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Summary: Detection heterogeneity is inherent to ecological data, arising from factors such as varied terrain or weather
conditions, inconsistent sampling effort, or heterogeneity of individuals themselves. Incorporating additional covariates into
a statistical model is one approach for addressing heterogeneity, but is no guarantee that any set of measurable covariates
will adequately address the heterogeneity, and the presence of unmodelled heterogeneity has been shown to produce biases in
the resulting inferences. Other approaches for addressing heterogeneity include the use of random effects, or finite mixtures
of homogeneous subgroups. Here, we present a non-parametric approach for modelling detection heterogeneity for use in
a Bayesian hierarchical framework. We employ a Dirichlet process mixture which allows a flexible number of population
subgroups without the need to pre-specify this number of subgroups as in a finite mixture. We describe this non-parametric
approach, then consider its use for modelling detection heterogeneity in two common ecological motifs: capture-recapture and
occupancy modelling. For each, we consider a homogeneous model, finite mixture models, and the non-parametric approach.
We compare these approaches using two simulation studies, and observe the non-parametric approach as the most reliable
method for addressing varying degrees of heterogeneity. We also present two real-data examples, and compare the inferences
resulting from each modelling approach. Analyses are carried out using the nimble package for R, which provides facilities for
Bayesian non-parametric models.

Key words: Bayesian non-parametrics; Capture-recapture; Detection heterogeneity; Markov chain Monte Carlo; nimble;
nimbleEcology; Occupancy models; Statistical ecology.

1. Introduction

Inferring species distribution and demography are two key
questions in ecology (Begon et al., 2006). However, addressing
these questions is challenging when studying animals and
plants in their natural environmental because of the inherent
imperfection in the detection process of species or individuals.
When ignored, this issue of imperfect detection can lead to
biased estimates of species distribution or survival (Gimenez
et al., 2008; Guillera-Arroita, 2017). To cope with imperfect
detection, occupancy models (MacKenzie et al., 2018) and
capture-recapture models (McCrea and Morgan, 2014) were
developed to provide unbiased estimates of species range and
individual survival, with numerous applications in all fields of
ecology.

As with any statistical model, inferences made from oc-
cupancy and capture-recapture analyses rely on assumptions
which must be satisfied at least to a reasonable degree.

Common to occupancy and capture-recapture models is the
assumption of homogeneity of the detection process, which
asserts that there is no unmodelled heterogeneity in species
and individual detection probabilities. If ignored, heterogene-
ity in detection leads to flawed inference in occupancy and
capture-recapture models (Royle, 2006; Gimenez et al., 2018).
Detection heterogeneity can be due to heterogeneous sampling
effort, variation in animal abundance or behavior, site charac-
teristics or even on account of varying observer skills. Ideally,
covariates could be measured and incorporated in ecological
models to account for detection heterogeneity. However, unex-
plained variation may still remain, or measuring the relevant
covariates may simply be impossible.

When unmodelled heterogeneity exists, it can be accommo-
dated using finite mixtures in which discrete latent variables
are used to assign sites or individuals to mixture compo-
nents (i.e., uniform groups) each characterized by group-

This paper has been submitted for consideration for publication in Biometrics

ar
X

iv
:2

00
7.

10
16

3v
1 

 [
st

at
.A

P]
  2

0 
Ju

l 2
02

0



2 Biometrics, 000 0000

specific parameters (Royle, 2006; Pledger et al., 2010, 2003;
Louvrier et al., 2018). In simulation studies, finite mixtures
were successful in decreasing bias in occupancy and survival
probability estimates that was introduced by heterogeneity in
the detection process (Pledger, 2005; Louvrier et al., 2018).
However, from a practical perspective, the issue remains of
selecting the number of mixture components for real-life data
analyses, which is not straightforward (Cubaynes et al., 2012;
Pohle et al., 2017).

Here, we propose a Bayesian non-parametric (BNP) ap-
proach to modeling heterogeneity in occupancy and capture-
recapture models. BNP models provide a flexible approach
that relaxes typical standard modeling assumptions, such as
the choice of a specific parametric kernel in density estima-
tion, or here the choice of a fixed number of groups in finite
mixtures. Previous uses of a BNP approach in ecological
models include the modelling of wildlife migration patterns
(Matechou and Caron, 2017; Diana et al., na), the estimation
of population size (Manrique-Vallier, 2016; Dorazio et al.,
2008) and that of the probability of remaining in or vacating
a given area (Ford et al., 2015).

Perhaps the most widely used BNP model is the Dirichlet
process mixture (DPM) model (Ferguson, 1973, 1974; Lo,
1984; Escobar, 1994; Escobar and West, 1995), which is a mix-
ture model with infinitely many components. DPM models are
a suitable fit for addressing the inherent heterogeneity present
in ecological models. We consider DPM models of Bernoulli
distributions, with the distribution of the Bernoulli detection
probability parameters arising from a Dirichlet process. A
DPM model can be represented in different, yet equivalent
manners. Two of them are the the Chinese Restaurant Process
(CRP; Blackwell and MacQueen, 1973; Pitman, 1995, 1996)
and the stick-breaking (SB; Sethuraman, 1994) representa-
tions.

