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We present an observer for linear time-invariant (LTI) systems with measurement delay. Our design ensures that the observer error converges to zero within a prescribed terminal time. To achieve this, we employ time-varying output gains that approach infinity at the terminal time, which can be arbitrarily short but no shorter than the sensor delay time. We model the sensor delay as a transport partial differential equation (PDE) and build upon the cascade ODE-PDE setting while accounting for the infinite dimensionality of the sensor. To construct our time-varying gains, the observer design needs to be conducted in a particular system representation. For this reason, we employ a sequence of state transformations (and their inverses) mapping the original observer error model into (1) the observer form, (2) a sensor delay-compensated observer error form via backstepping, and (3) a particular diagonal form that is amenable to the selection of time-varying gains for prescribed-time stabilization. Our construction of the time-varying observer gains uses (a) generalized Laguerre polynomials, (b) elementary symmetric polynomials, and (c) polynomial-based Vandermonde matrices. A simulation illustrates the results.

Introduction

Most stabilization and estimation algorithms for practical engineering problems provide asymptotic convergence, yet in many cases (e.g., multi-agent rendezvous, missile guidance, weather forecasting) this transient process must occur within a given time. The need to meet time constraints and increase temporal performance has motivated finite-and fixedtime stabilization and estimation. These enhanced stabilization/estimation techniques have been extensively studied within the framework of linear and nonlinear ordinary differential equations (ODEs) (see, e.g., [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF][START_REF] Haimo | Finite time controllers[END_REF][START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF][START_REF] Jiménez-Rodríguez | A Lyapunov-like characterization of predefined-time stability[END_REF][START_REF] Lopez-Ramirez | Finite-time and fixed-time observer design: Implicit lyapunov function approach[END_REF][START_REF] Perruquetti | Finite-time observers: Application to secure communication[END_REF][START_REF] Polyakov | Finite-time and Fixed-time Stabilization: Implicit Lyapunov Function Approach[END_REF] and references therein). Finite-time convergence refers to a terminal time which depends on the system's initial conditions, whereas for fixed-time convergence, the terminal time depends on a bounded function of the initial conditions. More recently, the prescribed-time convergence concept has arisen to cope with a more demanding type of convergence, which allows the terminal time to be prescribed independently of initial conditions and parameters [START_REF] Holloway | Prescribed-time observers for linear systems in observer canonical form[END_REF][START_REF] Holloway | Prescribed-time output feedback for linear systems in controllable canonical form[END_REF][START_REF] Krishnamurthy | A dynamic highgain design for prescribed-time regulation of nonlinear systems[END_REF][START_REF] Song | Timevarying feedback for regulation of normal-form nonlinear systems in prescribed finite time[END_REF][START_REF] Tran | Finite-time control of perturbed dynamical systems based on a generalized time transformation approach[END_REF][START_REF] Zhou | Finite-time stabilization of linear systems by bounded linear time-varying feedback[END_REF].

For partial differential equations (PDEs), these timeenhanced concepts have become an attractive research area since PDEs describe many complex systems (thermal and fluid dynamics, chemical reactions, batteries, etc). Meeting time constraints while realizing the well-known separation principle are central issues that can be achieved with finite-, fixed-and prescribed-time convergence methods.

For hyperbolic PDE systems, finite-time stabilization and estimation have been studied in, e.g., [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic pdes[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation[END_REF][START_REF] Perrollaz | Finite-time stabilization of 2×2 hyperbolic systems on tree-shaped networks[END_REF], and [START_REF] Deutscher | Finite-time output regulation for linear 2 × 2 hyperbolic systems using backstepping[END_REF][START_REF] Deutscher | Minimum time output regulation for general linear heterodirectional hyperbolic systems[END_REF]. The latter two contributions deal with the problem of finitetime output regulation for hyperbolic systems by using the backstepping approach and by invoking the finite-time convergent observer design introduced in [START_REF] Engel | A continuous-time observer which converges in finite time[END_REF] (which is the first continuous, prescribed-time observer design for LTI systems, and exploits the infinite-dimensionality of an auxiliary, delayed state estimate to generate a determined algebraic system from which the exact state is reconstructed).

For linear parabolic PDEs, null controllability/finite-time stabilization [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF][START_REF] Espitia | Boundary time-varying feedbacks for fixed-time stabilization of constantparameter reaction-diffusion systems[END_REF][START_REF] Espitia | Some characterizations of boundary time-varying feedbacks for fixedtime stabilization of reaction-diffusion systems[END_REF][START_REF] Steeves | Prescribed-time H1stabilization of reaction-diffusion equations by means of output feedback[END_REF] have been achieved by using the backstepping approach with time-varying kernels. For abstract infinite-dimensional systems, [START_REF] Polyakov | On Homogeneous Finite-Time Control For Evolution Equation in Hilbert Space[END_REF] proposes homogeneity arguments to achieve enhanced stabilization. Time-delay systems are ubiquitous in engineering, where delays appear on the righthand side of the model dynamics [START_REF] Orlov | Sliding mode control synthesis of uncertain time-delay systems[END_REF], or in the inputs, outputs and network graph communication topologies as in [START_REF] Xu | Consensus of discrete-time linear multiagent systems with communication, input and output delays[END_REF]. For the latter type, exponential stabilization of LTI systems with input delay is performed based on predictor feedback. In [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF][START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF], under an ODE-PDE cascade setting, the classical predictor is related to the backstepping approach. The backstepping PDE framework for time-delay systems has been extended to deal with Preprint submitted to Automatica September 9, 2021 delay-adaptive control, delay compensation and estimation problems, nonlinear systems with input delay, time-varying delays, and distributed input delays [START_REF] Bekiaris-Liberis | Lyapunov stability of linear predictor feedback for distributed input delays[END_REF][START_REF] Bresch-Pietri | Delay-adaptive predictor feedback for systems with unknown long actuator delay[END_REF][START_REF] Bresch-Pietri | Delay-adaptive control for nonlinear systems[END_REF]. In [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF], state estimation with time-varying measurement delays is studied.

