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IRIT, Université Paul Sabatier, 31062 Toulouse, France

Email: dubois@irit.fr, prade@irit.fr

ABSTRACT: This paper introduces a new concept in fuzzy
set theory, that of a fuzzy element. It embodies the idea of
fuzziness only, thus contributing to the distinction between
fuzziness and ideas of imprecision. A fuzzy element is to a
fuzzy set what an element is to a set. A fuzzy element is as
precise as an element, just more gradual that the latter. Ap-
plications of this notion to fuzzy cardinality, fuzzy interval
analysis and defuzzification principles are outlined.
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1 INTRODUCTION

Originally, Zadeh used the word “fuzzy” as referring specifi-
cally to the introduction of shades or grades in all-or-nothing
concepts. A fuzzy set [25] is a generalization of subset (at
least in the naive sense); it is a subset with boundaries that
are “gradual rather than abrupt”. It is defined by a member-
ship function from a basic set to the unit interval (or a suitable
lattice) and its cuts are sets.

However, there is a recurrent confusion in the literature be-
tween the words “fuzzy” and other words or phrases like “im-
precise”, “inexact”, “incompletely specified”, “vague” that
rather refer to a lack of sufficient information. For instance,
what is often called a fuzzy number is understood as a gener-
alized interval, not as a generalized number. The calculus of
fuzzy numbers is an extension of interval analysis. Especially,
fuzzy numbers under the sum operation do not form a group.

Similarly, in engineering papers, there is a misunderstand-
ing about the notion of defuzzification whereby a fuzzy set
of numbers obtained from some fuzzy inference engine is
changed into a number. Yet, defuzzifying means removing
gradedness, strictly speaking, so that defuzzifying a fuzzy set
should yield a set, not a point. And indeed, in the past, the no-
tion of mean value of a fuzzy interval was proposed as a natu-
ral way of extracting an interval from a fuzzy interval (Dubois
& Prade [5], where the phrase “fuzzy number” was used in the
sense of a fuzzy interval). See also recent works by Roventa
and Spircu [12] and Ralescu [17]. To be more credible, the
defuzzification process as used in the engineering area should
be split into two steps: removing fuzziness (thus getting an
interval), and removing imprecision (by selecting a number in
the interval).

Suppose we perform defuzzification by swapping these two
steps: given a fuzzy set of numbers, first remove imprecision,
get what we could call a “fuzzy real number”, and then de-
fuzzify this fuzzy real number. Such a fuzzy real number
would then express fuzziness only, WITHOUT imprecision.
To get a good intuition of a fuzzy real number, one may view
a fuzzy interval as a pair of such fuzzy numbers, just as an
interval is an ordered pair of numbers. More generally, this

discussion leads to introduce the notion of fuzzy element of a
(fuzzy) set, a concept that was apparently missing in fuzzy set
theory. Topologists tried to introduce ideas of fuzzy points in
the past (attaching a membership value to a single element of
a set), but this notion has often been controversial, and ster-
ile in its applications. In fact they were fuzzy singletons, not
really fuzzy elements. The aim of this paper is to informally
introduce a natural notion of fuzzy element and fuzzy (integer
or real) number, to outline elementary formal definitions re-
lated to this notion and discuss its potential at shedding light
on some yet ill-understood aspects of fuzzy set theory and its
applications. A full-fledged mathematical development is left
for further research.

2 BASIC DEFINITIONS

Let S be a set. Consider a complete lattice L (of membership
grades) with top 1 and bottom 0.

Definition 1 A fuzzy (or gradual) element e in S is defined by
its assignment function ae from L\{0} to S.