The flexibility of BNP models is usually translated into a
hierarchical model, which relies on Markov chain Monte Carlo
algorithms to sample from the resulting posterior distribu-
tion. The implementation of these algorithms is usually com-
putationally complex and demanding in standard Bayesian
software such as WinBUGS or JAGS (e.g. Ohlssen et al.,
2007) and often requires writing specific code to implement
the BNP model and sampling algorithms (Ford et al., 2015).
Recently, the nimble R package introduced non-parametric
functionality to address these difficulties, by supporting the
use of non-parametric DPM models. Specialized functions,
distributions, and samplers are provided for both the CRP
and SB representations. Wehrhahn et al. (2018) contains
additional details and examples of using these BNP modelling
approaches in nimble.

Here, we focus on the CRP representation to address detec-
tion heterogeneity in capture-recapture and occupancy mod-
els. The article is organized as follows. In the next section, we
present homogeneous capture-recapture and occupancy mod-
els, finite mixtures and non-parametric models formulated in
a Bayesian framework as hierarchical models. In Section 3, we
give the MCMC sampling scheme used to fit non-parametric
models and introduce the nimble and nimbleEcology R pack-
ages. Section 4 gives the results of two simulation studies,
using capture-recapture and occupancy data, which validate
the ability of our approach to capture detection heterogeneity

in occupancy and survival probabilities. Section 5 illustrates
our method using data from a study of gray wolf (canis lupus),
in trying to estimate occupancy and survival while accounting
for detection heterogeneity. The final section provides general
conclusions and discusses the potential of our approach.

2. Models

We consider three different approaches to handling hetero-
geneity. The first approach uses a homogeneous model, which
disregards any heterogeneity and considers all individuals and
sites to be identical. The second approach uses finite mixtures
of population subgroups, where individuals or sites within
each subgroup are identical, distinct population subgroups
may differ in one or more characteristics, and the number
of subgroups is pre-specified. The homogeneous model is a
special case of the finite mixture model, where the population
contains only a single subgroup.

The third approach uses a non-parametric representation
for modeling individual and species heterogeneity, where the
number of population subgroups, the assignment of indi-
viduals and sites into subgroups, and the characteristics of
each subgroup are determined by the data at the time of
model fitting. The non-parametric approach does not require
pre-specifying a fixed number of population subgroups, but
rather, the number of population subgroups itself is a model
parameter. We now describe the three model formulations
in detail, and provide specifications of ecological capture-
recapture and occupancy models using each.

2.1 Homogeneous Models

In the homogeneous model, we assume that all N observed
individuals of the population are identical in their character-
istics. There is no heterogeneity between individuals or sites,
and thus for any parameter θ of the population, all individuals
or sites share a common value of θ.

Homogeneous Capture-Recapture Model

We consider a basic ecological capture-recapture model,
for binary-valued observation data of N individuals or sites
occurring over T observational time periods. We condition
on the first observation of each individual occurring in time
period t = 1, although it is straightforward to relax this
assumption to allow first-detections to occur in other time
periods. We parameterize the model in terms of survival prob-
ability between time periods φ, and probability of detection
conditional on being alive p.

In subsequent models we introduce heterogeneity in p, but
in the homogeneous model all individuals are characterized by
the constant probability of detection p. We use a state-space
formulation of the model, where binary states xi,t give the
alive/dead status of individual i at time t, and using binary
observation data yi,t for site i at time t. The homogeneous
capture-recapture model is written:
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φ ∼ Uniform(0, 1)

p ∼ Uniform(0, 1)

i = 1, . . . , N :

xi,1 = 1

xi,t ∼ Bernoulli(φ · xi,t−1) for t = 2, . . . , T

yi,t ∼ Bernoulli(p · xi,t) for t = 1, . . . , T

Homogeneous Occupancy Model

We consider a homogeneous static occupancy model for
a total of N sites, each observed at T distinct sampling
occasions. We parameterize the model in terms of the constant
site occupancy probability ψ, and probability of detection
conditional on site occupancy p. In subsequent models we
introduce heterogeneity in p, but in the homogeneous model
all sites share the probability of detection p. We use a state-
space formulation of the model, where binary states zi give the
true occupancy status of site i, and using binary observation
data yi,t for the observation of site i at sampling occasion t.
The homogeneous occupancy model is written:

ψ ∼ Uniform(0, 1)

p ∼ Uniform(0, 1)

i = 1, . . . , N :

zi ∼ Bernoulli(ψ)

yi,t ∼ Bernoulli(p · zi) for t = 1, . . . , T

2.2 Finite Mixture Models

In a finite mixture model specified as having K > 2 distinct
population subgroups, each individual or site is considered to
be a member of any of the K subgroups with equal probability
1/K. We introduce a discrete indicator variable for each indi-
vidual or site, gi for individual or site i, where gi denotes the
“group” of individual or site i. We use independent discrete
uniform prior distributions over the set {1, 2, . . . ,K} for each
gi, and gi = k indicates that individual or site i is a member
of population subgroup k.

