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Abstract

We present an observer for linear time-invariant (LTI) systems with measurement delay. Our design ensures that the observer error
converges to zero within a prescribed terminal time. To achieve this, we employ time-varying output gains that approach infinity at the
terminal time, which can be arbitrarily short but no shorter than the sensor delay time. We model the sensor delay as a transport partial
differential equation (PDE) and build upon the cascade ODE-PDE setting while accounting for the infinite dimensionality of the sensor.
To construct our time-varying gains, the observer design needs to be conducted in a particular system representation. For this reason, we
employ a sequence of state transformations (and their inverses) mapping the original observer error model into (1) the observer form, (2)
a sensor delay-compensated observer error form via backstepping, and (3) a particular diagonal form that is amenable to the selection of
time-varying gains for prescribed-time stabilization. Our construction of the time-varying observer gains uses (a) generalized Laguerre
polynomials, (b) elementary symmetric polynomials, and (c) polynomial-based Vandermonde matrices. A simulation illustrates the results.

Key words: Infinite dimensional systems, prescribed-time convergence, delay-compensation, observer design.

1 Introduction

Most stabilization and estimation algorithms for practical en-
gineering problems provide asymptotic convergence, yet in
many cases (e.g., multi–agent rendezvous, missile guidance,
weather forecasting) this transient process must occur within
a given time. The need to meet time constraints and increase
temporal performance has motivated finite– and fixed–
time stabilization and estimation. These enhanced stabi-
lization/estimation techniques have been extensively studied
within the framework of linear and nonlinear ordinary differ-
ential equations (ODEs) (see, e.g., [5,17,20,21,29,35,37] and
references therein). Finite–time convergence refers to a ter-
minal time which depends on the system’s initial conditions,
whereas for fixed–time convergence, the terminal time de-
pends on a bounded function of the initial conditions. More
recently, the prescribed–time convergence concept has arisen
to cope with a more demanding type of convergence, which
allows the terminal time to be prescribed independently of
initial conditions and parameters [18,19,26,41,44,47].

For partial differential equations (PDEs), these time–
enhanced concepts have become an attractive research area
since PDEs describe many complex systems (thermal and
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fluid dynamics, chemical reactions, batteries, etc). Meeting
time constraints while realizing the well–known separation
principle are central issues that can be achieved with finite–,
fixed– and prescribed–time convergence methods.

For hyperbolic PDE systems, finite–time stabilization and
estimation have been studied in, e.g., [3,8,34], and [10,11].
The latter two contributions deal with the problem of finite-
time output regulation for hyperbolic systems by using the
backstepping approach and by invoking the finite-time con-
vergent observer design introduced in [13] (which is the first
continuous, prescribed-time observer design for LTI systems,
and exploits the infinite-dimensionality of an auxiliary, de-
layed state estimate to generate a determined algebraic sys-
tem from which the exact state is reconstructed).

For linear parabolic PDEs, null controllability/finite–time
stabilization [9,15,16,42] have been achieved by using the
backstepping approach with time–varying kernels. For ab-
stract infinite–dimensional systems, [36] proposes homo-
geneity arguments to achieve enhanced stabilization.

Time–delay systems are ubiquitous in engineering, where
delays appear on the righthand side of the model dynam-
ics [33], or in the inputs, outputs and network graph com-
munication topologies as in [46]. For the latter type, expo-
nential stabilization of LTI systems with input delay is per-
formed based on predictor feedback. In [27,28], under an
ODE-PDE cascade setting, the classical predictor is related
to the backstepping approach. The backstepping PDE frame-
work for time–delay systems has been extended to deal with
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delay–adaptive control, delay compensation and estimation
problems, nonlinear systems with input delay, time–varying
delays, and distributed input delays [4,6,7]. In [38], state es-
timation with time–varying measurement delays is studied.
Other contributions deal with observer–based input/output
delays for linear systems, e.g., [48] and references therein.

Nevertheless, results for finite–, fixed– and prescribed–
time concepts for time–delay systems remain sparse. Some
pioneering contributions for time–enhanced stability of
time–delay systems are [23], [31]; more recent results
are [12], [1], [30] and [14], the latter dealing with prescribed–
time predictor control for input-delayed LTI systems. Yet
numerous applications call for enhanced estimator conver-
gence results by using delayed measurements: in meteoro-
logical and social systems, state estimation over a finite hori-
zon is highly valuable for hurricane and election forecasting,
where measurements are delayed. In such problems, control
actions may only take place at the end of the finite horizon,
so exponentially convergent estimation is insufficient.

In this work, we combine the ideas of [18], [27] and [14]
to handle the problem of estimation of LTI systems in the
presence of delayed measurements. The proposed observer
is made up of time–varying output gains whose design re-
lies on suitable polynomial–based functions blowing–up in a
prescribed time. For the prescribed–time convergence anal-
ysis and observer design, we use compact formulations us-
ing generalized Laguerre polynomials, elementary symmet-
ric polynomials, and polynomial–based Vandermonde ma-
trices. We build upon the cascade ODE–PDE setting while
taking into account the infinite dimensionality of the sensor.
We perform a series of changes of variables and design a
suitable target observer error system which exhibits the de-
sired convergence property. Due to the bounded invertibil-
ity of the related transformations, we guarantee the conver-
gence of the estimated states to the actual states, within the
prescribed terminal time, irrespective of initial conditions.
A unique feature of our design is that the convergence we
achieve is highly smooth: successive derivatives of the es-
timate errors also converge to zero, which can be useful in
applications (cf. Remark 3 for details). In contrast to [14],
the observer gains we derive necessarily differ in structure
from the ones for the dual problem (control with input de-
lay). Considering that we specialize to LTI systems, this is a
surprising feature caused by the time-varying nature of our
approach. Moreover, the approach herein omits the use of
a Volterra integral transformation (as was used in [14]); as
a consequence, we need not impose the restriction that the
terminal time exceed the delay time, as was required in [14].