Several remarks are in order. First the function we consider
goes from the membership set to the referential (contrary to
a fuzzy set). Given a membership grade λ, ae(λ) = s is the
element of S representative of e at level λ. Note that the do-
main of ae can be a proper subset of L. The element s itself
has assignment function as defined only for λ = 1 : as(1) = s.
Generally we assume that as(1) always exists. On the other
hand, as(0) is not defined because there is no counterpart to
the empty set for elements of a set. The fact that the domain
of an assignment function varies from one fuzzy element to
the other may create difficulties when combining fuzzy ele-
ments. It is always possible to augment the domain by build-
ing a mapping a∗e from L\{0} to S, such that

∀λ 6∈ Dom(ae),a∗e(λ) = ae(λ∗),

where λ∗ = inf{α > λ,α ∈ Dom(ae)}. The idea is that if an
element s is representative of the fuzzy element e to a certain
extent, it is also representative to a lesser extent, unless other-
wise specified.

One might also require an injective assignment function, in
order to ensure that each s∈ S is attached a single membership
grade, but there is no clear reason to do so, simply because as
seen later, extending operations equipping S to fuzzy elements
may fail to preserve this property.

The idea of a fuzzy element, in contrast with the notion
of a fuzzy set, can be easily illustrated by the following ex-
ample. Consider a convex fuzzy set of the real line, i.e. a
fuzzy interval M. Let mα be the middle-point of the α-level
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cut of M. The set of pairs m(M) = {(α,mα) | α ∈ (0,1]} de-
fines a fuzzy element of the real line, which can be called the
fuzzy middle-point of M. If the membership function of M
is symmetrical, then m(M) reduces to an ordinary real num-
ber that is the common abscissa of the middle-points of all
the α-cuts of M. For a non-symmetrical trapezoidal fuzzy in-
terval, one obtains a straight-line segment from the mid-point
of the core (c(M) = {r,µM(r) = 1}) to the mid-point of the
support (supp(M) = {r,µM(r) > 0}). It is a particular fuzzy
element, a fuzzy real number. In the general case, mα is not
a monotonic function of α, and the fuzzy real number m(M)
may take shapes that can no longer be reinterpreted as a mem-
bership function, i.e., a mapping from the real line into [0, 1].
Using the formal definition of a fuzzy element introduced in
this paper, it is possible to extend to fuzzy intervals, results
such as the middle-point of the sum of two intervals is equal
to the sum of the middle-points of the intervals.

Note that there is no uncertainty in a fuzzy element since
the assignment function reflects the idea of representativeness
only. A fuzzy element is a “flexible” element not so much
an uncertain element: we have some choice when picking a
suitable representative for it.

2.1 Fuzzy sets generated by fuzzy elements

In order to check if the definition is meaningful, we must prove
that a fuzzy subset F of S can be defined as a fuzzy element
of the power set 2S. We can define its assignment function via
λ-cuts Fλ = {s,µF(s)≥ λ}. Let LF = µF(S)\{0} be the set of
non-zero membership grades of F . Now define the assignment
function of F as:

a≥F (λ) = {s,µF(s)≥ λ},∀λ ∈ LF .

Alternatively, another assignment function may map on dis-
joint subsets (λ-sections):

a=
F (λ) = {s,µF(s) = λ},∀λ ∈ LF .

However, Definition 1 is in agreement with a more general
view of fuzzy sets whose crisp representatives are neither
nested not disjoint.

Definition 2 A gradual subset G in S is defined by its assign-
ment function aG from L\{0} to 2S.

A single fuzzy element e yields a gradual singleton E by let-
ting aE(λ) = {ae(λ)}∀λ ∈ L \ {0}. More generally, a set of
fuzzy elements forms a gradual set of S:

Definition 3 The gradual set G induced by the family of fuzzy
elements e1, ...,ek in S with assignment functions a1, ...ak, has
its assignment function aG defined by

aG(λ) = {a∗1(λ), ...,a∗k(λ)},∀λ ∈ ∪i=1,...kDom(ai).

It is possible to define a regular fuzzy set from a gradual
subset defined via its assignment function aG(λ).