Furthermore, each of the K distinct subgroups may differ
in one or more demographic characteristics. Again considering
the demographic parameter θ, we introduce K model parame-
ters θ1, θ2, . . . , θK , which are given independent and identical
prior distributions. Then, all individuals or sites belonging
to population subgroup k display θ = θk. To avoid issues of
“label exchanging” between groups, and hence a lack of model
identifiability, we also impose the constraint that θk 6 θk+1,
or that the ordered set of parameters {θ1, θ2, . . . , θK} is non-
decreasing.

Finite Mixture Capture-Recapture Model

We generalize the homogeneous capture-recapture model
given in section 2.1 to a K-group finite mixture model, to al-
low heterogeneity in the probability of detection. Specifically,
we introduce K new model parameters p1, p2, . . . , pK , where
pk represents the probability of detection for individuals in
subgroup k. Each pk is given an independent Uniform(0, 1)

distribution, and we impose the constraint on these parame-
ters that pk 6 pk′ for k < k′ to maintain identifiability.

Since gi gives the subgroup number which contains indi-
vidual i, we use probability of detection pgi for individual i.
Putting this together, the K-group finite mixture capture-
recapture model is written as:

φ ∼ Uniform(0, 1)

pk ∼ Uniform(0, 1) for k = 1, . . . ,K

pk 6 pk′ for k < k′

i = 1, . . . , N :

gi ∼ DiscreteUniform({1, . . . ,K})
xi,1 = 1

xi,t ∼ Bernoulli(φ · xi,t−1) for t = 2, . . . , T

yi,t ∼ Bernoulli(pgi · xi,t) for t = 1, . . . , T

Finite Mixture Occupancy Model

We similarly generalize the homogeneous occupancy model
from section 2.1 to a K-group finite mixture model using
parameters p1, p2, . . . , pK , where pk represents the probability
of detection for sites in subgroup k. We use the same indepen-
dent Uniform(0, 1) prior distribution for each pk, and impose
the same constraint to ensure model identifiability. Thus, gi
indicates the subgroup which contains site i, which therefore
has probability of detection pgi . The K-group finite mixture
occupancy model is written as:

ψ ∼ Uniform(0, 1)

pk ∼ Uniform(0, 1) for k = 1, . . . ,K

pk 6 pk′ for k < k′

i = 1, . . . , N :

gi ∼ DiscreteUniform({1, . . . ,K})
zi ∼ Bernoulli(ψ)

yi,t ∼ Bernoulli(pgi · zi) for t = 1, . . . , T

2.3 Non-Parametric Models

Using a non-parametric approach, the pre-specification of a
fixed number of subgroups is no longer required. Furthermore,
our previous assumption that individual or site assignments to
subgroups must follow a discrete uniform distribution is also
relaxed. In a non-parametric model the number of subgroups
in the population is considered unknown and is inferred from
the data. Theoretically, there could be an infinite number of
population subgroups, although in practice there will never
exceed N subgroups. This means there cannot exist more
population subgroups than the total number of observations.
But so as long as there are fewer than N subgroups, then in-
dividuals or sites can probabilistically move out of an existing
group and into to a newly created group, with its own distinct
probability of detection.

As with the finite mixture model, the subgroup assignment
structure is encoded in indicator variables gi, where gi = k
indicates that individual i belongs to population subgroup k.
Consider the following conditional distribution for gi, where
g1:(i−1) = (g1, . . . , gi−1):
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Figure 1. Prior probability of number of subgroups induced
by the CRP(α) prior distribution for different values of α,
when N = 60. A color version is available in the electronic
version of this article.

gi | g1:(i−1), α ∼
(

1
i−1+α

) i−1∑
j=1

δgj +
(

α
i−1+α

)
δgnew , (1)

where gnew is an integer not in g1:i, α > 0 is the concentration
parameter, and δx is a discrete measure concentrated at x,
which translates to a point mass of probability located at
x. The discrete distribution (1) for the group assignment of
individual or site i (conditional on the group assignments of
individuals or sites 1, . . . , i − 1) implies that each successive
individual or site is assigned to an existing subgroup with
probability proportional to the size of each subgroup, and
is assigned to a new subgroup with probability proportional
to α. The product of the successive conditional distributions
given by (1) gives rise to the joint distribution of g1:N , which is
the Chinese restaurant process (CRP) prior distribution with
concentration parameter α (Blackwell and MacQueen, 1973;
Pitman, 1995, 1996). See Li et al. (2019) for more details and
interpretations of the CRP prior distribution.

