacNamee B, Marascu A, Pinelli F,
Berlingerio M, Hurley N (eds) Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2018, Dublin, Ireland,
September 10-14, 2018, Proceedings, Part III, Springer, Lecture Notes in
Computer Science, vol 11053, pp 658–662, DOI 10.1007/978-3-030-10997-4\
46, URL https://doi.org/10.1007/978-3-030-10997-4_46

Luo D, Cheng W, Xu D, Yu W, Zong B, Chen H, Zhang X (2020)
Parameterized explainer for graph neural network. In: NeurIPS
2020, URL https://proceedings.neurips.cc/paper/2020/hash/

e37b08dd3015330dcbb5d6663667b8b8-Abstract.html

Molnar C (2020) Interpretable machine learning. Lulu. com

Morris C, Kriege NM, Bause F, Kersting K, Mutzel P, Neumann M (2020) Tu-
dataset. CoRR abs/2007.08663, URL https://arxiv.org/abs/2007.08663,
2007.08663

Olah C, Mordvintsev A, Schubert L (2017) Feature visualization. Distill 2(11)

Pan W, Dong H, Guo Y (2016) Dropneuron: Simplifying the structure of deep
neural networks. arXiv preprint arXiv:160607326

Pasandi MM, Hajabdollahi M, Karimi N, Samavi S (2020) Modeling of
pruning techniques for deep neural networks simplification. arXiv preprint
arXiv:200104062

Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019) Ex-
plainability methods for GCN. In: IEEE CVPR 2019, pp 10772–10781,
DOI 10.1109/CVPR.2019.01103, URL http://openaccess.thecvf.com/

content_CVPR_2019/html/Pope_Explainability_Methods_for_Graph_

Convolutional_Neural_Networks_CVPR_2019_paper.html

25

https://www.sciencedirect.com/science/article/pii/S0022283603006284
https://www.sciencedirect.com/science/article/pii/S0022283603006284
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-3-030-10997-4_46
https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e37b08dd3015330dcbb5d6663667b8b8-Abstract.html
https://arxiv.org/abs/2007.08663
2007.08663
http://openaccess.thecvf.com/content_CVPR_2019/html/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Pope_Explainability_Methods_for_Graph_Convolutional_Neural_Networks_CVPR_2019_paper.html

Ribeiro MT, Singh S, Guestrin C (2016) ” why should i trust you?” explaining
the predictions of any classifier. In: ACM SIGKDD, pp 1135–1144

Schnake T, Eberle O, Lederer J, Nakajima S, Schütt KT, Müller K, Montavon
G (2020) XAI for graphs. CoRR abs/2006.03589, URL https://arxiv.org/

abs/2006.03589, 2006.03589

Simonyan K, Vedaldi A, Zisserman A (2014) Deep inside convolutional networks:
Visualising image classification models and saliency maps. In: ICLR 2014,
URL http://arxiv.org/abs/1312.6034

Tran SN, d’Avila Garcez AS (2018) Deep logic networks: Inserting and ex-
tracting knowledge from deep belief networks. IEEE TNNLS 29(2):246–258,
DOI 10.1109/TNNLS.2016.2603784

Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph
attention networks. In: ICLR 2018, URL https://openreview.net/forum?

id=rJXMpikCZ

Vu MN, Thai MT (2020) Pgm-explainer: Probabilistic graphi-
cal model explanations for graph neural networks. In: NeurIPS
2020, URL https://proceedings.neurips.cc/paper/2020/hash/

8fb134f258b1f7865a6ab2d935a897c9-Abstract.html

Wang Z, Ji S (2020) Second-order pooling for graph neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence

Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu AS, Leswing K,
Pande VS (2017) Moleculenet. CoRR abs/1703.00564, URL http://arxiv.

org/abs/1703.00564, 1703.00564

Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2020) A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and
learning systems

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey
on graph neural networks. IEEE TNNLS 32(1):4–24

Xu Y, Wang Y, Zhou A, Lin W, Xiong H (2018) Deep neural network compres-
sion with single and multiple level quantization. Proceedings of the AAAI
Conference on Artificial Intelligence 32(1), URL https://ojs.aaai.org/

index.php/AAAI/article/view/11663

Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: 2002
IEEE International Conference on Data Mining, 2002. Proceedings., IEEE,
pp 721–724