Other contributions deal with observer-based input/output delays for linear systems, e.g., [START_REF] Zhou | Observer-based output feedback control of linear systems with input and output delays[END_REF] and references therein.

Nevertheless, results for finite-, fixed-and prescribedtime concepts for time-delay systems remain sparse. Some pioneering contributions for time-enhanced stability of time-delay systems are [START_REF] Karafyllis | Finite-time global stabilization by means of time-varying distributed delay feedback[END_REF], [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF]; more recent results are [START_REF] Efimov | Comments on finite-time stability of time-delay systems[END_REF], [START_REF] Ahmed | Finite time estimation for time-varying systems with delay in the measurements[END_REF], [START_REF] Michiels | On the fixed-time stabilization of input delay systems using act-and-wait control[END_REF] and [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF], the latter dealing with prescribedtime predictor control for input-delayed LTI systems. Yet numerous applications call for enhanced estimator convergence results by using delayed measurements: in meteorological and social systems, state estimation over a finite horizon is highly valuable for hurricane and election forecasting, where measurements are delayed. In such problems, control actions may only take place at the end of the finite horizon, so exponentially convergent estimation is insufficient.

In this work, we combine the ideas of [START_REF] Holloway | Prescribed-time observers for linear systems in observer canonical form[END_REF], [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF] and [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF] to handle the problem of estimation of LTI systems in the presence of delayed measurements. The proposed observer is made up of time-varying output gains whose design relies on suitable polynomial-based functions blowing-up in a prescribed time. For the prescribed-time convergence analysis and observer design, we use compact formulations using generalized Laguerre polynomials, elementary symmetric polynomials, and polynomial-based Vandermonde matrices. We build upon the cascade ODE-PDE setting while taking into account the infinite dimensionality of the sensor. We perform a series of changes of variables and design a suitable target observer error system which exhibits the desired convergence property. Due to the bounded invertibility of the related transformations, we guarantee the convergence of the estimated states to the actual states, within the prescribed terminal time, irrespective of initial conditions. A unique feature of our design is that the convergence we achieve is highly smooth: successive derivatives of the estimate errors also converge to zero, which can be useful in applications (cf. Remark 3 for details). In contrast to [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF], the observer gains we derive necessarily differ in structure from the ones for the dual problem (control with input delay). Considering that we specialize to LTI systems, this is a surprising feature caused by the time-varying nature of our approach. Moreover, the approach herein omits the use of a Volterra integral transformation (as was used in [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF]); as a consequence, we need not impose the restriction that the terminal time exceed the delay time, as was required in [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF].

This paper is organized as follows. In Section 2, we introduce some preliminaries and the problem statement. In Section 3, we recall some relevant formulas that are instrumental in our design, and we present the main result: the prescribed-time observer. In Section 4, we discuss the transformations employed in our design/analysis and derive the desired prescribed-time convergence property.

Notation We denote by R + the set of nonnegative real numbers. For nonzero integers m and n, let 0 m×n be the (m, n)-matrix with zero entries and let I m be the identity matrix of dimension m. For 1 ≤ p ≤ +∞, the induced norm of an (n, n)-matrix M is defined as M p = sup{ Mx p :

x ∈ R n with x p = 1}, where x p denotes the p-vector norm of x. Thus, when p = 1 (respectively p = +∞), M p corresponds to the maximum absolute row (respectively column) sum norm. We recall the relevant case that M 2 ≤ M 1 M ∞ . We denote by L (α) m (•) the generalized Laguerre polynomial, by n k := n! k!(n-k)! , k = 1, . . . , n the binomial coefficients, and by σ n (•) the elementary symmetric polynomials. The set of all functions g : [0, h] → R n satisfying h 0 g(x) 2 dx < +∞ is denoted by L 2 ((0, h), R n ).

Problem statement

We consider the following general LTI plant:

Ẋ(t) = AX(t) + BU(t), Y (t) = CX(t -h), ( 1 
)
where

t ≥ t 0 ≥ 0, X ∈ R n , A ∈ R n×n , B ∈ R n×m , C ∈ R p×n , with initial condition X(θ ) = X 0 (θ ) for all θ ∈ [t 0 -h,t 0 ],
where t 0 is the initialization time and U(t) ∈ R m is the input signal. We specialize to the single output case, i.e., p = 1.

We recall that the observability matrix is given by

O = C ⊤ A ⊤ C ⊤ . . . A n-1 ⊤ C ⊤ ⊤ , (2) 
where we assume that (A,C) is an observable pair, i.e., that rank O = n. We perform the coordinate transformation

X ob (t) = Q -1 X(t), (3) 
where Q = ( q, A q, . . . , A n-1 q), with q being the n-th column of O -1 . An application of (3) to (1) transforms it into the following system in the observer form [START_REF] Antsaklis | Linear Systems[END_REF]:

Ẋob (t) = A ob X ob (t) + B ob U(t), Y ob (t) = C ob X ob (t -h), (4) 
where

A ob = Q -1 AQ, C ob = CQ, and B ob = Q -1 B. More precisely, A ob =        0 0 0 • • • -a 0 1 0 0 • • • -a 1 . . . . . . • • • . . . 0 0 • • • 1 -a n-1        , C ob = 0 . . . 1 . ( 5 
)
Our goal is to design an observer for the system (1) which converges within the prescribed terminal time. To this end, the methodology developed in this paper relies on representing the sensor delay as a linear transport PDE, and builds upon the cascade ODE-PDE setting of [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF]Chapter 3]. We henceforth represent system (1) as

Ẋ(t) = AX(t) + BU(t), u t (t, x) = u x (t, x), u(t, h) = CX(t), Y (t) = u(t, 0), (6) 
where t ≥ t 0 ≥ 0, x ∈ [0, h], and u(t, •) is the transport PDE state at time t whose solution is u(t, x) = CX(th + x) and, in particular, u(t, 0) = Y (t).

