Luca Veyrin-Forrer

Ataollah Kamal

Stefan Duffner

Marc Plantevit

Celine Robardet

On GNN explanability with activation patterns

GNNs are powerful models based on node representation learning that perform particularly well in many machine learning problems related to graphs. The major obstacle to the deployment of GNNs is mostly a problem of societal acceptability and trustworthiness, properties which require making explicit the internal functioning of such models. Here, we propose to mine activation patterns in the hidden layers to understand how the GNNs perceive the world. The problem is not to discover activation patterns that are individually highly discriminating for an output of the model. Instead, the challenge is to provide a small set of patterns that cover all input graphs. To this end, we introduce the subjective activation pattern domain. We define an effective and principled algorithm to enumerate patterns of activations in each hidden layer. The proposed approach for quantifying the interest of these patterns is rooted in information theory and is able to account for background knowledge on the input graph data. The activation patterns can then be redescribed thanks to pattern languages involving interpretable features. We show that the activation patterns provide insights on the characteristics used by the GNN to classify the graphs. Especially, this allows to identify the hidden features built by the GNN through its different layers. Also, these patterns can subsequently be used for explaining GNN decisions. Experiments on both synthetic and real-life datasets show highly competitive performance, with up to 200% improvement in fidelity on explaining graph classification over the SOTA methods.

Introduction

Graphs are a powerful and widespread data structure used to represent relational data. One of their specificity is that their underlying structure is not in a Euclidean space and has not a grid-like structure [START_REF] Bronstein | Geometric deep learning[END_REF], characteristics facilitating the direct use of generic machine learning techniques. Indeed, each node of a graph is characterized by its features, its neighboring nodes, and recursively their properties. Such intrinsically discrete information cannot be easily used by standard machine learning methods to either predict a label associated with the graph or a label associated with each node of the graph. To overcome this difficulty, Graph Neural Networks (GNNs) learn embedding vectors h v ∈ R K to represent each node v as continuous vectors and ease comparison between similar nodes. GNN methods [START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Wu | IEEE transactions on neural networks and learning systems Wu[END_REF] employ a message propagation strategy that recursively aggregates information from nodes to neighboring nodes. This method produces vector representations of ego-networks from each node -with radii equal to the recursion index -in such a way that the classification task, based on these vectors, is optimized.

Although GNNs have achieved outstanding performance in many tasks, a major drawback is their lack of interpretability. The last five years have witnessed a huge growth in the definition of techniques for explaining deep neural networks [START_REF] Burkart | A survey on the explainability of supervised machine learning[END_REF][START_REF] Molnar | Interpretable machine learning[END_REF], particularly for image and text data. However, the explainability of GNNs has been much less explored. Two types of approaches have recently been proposed and have gained certain visibility. Methods based on perturbation [START_REF] Luo | Parameterized explainer for graph neural network[END_REF][START_REF] Ying | GNNExplainer: Generating explanations for GNNs[END_REF] aim to learn a mask seen as an explanation of the model decision for a graph instance. They obtain the best performance for instance explanation. It appears that such masks can lead to unreliable explanations, and most importantly, can lead to misleading interpretations for the end-user. One can be tempted to interpret all the nodes or features of the mask as responsible for the prediction leading to wrong assumptions. An example of misleading interpretations is when a node feature is perceived as important for the GNN prediction, whereas there is no difference between its distribution within and outside the mask. XGNN (Yuan et al., 2020a) aims at providing model-level explanations by generating a graph pattern that maximizes a GNN output label. Yet, this method assumes that there is a single pattern for each target which is not the case in practice when dealing with complex phenomena. Moreover, these two types of methods query the GNN with perturbed input graphs to evaluate their impact on the GNN decision and build their masks from the model output. They do not study the internal mechanisms of the GNNs, especially the different embedding spaces produced by the graph convolutions, while we are convinced that the study of GNN activation vectors may provide new insights on the information used by GNN to achieve the classification of graphs.

In this paper, we consider GNNs for graph classification. We introduce a new method, called INSIDE-GNN, that aims at discovering activation patterns in each hidden layer of the GNN. An activation pattern captures a specific configuration in the embedding space of a given layer that is considered important in the GNN decision, i.e., discriminant for an output label. The problem is therefore not only to discover highly discriminant activation sets but also to provide a pattern set that covers all the input graphs. To this end, we define a measure, rooted in the FORSIED framework [START_REF] Bie | An information theoretic framework for data mining[END_REF] to quantify the quality of a pattern with respect to specified background knowledge available about the embedding space. This background knowledge is iteratively updated with the new information acquired during the mining process, which allows INSIDE-GNN to identify a set of non-redundant activation patterns for each hidden layer. The activation pattern set can then support instance-level explanations as well as providing insights about the hidden features captured and exploited by the GNN. illustrates the main steps of the proposed method. From a trained GNN model and a set of graphs (ideally following the same distribution as the training set),

(1) we retrieve, for each hidden layer, the embedding of the graph nodes as well as the model decision.

(2) INSIDE-GNN derives the background model that represents the probability of each embedding component to be activated for a node.

(3) This model is used to discover the most informative activation pattern. (4) The background model is updated in order to consider the latter discovered patterns that are added to the pattern set (5). Steps (2-5) are repeated until no more informatives patterns are obtained or early termination conditions are reached. (6) The activation pattern set is then used to provide instance-level explanations. To this end, several mask strategies involving nodes that support activation patterns are devised. (7) For each activation pattern, we use exploratory analysis techniques (e.g., subgroup discovery on graph proposition-alization, subgraph mining) to characterize the nodes supporting the patterns and provide interpretable insights on what the GNN really captures.