Ying Z, Bourgeois D, You J, Zitnik M, Leskovec J (2019) GNNEx-
plainer: Generating explanations for GNNs. In: NeurIPS 2019, pp
9240–9251, URL https://proceedings.neurips.cc/paper/2019/hash/

d80b7040b773199015de6d3b4293c8ff-Abstract.html

26

https://arxiv.org/abs/2006.03589
https://arxiv.org/abs/2006.03589
2006.03589
http://arxiv.org/abs/1312.6034
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.neurips.cc/paper/2020/hash/8fb134f258b1f7865a6ab2d935a897c9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8fb134f258b1f7865a6ab2d935a897c9-Abstract.html
http://arxiv.org/abs/1703.00564
http://arxiv.org/abs/1703.00564
1703.00564
https://ojs.aaai.org/index.php/AAAI/article/view/11663
https://ojs.aaai.org/index.php/AAAI/article/view/11663
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html

Yuan H, Tang J, Hu X, Ji S (2020a) XGNN. In: KDD’20, pp 430–438, DOI 10.
1145/3394486.3403085, URL https://doi.org/10.1145/3394486.3403085

Yuan H, Yu H, Gui S, Ji S (2020b) Explainability in GNN. arXiv:201215445

27

https://doi.org/10.1145/3394486.3403085

Table 3: Assessing the explanations with Fidelity, Infidelity and Sparsity met-
rics.

(a
)

F
id

e
li

ty
D

D
P

ro
te

in
s

B
A

2
A

id
s

B
B

B
P

M
u

ta
g
en

M
o
d

el
F
id

p
r
o
b

F
id

a
c
c

F
id

p
r
o
b

F
id

a
c
c

F
id

p
r
o
b

F
id

a
c
c

F
id

p
r
o
b

F
id

a
c
c

F
id

p
r
o
b

F
id

a
c
c

F
id

p
r
o
b

F
id

a
c
c

IN
S
ID

E
-G

N
N

(e
go

)
0.

54
0

0.
66

3
0.

36
2

0.
6
51

0.
34

2
0.

49
4

0.
16

5
0.

09
7

0.
34

4
0
.2

9
5

0.
4
9
2

0.
6
4
7

IN
S
ID

E
-G

N
N

(n
o
d

e)
0.

49
0

0.
56

7
0.

35
9

0.
6
34

0.
34

2
0.

49
4

0.
17

5
0.

07
6

0.
36

2
0
.3

3
6

0.
5
8
2

0.
8
3
3

IN
S
ID

E
-G

N
N

(d
ec

ay
)

0.
44

7
0.

48
5

0.
34

4
0.

5
76

0.
34

2
0.

49
4

0.
14

5
0.

05
5

0.
31

6
0
.2

7
6

0.
5
5
4

0.
7
8
1

IN
S
ID

E
-G

N
N

(t
op

5)
0.

27
6

0.
42

1
0.

06
9

0.
0
86

0.
35

3
0.

91
7

0.
16

0
0.

05
8

0.
27

1
0
.2

6
0

0.
4
5
0

0.
6
2
9

IN
S
ID

E
-G

N
N

(t
op

10
)

0.
29

6
0.

44
5

0.
09

2
0.

1
27

0.
22

0
0.

49
6

0.
16

0
0.

05
7

0.
30

4
0
.2

7
0

0.
4
5
8

0.
6
0
0

G
ra

d
0.

08
3

0.
08

9
0.

06
0

0.
0
84

0.
19

5
0.

49
4

0.
07

8
0.

01
8

0.
17

1
0
.1

3
2

0.
2
2
3

0.
2
5
4

G
n

n
E

x
p

la
in

er
0.

07
7

0.
08

6
0.

02
1

0.
0
37

0.
09

3
0.

19
8

0.
03

6
0.

00
9

0.
10

0
0
.1

0
1

0.
1
7
7

0.
2
2
7

P
G

E
x
p

la
in

er
0.

07
0

0.
08

2
0.

01
9

0.
0
34

0.
00

4
0.

00
0

0.
03

2
0.

01
0

0.
09

8
0
.0

9
9

0.
1
5
7

0.
1
7
9

G
ra

d
(t

op
5)

0.
08

0
0.

08
5

0.
04

2
0.

0
81

0.
08

7
0.

17
5

0.
05

9
0.

01
3

0.
12

6
0
.1

0
7

0.
2
2
2

0.
2
6
3

G
n

n
E

x
p

la
in

er
(t

op
5)

0.
02

0
0.