Definition 4 The membership function of the fuzzy set in-
duced by the gradual set with assignment function aG is

µG(s) = sup{λ,s ∈ aG(λ)}.

We can check that the fuzzy set thus induced using Defini-
tion 4 is F such that

µF(s) = max
i=1,...k

sup{λi,s = ai(λi)}.

The set of fuzzy elements e1, ...,ek is said to generate the
fuzzy set F . For instance, a single fuzzy element e hav-
ing an injective assignment function yields a fuzzy set F by
letting µF(s) = λ if and only if ae(λ) = s, i.e., µF is the
inverse of the assignment function ae. If e is a crisp ele-
ment, then F is a singleton. In the non-injective case, we get
µE(s) = sup{λ,s = ae(λ)}, to account for the best represen-
tativeness level of s w.r.t e. But it is not clear that F can be
called a fuzzy singleton if induced by a single fuzzy element.
This is due to the fact that there are several possible repre-
sentations of F as a gradual set : its cuts are not singletons,
even if its sections are singletons. In contrast, the notion of
gradual singleton is clear (a mapping from from L\{0} to the
set of singletons of S). The notion of fuzzy singleton is more
difficult to define in the absence of a notion of fuzzy element,
when S is only equipped with the usual equality relation, as
singletons are basically construed as the quotient set S/ = (see
Hoehle[11]), hence are crisp. However, gradual singletons are
singletons trivially induced by the set of fuzzy elements of S
equipped by the equality relation defined by e = e′ if and only
if ae = a′e.

Intuitively, if an element s is representative of the fuzzy el-
ements generating F only to degree at most λ, then its degree
of membership in F cannot exceed λ.

Definition 5 A fuzzy element e is said to belong to a fuzzy
set F if and only if ∀s ∈ S, if ∃λ ∈ L \ {0},ai(λ) = s, then
µG(s)≥ λ.

The only crisp elements in F are those in its core. Each fuzzy
element in the family generating a gradual set G belongs to
the fuzzy set F induced by G. More precisely: ∀i = 1, ...k,∀s,
if ai(λ) = s, then µF(s) ≥ λ. The family of generators of F is
clearly not unique. The set of fuzzy elements of (= belonging
to) F is the maximal family generating F . It collects all fuzzy
elements e such that

µF(ae(λ))≥ λ,∀λ ∈ Dom(ae).

To build such fuzzy elements, it is enough to select one ele-
ment sλ in each λ-cut Fλ of F , letting ae(λ) = sλ,∀α ∈ LF .
Namely, µF(ae(λ))≥ λ if and only if ae(λ) ∈ Fλ. Besides, we
can restrict to fuzzy elements of F with an injective assign-
ment function. It consists of all e such that ∀λi ∈ LF , an ele-
ment si ∈ a=

F (λi), the λi-section, exists, such that ae(λi) = si.
If the cardinality of a=

F (λi) is ni, the number of such generat-
ing fuzzy elements is ∏λi∈LF ni. An interesting question is to
find minimal families of fuzzy elements generating a fuzzy set
F .

Now, we may try to compute the degree of membership of
a fuzzy element in a fuzzy set. Naturally, this degree will be
a fuzzy element of L. Let e be a fuzzy element of S and F a
fuzzy subset of S.

Definition 6 The degree of membership of a fuzzy element e in
a fuzzy set F is a fuzzy element of L defined by its assignment
function ae∈F such that

ae∈F(λ) = µF(ae(λ)),∀λ ∈ Dom( f )



The fuzzy element ae∈F(λ) ∈ L is a representative value of
the membership grade of e in F to degree λ. Note that the
obtained fuzzy degree of membership does not express im-
precision. It just reflects the gradual nature of the fuzzy set
and of the fuzzy element. Suppose e = s is a regular element.
Then, ae∈F(1) = µF(s). If F is not fuzzy, say a subset A, then
ae∈A(λ) = 1 if ae(λ) ∈ A, and 0 otherwise. Suppose e be-
longs to F in the sense of Definition 5. Then, by construction
ae∈F ≥ IdL the identity function of L. If F = A is not fuzzy,
then e belongs to A provided that ae∈F(λ) = 1,∀λ > 0. We
can consider inf{λ,ae(λ) ∈ A} as the degree of membership
of e in A, but this must be properly understood as the extent to
which a crisp set contains a fuzzy element (the gradual nature
of membership is not due to the set A). However the whole
range {λ,ae(λ) ∈ A} is more representative of this evaluation.