This paper is organized as follows. In Section 2, we in-
troduce some preliminaries and the problem statement. In
Section 3, we recall some relevant formulas that are instru-
mental in our design, and we present the main result: the
prescribed-time observer. In Section 4, we discuss the trans-
formations employed in our design/analysis and derive the
desired prescribed-time convergence property.

Notation We denote by R+ the set of nonnegative real
numbers. For nonzero integers m and n, let 0m×n be the
(m,n)−matrix with zero entries and let Im be the identity
matrix of dimension m. For 1 ≤ p ≤+∞, the induced norm

of an (n,n)−matrix M is defined as ‖M‖p = sup{‖Mx‖p :
x ∈ R

n with ‖x‖p = 1}, where ‖x‖p denotes the p−vector
norm of x. Thus, when p = 1 (respectively p =+∞), ‖M‖p

corresponds to the maximum absolute row (respectively col-
umn) sum norm. We recall the relevant case that ‖M‖2 ≤
√

‖M‖1‖M‖∞. We denote by L
(α)
m (·) the generalized La-

guerre polynomial, by
(

n
k

)

:= n!
k!(n−k)! , k = 1, . . . ,n the bi-

nomial coefficients, and by σn(·) the elementary symmetric
polynomials. The set of all functions g : [0,h]→R

n satisfy-

ing
∫ h

0 g(x)2dx <+∞ is denoted by L2((0,h),Rn).

2 Problem statement

We consider the following general LTI plant:

Ẋ(t) = AX(t)+BU(t),

Y (t) =CX(t − h),
(1)

where t ≥ t0 ≥ 0, X ∈ R
n, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n,
with initial condition X(θ ) = X0(θ ) for all θ ∈ [t0 − h, t0],
where t0 is the initialization time and U(t) ∈R

m is the input
signal. We specialize to the single output case, i.e., p = 1.

We recall that the observability matrix is given by

O =
(

C⊤ A⊤C⊤ . . .
(

An−1
)⊤

C⊤
)⊤

, (2)

where we assume that (A,C) is an observable pair, i.e., that
rank O = n. We perform the coordinate transformation

Xob(t) = Q−1X(t), (3)

where Q = (q̃,Aq̃, . . . ,An−1q̃), with q̃ being the n-th column

of O−1. An application of (3) to (1) transforms it into the
following system in the observer form [2]:

Ẋob(t) = AobXob(t)+BobU(t),

Yob(t) =CobXob(t − h),
(4)

where Aob = Q−1AQ, Cob = CQ, and Bob = Q−1B. More
precisely,

Aob =















0 0 0 · · · −a0

1 0 0 · · · −a1

...
. . . · · ·

...

0 0 · · · 1 −an−1















, Cob =
(

0 . . . 1

)

. (5)

Our goal is to design an observer for the system (1) which
converges within the prescribed terminal time. To this end,
the methodology developed in this paper relies on represent-
ing the sensor delay as a linear transport PDE, and builds
upon the cascade ODE-PDE setting of [27, Chapter 3]. We
henceforth represent system (1) as

Ẋ(t) = AX(t)+BU(t),

ut(t,x) = ux(t,x),

u(t,h) =CX(t),

Y (t) = u(t,0),

(6)
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where t ≥ t0 ≥ 0, x ∈ [0,h], and u(t, ·) is the transport PDE
state at time t whose solution is u(t,x) =CX(t −h+ x) and,
in particular, u(t,0) =Y (t).

Under the change of coordinates (3), system (4) rewrites as

Ẋob(t) = AobXob(t)+BobU(t),

ut(t,x) = ux(t,x),

u(t,h) =CobXob(t),

Yob(t) = u(t,0).

(7)

The above observer form reformulation will be instrumental
in performing several other transformations to achieve a full
delay-compensated observer design, which we discuss next.

3 Delay-compensated prescribed-time observer

We design an observer that converges in the prescribed ter-
minal time t0 + h+T , where T ∈ R+ is a priori fixed, h is
the known sensor delay, and t0 is the initialization time.

To achieve prescribed-time convergence, we use time-
varying observer gains constructed with suitable blow-
up functions. The approach builds upon the recent ones
for prescribed-time stabilization and estimation of ODEs
[18,41], and [14], which proposes predictor feedback for
prescribed-time input delay compensation of LTI systems. In
the latter work and in [15,42], we use time-varying damping.

Consider the following blow-up function (as in [15]):

c(t) =
c̄2

0T 2

(T + t0 − t)2
, c(t0) = c̄2

0. (8)

with c̄0 > 0. As discussed in [14] and [15], the chosen power
degree of the blow-up function (8) is crucial for the conver-
gence analysis; moreover, it allows us to obtain explicit and
compact closed-form gain formulas throughout the design/-
analysis.