02
7

0.
02

6
0.

0
53

0.
18

3
0.

46
1

0.
06

0
0.

01
8

0.
08

6
0
.0

7
9

0.
2
2
6

0.
3
0
5

P
G

E
x
p

la
in

er
(t

op
5)

0.
02

1
0.

02
7

0.
03

8
0.

0
58

0.
18

2
0.

51
6

0.
06

6
0.

01
9

0.
14

8
0
.1

2
5

0.
1
9
9

0.
2
3
6

G
ra

d
(t

op
10

)
0.

08
3

0.
08

9
0.

06
0

0.
0
84

0.
19

5
0.

49
4

0.
07

8
0.

01
8

0.
17

1
0
.1

3
2

0.
2
2
3

0.
2
5
4

G
n

n
E

x
p

la
in

er
(t

op
10

)
0.

03
4

0.
04

2
0.

04
3

0.
0
88

0.
20

0
0.

49
1

0.
07

4
0.

01
8

0.
12

5
0
.1

0
4

0.
2
9
3

0.
4
0
0

P
G

E
x
p

la
in

er
(t

op
10

)
0.

03
2

0.
03

6
0.

04
6

0.
0
72

0.
20

6
0.

51
7

0.
08

3
0.

03
0

0.
16

5
0
.1

1
7

0.
2
0
6

0.
2
5
8

P
G

M
-E

x
p

la
in

er
0.

23
3

0.
33

9
0.

09
6

0.
2
07

0.
00

0
0.

00
0

0.
08

9
0.

02
8

0.
21

2
0
.1

9
8

0.
2
6
0

0.
3
3
8

(b
)

In
fi

d
e
li

ty
In

fi
d
p
r
o
b

In
fi

d
a
c
c

In
fi

d
p
r
o
b

In
fi

d
a
c
c

In
fi

d
p
r
o
b

In
fi

d
a
c
c

In
fi

d
p
r
o
b

In
fi

d
a
c
c

In
fi

d
p
r
o
b

In
fi

d
a
c
c

In
fi

d
p
r
o
b

In
fi

d
a
c
c

IN
S
ID

E
-G

N
N

(e
go

)
0.

13
3

0.
06

2
0.

16
3

0.
1
88

0.
00

0
0.

00
0

0.
76

6
0.

80
6

0.
36

9
0
.4

5
2

0.
2
7
3

0.
3
4
9

IN
S
ID

E
-G

N
N

(n
o
d

e)
0.

13
3

0.
04

8
0.

16
0

0.
1
96

0.
00

0
0.

00
0

0.
76

7
0.

80
6

0.
37

4
0
.4

6
4

0.
2
3
7

0.
2
8
8

IN
S
ID

E
-G

N
N

(d
ec

ay
)

0.
14

0
0.

09
7

0.
16

2
0.

2
02

0.
00

0
0.

00
0

0.
76

7
0.

80
6

0.
36

2
0
.4

5
4

0.
2
3
3

0.
2
7
2

IN
S
ID

E
-G

N
N

(t
op

5)
0.

34
1

0.
34

0
0.

28
7

0.
3
55

0.
32

3
0.

49
4

0.
77

0
0.

80
6

0.
44

1
0
.5

7
4

0.
3
4
1

0.
4
6
0

IN
S
ID

E
-G

N
N

(t
op

10
)

0.
34

1
0.

34
0

0.
29

7
0.

3
55

0.
31

0
0.

49
4

0.
76

8
0.

80
6

0.
40

5
0
.5

2
4

0.
3
2
9

0.
4
3
5

G
ra

d
0.

34
4

0.
34

0
0.

32
6

0.
3
55

0.
33

4
0.

49
4

0.
76

9
0.

80
6

0.
44

7
0
.6

2
3

0.
3
5
7

0.
4
8
9

G
n

n
E

x
p

la
in

er
0.

07
5

0.
08

4
0.

02
1

0.
0
36

0.
22

3
0.

49
4

0.
03

6
0.

01
2

0.
09

9
0
.0

9
8

0.
1
4
0

0.
1
4
1

P
G

E
x
p

la
in

er
0.

08
2

0.
08

6
0.

02
4

0.
0
39

0.
35

3
0.

49
4

0.
03

8
0.

01
2

0.
09

8
0
.0

9
6

0.
1
5
7

0.
1
8
5

G
ra

d
(t

op
5)

0.
34

3
0.

34
0

0.
31

2
0.