The strictly positive concentration parameter α of the CRP
distribution influences the number of subgroups, through its
control over the probability that individuals or sites are as-
signed into new subgroups. The larger the value of α, the more
likely new subgroups are to be created. Figure 1 illustrates
the effect of α on the number of subgroups created from the
CRP prior distribution, when N = 60. For α = 0.1 generally
only one or two subgroups are created, and infrequently three
or more. When α = 0.5, the number of subgroups created
generally falls between one and six. For α = 1, we seldom ob-
serve only one subgroup, and instead generally have between
two and ten groups. In our non-parametric models, rather
than fixing α to a specific value, we will use a hyperprior
distribution for α to allow the degree of heterogeneity within
the dataset itself to dictate the plausible range for α.

The possibility of the CRP prior using as many population
subgroups as the total number of observations requires the
inclusion of N distinct demographic parameters θ1, . . . , θN in

our hierarchical non-parametric models. These parameters are
assumed to be independent and identically distributed, just
as in the finite mixture models.

Non-Parametric Capture-Recapture Model

In the non-parametric capture-recapture model, detection
heterogeneity is flexibly addressed using a CRP prior distribu-
tion to allow for an unknown number of population subgroups.
The number of population subgroups will thereby be inferred
from the data, and is not fixed to a pre-specified value as in
the finite mixture models described in section 2.2. We assign
a CRP(α) prior distribution to g1:N , the vector of subgroup
indicator variables. We use a Gamma(1, 1) hyperprior distri-
bution for the CRP concentration parameter α.

We introduce probabilities of detection p1, p2, . . . , pN , each
independent and identically following a Uniform(0, 1) prior
distribution. In general, fewer than N subgroups are actually
used by the CRP prior distribution, and thus only a subset
of the probabilities of detection are “active” in terms of their
influence on the model likelihood calculation. As in the finite
mixture models, gi = k indicates that individual i is a member
of subgroup k, and therefore has probability of detection pgi .
The full non-parametric capture-recapture model is written
as:

φ ∼ Uniform(0, 1)

pk ∼ Uniform(0, 1) for k = 1, . . . , N

α ∼ Gamma(1, 1)

g1:N ∼ CRP(α)

i = 1, . . . , N :

xi,1 = 1

xi,t ∼ Bernoulli(φ · xi,t−1) for t = 2, . . . , T

yi,t ∼ Bernoulli(pgi · xi,t) for t = 1, . . . , T

Non-Parametric Occupancy Model

Similarly, we generalize the finite mixture occupancy model
to use a CRP(α) prior distribution for individual group assign-
ments g1:N , and assign a Gamma(1, 1) hyperprior distribution
for α. We include the maximum possible necessary number
of distinct probabilities of detection p1, p2, . . . , pN , each with
independent Uniform(0, 1) prior distributions. Here, gi = k
indicates that site i is a member of subgroup k, and therefore
has probability of detection pgi . The full non-parametric
occupancy model is written as:

ψ ∼ Uniform(0, 1)

pk ∼ Uniform(0, 1) for k = 1, . . . , N

α ∼ Gamma(1, 1)

g1:N ∼ CRP(α)

i = 1, . . . , N :

zi ∼ Bernoulli(ψ)

yi,t ∼ Bernoulli(pgi · zi) for t = 1, . . . , T
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3. Model Fitting via Markov chain Monte Carlo

Mathematical descriptions of our approaches to modeling
heterogeneity within a population were given in section 2.
These models are formulated in a Bayesian framework as
hierarchical models. Prior distributions are specified for model
parameters, and the conditional distributions for discrete
latent states (e.g., dead/alive status) and the data likelihoods
are given. The general tool for fitting hierarchical models to
data is Markov chain Monte Carlo (MCMC; Brooks et al.,
2011), a stochastic sampling algorithm for generating poste-
rior samples for model parameters, conditional on the data.
Demographic inferences are subsequently performed using the
empirical posterior distributions of model parameters.

Markov chain Monte Carlo is a powerful tool for fitting
hierarchical models to data, but the inherent mathematical
complexity of MCMC sampling often requires the use of
software. We make use of the recently developed nimble R

package (NIMBLE Development Team, 2019), which offers
new degrees of freedom for algorithmic development and cus-
tomization of MCMC sampling (de Valpine et al., 2017). The
ability to write custom distributions for use in hierarchical
models, and the flexible nature of nimble’s MCMC engine has
provided noteworthy gains in fitting ecological models (Turek
et al., 2016), and more generally in the study of MCMC
algorithms (Turek et al., 2017).

We make use of nimble’s MCMC engine for fitting these
hierarchical models, after expressing them in the BUGS lan-
guage (Lunn et al., 2009). In addition, we make use of two
aspects of nimble’s flexibility. For modeling of individual
heterogeneity, we make use of the BNP distributions and cor-
responding sampling algorithms, which are a recent addition
to the nimble package. Second, we enhance performance of
the specific ecological models by using custom likelihood dis-
tributions provided by the nimbleEcology package (Goldstein
et al., 2020) to remove latent states from the model structures.