Under the change of coordinates (3), system (4) rewrites as

Ẋob (t) = A ob X ob (t) + B ob U(t), u t (t, x) = u x (t, x), u(t, h) = C ob X ob (t), Y ob (t) = u(t, 0). (7) 
The above observer form reformulation will be instrumental in performing several other transformations to achieve a full delay-compensated observer design, which we discuss next.

3 Delay-compensated prescribed-time observer

We design an observer that converges in the prescribed terminal time t 0 + h + T, where T ∈ R + is a priori fixed, h is the known sensor delay, and t 0 is the initialization time.

To achieve prescribed-time convergence, we use timevarying observer gains constructed with suitable blowup functions. The approach builds upon the recent ones for prescribed-time stabilization and estimation of ODEs [START_REF] Holloway | Prescribed-time observers for linear systems in observer canonical form[END_REF][START_REF] Song | Timevarying feedback for regulation of normal-form nonlinear systems in prescribed finite time[END_REF], and [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF], which proposes predictor feedback for prescribed-time input delay compensation of LTI systems. In the latter work and in [START_REF] Espitia | Boundary time-varying feedbacks for fixed-time stabilization of constantparameter reaction-diffusion systems[END_REF][START_REF] Steeves | Prescribed-time H1stabilization of reaction-diffusion equations by means of output feedback[END_REF], we use time-varying damping.

Consider the following blow-up function (as in [START_REF] Espitia | Boundary time-varying feedbacks for fixed-time stabilization of constantparameter reaction-diffusion systems[END_REF]):

c(t) = c2 0 T 2 (T + t 0 -t) 2 , c(t 0 ) = c2 0 . (8) 
with c0 > 0. As discussed in [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF] and [START_REF] Espitia | Boundary time-varying feedbacks for fixed-time stabilization of constantparameter reaction-diffusion systems[END_REF], the chosen power degree of the blow-up function ( 8) is crucial for the convergence analysis; moreover, it allows us to obtain explicit and compact closed-form gain formulas throughout the design/analysis.

Generalized polynomial-based Vandermonde matrix and time-varying gains

We consider the following time-varying matrices P(•) and M(•) in companion canonical/observer form, respectively:

P(t) =        0 1 0 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1 -p 0 (t) -p 1 (t) -p 2 (t) • • • -p n-1 (t)        , (9) 
M(t) =        0 0 0 • • • -µ 0 (t) 1 0 0 • • • -µ 1 (t) . . . . . . . . . . . . 0 0 • • • 1 -µ n-1 (t)        , (10) 
where p i-1 (•), µ i-1 (•), i = 1 . . . n, are time-varying functions that will be characterized below. There exists a time-varying matrix R(•) such that

R(t)M(t) = P(t)R(t) -Ṙ(t). (11) 
Indeed, R is given as follows [START_REF] Silverman | Transformation of time-variable systems to canonical (phase-variable) form[END_REF]:

R(t) =        0 0 • • • 0 1 0 0 • • • 1 π n-1,n-1 (t) . . . . . . . . . . . . 1 π 1,1 (t) • • • π n-2,1 (t) π n-1,1 (t)        , (12) 
where the time-varying coefficients π i,k (•) are characterized by the following recurrence relation

π i,k =    -p n-1 , 1 ≤ k = i ≤ n, π i-1,k-1 -πi-1,k , 1 < k < i ≤ n, -p n-i -∑ i-2 j=0 p n-1-j π i-1, j+1 -πi-1,1 , k = 1 < i ≤ n. ( 13 
)
Hence, from [START_REF] Deutscher | Minimum time output regulation for general linear heterodirectional hyperbolic systems[END_REF] along with ( 9), ( 10) and ( 12), the timevarying coefficients of M can be explicitly characterized as follows [45, Section 2], [START_REF] Neerhoff | Canonical representations for single-input single-output linear time-varying systems[END_REF]:

µ k (t) = n-1 ∑ i=k (-1) i-k i k p (i-k) i (t), k = 0, . . . , n -1. (14) 
Using ( 14), the inverse of ( 12) is given by

R -1 (t) =        π1,1 (t) π1,2 (t) • • • π1,n-1 (t) 1 . . . . . . . . . . . . πn-1,1 (t) 1 • • • 0 0 1 0 • • • 0 0        , (15) with πi 
,k =    µ n-1 , i + k = n, πi+1,k-1 + πi+1,k , 1 < k < i < n, µ i + πi+1,k , k = 1 ≤ i < n. ( 16 
)
Next, consider the Generalized Vandermonde matrix given by

V (t) =        1 • • • 1 (δ 0 (-r 1 c))(t) • • • (δ 0 (-r n c))(t) . . . . . . . . . (δ n-2 (-r 1 c))(t) • • • (δ n-2 (-r n c))(t)        , (17) 
where the operator δ is defined recursively by [START_REF] Ew | The poles and zeros of a linear time-varying system[END_REF] (δ 0 (-

r i c))(t) = -r i c(t), (δ n (-r i c))(t) = (δ (δ n-1 (-r i c)))(t) = (-r i c(t))(δ n-1 (-r i c))(t) + d dt (δ n-1 (-r i c))(t), ( 18 
)
where the function c(t) is defined according to [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation[END_REF], and where the coefficients r i , i = 1, . . . , n, are distinct positive real numbers (i.e., r i > 0, r i = r j for i = j, for i = 1, . . . n).

We utilize the following relation from [START_REF] Zhu | Unified canonical forms for linear timevarying dynamical systems under d-similarity transformations[END_REF]:

V (t)D(t) = P(t)V (t) -V (t), (19) 
where

D(t) = diag -r 1 c(t), • • • , -r n c(t) .
Some characterizations of V have been obtained in [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF] and are given in terms of the Bell and generalized Laguerre polynomials 1 which, in turn, lead to characterizations of P(•) in terms of the elementary symmetric polynomials and the Lah numbers.

We recall the following important result. Proposition 1 ([14, Section 2]). Let V (t) be given by ( 17) with δ defined in [START_REF] Holloway | Prescribed-time observers for linear systems in observer canonical form[END_REF] and let D(t) and P(t) satisfy [START_REF] Holloway | Prescribed-time output feedback for linear systems in controllable canonical form[END_REF].