3
55

0.
32

7
0.

49
4

0.
77

0
0.

80
6

0.
47

1
0
.6

5
1

0.
3
5
6

0.
4
8
5

G
n

n
E

x
p

la
in

er
(t

op
5)

0.
34

8
0.

49
8

0.
22

8
0.

5
99

0.
32

1
0.

49
4

0.
10

1
0.

05
7

0.
21

6
0
.1

7
9

0.
2
9
7

0.
3
5
4

P
G

E
x
p

la
in

er
(t

op
5)

0.
34

3
0.

34
0

0.
29

6
0.

3
55

0.
33

2
0.

49
4

0.
76

9
0.

80
6

0.
51

0
0
.6

9
5

0.
3
5
3

0.
4
9
0

G
ra

d
(t

op
10

)
0.

34
4

0.
34

0
0.

32
6

0.
3
55

0.
33

4
0.

49
4

0.
76

9
0.

80
6

0.
44

7
0
.6

2
3

0.
3
5
7

0.
4
8
9

G
n

n
E

x
p

la
in

er
(t

op
10

)
0.

34
3

0.
47

4
0.

19
7

0.
4
91

0.
30

8
0.

49
4

0.
10

5
0.

05
4

0.
20

6
0
.1

8
0

0.
2
8
2

0.
3
4
3

P
G

M
-E

x
p

la
in

er
0.

34
5

0.
34

0
0.

34
1

0.
3
55

0.
34

2
0.

49
4

0.
76

5
0.

80
6

0.
39

2
0
.5

1
4

0.
3
5
4

0.
4
9
8

(c
)

S
p

a
rs

it
y

D
D

P
ro

te
in

s
B

A
2

A
id

s
B

B
B

P
M

u
ta

g
en

IN
S
ID

E
-G

N
N

(e
go

)
0.

54
4

0.
41

0
0.

01
1

0
.8

22
0.

8
0
5

0
.7

1
7

IN
S
ID

E
-G

N
N

(n
o
d

e)
0.

76
9

0.
42

9
0.

00
2

0
.8

97
0.

8
7
0

0
.7

3
1

IN
S
ID

E
-G

N
N

(d
ec

ay
)

0.
71

7
0.

39
4

0.
01

0
0
.8

70
0.

8
6
0

0
.6

9
7

IN
S
ID

E
-G

N
N

(t
op

5)
0.

99
7

0.
99

3
0.

90
2

0
.9

55
0.

9
6
9

0
.9

8
9

IN
S
ID

E
-G

N
N

(t
op

10
)

0.
99

4
0.

98
6

0.
80

4
0
.9

15
0.

9
3
9

0
.9

7
8

G
ra

d
0.

99
4

0.
98

6
0.

80
4

0
.9

10
0.

9
3
8

0
.9

7
8

G
n

n
E

x
p

la
in

er
0.

50
2

0.
50

1
0.

61
9

0
.5

01
0.

5
0
1

0
.5

0
5

P
G

E
x
p

la
in

er
0.

52
9

0.
54

5
0.

95
5

0
.5

47
0.

5
3
4

0
.5

1
5

P
G

M
-E

x
p

la
in

er
0.

97
3

0.
95

5
n

an
0
.8

55
0.

8
8
4

0
.9

5
6

28

Table 4: Polarized fidelity.

(a) Fidelity DD Proteins BA2 Aids BBBP Mutagen
Model F−→+ F+→− F−→+ F+→− F−→+ F+→− F−→+ F+→− F−→+ F+→− F−→+ F+→−