Note that defining a probability measure on Dom(aG)
changes a gradual set into a random set and a fuzzy element
into a probability distribution. It emphasises the idea that
a fuzzy element is not imprecise. If L is the unit interval,
and LF = {1 = λ1 > .. . > λk}, a canonical way of chang-
ing a fuzzy set into a random set is to assign probability mass
λi−λi+1 to the cut Fλi ,∀i = 1 . . .k. A similar procedure can be
adopted for turning a fuzzy element e into a probability distri-
bution, assigning probability λi −λi+1 to element si = ae(λi).
The meaning of this probability can be the degree of “stabil-
ity” of representative element si for e, the gap between λi and
λi+1 measuring the reluctance to give up si for si+1 as the
proper representative of the fuzzy element e. For instance,
this gap is of size 1 for a crisp element, indicating maximal
stability. Then λi − λi+1 is the probability of picking si, in
the sense that the more stable a crisp representative, the more
likely it will be picked.

2.2 Fuzzy connectives and gradual sets

The next step is to show that connectives of fuzzy set theory
are consistent with the notion of fuzzy element and gradual
set. The union and intersection of gradual sets G1 and G2 can
be defined by the classical union and intersection of represen-
tatives to the same degree:

aG1∪G2(λ) = aG1(λ)∪aG2(λ);

aG1∩G2(λ) = aG1(λ)∩aG2(λ).

However if Dom(aG1) 6= Dom(aG2), we must consider the ex-
tensions a∗G1

and a∗G2
restricted to Dom(aG1)∪Dom(aG2). By

construction, this definition is consistent with the usual idem-
potent fuzzy set connectives, namely if F(G) is the fuzzy set
induced by G, then:

µF(G1∪G2)(s) = max(µF(G1)(s),µF(G2)(s));

µF(G1∩G2)(s) = min(µF(G1)(s),µF(G2)(s)).

However one may also consider other connectives for gradual
sets where unions

aG1∪G2(λ,ν) = aG1(λ)∪aG2(ν),

for all λ ∈ Dom(aG1),ν ∈ Dom(aG2), are computed, using
L×L as a new membership set. Ultimately, the definition of a
connective might depend on the design of a “correlation map”

between the two gradual sets indicating which pairs of real-
izations of the gradual sets go together, the former definition
pairing sets with equal representativeness, the latter accepting
all pairs.

The complement Gc of a gradual set G can be defined lev-
elwise as aGc(λ) = aG(λ)c, but this definition is not in agree-
ment with fuzzy set complementation since the λ-cut of the
fuzzy set Fc is not the complement of the λ-cut of F . In order
to preserve consistency with the usual fuzzy complement, one
must assume that the correspondence between representatives
of G and of Gc is a negative correlation, and presuppose the
existence of an order reversing map neg on L exchanging 0 and
1. If aGc(λ) is defined as aG(v)c, where ν = inf{α > neg(λ)},
then consistency with fuzzy set complementation can be re-
stored. It comes down to a special case of permutation of cuts
introduced by Ralescu [16].

