
HAL Id: hal-03367149
https://hal.science/hal-03367149v1

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A logical approach for temporal and multiplex networks
analysis

Esteban Bautista, Matthieu Latapy

To cite this version:
Esteban Bautista, Matthieu Latapy. A logical approach for temporal and multiplex networks analysis.
The 10th International Conference on Complex Networks and their Applications, 2021, Nov 2021,
Madrid, Spain. �hal-03367149�

https://hal.science/hal-03367149v1
https://hal.archives-ouvertes.fr

A logical approach for temporal and multiplex networks
analysis

Esteban Bautista and Matthieu Latapy

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

1 Introduction
Many systems generate data as a set of triplets (a,b,c): they may represent that user a
called b at time c or that customer a purchased product b in store c. These datasets are
traditionally studied as networks with an extra dimension (time or layer), for which the
fields of temporal and multiplex networks have extended graph theory to account for
the new dimension [1]. However, such frameworks detach one variable from the others
and allow to extend one same concept in many ways, making it hard to capture pat-
terns across all dimensions and to identify the best definitions for a given dataset. This
work overrides this vision and proposes a direct processing of the set of triplets. While
[2] also approaches triplets directly, it focuses on specific patterns and applications.
Our work shows that a more general analysis is possible by partitioning the data and
building categorical propositions (CPs) that encode informative patterns. We show that
several concepts from graph theory can be framed under this formalism and leverage
such insights to extend the concepts to data triplets. Lastly, we propose an algorithm to
list CPs satisfying specific constraints and apply it to a real world dataset.

2 Results
Analysis via propositions. We consider the most general case where all the triplet en-
tries come from arbitrary sets A,B,C. We thus define a triplet space as S = {(a,b,c)∣a ∈
A,b ∈ B,c ∈C} and a dataset as D ⊆ S . We also define the sub-dataset induced by α ⊆ A,
β ⊆ B, γ ⊆C as D(α,β ,γ) = {(a,b,c) ∈D∣a ∈ α,b ∈ β ,c ∈ γ}. Our main observation is that
given α ⊆A, β ⊆B, γ ⊆C, we can partitionD into eight disjoint regions (or bins) accord-
ing to whether a triplet has its entries in α , β and γ . Then, we can capture how triplets
in D distribute across these bins via CPs. This process is illustrated in the Fig 1-Left:
the large square depicts the eight possible partition bins, while the smaller squares il-
lustrate how the triplets (crosses) may distribute and CPs be constructed to capture the
distribution pattern. In a nutshell, a CP asserts or denies that all or some of the members
of one group (the subject) possess the attributes of another group (the predicate), using
an expression of the form: ‘Q S are P’, where S refers to the subject, P to the predicate,
and Q to a quantification word which can be ‘All’, ‘Some’, or ‘No’ [3]. The expression
‘All S are P’ is a typical example. In our case, we form CPs using α , β , or γ as S and the
other two as P, such that the following expression holds: ‘Q (triplets with elements in)
S are (in relation with at least one element from) P’. For simplicity, we omit the words
in parenthesis. In Fig. 1-Left we notice that all the triplets with elements in α also have
elements in β and γ , thus forming: ‘All α are β and γ’. These are informative patterns:
if α represents customers, β products and γ stores, then ‘All α are β and γ’ indicates
that customers in α buy only products from β and only in stores from γ . It is thus of in-
terest to list informative CPs. We notice that (i) universal quantifiers (All, No) are more

Fig. 1: Left: Partition bins (big square) and distribution ofD (crosses) into the bins with associated categorical propositions
(small squares). Right: Framework applied to a graph composed of two clique components.

informative than particular ones (Some), yet particular propositions may be close to a
universal one; and (ii) propositions above do not express how dense are the relations
between S and P. We therefore extend propositions to: x% S are y% P, where x is the
fraction of triplets in S in relation to P and y is the density of relationships between S
and P. This allows us to state the algorithmic challenge of listing all propositions satis-
fying constraints on x and y without needing to explore the full space.
Relation to graph theory and extensions. Our formalism can also be used to study
tuples (a,b). By setting A = B = V we address the particular case of graphs, where V is
to the vertex set of graph G. Several concepts from graph theory may be re-formulated
in terms of propositions satisfying specific constraints. An illustration is given in Fig.
1-Right. Going further, we use this re-formulation to generalize the concepts to data
triplets. Our results are listed in Table 1. It can be seen that some patterns, like XOR
predicates, may not be easily derived from pure graph extensions.
Listing propositions. We propose Algorithm 1 to list propositions of type x ≥ xmin%
α are y ≥ ymin% β and γ , where xmin and ymin are user-defined parameters. It uses the
fact that disjoint subjects satisfying a predicate also satisfy it when merged. Thus, the
algorithm searches valid predicates for singleton subjects and merges all those sharing
predicates. We find predicates via a constructive approach where each triplet forms a re-
gion iteratively grown until the constraints are no longer satisfied. While this approach
does not in general retrieve all propositions, it identifies a significant number of non-
trivial patterns, and it may be improved in further work.
Application to real-world data. We apply Algorithm 1 to a contact network in a hos-
pital [4]. Sets A = B consist of 29 patients and 46 healthcare workers (27 nurses, 11
doctors, 8 admin), set C represents time (1890 minutes of data). We use time as sub-
ject set and xmin = 0.7,ymin = 0.5. The algorithm finds 1456 predicates from which it
forms patterns like: (i) group of 7 minutes where 85% activity corresponds to 3 nurses
and 1 admin interacting with 64% density; (ii) group of 3 minutes where 84% activity
corresponds to 4 doctors interacting with 66% density; (iii) group of 7 minutes where
80% activity corresponds to 3 nurses interacting with 66% density. Clearly, the patterns
found are representative of the typical activity in a hospital.
Acknowledgements. This work is funded in part by the ANR (French National Agency
of Research) under the Limass (ANR-19-CE23-0010) and FiT LabCom grants.