3.1 Generalized polynomial-based Vandermonde matrix
and time-varying gains

We consider the following time-varying matrices P(·) and
M(·) in companion canonical/observer form, respectively:

P(t) =















0 1 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−p0(t) −p1(t) −p2(t) · · · −pn−1(t)















, (9)

M(t) =















0 0 0 · · · −µ0(t)

1 0 0 · · · −µ1(t)
...
...
. . .

...

0 0 · · · 1 −µn−1(t)















, (10)

where pi−1(·), µi−1(·), i = 1 . . .n, are time-varying functions
that will be characterized below. There exists a time-varying
matrix R(·) such that

R(t)M(t) = P(t)R(t)− Ṙ(t). (11)

Indeed, R is given as follows [40]:

R(t) =















0 0 · · · 0 1

0 0 · · · 1 πn−1,n−1(t)
... . .

. ...
...

1 π1,1(t) · · · πn−2,1(t) πn−1,1(t)















, (12)

where the time-varying coefficients πi,k(·) are characterized
by the following recurrence relation

πi,k

=







−pn−1, 1 ≤ k = i ≤ n,

πi−1,k−1 − π̇i−1,k, 1 < k < i ≤ n,

−pn−i−∑i−2
j=0 pn−1− jπi−1, j+1 − π̇i−1,1, k = 1 < i ≤ n.

(13)

Hence, from (11) along with (9), (10) and (12), the time-
varying coefficients of M can be explicitly characterized as
follows [45, Section 2], [32]:

µk(t) =
n−1

∑
i=k

(−1)i−k

(

i

k

)

p
(i−k)
i (t), k = 0, . . . ,n− 1. (14)

Using (14), the inverse of (12) is given by

R−1(t) =















π̃1,1(t) π̃1,2(t) · · · π̃1,n−1(t) 1

...
... . .

. ...

π̃n−1,1(t) 1 · · · 0 0

1 0 · · · 0 0















, (15)

with

π̃i,k =







µn−1, i+ k = n,

π̃i+1,k−1 + ˙̃πi+1,k, 1 < k < i < n,

µi + ˙̃πi+1,k, k = 1 ≤ i < n.

(16)

Next, consider the Generalized Vandermonde matrix given
by

V (t) =















1 · · · 1

(δ 0(−r1c))(t) · · · (δ 0(−rnc))(t)
...

. . .
...

(δ n−2(−r1c))(t) · · · (δ n−2(−rnc))(t)















, (17)
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where the operator δ is defined recursively by [22]

(δ 0(−ric))(t) =−ric(t),

(δ n(−ric))(t) = (δ (δ n−1(−ric)))(t)

= (−ric(t))(δ
n−1(−ric))(t)

+
d

dt
(δ n−1(−ric))(t), (18)

where the function c(t) is defined according to (8), and where
the coefficients ri, i = 1, . . . ,n, are distinct positive real num-
bers (i.e., ri > 0,ri 6= r j for i 6= j, for i = 1, . . .n).

We utilize the following relation from [49]:

V (t)D(t) = P(t)V (t)− V̇(t), (19)

where D(t) = diag

(

− r1c(t), · · · ,−rnc(t)
)

.

Some characterizations of V have been obtained in [14] and
are given in terms of the Bell and generalized Laguerre poly-

nomials 1 which, in turn, lead to characterizations of P(·) in
terms of the elementary symmetric polynomials and the Lah
numbers.

We recall the following important result.
Proposition 1 ([14, Section 2]). Let V (t) be given by (17)
with δ defined in (18) and let D(t) and P(t) satisfy (19).
Then, we have the relation

(δ n(−ric))(t) =
−ric(t)(

√
c(t))n

(c̄0T )n n!L
(1)
n

(

ric̄0T
√

c(t)
)

, (20)

where L
(1)
n (·) is a generalized Laguerre polynomial, which

is given by

L
(1)
n

(

ric̄0T
√

c(t)
)

=
n

∑
l=0

(

n+ 1

n− l

)

(−1)l

l!

(

ric̄0T
√

c(t)
)l

(21)

Notice that V in (17) is made up of terms involving the gener-
alized Laguerre polynomials, yielding a special polynomial-
based Vandermonde matrix from which we have the follow-
ing result.
Proposition 2 ([14, Section 2]). Under the assumptions of
Proposition 1, the entries p0(t), p j(t) ( j = 1, . . .n−1) in (9)
are explicitly characterized by

p0(t) = σn(r1, ..,rn)c
n(t), (22)

and for j = 1, . . . ,n− 1,

p j(t) =
(
√

c(t))n− j

(c̄0T )n− j

n

∑
k= j

(−1)k− jσn−k(r1, ...,rn)

×
(

k− 1

j− 1

)

k!

j!

(

c̄0T
√

c(t)
)n−k

, (23)

1 see [16,15] for related studies but in the context of reaction-
diffusion PDEs.

where c(t) is given in (8), σn−k(·) are the elementary sym-
metric polynomials given by

σ0(r1, ...,rn) = 1, (24)

σk(r1, ...,rn) = ∑
1≤i1≤i2≤...ik≤n

ri1ri2 . . . rik , (25)

σn(r1, ...,rn) =
n

∏
i=1

ri, (26)

and σk(r1, ...,rn) = 0, for k > n.