Then, we have the relation

(δ n (-r i c))(t) = -r i c(t)( √ c(t)) n ( c0 T ) n n!L (1) n r i c0 T c(t) , ( 20 
)
where L [START_REF] Ahmed | Finite time estimation for time-varying systems with delay in the measurements[END_REF] n (•) is a generalized Laguerre polynomial, which is given by

L (1) n r i c0 T c(t) = n ∑ l=0 n + 1 n -l (-1) l l! r i c0 T c(t) l ( 21 
)
Notice that V in ( 17) is made up of terms involving the generalized Laguerre polynomials, yielding a special polynomialbased Vandermonde matrix from which we have the following result. Proposition 2 ([14, Section 2]). Under the assumptions of Proposition 1, the entries p 0 (t), p j (t) ( j = 1, . . . n -1) in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF] are explicitly characterized by

p 0 (t) = σ n (r 1 , .., r n )c n (t), (22) 
and for j = 1, . . . , n -1,

p j (t) = ( c(t)) n-j ( c0 T ) n-j n ∑ k= j (-1) k-j σ n-k (r 1 , ..., r n ) × k -1 j -1 k! j! c0 T c(t) n-k , (23) 
1 see [START_REF] Espitia | Some characterizations of boundary time-varying feedbacks for fixedtime stabilization of reaction-diffusion systems[END_REF][START_REF] Espitia | Boundary time-varying feedbacks for fixed-time stabilization of constantparameter reaction-diffusion systems[END_REF] for related studies but in the context of reactiondiffusion PDEs.

where c(t) is given in [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation[END_REF], σ n-k (•) are the elementary sym- metric polynomials given by

σ 0 (r 1 , ..., r n ) = 1, (24) σ k (r 1 , ..., r n ) = ∑ 1≤i 1 ≤i 2 ≤...i k ≤n r i 1 r i 2 . . . r i k , (25) 
σ n (r 1 , ..., r n ) = n ∏ i=1 r i , (26) 
and σ k (r 1 , ..., r n ) = 0, for k > n.

Main result: Sensor delay-compensated prescribedtime observer

The proposed prescribed-time observer is given in the following theorem. It is an infinite-dimensional, full order observer as it estimates both the plant state X and the sensor state Y (i.e. Y (t) is introduced in the estimation error). Theorem 1. Let Q be as in (3), a i-1 be as in [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF], c(th) be defined according to [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation[END_REF], µ i-1 (t -h) be given by ( 14), ( 22)- ( 23) (for i = 1, . . . , n), and let T > 0 be fixed. For the system (6), the observer

Ẋ(t) = A X(t) + BU(t) + Qe Q -1 AQh γ(t -h) (Y (t) -û(t, 0)) , ût (t, x) = ûx (t, x) + CQe Q -1 AQx γ(t -h) (Y (t) -û(t, 0)) , û(t, h) = C X(t), (27) 
with time-varying output gain γ(t

-h) = (γ 1 (t - h), . . . , γ n (t -h)) ⊤ given by γ i (t -h) = -a i-1 + µ i-1 (t -h), for i = 1, . . . , n, ( 28 
)
guarantees that ( X, û) converges to (X, u) within the prescribed terminal time t 0 + T + h. More precisely, there exist a positive constant ζX and a positive polynomial P( c(th)) such that, for any initial conditions X(t 0 ), X(t 0 ) ∈ R n and for any initial measurements u(t

0 , x) = CX(t 0 -h + x), û(t 0 , x) = C X(t 0 -h + x), where x ∈ [0, h], we have that the quantity X(t) -X(t) 2 + u(t, •) -û(t, •) 2 L 2
remains bounded for t ∈ [t 0 ,t 0 + h], whereas it satisfies the bound

X(t) -X(t) 2 + u(t, •) -û(t, •) 2 L 2 ≤ ζX P( c(t -h)) exp -r min c0 T c(t -h) × X(t 0 ) -X(t 0 ) 2 ( 29 
)
for t ∈ [t 0 + h,t 0 + T + h), with r min = min i=1,...n {r i }, and in particular,

X(t) -X(t) 2 + u(t, •) -û(t, •) 2 L 2 → 0 ( 30 
)
as t → t 0 + T + h.
The rest of this work aims to establish Theorem 1.

Remark 1. The observer we present has several distinctive features: the observer gains (28) are explicit; the terminal time t = t 0 + T + h can be a priori prescribed regardless of size of initial conditions; the convergence of the estimate errors is highly smooth (cf. Remark 3 for details); and the observer estimates both the plant states and the sensor state.

Intermediate transformations and prescribed-time convergence analysis

The proof of Theorem 1 requires various intermediate steps, consisting of transformations (suitable change of coordinates) along with the study of the prescribed-time convergence property of an observer error system, to be introduced in the sequel. The key idea is to design a target system (which we refer to as the Target observer error system) which exhibits the desired prescribed-time convergence property. To this end, we use the various changes of coordinates that are summarized in Figure 1.

We start by considering the following observer for [START_REF] Bresch-Pietri | Delay-adaptive control for nonlinear systems[END_REF] with time-varying output gain,

Ẋob (t) = A ob Xob (t) + B ob U(t) + e A ob h γ(t -h) (Y ob (t) -û(t, 0)) , ût (t, x) = ûx (t, x) + C ob e A ob x γ(t -h) (Y ob (t) -û(t, 0)) , û(t, h) = C ob X(t). (31 
) Remark 2. Classical predictor-based techniques, which rely on the explicit solution of the linear ODE plant and a virtual non-delayed measurement, can be used to design the following reduced-order observer for [START_REF] Bresch-Pietri | Delay-adaptive control for nonlinear systems[END_REF]:

Ẋob (t) = A ob Xob (t) + B ob U(t) + e A ob h γ(t -h) Y ob (t) + C ob t t-h e A ob (t-h-θ )h B ob U(θ )dθ -C ob e -A ob h Xob (t) , (32) 
where the time-varying observer gain γ, given by ( 28) and designed below, ensures prescribed-time convergence.