3.1 Non-Parametric Distributions and MCMC Sampling

When a hierarchical model is formulated using the CRP
distribution, the dCRP distribution (available in the nimble

package) assigns the joint prior distribution arising from (1) to
the labeling vector, g. Correspondingly, a specialized sampler
is assigned by nimble’s MCMC engine. Because the likelihood
function of the ecological models presented in section 2 are
not conjugate for the prior distribution of the cluster param-
eters, pk, the non-conjugate sampling algorithm described in
Algorithm 8 of Neal (2000) is assigned to g.

As described in section 2, under a non-parametric ap-
proach, the number of population subgroups is not fixed. In
terms of the MCMC sampling scheme this means that the
number of subgroups, and therefore the number of cluster
parameters which are active, can vary with every MCMC
iteration. As nimble does not support dynamic length alloca-
tion, the number of cluster parameters defined in the model
must be fixed. A safe option would be to consider N cluster
parameters, however this is highly inefficient both in terms
of computation and storage, especially for large values of N .
To reduce this inefficiency nimble allows the specification of
N ′ < N cluster parameters. If upon any MCMC iteration
more than N ′ groups are created, then a warning is issued.

Additionally, to reduce the computational burden of the non-
parametric sampling, only the active cluster parameters, pk,
are updated.

As discussed in section 2, the concentration parameter α
has important implications in the clustering structure of the
model. Therefore, efficient sampling of α is an important
matter. Although its posterior distribution does not belong
to any known class of distributions, when a gamma prior
distribution is considered for α, a computationally efficient
sampling scheme (Escobar and West, 1995, section 6) is
assigned by nimble’s MCMC engine.

3.2 Likelihood Distributions Using nimbleEcology

To reduce computation time, we make use of the
nimbleEcology R package (Goldstein et al., 2020) for spec-
ifying the ecological hierarchical models. The nimbleEcology

package provides likelihood distributions specific for a variety
of common ecological models, which are implemented as cus-
tom distributions using the nimble package. The likelihood
distributions provided in nimbleEcology include those for
capture-recapture models, occupancy and dynamic occupancy
models, and more generally for discrete hidden Markov mod-
els (HMMs) as appear in multi-state or multi-event capture-
recapture (e.g., Turek et al., 2016).

For each type of ecological model, the likelihood distribu-
tion provided by nimbleEcology marginalizes over discrete
latent states to directly calculate the unconditional likelihood
of observed data. This allows removal of discrete latent state
variables – xi,t alive/dead indicator variables in capture-
recapture, and zi occupancy indicator variables in occupancy
modelling – from the hierarchical model. This reduces model
size and the necessary model computations, and increases the
speed of MCMC mixing of top-level model parameters (φ in
capture-recapture, and ψ in occupancy models) to generate
stronger posterior inferences in less computational time.

Using the distributions provided in nimbleEcology to re-
move latent states does not alter the posterior results gen-
erated from each model; it only serves to increase the speed
of generating inferences. The only noteworthy difference is
that posterior inference for the discrete latent states cannot
be performed, since samples for these latent states are never
generated. So, for example, we could not perform inference
for the alive/dead status xi,t of specific individuals in the
capture-recapture setting.

4. Simulations

We undertake two simulation studies to assess performance
of the various approaches to modeling individual and site
heterogeneity. The first study is in the context of capture-
recapture models, and the second study in that of occupancy
models.

Both simulations consider the effect of varying degrees of
heterogeneity in detection probability between two population
subgroups on the accuracy of inferences. In each, we fit the ho-
mogeneous model, 2-group and 3-group finite mixture models,
and the non-parametric model as were presented in section 2.
R code for all simulations, including the nimble specifications
for each model using the likelihood distributions provided
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in the nimbleEcology package, are provided as supplemental
material.

Next we describe the details of each simulation, and then
present results.

4.1 Capture-Recapture Simulation

In the capture-recapture simulation, we consider two pop-
ulation subgroups each with 800 individuals, for a total
population size of 1,600. We use eight observational periods,
and condition on all individuals being sighted on the first
observational period. Survival probability is fixed at φ = 0.7
for simulating data, and we focus on the ability of various
modeling approaches to estimate survival.

One population subgroup is fixed as having individual prob-
ability of detection p0 = 0.8, where detection is conditional
on being alive. Individuals in the other subgroup have a fixed
detection probability p, which varies between simulations. We
consider values of p between 0.1 and 0.8 in increments of 0.1,
where the terminal case p = 0.8 coincides with the detection
probability of the first subgroup, and therefore represents a
homogeneous population.

4.2 Occupancy Simulation

In the occupancy simulation, we consider two subgroups each
with 2,000 sites, for a total of 4,000 sites. We use six inde-
pendent observations of each site. The proportion of occupied
sites is fixed at ψ = 0.7 for simulating data, and we focus
on the ability of various modeling approaches to estimate the
true occupancy proportion.