3.2 Main result: Sensor delay-compensated prescribed-
time observer

The proposed prescribed-time observer is given in the fol-
lowing theorem. It is an infinite-dimensional, full order ob-
server as it estimates both the plant state X and the sensor
state Y (i.e. Y (t) is introduced in the estimation error).
Theorem 1. Let Q be as in (3), ai−1 be as in (5), c(t −h) be
defined according to (8), µi−1(t −h) be given by (14), (22)-
(23) (for i = 1, . . . ,n), and let T > 0 be fixed. For the system
(6), the observer

˙̂X(t) = AX̂(t)+BU(t)+QeQ−1AQhγ(t − h)(Y (t)− û(t,0)) ,

ût(t,x) = ûx(t,x)+CQeQ−1AQxγ(t − h)(Y (t)− û(t,0)) ,

û(t,h) =CX̂(t), (27)

with time-varying output gain γ(t − h) = (γ1(t −
h), . . . ,γn(t − h))⊤ given by

γi(t − h) =−ai−1 + µi−1(t − h), for i = 1, . . . ,n, (28)

guarantees that (X̂ , û) converges to (X, u) within the pre-
scribed terminal time t0 + T + h. More precisely, there

exist a positive constant ζ̄X and a positive polyno-

mial P(
√

c(t − h)) such that, for any initial conditions

X(t0), X̂(t0)∈R
n and for any initial measurements u(t0,x) =

CX(t0−h+x), û(t0,x) =CX̂(t0 −h+x), where x ∈ [0,h], we

have that the quantity ‖X(t)− X̂(t)‖2 + ‖u(t, ·)− û(t, ·)‖2
L2

remains bounded for t ∈ [t0, t0 + h], whereas it satisfies the
bound

‖X(t)− X̂(t)‖2 + ‖u(t, ·)− û(t, ·)‖2
L2

≤ ζ̄XP(
√

c(t − h))exp
(

−rminc̄0T
√

c(t − h)
)

×‖X(t0)− X̂(t0)‖2

(29)

for t ∈ [t0 +h, t0 +T +h), with rmin = mini=1,...n{ri}, and in
particular,

‖X(t)− X̂(t)‖2 + ‖u(t, ·)− û(t, ·)‖2
L2 → 0 (30)

as t → t0 +T + h.

The rest of this work aims to establish Theorem 1.
Remark 1. The observer we present has several distinctive
features: the observer gains (28) are explicit; the terminal
time t = t0 +T + h can be a priori prescribed regardless of
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size of initial conditions; the convergence of the estimate
errors is highly smooth (cf. Remark 3 for details); and the
observer estimates both the plant states and the sensor state.

4 Intermediate transformations and prescribed-time
convergence analysis

The proof of Theorem 1 requires various intermediate steps,
consisting of transformations (suitable change of coordi-
nates) along with the study of the prescribed-time conver-
gence property of an observer error system, to be introduced
in the sequel. The key idea is to design a target system (which
we refer to as the Target observer error system) which ex-
hibits the desired prescribed-time convergence property. To
this end, we use the various changes of coordinates that are
summarized in Figure 1.

We start by considering the following observer for (7) with
time-varying output gain,

˙̂Xob(t) = AobX̂ob(t)+BobU(t)

+ eAobhγ(t − h)(Yob(t)− û(t,0)) ,

ût(t,x) = ûx(t,x)+CobeAobxγ(t − h)(Yob(t)− û(t,0)) ,

û(t,h) =CobX̂(t).
(31)

Remark 2. Classical predictor-based techniques, which rely
on the explicit solution of the linear ODE plant and a vir-
tual non-delayed measurement, can be used to design the
following reduced-order observer for (7):

˙̂Xob(t) = AobX̂ob(t)+BobU(t)+ eAobhγ(t − h)
(

Yob(t)

+Cob

∫ t

t−h
eAob(t−h−θ)hBobU(θ )dθ −Cobe−AobhX̂ob(t)

)

,

(32)

where the time-varying observer gain γ , given by (28) and
designed below, ensures prescribed-time convergence.

The reduced-order observer (32) does not estimate the sen-
sor state, whereas (31) does—the convergence (30) ensures
finite-time estimation performance for the sensor state. Our
approach offers a few advantages over classical predictor-
based techniques: backstepping-based predictor designs ex-
tend to plants with more complex sensor dynamics that are
governed by other PDEs (as in [27, Chapter 17]); they can
also treat nonlinear plants, and those with sensor/input state-
dependent delays. As such, we opt to build upon the cascade
ODE-PDE setting by presenting a detailed design method
that accounts for the hyperbolic PDE dynamics.

We aim to show that (31) guarantees convergence of (X̂ob,
û) to (Xob, u) in (7) within the prescribed terminal time t0 +
T + h. To this end, we use the error variables

X̃ob = Xob − X̂ob,

ũ(t,x) = u(t,x)− û(t,x),
(33)

from which we obtain the following Observer error system:

˙̃Xob(t) = AobX̃ob(t)− eAobhγ(t − h)ũ(t,0),

ũt(t,x) = ũx(t,x)−CobeAobxγ(t − h)ũ(t,0),

ũ(t,h) =CobX̃ob(t).