The reduced-order observer [START_REF] Neerhoff | Canonical representations for single-input single-output linear time-varying systems[END_REF] does not estimate the sensor state, whereas [START_REF] Moulay | Finitetime stability and stabilization of time-delay systems[END_REF] does-the convergence (30) ensures finite-time estimation performance for the sensor state. Our approach offers a few advantages over classical predictorbased techniques: backstepping-based predictor designs extend to plants with more complex sensor dynamics that are governed by other PDEs (as in [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF]Chapter 17]); they can also treat nonlinear plants, and those with sensor/input statedependent delays. As such, we opt to build upon the cascade ODE-PDE setting by presenting a detailed design method that accounts for the hyperbolic PDE dynamics.

We aim to show that (31) guarantees convergence of ( Xob , û) to (X ob , u) in [START_REF] Bresch-Pietri | Delay-adaptive control for nonlinear systems[END_REF] within the prescribed terminal time t 0 + T + h. To this end, we use the error variables Xob = X ob -Xob , ũ(t, x) = u(t, x)û(t, x), [START_REF] Orlov | Sliding mode control synthesis of uncertain time-delay systems[END_REF] from which we obtain the following Observer error system:

Ẋob (t) = A ob Xob (t) -e A ob h γ(t -h) ũ(t, 0), ũt (t, x) = ũx (t, x) -C ob e A ob x γ(t -h) ũ(t, 0), ũ(t, h) = C ob Xob (t). (34) 
Consider the change of coordinates

Z(t) = e -A ob h Xob (t), (35) 
which transforms [START_REF] Perrollaz | Finite-time stabilization of 2×2 hyperbolic systems on tree-shaped networks[END_REF] into

Ż(t) = A ob Z(t) -γ(t -h) ũ(t, 0), ũt (t, x) = ũx (t, x) -C ob e A ob x γ(t -h) ũ(t, 0), ũ(t, h) = C ob e A ob h Z(t), (36) 
where we've used the fact that e -A ob h A ob e A ob h = A ob . Next, consider the transformation

w(t, x) = ũ(t, x) -C ob e A ob x Z(t) (37) 
from [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF]Equ. 3.14], which maps (36) into the following system: Target observer error system in "Observer" form

Ż(t) = M(t -h) Z(t) -γ(t -h) w(t, 0), wt (t, x) = wx (t, x), w(t, h) = 0, (38) 
where we choose M(th) as in [START_REF] Deutscher | Finite-time output regulation for linear 2 × 2 hyperbolic systems using backstepping[END_REF]. Comparing the ODE dynamics of ( 36) with [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF] and using (37) at x = 0, we have

γ(t -h)C ob = A ob -M(t -h). ( 39 
)
Combining ( 39) with ( 5) and (10) yields γ i (t -h) = -a i-1 + µ i-1 (t -h), for i = 1, . . . , n. (40) On the other hand, we compute the time derivative of (37) to obtain wt (t, x) = ũx (t, x) -C ob e A ob x A ob Z(t); [START_REF] Song | Timevarying feedback for regulation of normal-form nonlinear systems in prescribed finite time[END_REF] since a matrix commutes with its corresponding matrix exponential, it follows from (37) that wtwx = 0. Since w(t, h) = 0, it also follows from (37) that ũ(t, h) = C ob e A ob h Z(t), realizing the transformation between ũ and w.

Prescribed-time convergence analysis of the target observer error system

The target observer error system in "Observer" form [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF] has been carefully selected in order to meet the required convergence property: indeed, the next lemma states that the solutions of (38) converge to zero within the prescribed terminal time t 0 + h + T.

Let us introduce the "exponential"-like function 

(3)

(33) (37) (35) (45) (47) 
Figure 1. Overview of the four changes of coordinates and the resulting cascade ODE-PDE systems. In blue, we highlight the proposed prescribed-time observer [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF], and we indicate the chosen target observer error system in the "Observer" form [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF], whose suitable choice is the key in our approach.

e r (t

-h) = exp r c0 T c(t -h) , (42) 
for some r ∈ R, and the "Diagonal" matrix

D(t -h) = diag e -r 1 (t -h), . . ., e -r n (t -h) . ( 43 
)
Lemma 1. Let a i-1 be as in [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF], µ i-1 (t -h) as in ( 14), ( 22)-( 23) (for i = 1, . . . , n), c(th) as in [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via fredholm backstepping transformation[END_REF], and M(th) as in [START_REF] Deutscher | Finite-time output regulation for linear 2 × 2 hyperbolic systems using backstepping[END_REF]. Then for any Z(t 0 ) ∈ R n , there exist ζ Z > 0 and a positive polynomial P( c(th)) such that the solution Z of (38) remains bounded for all [t 0 ,t 0 + h], whereas it satisfies the bound 44)

Z(t) 2 ≤ 2ζ Z P( c(t -h))e -r min (t -h) Z(t 0 ) 2 (
for all t ∈ [t 0 + h,t 0 + h + T), with r min = min i=1,...,n {r i }. In particular, Z(t) 2 → 0, as t → t 0 + h + T.
Proof. Key to achieving prescribed-time stability of the target system is mapping to a system with the time-varying diagonal operator [START_REF] Hj | The peaking phenomenon and the global stabilization of nonlinear systems[END_REF], generating "dynamic eigenvalues" [START_REF] Steeves | Prescribed-time H1stabilization of reaction-diffusion equations by means of output feedback[END_REF].

Consider the following change of variables:

Ž(t) = R(t -h) Z(t), (45) 
where R(th) is given in [START_REF] Efimov | Comments on finite-time stability of time-delay systems[END_REF] along with [START_REF] Espitia | Some characterizations of boundary time-varying feedbacks for fixedtime stabilization of reaction-diffusion systems[END_REF]. Then, from ( 11), ( 14), the target observer error system [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF] is transformed into the following Target observer in "Companion" canonical form

Ż(t) = P(t -h) Ž(t) -R(t -h)γ(t -h) w(t, 0), wt (t, x) = wx (t, x), w(t, h) = 0, ( 46 
)
where P(th) is given in ( 9) and characterized by means of ( 22)- [START_REF] Karafyllis | Finite-time global stabilization by means of time-varying distributed delay feedback[END_REF].