3 EXAMPLES AND APPLICATIONS

There are many cases where fuzzy elements naturally appear.
The first general situation is when evaluating sets by means
of some index, like cardinality, measure, distance, and so on.
When extending these indices to fuzzy sets, some try to evalu-
ate an average over the cuts of the fuzzy set (using a Choquet
integral for instance). Another path is to preserve a genuinely
fuzzy index. More often than not, it has been assumed that
while a set has a precise evaluation, a fuzzy set should have a
fuzzy-valued evaluation interpreted as being imprecise. How-
ever, the above discussion does not suggest it: since a scalar
evaluation of a set yields a precise number, the scalar evalua-
tion of a fuzzy set should be a fuzzy (gradual but not impre-
cise) element in the range of the index.

3.1 Fuzzy cardinality

Consider cardinality, for instance. Fuzzy-valued cardinality
CARD(F) of a fuzzy set F on a finite set S was defined by
Zadeh [26] as a fuzzy subset of integers having membership
function

µCARD(F)(n) = sup{α,CARD(Fα) = n}∀n = 0,1,2, ....

The fuzzy cardinality of fuzzy sets has been a topic of debate
and many proposals appeared in the 1980s. See the mono-
graph of Wygralak [23] for a survey of various proposals. It
is clear that the fuzzy-valued cardinality of a fuzzy set has
been more often than not envisaged as another fuzzy set of
integers representing various possible values of the actual car-
dinality of the fuzzy set (hence involving some imprecision).
However this fuzzy set of integers has an extremely particu-
lar shape (strictly decreasing membership function on its sup-
port), and interpreting it as expressing a lack of knowledge
about the cardinality of F is extremely dubious, insofar as F
is interpreted as a set having gradual boundaries (and not an
ill-known set). On the contrary, CARD(F) is quite a refined
description of the cardinality of F where the gradual nature of
the set is reflected on the integer scale. In fact, this member-
ship function is equivalently described by the following injec-
tive assignment function:

aCARD(F)(α) = CARD(Fα)∀α ∈ LF .



Integers are defined as cardinalities of (finite) sets. Hence we
claim that the fuzzy cardinality of a fuzzy set is precisely a
fuzzy integer in the sense of a fuzzy element in the set of in-
tegers. For instance, the number of “young” employees in a
firm is a fuzzy integer, if the fuzzy set “young” has a well-
defined membership, which expresses a flexible (rather than
ill-defined) query to a database. The same rationale can be
put forward to justify the idea that the fuzzy probability of
a fuzzy event, or the Hausdorff distance between fuzzy sets
are fuzzy real numbers, rather than an imprecise probability
or imprecise distance, respectively. The fuzzy Hausdorff dis-
tance between two fuzzy sets F and G generalises the Haus-
dorff distance d between sets: it can be viewed as the fuzzy
real number d(F,G) with assignment function ad(F,G)(λ) =
d(a≥F (λ),a≥G(λ)) (Dubois and Prade [4]). It is clear this as-
signment function has no special regularity, and can hardly be
understood as a fuzzy set.

3.2 Fuzzy real numbers vs. fuzzy intervals

Another interesting case is the notion of f uzzy interval, a
fuzzy set of numbers whose cuts are intervals. Fuzzy inter-
vals account for both imprecision and fuzziness (regardless of
whether their cores are reduced to a point or not). The addi-
tion of fuzzy intervals does not collapse to the regular addition
when fuzziness is removed. It yields interval addition. Hence,
calling a fuzzy interval a “fuzzy number”, as many authors (in-
cluding us) often do is debatable (even when its core reduces
to a single number). This issue was a topic of (unresolved)
debates in early Linz Seminars on Fuzzy sets between pure
mathematicians and applied ones (see Proc. of the 1st Linz
Seminar, pp. 139-140, 1979).

In contrast, we here take it for granted that a f uzzy real
number should be a fuzzy element of the real line, each cut of
which should be a number. Mathematically, a fuzzy real num-
ber r can be modeled by a function ar from the unit interval
to the real line (and not the converse). Note that we do not
require monotonicity of the function so that some fuzzy num-
bers cannot be interpreted as membership functions (a num-
ber would then sometimes have more than one membership
degree...). A monotonic and continuous fuzzy real number is
called a f uzzy threshold. The idea is to model a fuzzy bound-
ary between two regions of the real line. This fuzzy boundary
is not an ill-known precise boundary, only a gradual one.