(34)

Consider the change of coordinates

Z̃(t) = e−AobhX̃ob(t), (35)

which transforms (34) into

˙̃Z(t) = AobZ̃(t)− γ(t − h)ũ(t,0),

ũt(t,x) = ũx(t,x)−CobeAobxγ(t − h)ũ(t,0),

ũ(t,h) =CobeAobhZ̃(t),

(36)

where we’ve used the fact that e−AobhAobeAobh = Aob. Next,
consider the transformation

w̃(t,x) = ũ(t,x)−CobeAobxZ̃(t) (37)

from [27, Equ. 3.14], which maps (36) into the following
system:

Target observer error system in “Observer” form

˙̃Z(t) = M(t − h)Z̃(t)− γ(t − h)w̃(t,0),

w̃t(t,x) = w̃x(t,x),

w̃(t,h) = 0,

(38)

where we choose M(t − h) as in (10). Comparing the ODE
dynamics of (36) with (38) and using (37) at x = 0, we have

γ(t − h)Cob = Aob −M(t − h). (39)

Combining (39) with (5) and (10) yields

γi(t − h) =−ai−1 + µi−1(t − h), for i = 1, . . . ,n. (40)

On the other hand, we compute the time derivative of (37)
to obtain

w̃t(t,x) = ũx(t,x)−CobeAobxAobZ̃(t); (41)

since a matrix commutes with its corresponding matrix expo-
nential, it follows from (37) that w̃t − w̃x = 0. Since w̃(t,h) =
0, it also follows from (37) that ũ(t,h) =CobeAobhZ̃(t), real-
izing the transformation between ũ and w̃.

4.1 Prescribed-time convergence analysis of the target ob-
server error system

The target observer error system in “Observer” form (38)
has been carefully selected in order to meet the required
convergence property: indeed, the next lemma states that
the solutions of (38) converge to zero within the prescribed
terminal time t0 + h+T .

Let us introduce the ”exponential”-like function

5
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(X̂ob, û) (31)

(X̃ob, ũ) (34)
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Figure 1. Overview of the four changes of coordinates and the resulting cascade ODE-PDE systems. In blue, we highlight the proposed
prescribed-time observer (27), and we indicate the chosen target observer error system in the “Observer” form (38), whose suitable choice
is the key in our approach.

er(t − h) = exp
(

rc̄0T
√

c(t − h)
)

, (42)

for some r ∈ R, and the ”Diagonal” matrix

D(t − h) = diag

(

e−r1
(t − h), . . . ,e−rn(t − h)

)

. (43)

Lemma 1. Let ai−1 be as in (5), µi−1(t − h) as in (14),
(22)-(23) (for i = 1, . . . ,n), c(t − h) as in (8), and M(t − h)
as in (10). Then for any Z̃(t0) ∈ R

n, there exist ζZ̃ > 0 and

a positive polynomial P(
√

c(t − h)) such that the solution

Z̃ of (38) remains bounded for all [t0, t0 + h], whereas it
satisfies the bound

‖Z̃(t)‖2 ≤ 2ζZ̃P(
√

c(t − h))e−rmin
(t − h)‖Z̃(t0)‖2 (44)

for all t ∈ [t0 + h, t0 + h+T), with rmin = mini=1,...,n{ri}. In

particular, ‖Z̃(t)‖2 → 0, as t → t0 + h+T.

Proof. Key to achieving prescribed-time stability of the tar-
get system is mapping to a system with the time-varying di-
agonal operator (43), generating “dynamic eigenvalues” (42).
Consider the following change of variables:

ˇ̃Z(t) = R(t − h)Z̃(t), (45)

where R(t −h) is given in (12) along with (16). Then, from
(11), (14), the target observer error system (38) is trans-
formed into the following Target observer in “Companion”
canonical form

˙̃̌
Z(t) = P(t − h) ˇ̃Z(t)−R(t− h)γ(t − h)w̃(t,0),

w̃t(t,x) = w̃x(t,x),

w̃(t,h) = 0,

(46)

where P(t − h) is given in (9) and characterized by means
of (22)-(23).

Consider next the following change of variables:

Z̃∗(t) =V−1(t − h) ˇ̃Z(t), (47)

with V (t −h) given in (17), (20). Its inverse V−1 exists and
can be explicitly characterized (see [14]). Applying (47) to

(46) yields the Target observer error system in “Diagonal”
form

˙̃Z∗(t)= D(t − h)Z̃∗(t)−V−1(t − h)R(t − h)γ(t − h)w̃(t,0),

w̃t(t,x) = w̃x(t,x), (48)

w̃(t,h) = 0,

where D(t − h), M(t − h) and V (t − h) satisfy (19). Specifi-

cally, D(t − h) = diag

(

− r1c(t − h), . . . ,−rnc(t − h)
)

. The

solution of the Z̃∗- dynamics of (48) is given as follows:

Z̃∗(t) = Φ̃D(t − h, t0 − h)Z̃∗(t0) (49)

−
∫ t

t0

Φ̃D(t − h,τ − h)V−1(τ − h)R(τ − h)γ(τ − h)w̃(τ,0)dτ,

where Φ̃D(t − h, t0 − h) = exp
(

∫ t
t0

D(s− h)ds
)

=

exp
(

∫ t−h
t0−h D(s)ds

)

is the state transition matrix of the

underlying linear (diagonal-form) time-varying system (Z̃∗-

dynamics). Using Φ̃D(t − h, t0 − h) = D(t − h)D−1(t0 − h)
(by virtue of (42)-(43)), we get

Z̃∗(t) = D(t − h)D−1(t0 − h)Z̃∗(t0) (50)

−
∫ t

t0

D(t − h)D−1(τ − h)V−1(τ − h)R(τ − h)γ(τ − h)w̃(τ,0)dτ.