Consider next the following change of variables:

Z * (t) = V -1 (t -h) Ž(t), (47) 
with V (th) given in [START_REF] Haimo | Finite time controllers[END_REF], [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]. Its inverse V -1 exists and can be explicitly characterized (see [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF]). Applying [START_REF] Zhou | Finite-time stabilization of linear systems by bounded linear time-varying feedback[END_REF] to [START_REF] Xu | Consensus of discrete-time linear multiagent systems with communication, input and output delays[END_REF] yields the Target observer error system in "Diagonal" form -r n c(th) . The solution of the Z * -dynamics of ( 48) is given as follows:

Ż * (t) = D(t -h) Z * (t) -V -1 (t -h)R(t -h)γ(t -h) w(t, 0), wt (t, x) = wx (t, x), ( 48 
) w(t, h) = 0, where D(t -h), M(t -h) and V (t -h) satisfy (19). Specifi- cally, D(t -h) = diag -r 1 c(t -h), . . . ,
Z * (t) = ΦD (t -h,t 0 -h) Z * (t 0 ) ( 49 
)
- t t 0 ΦD (t -h, τ -h)V -1 (τ -h)R(τ -h)γ(τ -h) w(τ, 0)dτ, where ΦD (t -h,t 0 -h) = exp t t 0 D(s -h)ds = exp t-h t 0 -h D(s)
ds is the state transition matrix of the underlying linear (diagonal-form) time-varying system ( Z *dynamics). Using ΦD (th,t 0h) = D(th)D -1 (t 0h) (by virtue of ( 42)-( 43)), we get

Z * (t) = D(t -h)D -1 (t 0 -h) Z * (t 0 ) (50) - t t 0 D(t -h)D -1 (τ -h)V -1 (τ -h)R(τ -h)γ(τ -h) w(τ, 0)dτ.
Then, by inverting [START_REF] Zhou | Finite-time stabilization of linear systems by bounded linear time-varying feedback[END_REF], the solution of the Ždynamics of ( 38) is given as follows, for all t ∈ [t 0 ,t 0 + h + T):

Ž(t) = ΦP (t -h,t 0 -h) Ž(t 0 ) (51) - t t 0 ΦP (t -h, τ -h)R(τ -h)γ(τ -h) w(τ, 0)dτ,
where

ΦP (ξ , η) = V (ξ )D(ξ )D -1 (η)V -1 (η). ( 52 
)
In addition, by inverting [START_REF] Tsalkis | Linear Time-Varying Systems: Control and Adaptation[END_REF], the solution of the Zdynamics of ( 46) is given as follows, for all t ∈ [t 0 ,t 0 + h + T):

Z(t) = ΦM (t -h,t 0 -h) Z(t 0 ) - t t 0 ΦM (t -h, τ -h)γ(τ -h) w(τ, 0)dτ, (53) 
where

ΦM (t -h,t 0 -h) = V(t -h)V -1 (t 0 -h), (54) 
V(t -h) = R -1 (t -h)V(t -h)D(t -h). (55) 
Furthermore, we denote by γ w(τh) = γ(τh) w(τ, 0), and by virtue of (28), we obtain

γ w i (τ -h) = -a i-1 w(τ, 0) + µ i-1 (τ -h) w(τ, 0), (56) 
for i = 1, . . . , n. Therefore, we have that the last term on the right-hand side of (53) is given compactly as

φ γ M (t,t 0 ) =     t t 0 ∑ n j=1 ΦM1 j (t -h, τ -h)γ w j (τ -h)dτ . . . t t 0 ∑ n j=1 ΦMn j (t -h, τ -h)γ w j (τ -h)dτ     . (57) 
Now, using ( 16), ( 20), ( 42) and ( 43), the entries of V(th) are, for i = 1, . . . , n -1,

V i j (t -h) = n-i-1 ∑ k=1 πi,k+1 (t -h)(δ k-1 (-r j c))(t -h) + πi,1 (t -h) + (δ n-i-1 (-r j c))(t -h) e -r j (t -h), ( 58) 
and V n j (th) = e -r j (t -h). On one hand, using

V(t - h) 2 ≤ V(t -h) 1 V(t -h) ∞ , we obtain V(t -h) 2 2 ≤ V(t -h) 1 V(t -h) ∞ ≤ P( c(t -h))e -r min (t -h), (59) 
for t ∈ [t 0 ,t 0 + h + T ), where P( c(th)) is a positive polynomial function of c(th) which can be obtained by computing V(th) 1 and V(th) ∞ from (58) (from which it is clear that both πi, j (•) and

(δ k-1 (-r j c))(•) are polynomial functions of c(t -h)). On the other hand, V -1 (t 0 -h) 2 2 ≤ V -1 (t 0 -h) 1 V -1 (t 0 -h) ∞ , ≤ ζ Z ,
where ζ Z is some positive constant. Therefore, we obtain

ΦM (t -h,t 0 -h) 2 ≤ ζ Z P( c(t -h))e -r min (t -h), (60) for all t ∈ [t 0 ,t 0 + h + T ).
We exploit the cascade nature of the system [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF] along with the fact that the w-transport PDE is fixed-time stable. Indeed, by virtue of the method of characteristics, w(t, x) = w0 (x + t) for t ≤ t 0 + hx and w(t, x) = 0 for t ≥ t 0 + hx. Thus, we have an analytical expression for w(t, 0); that is w(t, 0) = w0 (t) for t ≤ t 0 + h. In addition, after t = t 0 + h, one has w(t, 0) ≡ 0.