One subgroup is fixed as having probability of detection
p0 = 0.8 on each independent site visit, where detection is
conditional on a site being occupied. The other subgroup
has a fixed detection probability p, which varies between
simulations. We consider values of p between 0.1 and 0.8
in increments of 0.1, but with a finer resolution on the
interval between 0.1 and 0.4. Again, the terminal case p = 0.8
coincides with the detection probability of the first subgroup,
and therefore represents a homogeneous population.

4.3 Simulation Results

Posterior inferences were performed for individual survival
probability φ in the capture-recapture simulation and for
site occupancy proportion ψ in the occupancy simulation.
We use the posterior median and equal-tailed 95% Bayesian
credible intervals for inferences under each model. Fitted
models include a homogeneous model (Hom), 2-group and 3-
group finite mixture models (FM 2 and FM 3, respectively),
and a non-parametric model (NP). Each model was fit to
simulated data using MCMC, as described in section 3.

Results for the capture-recapture simulation appear in Fig-
ure 2. The homogeneous model consistently under-estimates
φ, more severely for larger discrepancies in detection probabil-
ity between the two groups, with the discrepancy diminishing
and disappearing as the detection probabilities of the two
groups converge. For the lowest value of p = 0.1, and hence
a large difference in detection probability between groups,
the 3-group mixture model has a slight tendency to inflate
estimates of φ, while the opposite is true of the 2-group
mixture model; however this difference is minor and quickly

disappears as the group difference deceases. Otherwise, the
mixture models and non-parametric models are all similarly
successful in generating accurate inferences of φ. We also note
that all models exhibit a slight negative bias in their estimates
of φ, which diminishes as p0 and p jointly approach one.
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Figure 2. Capture-recapture simulation results for survival
probability φ using different models for heterogeneity in detec-
tion probability.N = 1, 600 individuals are simulated between
two population subgroups, one with probability of detection
p0 = 0.8, and the other with probability of detection p. True
survival probability is fixed at φ = 0.7. Solid lines show
posterior median estimates of φ from each model, and dashed
lines show upper and lower limits of a 95% Bayesian credible
interval. A color version is available in the electronic version
of this article.

Results for the occupancy model simulation appear in
Figure 3. Once again, for low values of p the homogeneous
model underestimates ψ, more severely for larger discrepan-
cies between the two groups. We also see a regime of p values
between (approximately) 0.167 and 0.267, in which the 3-
group mixture model vastly over-estimates ψ, with posterior
median estimates in excess of 0.99. The precise location of this
regime varied somewhat depending on simulation parameters
(specifically the number of individuals in the population, and
number of observation periods) but its existence persisted in
all simulations. That is, there exists the potential for highly
inaccurate inferences when the number of groups in a finite
mixture model is chosen either too high, or too low.

The 2-group mixture model (which is also the data-
generating model) generated reliable inferences for all values
of p. The non-parametric model admitted greater uncertainty
for the upper limit of the 95% credible interval, especially
for lower values of p, but the posterior median estimates
generated using the non-parametric model were consistently
near to the true parameter value ψ = 0.7.

5. Examples

We present two real-data examples, one in the context of
capture-recapture and the other in that of occupancy model-
ing. For each example, we fit a homogeneous model for detec-
tion probability, finite mixture models containing between two
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Figure 3. Occupancy simulation results for occupancy ψ
using different models for heterogeneity in detection proba-
bility. N = 4, 000 individuals are simulated between two pop-
ulation subgroups, one with probability of detection p0 = 0.8,
and the other with probability of detection p. True occupancy
is fixed at ψ = 0.7. Solid lines show posterior median estimates
of ψ from each model, and dashed lines show upper and lower
limits of a 95% Bayesian credible interval. A color version is
available in the electronic version of this article.

and ten population subgroups, and a non-parametric model.
In addition to parameter inferences under each model, we also
present the WAIC (Watanabe, 2010; Gelman et al., 2014)
of each fitted model. The WAIC value is a measure of the
goodness-of-fit of a hierarchical model, calculated using chains
of posterior MCMC samples. WAIC is measured on the scale
of deviance, and therefore lower values of WAIC indicate a
more parsimonious fit to the data. Finally, for each example
we also present the posterior distribution for the number of
population subgroups in the non-parametric model. This sug-
gests at the degree of heterogeneity present in the data as in-
ferred using the non-parametric model, the only model which
does not pre-define the number of population subgroups. The
datasets used for each example are available on GitHub at:
https://github.com/danielturek/bnp-examples-data.

5.1 Capture-Recapture Example

We consider wolf (canis lupus) capture-recapture data col-
lected in France between 1995 and 2003, as studied in
Cubaynes et al. (2010). The original data contains binary
detection data for a total of 87 wolves, over T = 8 obser-
vation periods. Since we condition on the first sighting of
each individual, we excluded the twenty individuals who were
first observed on the final observation period. This leaves a
total of N = 67 unique individuals in the dataset. Models
for detection heterogeneity described in section 2 were fit
to this data using MCMC, and inference was performed for
individual survival probability φ under each model.