Then, by inverting (47), the solution of the ˇ̃Z- dynamics of
(38) is given as follows, for all t ∈ [t0, t0 + h+T):

ˇ̃Z(t) =Φ̃P(t − h, t0 − h) ˇ̃Z(t0) (51)

−
∫ t

t0

Φ̃P(t − h,τ − h)R(τ − h)γ(τ − h)w̃(τ,0)dτ,

where

Φ̃P(ξ ,η) =V (ξ )D(ξ )D−1(η)V−1(η). (52)

In addition, by inverting (45), the solution of the Z̃- dynamics
of (46) is given as follows, for all t ∈ [t0, t0 + h+T):

Z̃(t) =Φ̃M(t − h, t0 − h)Z̃(t0)

−
∫ t

t0

Φ̃M(t − h,τ − h)γ(τ − h)w̃(τ,0)dτ,
(53)
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where

Φ̃M(t − h, t0 − h) =V(t − h)V−1(t0 − h), (54)

V(t − h) = R−1(t − h)V(t − h)D(t − h). (55)

Furthermore, we denote by γ w̃(τ−h) = γ(τ−h)w̃(τ,0), and
by virtue of (28), we obtain

γ w̃
i (τ − h) =−ai−1w̃(τ,0)+ µi−1(τ − h)w̃(τ,0), (56)

for i = 1, . . . ,n. Therefore, we have that the last term on the
right-hand side of (53) is given compactly as

φ
γ
M(t, t0) =









∫ t
t0

∑n
j=1 Φ̃M1 j(t − h,τ − h)γ w̃

j (τ − h)dτ
...

∫ t
t0

∑n
j=1 Φ̃Mn j(t − h,τ − h)γ w̃

j (τ − h)dτ









. (57)

Now, using (16), (20), (42) and (43), the entries of V(t −h)
are, for i = 1, . . . ,n− 1,

Vi j(t − h) =

(

n−i−1

∑
k=1

π̃i,k+1(t − h)(δ k−1(−r jc))(t − h)

+ π̃i,1(t − h)+ (δ n−i−1(−r jc))(t − h)

)

e−r j
(t − h), (58)

and Vn j(t − h) = e−r j
(t − h). On one hand, using ‖V(t −

h)‖2 ≤
√

‖V(t − h)‖1‖V(t − h)‖∞, we obtain

‖V(t − h)‖2
2 ≤ ‖V(t − h)‖1‖V(t − h)‖∞

≤ P(
√

c(t − h))e−rmin
(t − h), (59)

for t ∈ [t0, t0 + h + T ), where P(
√

c(t − h)) is a posi-

tive polynomial function of
√

c(t − h) which can be ob-

tained by computing ‖V(t−h)‖1 and ‖V(t−h)‖∞ from (58)

(from which it is clear that both π̃i, j(·) and (δ k−1(−r jc))(·)
are polynomial functions of

√

c(t − h)). On the other

hand, ‖V−1(t0 − h)‖2
2 ≤ ‖V−1(t0 − h)‖1‖V−1(t0 − h)‖∞,≤

ζZ̃ , where ζZ̃ is some positive constant. Therefore, we obtain

‖Φ̃M(t − h, t0 − h)‖2 ≤ ζZ̃P(
√

c(t − h))e−rmin
(t − h), (60)

for all t ∈ [t0, t0 + h + T ). We exploit the cascade nature
of the system (38) along with the fact that the w̃–transport
PDE is fixed-time stable. Indeed, by virtue of the method
of characteristics, w̃(t,x) = w̃0(x+ t) for t ≤ t0 + h− x and
w̃(t,x) = 0 for t ≥ t0 + h− x. Thus, we have an analytical
expression for w̃(t,0); that is w̃(t,0) = w̃0(t) for t ≤ t0 + h.
In addition, after t = t0 + h, one has w̃(t,0)≡ 0.

Combining (53), (57) and (60) yields

‖Z̃(t)‖2 ≤ 2ζZ̃P(
√

c(t − h))e−rmin
(t − h)‖Z̃(t0)‖2 + b̃(t, t0),

(61)

for all t ∈ [t0, t0+h+T ), where we have used ‖φ
γ
M(t, t0)‖2 ≤

n‖φ
γ
M(t, t0)‖2

∞ ≤ n
2
b̃(t, t0), with b̃(t, t0) given by

b̃(t, t0)=2n max
1≤k≤n

{

∫ t

t0

∣

∣

n

∑
j=1

Φ̃Mk j(t − h,τ − h)γ w̃
j (τ − h)

∣

∣dτ
}2

(62)

for all t ∈ [t0, t0+h), and b̃(t, t0) = 0 for all t ∈ [t0+h, t0+h+
T ); hence, b̃(t, t0)<+∞ for all t ∈ [t0, t0+h). This holds true
irrespective of whether T < h or T ≥ h, since the finite escape

time of Φ̃M(t −h,τ−h)γ(τ −h) (see (53)) only occurs after
t > t0+h, namely as t → t0+h+T . Nevertheless, since w̃≡ 0

for t ≥ t0 + h, we have that b̃ ≡ 0, ensuring boundedness of

b̃. We conclude that ‖Z̃(t)‖2 <+∞, implying ‖Z̃(t0 +h)‖<
+∞, for all t ∈ [t0, t0 +h]. Next, from (61) and the definition

of b̃(t, t0), it follows that for t ∈ [t0 + h, t0 + h+T),

‖Z̃(t)‖2 ≤ 2ζZ̃P(
√

c(t − h))e−rmin
(t − h)‖Z̃(t0)‖2. (63)