Our main contributions are as follows. After discussing the most important related work in Section 2 and introducing the novel problem of mining activation pattern sets in Section 3, we devise a branch-and-bound algorithm that exploits upper-bound-based pruning properties to discover such patterns. We explain how we characterize the activation patterns with graph properties in Section 4. We report an empirical evaluation in Section 5 which studies the performance and the potential of the proposed approach for providing instancelevel explanations or insights about the model. INSIDE-GNN is compared against SOTA explanation methods and outperforms them by up to 200%. We also study the characterization of activation patterns thanks to interpretable pattern languages. We demonstrate that this allows to obtain good summaries of the hidden features captured by the GNN. Based on this, we eventually compare our approach against a model-level explanation method.

Related work

GNNs are attracting widespread interest due to their performance in several tasks as node classification, link prediction, and graph classification [START_REF] Wu | IEEE transactions on neural networks and learning systems Wu[END_REF]. Numerous sophisticated techniques allow to improve the performance of such models as graph convolution [START_REF] Kipf | Semi-supervised classification with GCN[END_REF], graph attention [START_REF] Velickovic | Graph attention networks[END_REF], and graph pooling [START_REF] Wang | Second-order pooling for graph neural networks[END_REF]. However, few researchers have addressed the problem of the GNN explainability compared to image and text domains where a plethora of methods have been proposed [START_REF] Burkart | A survey on the explainability of supervised machine learning[END_REF][START_REF] Molnar | Interpretable machine learning[END_REF]. As stated in (Yuan et al., 2020b), existing methods for image classification models explanation cannot be directly applied to not grid-like data: the ones based on the computation of abstract images via back-propagation [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF] would not provide meaningful results on discrete adjacency matrices; those that learn soft masks to capture important image regions [START_REF] Olah | Feature visualization[END_REF] will destroy the discreteness property when applied to a graph.

Nevertheless, there have been some attempts to propose methods for explaining GNNs in the last three years. Given an input graph, the instance-level methods aim at providing input-dependent explanations by identifying the important input features on which the model builds its prediction. One can identify four different families of methods. (1) The gradient/feature-based methodswidely applied in image and text data -use the gradients or hidden feature map values to compute the importance of the input features [START_REF] Baldassarre | Explainability for GCNs[END_REF][START_REF] Pope | Explainability methods for GCN[END_REF]. (2) The perturbation-based methods aim at learning a graph mask by investigating the prediction changes when perturbing the input graphs. GNNExplainer [START_REF] Ying | GNNExplainer: Generating explanations for GNNs[END_REF] is the seminal perturbation based method for GNNs. It learns a soft mask by maximizing the mutual information between the original prediction and the predictions of the perturbed graphs. Similarly, PGExplainer [START_REF] Luo | Parameterized explainer for graph neural network[END_REF] uses a generative probabilistic model to learn succinct underlying structures from the input graph data as explanations. (3) The surrogate methods explain an input graph by sampling its neighborhood and learning an interpretable model. GrapheLime [START_REF] Huang | Graphlime: Local interpretable model explanations for GNNs[END_REF] thus extends the LIME algorithm [START_REF] Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] to GNN in the context of node classification. It uses a Hilbert-Schmidt Independence Criterion Lasso as a surrogate model. However, it does not take into account the graph structure and cannot be applied to graph classification models. PGM-Explainer [START_REF] Vu | Pgm-explainer: Probabilistic graphical model explanations for graph neural networks[END_REF] builds a probabilistic graphical model for explaining node or graph classification models. Yet, it does not allow to take into consideration edges in its explanations. These surrogate models can be misleading because the user tends to generalize beyond its neighbourhood an explanation related to a local model. Furthermore, the identification of relevant neighborhood in graphs remains challenging. Finally, (4) the decomposition-based methods [START_REF] Pope | Explainability methods for GCN[END_REF][START_REF] Schnake | XAI for graphs[END_REF] start by decomposing the prediction score to the neurons in the last hidden layer. Then, they back-propagate these scores layer by layer until reaching the input space. XGNN (Yuan et al., 2020a) proposes to provide a model-Level explanation of GNNs by training a graph generator so that the generated graph patterns maximize the prediction of the model for a given label. However, it relies on a strong assumption: each label is related to only one graph generator which is not realistic when considering complex phenomena. This is further discussed in Section 5 based on some empirical evidence.

GNNExplainer, PGExplainer, and PGM-Explainer are the methods that report the best performance on many datasets. We will compare our contribution against these methods in the experimental study. Nevertheless, these methods have some flaws when used in practice. Discretizing the soft mask (i.e., selecting the most important edges) requires choosing a parameter k which is not trivial to set. Besides, based on such a mask, the explanation may be misleading because the user is tempted to interpret what is retained in the mask as responsible for the decision, and this, even if a node label appears both inside and outside the mask.

Our method aims to mine some activation patterns in the hidden layers of GNNs. There exists in the literature some rule extraction methods for DNNs [START_REF] Tran | Deep logic networks: Inserting and extracting knowledge from deep belief networks[END_REF], but not for GNNs. For example, [START_REF] Tran | Deep logic networks: Inserting and extracting knowledge from deep belief networks[END_REF]) mine association rules from Deep Belief Networks. Still, their approach suffers from an explosion of the number of patterns, which makes the results of frequency-based rule mining mostly unusable in practice. Also, with its focus on DBNs, the method is not directly applicable to standard GNNs.

INSIDE-GNN method 3.1 Graph Neural Networks

We consider a set of graphs G that are classified in two categories {c 0 , c 1 } by a GNN: GNN : G→ {c 0 , c 1 }. The GNN takes decisions at the level of each graph on the basis of vectors computed at the level of the nodes. For each node, egographs of increasing radii are embedded in the Euclidean space in such a way that similar ego-graphs are associated to similar vectors. More precisely, we consider Graph Convolutional Networks (GCN) [START_REF] Kipf | Semi-supervised classification with GCN[END_REF]) that compute vectors h v associated to the ego-graph centered at vertex v with radius , recursively by the following formula:

h v = ReLU   W • w∈N (v) e w,v √ d v d w h -1 v   , d v = w∈N (v)
e v,w .

h 0 v is the initial feature vector for node v. N (v) is the set of neighboring nodes of v including v, e v,w is the weight of the edge between nodes v and w, ReLU is the rectified linear activation function, and W are the parameters learnt during the training phase of the model. Each vector is of size K and varies from 0 up to L (the maximum number of layers). Thus, K and L are two hyperparameters of the GNN which in our study are fixed as we consider already trained models.