Combining (53), (57) and (60) yields

Z(t) 2 ≤ 2ζ Z P( c(t -h))e -r min (t -h) Z(t 0 ) 2 + b(t,t 0 ), (61) 
for all t ∈ [t 0 ,t 0 + h + T ), where we have used φ γ

M (t,t 0 ) 2 ≤ n φ γ M (t,t 0 ) 2 ∞ ≤ n 2 b(t,t 0 ), with b(t,t 0 ) given by b(t,t 0 )=2n max 1≤k≤n t t 0 n ∑ j=1 ΦMk j (t -h, τ -h)γ w j (τ -h) dτ 2 (62)
for all t ∈ [t 0 ,t 0 + h), and b(t,t 0 ) = 0 for all t ∈ [t 0 + h,t 0 + h + T ); hence, b(t,t 0 ) < +∞ for all t ∈ [t 0 ,t 0 + h). This holds true irrespective of whether T < h or T ≥ h, since the finite escape time of ΦM (th, τh)γ(τh) (see ( 53)) only occurs after t > t 0 +h, namely as t → t 0 +h+T . Nevertheless, since w ≡ 0 for t ≥ t 0 + h, we have that b ≡ 0, ensuring boundedness of b. We conclude that Z(t) 2 < +∞, implying Z(t 0 + h) < +∞, for all t ∈ [t 0 ,t 0 + h]. Next, from (61) and the definition of b(t,t 0 ), it follows that for t ∈ [t 0 + h,t 0 + h + T),

Z(t) 2 ≤ 2ζ ZP ( c(t -h))e -r min (t -h) Z(t 0 ) 2 . ( 63 
)
Notice that P( c(th)) diverges as t → t 0 + h + T ; nevertheless, the decay of e -r min (th) dominates the growth of P( c(th)) uniformly. Thus, Z(t) 2 → 0 as t → t 0 + h + T. This concludes the proof.

Remark 3. The diagonal structure of ( 48) allows us to successively differentiate (49) k ∈ N times while retaining the prescribed-time stability result (63), since e -r min (th) is a monotonically decreasing smooth "bump-like" function and uniformly dominates the polynomial time-varying growth in ( 59) and ( 60). This is a desirable feature for, e.g., Euler-Lagrange systems, where generating estimates of higher order derivatives of the state is beneficial. E.g., consider [START_REF] Xu | Consensus of discrete-time linear multiagent systems with communication, input and output delays[END_REF] for n = 2-an observer for the double integrator with sensor delay. To ensure the integrity of docking vessels and their payloads, convergence of estimate errors describing acceleration and jerk of the vessel-and not just position and velocity-are advantageous for control/monitoring tasks targeting "jerk-free" (or highly smooth) docking.

We can now proceed to establish Theorem 1.

Proof of Theorem 1

We establish the convergence property [START_REF] Michiels | On the fixed-time stabilization of input delay systems using act-and-wait control[END_REF] as a consequence of Lemma 1 and the bounded invertibility of all underlying transformations on the interval [t 0 ,t 0 + h + T ) (see Figure 1).

Proof. The inverse transformation of ( 37) is given by

ũ(t, x) = w(t, x) + C ob e A ob x Z(t), (64) 
from which, after applying the triangle and Young's inequalities, the following estimate holds for all t ∈ [t 0 ,t 0 + h + T ):

ũ(t, •) 2 L 2 ≤ 2 w(t, •) 2 L 2 + 2 C ob e A ob • 2 L 2 Z(t) 2 . ( 65 
)
We recall that C ob = CQ and In addition, using (3), [START_REF] Orlov | Sliding mode control synthesis of uncertain time-delay systems[END_REF], and (67),

A ob = Q -1 AQ. From Lemma 1, ũ(t, •) 2 L 2 ≤ 2 w(t, •) 2 L 2 + 2 C ob e A ob
Z(t 0 ) 2 ≤ e -A ob h 2 Q -1 2 X(t 0 ) -X(t 0 ) 2 . ( 68 
)
By using [START_REF] Orlov | Sliding mode control synthesis of uncertain time-delay systems[END_REF], (69), and (68), we obtain the estimate

u(t, •) -û(t, •) 2 L 2 + X(t) -X(t) 2 ≤ 2 w(t, •) 2 L 2 + ζ X P( c(t -h))e -r min (t -h) X(t 0 ) -X(t 0 ) 2 + 2 C ob e A ob • 2 L 2 b(t,t 0 ) + X(t) -X(t) 2 , (69) 
where

ζ X = 4ζ Z C ob e A ob • 2 L 2 e -A ob h 2 Q -1 2 .
From Lemma 1 and the various changes of variables (see Figure 1), we have

X(t) -X(t) 2 ≤ 2ζ Z P( c(t -h))e -r min (t -h) × Q 2 e A ob h 2 e -A ob h 2 Q -1 2 X(t 0 ) -X(t 0 ) 2 . (70)
By combining (69) and (70), we finally obtain

u(t, •) -û(t, •) 2 L 2 + X(t) -X(t) 2 (71) 
≤ 1 + Q 2 e A ob h 2 2 C ob e A ob • 2 L 2 ζ X P( c(t -h))e -r min (t -h) × X(t 0 ) -X(t 0 ) 2 + 2 w(t, •) 2 L 2 + 2 C ob e A ob • 2 L 2 b(t,t 0 ).
Since w(t, •) 2 L 2 ≡ 0 for all t ≥ t 0 + h and by the definition of b(t,t 0 ) (in (62)), it follows that

u(t, •) -û(t, •) 2 L 2 + X(t) -X(t) 2 (72) 
≤ ζX P( c(t -h))e -r min (t -h) X(t 0 ) -X(t 0 ) 2 for all t ∈ [t 0 + h,t 0 + h + T ), with ζX = 1 + Q 2 e A ob h 2 2 C ob e A ob • 2 L 2 ζ X .
As in the proof of Lemma 1, we use the fact that the decaying exponential e -r min (th) uniformly dominates the growth-in-time of P( c(th)). Thus, we deduce that (30) holds, concluding the proof.