Notice that P(
√

c(t − h)) diverges as t → t0 + h+T ; nev-

ertheless, the decay of e−rmin
(t − h) dominates the growth

of P(
√

c(t − h)) uniformly. Thus, ‖Z̃(t)‖2 → 0 as t →
t0 + h+T . This concludes the proof. �

Remark 3. The diagonal structure of (48) allows us to suc-
cessively differentiate (49) k ∈ N times while retaining the
prescribed-time stability result (63), since e−rmin

(t − h) is a
monotonically decreasing smooth “bump-like” function and
uniformly dominates the polynomial time-varying growth
in (59) and (60). This is a desirable feature for, e.g., Euler-
Lagrange systems, where generating estimates of higher or-
der derivatives of the state is beneficial. E.g., consider (46)
for n = 2—an observer for the double integrator with sensor
delay. To ensure the integrity of docking vessels and their
payloads, convergence of estimate errors describing acceler-
ation and jerk of the vessel—and not just position and veloc-
ity—are advantageous for control/monitoring tasks targeting
“jerk-free” (or highly smooth) docking.

We can now proceed to establish Theorem 1.

5 Proof of Theorem 1

We establish the convergence property (30) as a consequence
of Lemma 1 and the bounded invertibility of all underlying
transformations on the interval [t0, t0 +h+T ) (see Figure 1).

Proof. The inverse transformation of (37) is given by

ũ(t,x) = w̃(t,x)+CobeAobxZ̃(t), (64)

from which, after applying the triangle and Young’s inequal-
ities, the following estimate holds for all t ∈ [t0, t0 +h+T ):

‖ũ(t, ·)‖2
L2 ≤ 2‖w̃(t, ·)‖2

L2 + 2‖CobeAob·‖2
L2‖Z̃(t)‖2. (65)

We recall that Cob =CQ and Aob =Q−1AQ. From Lemma 1,

‖ũ(t, ·)‖2
L2 ≤ 2‖w̃(t, ·)‖2

L2 + 2‖CobeAob·‖2
L2 (66)

×
(

2ζZ̃P(
√

c(t − h))e−rmin
(t − h)‖Z̃(t0)‖2 + b̃(t, t0)

)

,
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for all t ∈ [t0, t0 + h+T). It follows from (35) that

‖Z̃(t0)‖2 ≤ ‖e−Aobh‖2‖X̃ob(t0)‖2. (67)

In addition, using (3),(33), and (67),

‖Z̃(t0)‖2 ≤ ‖e−Aobh‖2‖Q−1‖2‖X(t0)− X̂(t0)‖2. (68)

By using (33), (69), and (68), we obtain the estimate

‖u(t, ·)− û(t, ·)‖2
L2 + ‖X(t)− X̂(t)‖2 ≤ 2‖w̃(t, ·)‖2

L2

+ ζXP(
√

c(t − h))e−rmin
(t − h)‖X(t0)− X̂(t0)‖2

+ 2‖CobeAob·‖2
L2 b̃(t, t0)+ ‖X(t)− X̂(t)‖2,

(69)

where ζX = 4ζZ̃‖CobeAob·‖2
L2‖e−Aobh‖2‖Q−1‖2.

From Lemma 1 and the various changes of variables (see
Figure 1), we have

‖X(t)− X̂(t)‖2 ≤ 2ζZ̃P(
√

c(t − h))e−rmin
(t − h)

×‖Q‖2‖eAobh‖2‖e−Aobh‖2‖Q−1‖2‖X(t0)− X̂(t0)‖2. (70)

By combining (69) and (70), we finally obtain

‖u(t, ·)− û(t, ·)‖2
L2 + ‖X(t)− X̂(t)‖2 (71)

≤
(

1+ ‖Q‖2‖eAobh‖2

2‖CobeAob·‖2

L2

)

ζXP(
√

c(t − h))e−rmin
(t − h)

×‖X(t0)− X̂(t0)‖2 + 2‖w̃(t, ·)‖2
L2 + 2‖CobeAob·‖2

L2 b̃(t, t0).

Since ‖w(t, ·)‖2
L2 ≡ 0 for all t ≥ t0 + h and by the definition

of b̃(t, t0) (in (62)), it follows that

‖u(t, ·)− û(t, ·)‖2
L2 + ‖X(t)− X̂(t)‖2 (72)

≤ ζ̄XP(
√

c(t − h))e−rmin
(t − h)‖X(t0)− X̂(t0)‖2

for all t ∈ [t0 + h, t0 + h + T ), with ζ̄X =
(

1+ ‖Q‖2‖eAobh‖2

2‖CobeAob·‖2

L2

)

ζX . As in the proof of Lemma 1, we

use the fact that the decaying exponential e−rmin
(t − h)

uniformly dominates the growth-in-time of P(
√

c(t − h)).
Thus, we deduce that (30) holds, concluding the proof. �

6 Simulations

We consider a double integrator with single output as in [18]
but now treat the case of sensor delay. More precisely, we
simulate the system

Ẋ1(t) = X2(t),

Ẋ2(t) =U(t), with Y (t) = X1(t − h),
(73)

with h = 0.4s. The initial conditions are X(θ ) = 0 for

θ ∈ [t0−h, t0) and X(t0) = (5,10)⊤ and the initialization time
is set at t0 = 0. Numerical simulations are carried out by dis-
cretizing the cascade ODE-PDE systems (6), (27) and (38).