For a trained GNN, the vectors h v capture the key characteristics of the corresponding graphs on which the classification decision is made. When one of the vector components is of high value, it plays a role in the decision process. More precisely, activated components of the vectors -those for which (h v) k > 0 -are combined by the neural network in a path leading to the decision. For a given layer , the activated components of h v correspond to the part of the ego-graph centered at v and of radius that trigger the decision. Therefore, we propose in the following to identify the sets of components that are activated in a discriminatory manner with respect to the decision taken by the GNN.

Subjective subgroup sets of co-activated vector components

We propose to adopt a subgroup discovery approach to identify sets of vector components that are mostly activated in the graphs having the same GNN decision. We say that a pattern

A ⊆ A = {(h) k , k ∈ 1 . . . K} is co-activated for a graph g i = (V i , E i) ∈ G if it contains at least one node for which the pattern components are co-activated, that is to say iff ∃v ∈ V i such that ∀(h) k ∈ A , (h v) k > 0. The graphs for which A is co-activated form the support of A : supp(A , G) = {g i = (V i , E i) ∈ G | ∃v ∈ V i such that ∀(h) k ∈ A , (h v) k > 0} .
Hence, activated patterns are more interesting if their supports are largely homogeneous in term of GNN decisions, i.e. the graphs of the support are mainly classified either in class c 0 or in class c 1 . We propose to measure the interestingness of these patterns in a subjective manner. It makes possible to take into account a priori knowledge on activation components, but also to perform an iterative extraction of the patterns and thus limiting the redundancy between them. These notions are explained below.

Subjective activation patterns

We build our interestingness measure on the FORSIED framework (De [START_REF] Bie | An information theoretic framework for data mining[END_REF]) that proposes to measure the subjective interest of a pattern using information theory to quantify both its informativeness and its complexity. Intuitively, the information content (IC) of an activation pattern should increase when its components are unusually activated for the nodes in the graphs of its support (it is unlikely that these components are activated when considering a random node, while this probability increases when considering graphs supporting the pattern). Thus, if we are able to estimate the probability P ((h) k , v) that the component (h) k is activated for a node v, we can evaluate the interest of a pattern by the length of the code for communicating it to the user using the sum of -log(P ((h) k , v)) over all (h) k in the pattern and v, an activated node in its support graphs. The more probable the pattern -and therefore the less interesting -the shorter the code. As there may exist several nodes activated in a single graph, we choose the one that maximizes the negative log probability of the pattern with respect to the background distribution P :

IC(A , G) = gi=(Vi,Ei)∈supp(A ,G) max v∈Vi - (h) k ∈A log(P ((h) k , v))
To compute the initial background distribution P , we assume that the prior knowledge the user has is: the frequency of activation of each component on the nodes of the graphs P ((h) k , .); and for each vertex, the average number of activated components P (., v). P ((h) k , v) is then coerced by two constraints

1 | i V i | v∈∪iVi P ((h)k, v) = P ((h) k , .) , 1 |K| K k=1 P ((h) k , v) = P (., v) .
However, these constraints do not completely specify the probability matrix. Among all the probability distributions satisfying these constraints, we choose the one with the maximum entropy. Indeed, any distribution P with an entropy lower than the maximum entropy distribution effectively injects additional knowledge, reducing uncertainty unduly. The explicit mathematical MaxEnt model solution can be found in [START_REF] Bie | Finding interesting itemsets using a probabilistic model for binary databases[END_REF].

A pattern with a large IC is more informative, but it may be more difficult for the user to assimilate it, especially when its description is complex. To avoid this drawback, the pattern IC is contrasted by its description length which measures the complexity of communicating the pattern to the user. The higher the number of components in A , the more difficult to communicate it to the user. Therefore, we propose to measure the description length of an activation Algorithm 1: INSIDE-GNN(D, s, nbP att)

Input: D the activation matrix, s is the sign to specify the type of subgroup searched, nbP att the number of patterns. Output: output, the up to nbPatt best activation subgroups w.r.t.

SI SG(A , s).

1 output ← ∅, minSI ← ∞ 2 Stack ← [|A |], A ← ∅, A.P ot ← A , Stack[0] ← A 3 P ← Compute M odel(D) 4 while ((|output| < nbP att) and (minSI > 0)) do 5 A, minSI ← INSIDE-SI(D, Stack, P , s, minSI, 0) 6 output ← output ∪ A 7 Update Model(P,A)
pattern by DL(A) = α(|A |) + β with α the cost for the user to assimilate each component and β a fixed cost for the pattern. We set β = 1 and α = 0.6, as the constant parameter β does not influence the relative ranking of the patterns, and with a value of 1, it ensures that the DL value is greater than 1. With α = 0.6, we express a slight preference toward shorter patterns. Hence, the subjective interestingness measure of an activation pattern is defined as the trade-off between IC and DL:

SI(A , G) = IC(A , G) DL(A) .

Subjective activation subgroups

The subjective interestingness measure can be adapted to evaluate the quality of a subgroup, that is to say the fact that a pattern is specific to a GNN decision.