INSIDE-GNN(ego) 0.489 1.000 0.572 0.795 0.000 1.000 0.353 0.035 0.965 0.137 0.543 0.809
INSIDE-GNN(node) 0.344 1.000 0.546 0.795 0.000 1.000 0.198 0.047 0.981 0.184 0.795 0.891
INSIDE-GNN(decay) 0.219 1.000 0.455 0.795 0.000 1.000 0.180 0.025 0.933 0.121 0.744 0.838
INSIDE-GNN(top 5) 0.135 0.977 0.029 0.190 0.836 1.000 0.080 0.053 0.808 0.130 0.500 0.830
INSIDE-GNN(top 10) 0.167 0.985 0.045 0.276 0.004 1.000 0.098 0.047 0.869 0.129 0.398 0.913
Grad 0.091 0.086 0.022 0.195 0.000 1.000 0.046 0.011 0.569 0.029 0.053 0.567
GnnExplainer 0.031 0.191 0.018 0.071 0.000 0.401 0.026 0.005 0.495 0.008 0.097 0.429
PGExplainer 0.029 0.186 0.017 0.066 0.000 0.000 0.023 0.007 0.511 0.002 0.072 0.345
Grad(top 5) 0.087 0.081 0.040 0.154 0.002 0.352 0.039 0.007 0.454 0.026 0.240 0.299
GnnExplainer(top 5) 0.013 0.055 0.026 0.101 0.049 0.883 0.034 0.014 0.265 0.035 0.265 0.368
PGExplainer(top 5) 0.010 0.060 0.053 0.068 0.423 0.611 0.098 0.001 0.581 0.017 0.251 0.214
Grad(top 10) 0.091 0.086 0.022 0.195 0.000 1.000 0.046 0.011 0.569 0.029 0.053 0.567
GnnExplainer(top 10) 0.023 0.078 0.033 0.187 0.000 0.994 0.067 0.006 0.419 0.030 0.317 0.527
PGExplainer(top 10) 0.012 0.083 0.070 0.076 0.077 0.968 0.155 0.000 0.556 0.014 0.212 0.331
PGM-Explainer 0.198 0.612 0.109 0.385 0.000 0.000 0.111 0.008 0.645 0.093 0.130 0.662

29

Table 5: Characterization of activation patterns with numerical subgroups on
BA2. We only report the subgroup whose WRAcc value is greater than 0.1.

Layer Class Description WRAcc

2 - degree=3 0.2475
2 + clustering2=0 AND degree=2 AND

triangle2 avg=0

0.207

2 + betweenness: [0.0:0.00[AND

clustering2=0.0

0.127

3 - clustering2=0.0 AND degree2: [7:8[AND

degree2 avg: [3.50:3.57[

0.114

3 - clustering2=0.0 AND degree=2 AND

triangle2=0

0.101

3 - betweenness2: [0.37:0.38[AND

betweenness2 avg: [0.19:0.20[AND

clustering2=0.0

0.202

3 - betweenness2: [0.37:0.39[AND

betweenness2 avg: [0.19:0.21[AND

betweenness=0.07608695652173914

0.209

3 - betweenness: [0.29:0.30[AND

clustering2=0.0 AND degree==3

0.147

3 - betweenness: [0.0:0.00[AND

clustering2=0.0 AND degree2 avg:

[4.0:4.17[

0.162

3 + clustering=0.0 AND degree=2 AND

triangle2 avg=0.5

0.227

3 + degree2: [7:8[AND degree2 avg:

[3.50:3.60[AND degree=2 AND triangle=0

0.224

3 + degree=2 AND triangle2=1 0.238
3 + clustering==0.0 AND degree==2 AND

triangle2==1 AND triangle==0

0.240

3 + degree=2 0.125
3 + clustering=0.0 AND degree=2 AND triangle2=1

AND triangle2 avg=0.5

0.232

30

O

N
C

N

C

C

N

H N

O
N

H C

Cl

N

O O

N

H H

C

C

C

C

C

C

N

O O
C

Cl
N

H H

N

O

C

N

H

N

H H

O

C

O

O

H

Cl

C

O

H

C

O

C

C

O

C C

C

HH

C

Cl

C

C

C

C

C

C

H

C

O

C

C

N

H

H

C

LAYER 1 LAYER 2 LAYER 3

M
O

D
EL

 O
U

TP
U

T:
 F

AL
SE

M
O

D
EL

 O
U

TP
U

T:
 T

R
U

E

Figure 8: Characterization of activation patterns for Mutagen with discriminant
subgraphs. We retain only the subgraphs with a WRAcc value greater than 0.1.
Mutagenic chemicals are classified as False.

31

	Introduction
	Related work
	INSIDE-GNN method
	Graph Neural Networks
	Subjective subgroup sets of co-activated vector components
	Subjective activation patterns
	Subjective activation subgroups
	Iterative extraction of subjective activation subgroups

	Activation pattern characterisation
	 Numerical subgroups
	Graph subgroups
	Quality measure and algorithms

	Experimental study
	Datasets and experimental setup
	Quantitative study of activation patterns
	Comparison with competitors for explainability of GNN output
	Model insights via the (re)description of activation patterns
	Numerical subgroups
	 Subgraph patterns
	Comparison to XGNN

	Discussion and Conclusion