We utilize a two-step variant of the Lax-Friedrichs numeri-
cal method, presented in [39], and use its respective solver in
Matlab. The parameters of the numerical scheme are selected
so that the Courant-Friedrich-Levy condition for numerical
stability holds. The time-varying output gains are given by
(28) (after performing (3)), where µ0(t − h) and µ1(t − h)
are computed using (14) along with (22)-(23). Hence,

γ1(t − h) = r1r2c2(t − h)− 2(r1+r2)
c̄0T

c3/2(t − h)+ 2
(c̄0T )2 c(t − h),

γ2(t − h) = (r1 + r2)c(t − h)− 2
c̄0T

c1/2(t − h),

for r1 = 1, r2 = 2, and c(t − h) given by (8) with c̄0 = 2.5.
We fix T = 1s.

Figure 2 shows the numerical solution of the system. On the
left we can observe the evolution of the states of the double
integrator and the estimated states subject to the input U(t) =
10sin(10t)+ 10cos(t) (depicted in blue line). On the right,
the output measurement Y (t) is compared to observer output
û(t,0). Moreover, Figure 3 shows the numerical solution
of the observer error system from which we can observe
convergence of solutions to the origin. Figure 4 (blue line)

shows the evolution of ‖X(t)− X̂(t)‖2+‖u(t,x)− û(t,x)‖2
L2 .

The plot is in logarithmic scale to better illustrate that the
error system converges in a prescribed time given by T +h=
1.4s.

Numerical implementation issues and sensitivity to measure-
ment noise

Selecting the observer gain (28) for all t ∈ [t0, t0 +T + h)
renders our approach quite sensitive to measurement noise:
the output injection terms in (27) can grow unbounded. Ad-
ditionally, it is infeasible to precisely implement the ob-
server’s output injection terms (which involve products of
very small and very large quantities) due to machine preci-
sion. To resolve these practical issues, we saturate the ob-
server gains (28) as they reach a certain threshold, which con-
cedes prescribed-time convergence to the origin and instead
achieves prescribed-time convergence to a neighborhood of
the origin. To see this, we consider an additive measure-
ment noise of zero mean, with 0.01 standard deviation and
20Hz bandwidth, which is generated by passing white noise
through a low-pass Butterworth filter of bandwidth 20Hz (as
in [26]). Figure 4 (red line) shows the result of simulating the

evolution of ‖X(t)− X̂(t)‖2 + ‖u(t,x)− û(t,x)‖2
L2 with this

measurement noise. While estimate error convergence to a
neighborhood of the origin can be achieved for LTI systems
by classical observers with exponential convergence, doing
so in a finite time causes undesirable “peaking” [25,43]:
the large time-invariant gains cause the transient behavior
of some states grow very large before converging. Our de-
sign does not exhibit “peaking”—observer gains gradually
increase with time as the observer error decreases. However,
sensitivity to measurement noisy may still be considerable
after saturation. This is a common issue with high-gain ob-
servers (e.g., [24, Ch. 8]) and is a focal point of current re-
search efforts. Alleviating the impact of noise remains chal-
lenging and requires novel tools specific to our framework.
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Figure 2. Numerical solution of the system (6) and its observer (27). On the left: evolution of the states of the double integrator and the

observer states with sensor delay h = 0.4s, initial conditions X(0) = (5,10)⊤, X̂(0) = (0,0)⊤ and input U(t) = 10sin(10t)+10cos(t). On
the right: numerical solution of the output measurement Y (t) =CX(t −h) = u(t,0) and the observer output û(t,0).
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Figure 3. Numerical solution of the observer error system -ODE dynamics (on the left). Numerical solution of the observer error system
sensor - PDE dynamics (on the right).
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Figure 4. Evolution of ‖X(t)− X̂(t)‖2 + ‖u(t,x)− û(t,x)‖2
L2 (on

a logarithmic scale), where h = 0.4s and T = 1s. The noise-free
and measurement noise (mean 0, std. dev. 0.01, bandwidth 20Hz)
simulations are plotted and blue and red, respectively.

7 Conclusion

We have addressed the problem of prescribed-time estima-
tion of LTI systems with sensor delay. We advance the cas-
cade ODE-PDE setup, accounting for the infinite dimension-
ality of the sensor. The key idea of our approach is the choice
of a target system which is endowed with prescribed-time
convergence.

Our time-varying observer gains are derived by using sev-
eral transformations and the properties of the generalized
Laguerre and elementary symmetric polynomials. Due to
the bounded invertibility of the various transformations em-
ployed, we guarantee that the state estimates converge to the
actual ones within the prescribed terminal time, irrespective
of initial conditions.

Our design is sensitive to measurement noise, requiring
further developments that are specific to our time-varying
framework.

Future research directions include studying model and/or
time-delay uncertainties via delay-adaptive and prescribed-
time control design, and studying robustness with respect to

9



external disturbances via adaptive disturbance rejection.
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