Algebraic structures of numbers (like groups) should be
preserved for the most part when moving from real numbers
to fuzzy real numbers (while fuzzy intervals just preserve al-
gebraic properties of intervals). Indeed, let r1 and r2 be two
fuzzy real numbers with assignment functions a1 and a2 (as-
sumed to be mappings from (0, 1] to the reals) any operation
∗ between reals can be extended to fuzzy real numbers as fol-
lows: r1 ∗ r2 has assignment function a1∗2 such that

∀λ ∈ (0,1],a1∗2(λ) = a1(λ)∗a2(λ).

Under this definition, it is obvious that, for instance, the set
of fuzzy real numbers forms an Abelian group for the addition,
and that regular inverses exist (a−r(λ) = −ar(λ)). However
it is clear that extended operations performed on (monotonic)
fuzzy thresholds are not closed : if r1 and r2 are monotonically
increasing, r1 − r2 may not be so (hence the necessity not to
restrict to monotonic fuzzy real numbers).

Note that arithmetic operations extended to fuzzy elements
can solve the following paradox: The set difference A\A is the
empty set, as is the fuzzy set difference F \F computed for
instance using Lukasiewicz conjunctions. The cardinality of
A\A is CARD(A)−CARD(A) = 0. So should be CARD(F)−
CARD(F). It is clear that considering the fuzzy cardinality
CARD(F) as a fuzzy set of integers and applying the extension
principle to compute CARD(F)−CARD(F) yields a fuzzy set
which is symmetric around 0, which is counterintuitive. As an
operation between fuzzy integers, CARD(F)−CARD(F) = 0.

Moreover, if we consider (in the spirit of Rocacher and
Bosc [18]) the set of “natural” fuzzy integers as all fuzzy el-
ements on the set of integers of the form CARD(F) for some
finite fuzzy set F , the set of fuzzy elements of the relative
integers (fuzzy relative integers for short) can be obtained as
CARD(F)−CARD(G) for some finite fuzzy sets F and G. To
see it, it is enough to consider a fuzzy relative integer z as a
sequence or relative integers k1, . . . ,kn, such that az(ki) = λi
and to notice the following result:

Theorem 1 Let k1, . . . ,kn be any finite sequence of relative
integers. There exist two increasing sequences x1, . . . ,xn and
y1, . . . ,yn of non-negative integers, such that ∀i = 1 . . .n,ki =
xi − yi.

To see it define x1 = max(k1,0) and y1 = max(−k1,0) and, for
i > 1,

yi = yi−1 +1+max(0,ki−1 − ki),

and of course xi = yi + ki. In some sense, the set of fuzzy nat-
ural integers (understood as cardinalities of finite fuzzy sets)
generates all fuzzy relative integers, via a canonical subtrac-
tion. The sequences x1, . . . ,xn and y1, . . . ,yn define fuzzy nat-
ural integers x and y such that z = x− y.

The notion of fuzzy element enables a fuzzy interval to be
defined as a pair of fuzzy thresholds having opposite mono-
tonicities, just as an interval is modeled by an ordered pair
of numbers. In [2], such fuzzy thresholds are called profiles,
which we consider here as genuine fuzzy real numbers. In
fuzzy interval analysis, the problem is to find the lower and
the upper bounds of a function ϕ(x,y,z, ...) when x,y,z, ...
range over intervals I,J,K, .... The tuples of values called
extreme configurations (the vertices of the hyper-rectangle
I × J ×K × ...) play a decisive role as candidates for being
tuples of values for which the optima of the function f are
reached, when the function is locally monotonic. The usual
method of fuzzy interval analysis is to perform regular inter-
val analysis on α-cuts. Viewing a fuzzy interval as a fuzzy set
of reals limited by two fuzzy real numbers, enables interval
analysis to be directly applied to fuzzy extreme configurations
(viewed as tuples of fuzzy boundaries).