Posterior median and 95% credible intervals, as well as the
WAIC value of each fitted model are presented in Table 1. The
homogeneous model produces the largest WAIC value among
those models considered (indicating the poorest fit to the

Table 1
Capture-recapture example results. Posterior inferences are

for individual survival probability φ, and WAIC values
indicate the goodness-of-fit of each model.

Model Median 95% BCI WAIC

Homogeneous .80 (.70, .89) 237.5
Finite Mixture 2 .91 (.79, .99) 209.1
Finite Mixture 3 .91 (.80, .99) 201.9
Finite Mixture 4 .92 (.80, .99) 198.3
Finite Mixture 5 .92 (.80, .99) 198.3
Finite Mixture 6 .91 (.80, .99) 199.9
Finite Mixture 7 .91 (.79, .99) 200.6
Finite Mixture 8 .90 (.79, .99) 201.4
Finite Mixture 9 .90 (.79, .98) 202.1
Finite Mixture 10 .90 (.78, .98) 202.8
Non-Parametric .92 (.81, .99) 199.8

data), and the lowest estimates of φ. Posterior inferences from
all mixture models and the non-parametric model are nearly
indistinguishable, with median posterior values for φ around
0.91, and 95% credible intervals of approximately (0.80, 0.99).
We note that the non-parametric model produces the third
lowest WAIC value, being 1.5 higher than the lowest two
WAIC values (equal from the 4-group and 5-group mixture
models). Further, inferences for φ generated under the non-
parametric model are nearly identical to those of the 4-group
and 5-group mixture models. Given our uncertainty in the
structure and degree of heterogeneity, the non-parametric
model provides defensible inferences and goodness-of-fit.
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Figure 4. Posterior distribution of the number of popu-
lation subgroups under the non-parametric model, for the
capture-recapture example.

Figure 4 displays the posterior distribution for the number
of population subgroups, as inferred by the non-parametric
model. We observe a right-skewed distribution placing the
bulk of the posterior mass roughly between three and ten sub-
groups, with a posterior median of seven, the mode appearing
at six subgroups, and a 90% Bayesian credible interval for the
number of subgroups as (3, 13). This distribution suggests
that our consideration of finite mixture models containing
between two and ten subgroups was a reasonable choice,
even though this was an uninformed and somewhat arbitrary
selection.
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5.2 Occupancy Example

For our occupancy example, we consider a second wolf (canis
lupus) dataset (Louvrier et al., 2018) collected in France in
2013. Opportunistic observational data such as tracks, scat,
and prey remains were collected from N = 3,211 grid cells,
each being a 10km × 10km square. Each site was surveyed
on a total of T = 4 independent observation occasions. The
categorical data, in total, consisted of 250 “unambiguous
detections”, 54 “ambiguous detections”, and 12,540 “non-
detections”. We convert this to binary data, wherein both
“unambiguous” and “ambiguous” detections are considered
to be positive detections. Models for detection heterogeneity
described in section 2 were fit to this data using MCMC,
and inference was performed for site occupancy proportion ψ
under each model.

Table 2
Occupancy model example results. Posterior inferences are
for site occupancy proportion ψ, and WAIC values indicate

the goodness-of-fit of each model.

Model Median 95% BCI WAIC

Homogeneous .063 (.054, .073) 2237.0
Finite Mixture 2 .079 (.063, .101) 2195.8
Finite Mixture 3 .087 (.067, .122) 2178.3
Finite Mixture 4 .092 (.068, .139) 2168.7
Finite Mixture 5 .089 (.068, .132) 2172.4
Finite Mixture 6 .090 (.069, .130) 2172.1
Finite Mixture 7 .089 (.068, .125) 2173.7
Finite Mixture 8 .087 (.068, .122) 2174.9
Finite Mixture 9 .087 (.068, .119) 2175.9
Finite Mixture 10 .086 (.069, .119) 2175.4
Non-Parametric .090 (.066, .359) 2166.7

Posterior median and 95% credible intervals, as well as the
WAIC value of each fitted model are presented in Table 2.
The homogeneous model again produces the largest WAIC
value (indicating the poorest fit to the data), and the lowest
estimates of ψ. The 2-group mixture model yields the second-
highest WAIC value and also lower estimates of ψ than the
remaining models, and the 3-group mixture model yields the
third highest WAIC value. This suggests a nontrivial degree
of heterogeneity in detection probability between sites.