Simulations

We consider a double integrator with single output as in [START_REF] Holloway | Prescribed-time observers for linear systems in observer canonical form[END_REF] but now treat the case of sensor delay. More precisely, we simulate the system

Ẋ1 (t) = X 2 (t), Ẋ2 (t) = U(t), with Y (t) = X 1 (t -h), (73) 
with h = 0.4s. The initial conditions are X(θ ) = 0 for θ ∈ [t 0 -h,t 0 ) and X(t 0 ) = (5, 10) ⊤ and the initialization time is set at t 0 = 0. Numerical simulations are carried out by discretizing the cascade ODE-PDE systems ( 6), ( 27) and [START_REF] Sanz | Observation and stabilization of ltv systems with time-varying measurement delay[END_REF].

We utilize a two-step variant of the Lax-Friedrichs numerical method, presented in [START_REF] Shampine | Two-step Lax-Friedrichs method[END_REF], and use its respective solver in Matlab. The parameters of the numerical scheme are selected so that the Courant-Friedrich-Levy condition for numerical stability holds. The time-varying output gains are given by (28) (after performing (3)), where µ 0 (t -h) and µ 1 (t -h) are computed using [START_REF] Espitia | Predictor-feedback prescribedtime stabilization of LTI systems with input delay[END_REF] along with ( 22)-( 23). Hence,

γ 1 (t -h) = r 1 r 2 c 2 (t -h) -2(r 1 +r 2 ) c0 T c 3/2 (t -h) + 2 ( c0 T ) 2 c(t -h), γ 2 (t -h) = (r 1 + r 2 )c(t -h) -2 c0 T c 1/2 (t -h),
for r 1 = 1, r 2 = 2, and c(th) given by ( 8) with c0 = 2.5. We fix T = 1s.

Figure 2 shows the numerical solution of the system. On the left we can observe the evolution of the states of the double integrator and the estimated states subject to the input U(t) = 10 sin(10t) + 10 cos(t) (depicted in blue line). On the right, the output measurement Y (t) is compared to observer output û(t, 0). Moreover, Figure 3 shows the numerical solution of the observer error system from which we can observe convergence of solutions to the origin. Figure 4 (blue line) shows the evolution of X(t) -X(t) 2 + u(t, x)û(t, x) 2 L 2 . The plot is in logarithmic scale to better illustrate that the error system converges in a prescribed time given by T + h = 1.4s.

Numerical implementation issues and sensitivity to measurement noise

Selecting the observer gain (28) for all t ∈ [t 0 ,t 0 + T + h) renders our approach quite sensitive to measurement noise: the output injection terms in [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF] can grow unbounded. Additionally, it is infeasible to precisely implement the observer's output injection terms (which involve products of very small and very large quantities) due to machine precision. To resolve these practical issues, we saturate the observer gains [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF] as they reach a certain threshold, which concedes prescribed-time convergence to the origin and instead achieves prescribed-time convergence to a neighborhood of the origin. To see this, we consider an additive measurement noise of zero mean, with 0.01 standard deviation and 20Hz bandwidth, which is generated by passing white noise through a low-pass Butterworth filter of bandwidth 20Hz (as in [START_REF] Krishnamurthy | A dynamic highgain design for prescribed-time regulation of nonlinear systems[END_REF]). Figure 4 (red line) shows the result of simulating the evolution of X(t) -X(t) 2 + u(t, x)û(t, x) 2 L 2 with this measurement noise. While estimate error convergence to a neighborhood of the origin can be achieved for LTI systems by classical observers with exponential convergence, doing so in a finite time causes undesirable "peaking" [START_REF] Kidenori | A new approach to the perfect regulation and the bounded peaking in linear multivariable control systems[END_REF][START_REF] Hj | The peaking phenomenon and the global stabilization of nonlinear systems[END_REF]: the large time-invariant gains cause the transient behavior of some states grow very large before converging. Our design does not exhibit "peaking"-observer gains gradually increase with time as the observer error decreases. However, sensitivity to measurement noisy may still be considerable after saturation. This is a common issue with high-gain observers (e.g., [START_REF] Hassan | High-gain observers in nonlinear feedback control[END_REF]Ch. 8]) and is a focal point of current research efforts. Alleviating the impact of noise remains challenging and requires novel tools specific to our framework. 

Conclusion

We have addressed the problem of prescribed-time estimation of LTI systems with sensor delay. We advance the cascade ODE-PDE setup, accounting for the infinite dimensionality of the sensor. The key idea of our approach is the choice of a target system which is endowed with prescribed-time convergence.

Our time-varying observer gains are derived by using several transformations and the properties of the generalized Laguerre and elementary symmetric polynomials. Due to the bounded invertibility of the various transformations employed, we guarantee that the state estimates converge to the actual ones within the prescribed terminal time, irrespective of initial conditions.

Our design is sensitive to measurement noise, requiring further developments that are specific to our time-varying framework.

Future research directions include studying model and/or time-delay uncertainties via delay-adaptive and prescribedtime control design, and studying robustness with respect to
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 23 Figure 2. Numerical solution of the system (6) and its observer[START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF]. On the left: evolution of the states of the double integrator and the observer states with sensor delay h = 0.4s, initial conditions X(0) = (5, 10) ⊤ , X(0) = (0, 0) ⊤ and input U(t) = 10 sin(10t) + 10 cos(t). On the right: numerical solution of the output measurement Y (t) = CX(th) = u(t, 0) and the observer output û(t, 0).
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 4 Figure 4. Evolution of X(t) -X(t) 2 + u(t, x)û(t, x) 2L 2 (on a logarithmic scale), where h = 0.4s and T = 1s. The noise-free and measurement noise (mean 0, std. dev. 0.01, bandwidth 20Hz) simulations are plotted and blue and red, respectively.

  -r min (th) Z(t 0 ) 2 + b(t,t 0 ) , for all t ∈ [t 0 ,t 0 + h + T). It follows from (35) that Z(t 0 ) 2 ≤ e -A ob h 2 Xob (t 0 ) 2 .
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external disturbances via adaptive disturbance rejection.
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