If we denote by G 0 (resp. G 1) the graphs g i ∈ G such that GNN(g i) = c 0 (resp. GNN(g i) = c 1), the subjective interest of a subgroup can be evaluated by SI SG(A , 0) = ω 0 SI(A , G 0) -ω 1 SI(A , G 1). Similarly, we have SI SG(A , 1) = ω 1 SI(A , G 1) -ω 0 SI(A , G 0). The weights ω 0 and ω 1 are used to counterbalance the measure in unbalanced decision problems. The rational is to reduce the SI values of the majority class. We set

ω 0 = max(1, |G 1 | |G 0 |) and ω 1 = max(1, |G 0 | |G 1 |).

Iterative extraction of subjective activation subgroups

We propose to compute the subjective activation subgroups with an enumerateand-rank approach. It consists to compute the pattern A with the largest SI SG(A , 1) value (resp. SI SG(A , 0)) and to integrate it in the background distribution P to take into account this newly learnt piece of information. Algorithm 1 sketches the method. First, it computes (line 3) the background model P from the activation matrix D. Then, in a loop (lines 4 to 7), it computes iteratively the subgroup A having the best SI SG(A , s) value (with s the sign of the subgroup). Then, the best subgroup is used to update the model P (line 7). Indeed, once the pattern A is known, its subjective interest falls down to 0. This consists in setting the corresponding probabilities to 1. Algorithm 2 presents INSIDE-SI that computes the best subgroup given the background distribution P . It considers a pattern A stored in the stack at depth depth. A has 5 attributes: A.P ot, the components that can be further added to A during the enumeration process, A.G s (resp. A.G 1-s) the set of graphs from G s (resp. G 1-s) that support A, and A.T G s (resp. A.T G 1-s) the set of graphs that are supporting A and all its descendants (there is a node in these graphs that activates all the components of A ∪ A.P ot). Then, it computes the closure of A using the function φ. It consists in adding components to A as long as the set A.G s stays unchanged. Furthermore, if a component has been removed from A on line 12 but can be added later to A, A is not closed and the recursion stops. If a graph of A.G s supports the pattern A ∪ A.P ot, then it belongs to A.T G s . A second criterion based on an upper bound U B SI makes the recursion stop if its value is less that the one of the current best found subgroup. It relies on the following property.

Property 1 ∀B such that A ⊆ B, we have SI SG(B, s) ≤ U B SI(A, P, s) with

U B SI(A, P, s) = w s g∈A.G s max v∈Vg h∈A∪A.P ot P (h, v) α(|A|) + β -w 1-s g∈A.T G 1-s max v∈Vg h∈A P (h, v) α(|A ∪ A.P ot|) + β
Proof 1 To upper bound the measure SI SG(B, s), we follow the strategy explained in [START_REF] Cerf | Closed patterns meet nary relations[END_REF]. Let

SI SG(B, s) = w s X Y 1 -w 1-s Z Y 2 with • X = IC(B, G s) = gi=(Vi,Ei)∈supp(B,G s) max v∈Vi -h∈B log(P (h, v)); • Y 1 = Y 2 = DL(B) = α(|B|) + β; • Z = IC(B, G 1-s) = gi=(Vi,Ei)∈supp(B,G 1-s) max v∈Vi -h∈B log(P (h, v)).
Similarly, we denote the upper bound function by

U B SG(B, s) = w s γ δ -w 1-s η .
We have B ⊆ A ∪ A.P ot. Therefore, in the worst case, we have:

• X that is computed over A∪A.P ot, and all the graphs from G s that support A, also support A∪A.P ot and γ = g∈A.G s max v∈Vg h∈A∪A.P ot P (h, v);

• Y 1 that, in the worst case, has the value α(|A|) + β, denoted δ (more elements in B will decrease the fraction value);

• Z that, in the worst case, is computed over A, and on the graphs from G s that support A and all its descendants (A.T G 1-s) = g∈A.T G 1-s max v∈Vg h∈A P (h, v);

• Y 2 that,

Activation pattern characterisation

Once the activation patterns are found, we aim to describe them in an intelligible and accurate way. We believe that each activation pattern can be linked to hidden features of the graphs, that are captured by the model as being related to the class to be predicted. The objective here is to make these features explicit. For this, we seek to characterize the nodes that support the activation pattern, and more precisely to describe the singular elements of their neighborhoods. Many pattern domains can be used to that end. In the following, we consider two of them: one based on numerical descriptions and the other one based on common subgraphs. In order to characterize the subgraphs centered on the nodes of the activation pattern support (called ego-graphs) in a discriminating way compared to the other subgraphs, we adopt an approach based on subgroup discovery.

Numerical subgroups

In this approach, we propose to describe each node that supports a given activation pattern by some topological properties1 . We choose to consider its degree, its betweenness centrality value, its clustering-coefficient measure, and the number of triangles it is involved in, as characteristic features. These properties can be extended to the whole ego-network by aggregating the values of the neighbors. We consider two aggregation functions: the sum and the mean. Thanks to these properties, we make a propositionalization of the nodes of the graphs and we consider as target value the fact that the node belongs to the support of the activation pattern (labeled as a positive example) or not (labeled as a negative example). To identify the specific descriptions of the support nodes, we propose to use a subgroup discovery method in numerical data. It makes it possible to find restrictions on numerical attributes (less or greater than a numerical value) that characterize the presence of a node within the support of the activation pattern.

Graph subgroups

Another approach consists to characterize activation patterns by subgraphs that are common among positive examples in contrast to the negative ones. To this end, we consider as positive examples the ego-networks (with a radius equal to the layer) of nodes that support the activation pattern of interest. By taking the radius into account, we are not going beyond what the model can actually capture at this layer. The negative examples are the graphs in G for which none of their vertices support the activation pattern.

Quality measure and algorithms

As for the identification of activation patterns, we could have used subjective interestingness measure to characterize the supporting ego-graphs of the activation patterns. However, we opt for a more usual measure, the Weighted Relative Accuracy [START_REF] Lavrač | Rule evaluation measures: A unifying view[END_REF]:

W RAcc(P, c +) = supp(P, D) |D| supp(P, D +) supp(P, D) - |D + | |D| ,
in order to be able to use off-the-shelf algorithms to discover the best subgroups.