References
1. M. Kivelä et al., Multilayer networks, Journal of Complex Networks, Vol. 2 (2014).

2. L. Cerf et al. “Closed patterns meet n-ary relations” ACM Transactions on Knowledge Dis-
covery from Data, (2009).

3. I. Copi and C. Cohen. Introduction to Logic. N.J: Pearson/Prentice Hall, 2005.
4. P. Vanhems et al., Estimating Potential Infection Transmission Routes in Hospital Wards

Using Wearable Proximity Sensors, PLoS ONE 8(9): e73970 (2013).

Concept Proposition in graphs Extension

Disconnected
network

G is disconnected if there exists
α ⊂ V satisfying:

No α are α
c

D is disconnected if there exist α ⊂ A, β ⊂ B, γ ⊂C satisfying:

No α are β
c or γ

c No α
c are β or γ

No β are α
c or β

c No β
c are α or γ

No γ are α
c or β

c No γ
c are α or β

Vertex cover
α ⊆ V is a cover of G if it is
satisfied:

No α
c are α

c

α ⊆ A, β ⊆ B, and γ ⊆C are a cover ofD if it is satisfied:

No α
c are β

c and γ
c No β

c are α
c and β

c

No γ
c are α

c and β
c

Dominating
set

α ⊆ V is a dominating set of G if it
is satisfied:

Some ai are α , ∀ai ∈ α
c

α ⊆ A, β ⊆ B, and γ ⊆C are dominating sets ofD if it is satisfied:

Some ai are β or γ , ∀ai ∈ α
c Some bi are α or γ , ∀bi ∈ β

c

Some ci are α or β , ∀ci ∈ γ
c

Separating set
α ⊆ V is a separating set of G if it
is satisfied that:

G(αc
) is disconnected

α ⊆ A, β ⊆ B, and γ ⊆ C are separating sets of D if it is satisfied
that:

D(αc ,βc ,γc
) is disconnected

Vertex
k-coloring

A disjoint partitioning V = ⋃
k
i=1 αi

is a k-coloring of G if it is satisfied:

No αi are αi, ∀i

The disjoint partitionings A =⋃
k
i=1 αi, B =⋃

k
i=1 βi, C =⋃

k
i=1 γi are

a k-coloring ofD if it is satisfied:

No αi are βi and γi, ∀i No βi are αi and γi, ∀i
No γi are αi and βi, ∀i

Clique
α ⊆V is a clique of G if it satisfies:

Some α are 100% α

α ⊆ A, β ⊆ B, and γ ⊆C are a clique ofD if they satisfy:

Some α are 100% β and γ

Cluster
α ⊆V is a cluster ofG if it satisfies:

Large x % α are α

α ⊆ A, β ⊆ B, and γ ⊆C are a cluster ofD if they satisfy:

Large x% α are β and γ Large x% β are α and γ

Large x% γ are α and β

Table 1: Re-formulation of graph concepts in terms of categorical propositions and extension to data triplets. It can be seen
that graph concepts relying on partitioning V easily carry over to arbitrary data triplets.

Algorithm 1

1: procedure GET PROPOSITIONS(D,xmin,ymin)
2: predicateList = []
3: propositionList = []
4: for ai ∈ A do
5: predicateList.append (get predicates(D(ai ,B,C),xmin,ymin))
6: end for
7: for P ∈ predicateList do
8: S← merge subjects(P, predicateList) ▷ Combine all subjects (ai) with predicate P
9: propositionList.append((S, P))
10: end for
11: end procedure (return propositionList)
12: procedure GET PREDICATES(D(ai ,B,C),xmin,ymin)
13: regionList =D(ai ,B,C) ▷ Each triplet (ai,b j ,ck) becomes a region (b j = β , ck = γ)
14: predicates = []
15: while regionList do
16: grownRegionList← grow regions(regionList) ▷ For each region, grow β or γ in dir. of max. density
17: regionList← filter y(grownRegionList) ▷ Remove regions with density less than ymin
18: predicates.append(filter x(regionList)) ▷ Store regions if at least xmin fraction of triplets fall within
19: end while
20: end procedure (return predicates) ▷ These predicates satisfy x ≥ xmin ai are y ≥ ymin P