Performing fuzzy interval analysis in the style of interval
calculations, for a locally monotonic function, comes down
to applying the function to (at worst) all extreme fuzzy con-
figurations. Some partial results may fail to be monotonic
[2], even if when putting all partial results together, a gen-
uine fuzzy interval is obtained in the end. This use of non-
monotonic profiles avoids the pitfall of ending up with anoma-
lous membership functions (like the anti-fuzzy numbers of
Goetschel [8]) due to a definition of subtraction such that
M + N = Q if and only if M = Q−N, between fuzzy inter-
vals. For instance, the fuzzy interval bounded by the pair of



fuzzy reals (r−,r+) where r−(λ) = a,∀λ ∈ (0,1] and r+(λ) =
a + (1− λ)b (with b > 0), should not be confused with the
fuzzy real number r+ itself, when it comes to performing sub-
traction. Indeed, while r+− r+ = 0, the extension principle of
fuzzy arithmetics yields:

(r−,r+)− (r−,r+) = (r−− r+,r+− r−),

which is an imprecise zero, but not zero. This is because the
pair of fuzzy reals (r−,r+) actually represents the fuzzy inter-
val generated by the fuzzy real number r+, as per Definition
4.

3.3 Defuzzification

Finally we can reconsider the problem of “defuzzifying” a
fuzzy set of real numbers, understood as selecting a represen-
tative number for it. This vocabulary is not appropriate as ex-
plained earlier. The notion of mean interval of a fuzzy interval
M was defined as follows (Dubois and Prade [5]): consider M
as a pair of distribution functions (F∗,F∗) where

F∗(x) = µM(x) for x ≤ infc(M)

(c(M) is the core of M with membership value 1), and

F∗(x) = 1−µM(x) for x ≥ supc(M).

The mean interval is E(M) = [E∗(M),E∗(M)] where E∗(M)
(resp. E∗(M)) is the expectation of the probability function
with cumulative distribution F∗ (resp. F∗). This definition is
justified from different points of view, as producing the upper
and lower expectations of the set of probability functions dom-
inated by the possibility measure induced by M [5], but also
as the mean α-cut obtained via an Aumann integral of the set-
valued map associated to M (to each α∈ (0,1] assign the α-cut
Mα, i.e., a gradual set; see Ralescu [17]). This set-valued aver-
age is linear with the fuzzy addition and scalar multiplication.
It corresponds to stripping M from its fuzziness, not of its im-
precision. It is, literally, a defuzzification. The next step is to
select a number in E(M) (for instance the mid-point, by sym-
metry; see Yager [24]). It provides a method for choosing a
number representing a fuzzy set that is more natural than the
center of area and the like. Using the notion of fuzzy real num-
ber, and a fuzzy element in the real line, one can exchange the
steps of (genuine) defuzzification and selection. We can strip
M from its imprecision, by selecting a fuzzy real number r(M)
in M, and then we can defuzzify r(M). A natural selection, in
agreement with the symmetry argument is to pick the mid-
point mα of all α-cuts of M, and it defines a fuzzy real number
m(M). Its (generally not monotonic) assignment function is
am(M)(α) = mα. Now, we can defuzzify it, using the Riemann
integral:

m(M) =
Z 1

0
mαdα.

It is obvious that the obtained value is also the mid-point of
the mean interval (or average cut), i.e.

m(M) = (E∗(M)+E ∗ (M))/2.

It follows that in terms of fuzzy real numbers,

m(M +N) = m(M)+m(N).