For the numerical subgroups, we use Pysubgroup library [START_REF] Lemmerich | pysubgroup: Easy-to-use subgroup discovery in python[END_REF]. For graph subgroup dicovery, we integrate the WRAcc measure into the GSPAN algorithm [START_REF] Yan | gspan: Graph-based substructure pattern mining[END_REF]. As W RAcc measure is not anti-monotone, we use the following upper-bound instead of the W RAcc for pruning:

Experimental study

In this section, we evaluate INSIDE-GNN through several experiments. We first describe synthetic and real-world datasets and the experimental setup. Then we present a quantitative study of the patterns provided by INSIDE-GNN. Next, we show the experimental results on explanations of graph classification against several SOTA methods. Finally, we report results on the characterization of activation patterns by human understandable descriptions of what GNN models capture. INSIDE-GNN has been implemented in Python and the experiments have been performed on a machine equipped with 8 Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz cores 126GB main memory, running Debian GNU/Linux. The code and the data are available2 .

Datasets and experimental setup

Experiments are performed on six graph classification datasets whose main characteristics are given in Table 1. BA2 [START_REF] Ying | GNNExplainer: Generating explanations for GNNs[END_REF] is a synthetic dataset generated with Barabasi-Albert graphs and hiding either a 5-cycle (negative class) or a "house" motif (positive class). The other datasets (Aids [START_REF] Morris | Tudataset[END_REF], BBBP (Wu et al., 2017), Mutagen [START_REF] Morris | Tudataset[END_REF], DD [START_REF] Dobson | Distinguishing enzyme structures from nonenzymes without alignments[END_REF], Proteins [START_REF] Borgwardt | Protein function prediction via graph kernels[END_REF]) depict real molecules and the class identifies important properties in Chemistry or Drug Discovery (i.e., possible activity against HIV, permeability and mutagenicity). A 3-convolutional layer GNN (with K = 20) is trained on each dataset. INSIDE-GNN mines the corresponding GNN activation matrices to discover subjective activation pattern set. We extracted at most ten patterns per layer and for each output value, with a SI SG value greater than 10. The execution time ranges from few minutes for simple task (i.e., synthetic graphs) to two days for more complex ones (i.e., DD). It shows the feasibility of the proposed method. Notice that this process is performed only once for each model. We used the discovered patterns as features to described the input graphs and learnt a decision tree to mimic the GNN output. The resulting accuracy measures exhibit very good performance. Obviously, we do not provide an interpretable model yet, since the decision tree is based on the patterns that capture sets of activations of the GNN. Nevertheless, the results demonstrate that the pattern set returned by INSIDE-GNN captures the inner workings of GNNs well. The general characteristics of the activation patterns for each dataset are provided in Figs. 2345. One can observe -in Fig. 2 -that a pattern is usually supported by more than one vertex within a graph. Patterns from the first layer of the GNN tend to involve a higher number of vertices than those in the following layers. It may be due to the fact that the first layer captures some hidden common features about the direct neighborhood of the vertices. The features captured by the GNN become more discriminant with layer indexes, Table 2: Execution time, number of discovered patterns by INSIDE-GNN and the ability of the pattern set to mimic GNN (the accuracy on a test set of 20% of the data, of a simple decision tree using patterns as features to predict the model output y i . The closer Acc(DT P , y i) to 1, the better the mimicry.) as evidenced by the increasing SI SG score with layers in Fig. 4. For certain datasets (e.g., BA2, AIDS, DD, Proteins), some patterns have high discriminative power for the positive class (bottom right corner in Fig. 5) or the negative class (top left corner). Their discriminative power is less effective for Mutagen and BBBP datasets. The most discriminant patterns come from the last layer of the GNN. Some patterns are not discriminant (i.e., around the diagonal) but remains subjectively interesting. These patterns uncover activations that capture general properties of the studied graphs. It is important to note that we study here the discriminative power of a pattern according to its presence in graphs. These patterns can be more discriminant if we take into account the number of occurrences of the patterns in the graphs. For instance, a pattern that is not discriminant can becomes highly discriminant if we add a condition on its number of occurrences in graph, as we did when learning the decision trees in Table 2.

Comparison with competitors for explainability of GNN output

We now assess the ability of activation patterns to provide good explanations for the GNN decisions. According to the literature, the best competitors are GNNExplainer [START_REF] Ying | GNNExplainer: Generating explanations for GNNs[END_REF], PGExplainer [START_REF] Luo | Parameterized explainer for graph neural network[END_REF] and PGM-Explainer [START_REF] Vu | Pgm-explainer: Probabilistic graphical model explanations for graph neural networks[END_REF]. We consider all of them as baseline methods.

Furthermore, we also consider a gradient-based method [START_REF] Pope | Explainability methods for GCN[END_REF] , denoted Grad, even if it has been shown that such method is outperformed by the three others. Therefore, we compare INSIDE-GNN against these 4 singleinstance-explanation methods in our experiments.

Evaluating the reliability of an explanation is not trivial due to the lack of ground truths. In our case, only BA2 is provided with ground truths by construction. When we have ground truths, we expect a good explanation to match it perfectly, but sometimes the model captures a different explanation that is just as discriminating. Moreover, if fully present, ground truths contain only simple relationships (e.g., BA2) which are not sufficient for a full assessment. Therefore, to be able to consider synthetic and real-world datasets, we consider a ground truth free metric. We opt for Fidelity [START_REF] Pope | Explainability methods for GCN[END_REF] which is defined as the difference of accuracy (or predicted probability) between the predictions on the original graph and the one obtained when masking part of the graph based on the explanations:

F id acc = 1 N × N i=1 (1 -δ (ŷ g i \m i i =yi)),
where y i is the original prediction of graph g i , m i is the mask and g i \ m i is the complementary mask, ŷgi\mi i is the prediction for the complementary mask and δ (ŷ g i \m i i =yi) equals 1 if both predictions are equal. The fidelity can also be measured by studying the raw probability score given by the model for each class instead of the accuracy:

F id prob = 1 N × N i=1 (f (g i) yi -f (g i \ m i) yi),
with f (g) yi is the prediction score for class y i . Similarly, we can study the prediction change by keeping important features (i.e., the mask) and removing the others as Infidelity measures do:

Infid acc = 1 N × N i=1 (1 -δ (ŷ m i i =yi)) Infid prob = 1 N × N i=1 (f (g i) yi -f (m i) yi).
The higher the fidelity, the lower the infidelity, the better the explainer.

Obviously, masking all the input graph would have important impact to the model prediction. Therefore, the former measures should not be studied without considering the Sparsity metric that aims to measure the fraction of graph selected as mask by the explainer:

Sparsity = 1 N N i=1 1 - |m i | |g i | ,
where |m i | denotes the size of the mask m i and |g i | is the size of g i (the size includes the number of nodes, of edges and the attributes associated to them).

Based on these measures, a better explainability method achieves higher fidelity, lower infidelity while keeping a sparsity close to 1. We devise four policies to build a mask from an activation pattern:

(1) node: the simplest policy which takes only the nodes that are covered by the activation pattern and the edges adjacent to these nodes.

(2) ego: the ego-graphs of radius centered on activated nodes, with the layer associated to the pattern.

(3) decay: a continuous mask with a weight associated to the edges that depends on the distance of its end-points to the activated nodes: d(v, a) the geodesic distance between nodes v and a and w (u,v) = w u + w v .

w v = a∈V A 1 2 1+d(v,a) if d(v, a) ≤ , 0 otherwise with V A the set of activated nodes,
(4) top k: a discrete mask containing only the k edges from decay mask with the highest weights (k = 5 or k = 10 in our experiments).

For each policy, we select the mask (and the related pattern) that maximises the fidelity. As GNNExplainer and PGExplainer provide continuous masks, we report, for fair comparisons, the performance with both continuous and discrete masks built with the k best edges. Note that the average time to provide an explanation ranges from 8ms to 84ms for INSIDE-GNN. This is faster than PGM-Explainer (about 5s), GNNExplainer (80ms to 240ms) and Grad (300ms). It remains slightly slower than PGExplainer (6ms to 20ms). Table 3(a) summarises the performance of the explainers based on the Fidelity measures. Results show that INSIDE-GNN outperforms the baselines regardless of policy. On average, the gain of our method against the best baseline is 231% for F id prob and 207% for F id acc . These results must be analysed while considering the sparsity (see Table 3(c)). In most of the cases, INSIDE-GNN provides sparser explanation than the baselines. Furthermore, at equal sparsity (top k), INSIDE-GNN obtains higher fidelity values than both competitors. Notice that PGM-Explainer fails on BA2 because this dataset does not have labeled nodes and this method investigate only the nodes of the graphs. We provide additional information on the Fidelity in Table 4. The Fidelity aims to measure the percentage of times that a model decision is changed when the input graphs is obfuscated by the mask m. In Table 4, we report a polarized version of the Fidelity for which we count the number of changes between the two possible decisions of the model. For instance, F -→+ measures the percentage of graphs initially classified as 'false' by the model that become classified as 'true' when obfuscating the graph with a mask. We can observe a dissymmetry between the class changes. As an example, INSIDE-GNN has a perfect fidelity on BA2 and DD when considering only the positive examples, i.e., the mask provided by INSIDE-GNN makes the model change its decision. When dealing with the negative examples, we obtain much lower score. Intuitively, some class changes cannot be done by only removing some vertices or edges. Regarding BA2, it is impossible to obtain a house motif from a cycle without adding an edge to form a triangle.

The quality of the explanations are also assessed with the Infidelity metrics in Table 3(b). INSIDE-GNN achieves excellent performance on BA2. On the other datasets, INSIDE-GNN is outperformed by GNNExplainer. INSIDE-GNN obtain similar scores or outperforms the other competitors (i.e., PGExplainer, PGM-Explainer, Grad) at equal sparsity on most of the datasets. Notice that, in these experiments, we made the choice to build mask based on a single activation pattern which is not enough to obtain fully discriminant mask for complex datasets. This is in agreement with what we observed in Fig. 5. We have no fully discriminant activation pattern for the positive and negative classes. Hence, it would be necessary to combine activation patterns to build a more discriminant mask and thus better optimise the Infidelity.

Model insights via the (re)description of activation patterns

We argue that activation patterns also help provide insight into the model, especially what the GNN model captures. As discussed in Section 4, this requires characterizing the nodes (and their neighborhood) that support a given activation pattern. In this experimental study, we investigate the obtained numerical subgroups for BA2 and the subgraph characterizing the activation patterns retrieved for Mutagen, BBBP and Aids datasets.

Numerical subgroups

Each node can be easily described with some topological properties (e.g., its degree, the number of triangles it is involved in). Similarly, we can describe its neighborhood by aggregating the values of the neighbors. Thanks to such properties, we make a propositionalization of nodes of the graphs. Considering the two most discriminant activation patterns3 , we use a subgroup discovery algorithm to find the discriminating conditions of the nodes supporting these two patterns. We report the description in terms of numerical subgroups of the activation patterns in Table 5. It is important to note that even if some activation patterns were found as subjectively interesting according to a specific output of the model, they may capture some general properties of the BA2 graph that are not so specific of one of the classes. For instance, the second subgroup is related to the positive class (i.e., house motif) but what it captured is not specific to house motif (degree=2, absence of triangle).