Besides, the defuzzified m(M) is also equal to the mean
value of the probability distribution obtained by randomizing
the fuzzy number (in the style of Chanas and Nowakowski
[1]): picking an element α at random in (0,1] and then a num-
ber at random in [m−

α ,m+
α ] : the obtained probability is the cen-

ter of mass of the polyhedron restricting the set of probability
functions induced by M. It is the random number obtained via
the fuzzy real number m(M) when equipping the unit interval
with a uniform probability distribution (also the Shapley value
[22] of the “unanimity game” generated by M).

4 RELATED WORKS

Mathematicians of fuzzy sets in the past have introduced the
notion of a fuzzy real number, starting with Hutton [12]. Of-
ten, it takes the form of a decreasing mapping from the reals to
the unit interval or a suitable lattice (Grantner et al. [7]), or a
probability distribution function (Lowen [13]). Arithmetic op-
erations on fuzzy reals were studied by Rodabaugh [20], and
contrast with fuzzy arithmetics based on the extension princi-
ple. Hoehle [10] especially emphasized the role of fuzzy real
numbers as modeling a fuzzy threshold softening the notion
of Dedekind cut.

The idea of gradual set proposed here is just an extension
of the definition of fuzzy sets in terms of α-cuts, dropping
the nestedness condition. This view was first systematically
explored by Negoita and Ralescu [15] quite early (see Ralescu
[16] for more advanced considerations), and gradual sets were
proposed by Goetschel [8], under the name fuzzy level sets.

Recently, Rocacher and Bosc [18] suggested to define
fuzzy integers as (precise, but gradual) cardinalities of
fuzzy sets, defined using an inequality : µCARD(F)(n) =
sup{α,CARD(Fα) ≥ n}∀n = 0,1,2, .... . A fuzzy integer is
then a (monotonic) mapping from the unit interval to the natu-
ral integers. They then define fuzzy negative integers [18] and
fuzzy rationals [19] as equivalence classes of pairs of fuzzy
integers (r1,r2) such that r1 + r = r2 and r1 · r = r2, as in the
classical setting. Fuzzy negative integers are no longer mono-
tonic, generally. This view is totally along the line discussed
above.

The idea that a fuzzy interval is a pair of fuzzy thresholds
or profiles is akin to the so-called graded numbers of Herencia
and Lamata [9] and the fuzzy darts of Goetschel [8]. These
authors also consider mappings from the unit interval to the
real line, instead of the usual mapping from the reals to the
unit interval. A fuzzy interval is then viewed as a pair of such
mappings. However, our fuzzy reals are more general because
they are not necessarily monotonic. In fact, the very technique
for deriving closed-form formulas for fuzzy arithmetic opera-
tions on L-R fuzzy intervals (see Dubois and Prade [3]) does
rely on the separate treatment of left and right-hand sides of
fuzzy intervals, applying the operations on the corresponding
fuzzy thresholds. This technique is generalized to fuzzy inter-
val analysis in [2].

5 CONCLUSION

This paper introduces a new concept in fuzzy set theory,
namely that of a fuzzy element. It seems that such a concept
was missing in the theory. Although of an abstract nature, we



think it is a crucial concept for understanding the nature of
fuzziness introduced by Zadeh as gradedness and flexibility in
concepts, thus giving up Booleanity, as opposed to the idea of
partial or incomplete information. Since sets are used for rep-
resenting incomplete knowledge, fuzzy sets often capture both
ideas of gradedness and partial information at the same time
(as in possibility theory). This has created confusion between
fuzziness and uncertainty, sometimes leading to debatable de-
velopments in the theory or the applications of fuzzy sets. The
merit of fuzzy elements is that they only embody the idea of
gradedness. Some applications of this concept have been sur-
veyed, especially the notion of fuzzy real number that can be
instrumental for developing a genuine fuzzy interval analysis
as well as sound defuzzification procedures. Other applica-
tions of the new concept to fuzzy cardinality are relevant for a
better handling of quantifiers in fuzzy queries to databases.
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