Subgraph patterns

Similarly, we can characterize activation patterns with subgraph patterns. We investigate the interest of such pattern language for three datasets: Aids, BBBP and Mutagen. In The subgraphs obtained for Mutagen dataset are summarised in Fig. 8. For each layer and decision, we display the subgraphs whose WRAcc is greater than 0.1 layer by layer. The negative class is related to mutagenic molecules. Several things can be observed from this figure. First, some subgraphs are known as toxicophores or fragment of toxicophores in the literature [START_REF] Kazius | Derivation and validation of toxicophores for mutagenicity prediction[END_REF]. For instance, the subgraph with two hydrogen and one azote atoms is a part of an aromatic amine. Similarly, the subgraph with one azote and two oxygen atoms is an aromatic nitro. The subgraph involving 6 carbon atoms is a fragment of a bay region or a k-region. Second, some subgraphs appear several times. It means that several activation patterns are described with the same subgraphs. This can be explained in several ways. Neural networks are known to have a lot of redundant information, as evidenced by the numerous papers in the domain that aim to compress or simplify deep neural networks [START_REF] Chen | Constraint-aware deep neural network compression[END_REF][START_REF] Pan | Dropneuron: Simplifying the structure of deep neural networks[END_REF][START_REF] Pasandi | Modeling of pruning techniques for deep neural networks simplification[END_REF][START_REF] Xu | Deep neural network compression with single and multiple level quantization[END_REF]. Accordingly, this is not surprising to have several parts of the GNN that are similar and described by the same subgraphs. Notice that this problem could be an interesting perspective for our work. Another explanation is that the subgraphs well describe the hidden features captured by the GNN but from different perspective, i.e., the center is different. For instance, for a simple chemical bond C-N, one may have the same graph with one centered in C and the other in N. A last explanation could be that the subgraph language is not enough powerful to capture the subtle differences between the activation patterns. Once again, the definition of more sophisticated and appropriate languages to describe the hidden features captured by the GNN is a promising perspective of research.

These latter experiments show that INSIDE-GNN represents a valuable alternative to GNN explainability methods. In addition to providing single instance explanations, INSIDE-GNN can provide insights about what the GNN perceives. Especially, it allows to build a summary of the hidden features captured by the model (e.g., Fig. 8). In relation to this, our method is quite analogous to model explanation methods such as XGNN (Yuan et al., 2020a). This deserves a discussion and a comparison with XGNN.

Comparison to XGNN

XGNN (Yuan et al., 2020a) is a method rooted in reinforcement learning that generates graphs that maximise the model decision for a given class. For Mutagen, we generate 20 graphs for each class with a maximum size equal to 6. Considering the 40 generated graphs, we observe that only one of them is a subgraph of at least one graph of the dataset. The other graphs have on average 60% of partial inclusion: the maximum common subgraph with molecules from Mutagen uncovers 60% of a generated graph. Therefore, we can conclude that XGNN generates graphs that are not enough realistic. The only graph that appears within the dataset involves a carbon atom bonded to 2 others carbon atoms and one hydrogen atom. With INSIDE-GNN, we obtained two subgraphs characterizing some activation patterns that are super-graphs of this one (see Fig. 8). Notice that, we also found this subgraph for some activation patterns. We did not report it in Fig. 8 because its WRAcc value is lower than 0.1. Nevertheless, this graph appears in 21100 ego-graphs in the dataset. It describes a fragment of molecule that is very common. One can wonder if such a fragment can be mutagenic or if XGNN has just captured it a biased of the GNN. Furthermore, XGNN has generated graphs that are not planar, which is not common in Chemistry. Based on these evidences, we argue that XGNN does not return realistic graphs while our approach -by construction -provides subgraphs from the dataset.

We search for each pattern produced by INSIDE-GNN the closest pattern in XGNN according to the Graph Edit Distance (GED) and vice versa. We note that the previously described prototype graph (i.e., 3 carbons and 1 hydrogen) is found in most of the cases as being the closest to the patterns produced by INSIDE-GNN. In average, the distance between each XGNN prototype and the closest pattern of INSIDE-GNN is 4.6 while the mean distance between INSIDE-GNN subgraphs and the closest from XGNN is 3.7. This is rather important since the graphs provided by XGNN have at most 6 nodes.

We believe that a model decision for a class cannot be summarized into a single prototype. Several different phenomena can lead to the same class. Furthermore, as we observed, this can lead to unrealistic prototype even if domain knowledge is integrated within the graph generation. INSIDE-GNN allows to have deeper insights from the GNN by considering each hidden feature separately.

Discussion and Conclusion

We have introduced a novel method for the explainability of GNNs. INSIDE-GNN is based on the discovery of relevant activation patterns in each hidden layer of the GNN. Prior beliefs are used to assess how contrastive a pattern is. We have proposed an algorithm that efficiently and iteratively builds a set of activation patterns, limiting the redundancy between them. Extensive empirical results on several real-world datasets confirm that the activation patterns capture interesting insights about how the internal representations are built by the GNN. Based on these patterns, INSIDE-GNN outperforms the SOTA methods for GNN explainability. Furthermore, the consideration of pattern languages involving interpretable features (e.g., numerical subgroups on node topological properties, graph subgroups) is promising since it makes possible to summarise the hidden features built by the GNN through its different layers.

This paper opens up several avenues for research such as the consideration of several layers in activation patterns which implies to carefully model the related priors to deal with redundancy issues. Assessing explanations without ground truth is not trivial. Our experimental evaluation relies on Fidelity, Infidelity and Sparsity metrics. Fidelity assumes that the GNN decision would change if key part of the graphs are removed. However, it is not always the case in practice. For instance, it is difficult to obtain a toxic molecule from a non-toxic one by only removing some atoms. That would be interesting to investigate other evaluation measures that take into account the negation (i.e., absence of important features) and evaluation measures based on the addition of subgraphs. Nevertheless, even with simple activation patterns based on activation conjunctions, our experiments witness the effectiveness of local pattern sets to capture the hidden features built by the GNN. We believe that more sophisticated pattern languages are possible for GNNs. For instance, we observed that taking into account the number of occurrences within a graph leads to better characterizations. This can be integrated to the pattern language. Considering the absence of activation is also promising. Experiments have highlighted some redundancies in the studied GNN models. Their identification is the first step toward the general simplification of such models.

Figure 1 :

 1 Figure 1: Overview INSIDE-GNN: For each layer (1), a background model captures the activation distribution. (2) It is used to assess the interest of activation patterns (3). The most relevant pattern is used to update the background knowledge. It is then added to the pattern set (5). Steps (2-5) are repeated. The activation patterns support instance level explanations (6) or allow to provide insights on the model (7).

 sup, |D + |) |D| If min sup < |D + |, then we have U B(P, c +) = supp(P,D) |D| 1 -|D + | |D| . Since supp(P,D +) supp(P,D) ≤ 1, W RAcc(P, c +) ≤ U B(P, c +). In the other case, we have: sup -|D + |) ≤ 1 supp(P, D) (supp(P, D) -supp(P, D +)) The last inequality holds since 1 |D| ≤ 1 supp(P,D) , min sup ≤ supp(P, D), and finally |D + | ≥ supp(P, D +). Since U B is not dependent to the supp(P, D +), when |D + | is much lower than the |D|, this upper bound is not tight. We can use another upper bound which is dependent to the |D + |. Let us call this upper bound U B2: U B2(P, c +) = supp(P, D +) (P, D +) everything is constant, and supp(P, D +) is anti-monotone, U B2 is anti-monotone too. To show that U B2 is an upper bound for W RAcc, note that min sup |D| × |D + | |D| ≤ supp(P,D) |D| × |D + | |D| and the first terms of W RAcc and U B2 are equal. In our algorithm we use U B3(P, c +) = min{U B2(P, c +), U B(P, c +)} as upper bound for the W RAcc.

Figure 2 :

 2 Figure 2: Average number of supporting vertices per graph for layers 0, 1, and 2.

Figure 3 :

 3 Figure 3: Number of components per pattern for layers 0, 1, and 2.

Figure 4 :

 4 Figure 4: SI SG scores of patterns for layers 0, 1, and 2.

 Fig. 6 reports a visualisation of two graphs with activated nodes in red. The best description based on WRAcc measure of pattern p + (Fig. 6 left) and p -(Fig. 6 right) are given below. For the House motif (positive class of BA2), the nodes that support activation patterns are almost perfectly described (the WRacc equals to 0.24 while maximum value is 0.25) with the following conditions: Nodes connected to two neighbors (degree=2) that are not connected between them (clustering coefficient=0), not involved in a triangle and one of its neighbors is involved in a triangle (triangle2=1). In other words, the activation pattern captures one node of the floor of the "house motif". We have similar conditions to identify some nodes of the 5-node cycle (negative class of BA2): nodes without triangle in their direct neighborhood (clustering2=0) and whose sum of neighbors' degree (including itself) equal 7 (degree2 ∈[7:8[).

Figure 6 :

 6 Figure 6: Nodes (in red) in the support of two activation patterns that are discriminant for p + support, related to the positive target (left), and for p - support, related to the negative target (right).

Figure 7 :

 7 Figure 7: WRAcc values of subgraph subgroups related to activation patterns by layer (left column) or by both layer and model decision (right column) for Aids (first row), BBBP (second row) and Mutagen (third row).

Figure 8 :

 8 Figure 8: Characterization of activation patterns for Mutagen with discriminant subgraphs. We retain only the subgraphs with a WRAcc value greater than 0.1. Mutagenic chemicals are classified as False.

 in the worst case, has the value α(|A ∪ A.P ot|) + β, denoted η (less elements in B will decrease the value of the function); It results in the upper bound definition.If there are no more component to enumerate, and if the SI SG value of the current subgroup is better than the one already found, Best is updated as well as minSI. Otherwise, the enumeration continues by either adding a component from A.P ot to A (line 10) or not (line 12). INSIDE-SI(D, Stack, P , s, minSI, depth)

	Algorithm 2:

Input: D the activation matrix, Stack a stack of recursively enumerated patterns at depth depth, P the background distribution, s the sign of the measure, minSI a dynamic threshold on SI SG(A , s). Output: Best, the best activation subgroup w.r.t. SI SG(A , s).

1 A ← Stack[depth] 2 if ((φ(D, A) = F alse) or (U B SI(A, P, s) < minSI) then

3 return 4 if (A.P ot = ∅) then 5 if (SI SG(A, s) > SI SG(Best, s)) then 6 Best ← A, minSI ← SI SG(Best, s) 7 else 8 a ← A.P ot.pop() 9 Stack[depth + 1] ← A ∪ {a} 10 INSIDE-SI(D, Stack, P , s, minSI, depth+1) 11 Stack[depth + 1] ← A \ {a} 12 INSIDE-SI(D, Stack, P , s, minSI, depth+1) 13 return Best, minSI

Table 1 :

 1 Main characteristics of the datasets.

	val)

Dataset

#Graphs (#neg,#pos) Avg. Nodes Avg. Edges Acc. (train) Acc. (test) Acc. (

Table 2

 2

reports general indicators about the discovery of activation patterns by INSIDE-GNN.

Table 3 :

 3 Assessing the explanations with Fidelity, Infidelity and Sparsity metrics.

These attributes are computed with Networkx Python Library https://networkx.org/.

https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0

p + = {a 3 , a 6 , a 7 , a 9 , a 10 , a 15 }, |suppp(p + , G +)| =

474, |supp(p + , G -)| = 16 and p -= {a 0 , a 1 , a 2 , a 4 , a 5 , a 8 , a 11 , a 17 , a 18 , a 19 }, |supp(p -, G +)| = 137, |supp(p -, G -)| = 506