The remaining mixture models (K > 4 groups) give WAIC
values between 2168.7 and 2175.9, and exhibit small variations
in the inferences for ψ, in particular in the upper limit of the
95% credible interval. In contrast, the non-parametric model
yields the lowest WAIC value among all models (2166.7)
indicating the best fit to the data. The posterior median
estimate from the non-parametric model is similar to that
of the K > 4 mixture models, but the credible interval is
wider. In particular, the non-parametric model suggests a
higher upper-bound for the 95% credible interval for ψ than
any other model considered. This result may be reasonable,
since WAIC suggests the non-parametric model provides the
best fit to the data, and we are completely uncertain as to
the degrees of detection heterogeneity which exists in this
opportunistic sampling dataset.

We again present the posterior distribution for the number
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Figure 5. Posterior distribution of the number of popu-
lation subgroups under the non-parametric model, for the
occupancy model example.

of population subgroups as inferred by the non-parametric
model in Figure 5. This distribution is again right-skewed,
this time spanning a wider range for plausible numbers of sub-
groups. This makes intuitive sense, as our occupancy example
data considers a much larger number of observations (3,211
sites, rather than a total of 67 individuals in the capture-
recapture example). The posterior distribution has a median
of eight, once again the mode appears at six subgroups, and
has a 90% Bayesian credible interval of (3, 19).

6. Discussion

Here, we have employed a Bayesian non-parametric approach
to modeling heterogeneity in the detection process of ecolog-
ical models. Our approach used a Chinese restaurant process
(CRP) prior distribution to model group memberships, which
has the benefit of not requiring specification of the number of
population sub-groups a priori. Using the CRP prior, both the
distribution of individuals or sites among distinct subgroups
and the number of subgroups are inferred from the data.
This strategy obviates any process of model selection used
to choose a “best value” for the number of groups K when
using a finite mixture model.

The tendency of the CRP distribution towards using fewer
(and hence more diverse) subgroups, or towards using a
larger number of tightly specified subgroups is governed by
a concentration parameter (α). The effect of different values
of α is seen in Figure 1, although we avoid the need to
choose a particular value of α by specifying an uninformative
Gamma prior distribution. This approach of using a CRP
prior distribution to model heterogeneity is used in diverse
areas of research including topic modeling (Blei et al., 2010),
genomics (Qin, 2006), and evolutionary clustering (Ahmed
and Xing, 2008), among others.

The examples and simulations used herein focus on the
most basic forms of capture-recapture and occupancy mod-
els. Specifically, we have considered the Cormack-Jolly-Seber
capture-recapture model, and a single-season static occu-
pancy model. Although our examples focused on the basic
forms of each model, the same technique are readily applied
to more complex variations of each model. For example, we
could apply the same non-parametric CRP prior distribution
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in multi-state capture-recapture, or in dynamic, multi-season,
or multi-species occupancy models. Similarly, one can readily
extend the hierarchical models to incorporate individual or
environmental covariates affecting population demographics,
survey effort, or the detection processes. The approach we
have used is quite general, and widely applicable to ecological
models where population heterogeneity is a consideration.

We have used the nimble R package to specify the hierarchi-
cal models described herein, and to fit these models to data
using MCMC. nimble provides degrees of flexibility which
are not available in other software packages. Specifically, we
leverage nimble’s ability to use custom-written likelihood
distributions in a hierarchical model, specifically the ecolog-
ical likelihood distributions provided in the nimbleEcology

package. Further, nimble provides the ability to specify the
sampling algorithms used by the MCMC, and even to oneself
write customized sampling algorithms for use in the MCMC.
Indeed, the MCMC sampling algorithms used for fitting our
models – specifically those used for the CRP concentration
parameter α, and for the CRP-distributed group membership
indicators g1:N – are themselves custom sampling algorithms
written for precisely these non-parametric motifs, and added
into nimble’s MCMC repertoire of algorithms. That said,
nimble does not attempt to provide “canned” algorithms, nor
any particular pre-written model structures, but rather an en-
vironment for writing custom functions, statistical algorithms,
and distributions, and the application of these to generally-
specified hierarchical model structures. The goal of nimble

is to provide a flexible model and algorithmic programming
environment to facilitate highly efficient analysis of models
and complex data.

It is common that heterogeneity will be present to some de-
gree in the detection process of ecological models. In practice,
this may be detected by goodness-of-fit tests (Jeyam et al.,
2019), or perhaps based on prior expert knowledge. When
detection heterogeneity is known or suspected to be present,
and suitable covariates are not available to accurately model
this heterogeneity, we recommend using a BNP modelling ap-
proach. This approach alleviates the necessity of selecting the
number of components used in a finite mixture model, which
is an inherently difficult and oftentimes subjective process.
No less, the exact number of mixture components is generally
not the primary inferential focus. Use of a BNP modelling ap-
proach, as demonstrated herein, accounts for whatever degree
of heterogeneity may be present while requiring no subjective
choices or guesswork. This provides an effective approach to
reducing bias in the resulting demographic inferences.
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Appendix Simulation Code

library(nimble)
library(nimbleEcology)

##################################################
############ Capture-Recapture Models ############
##################################################

## number of individuals
N <- 800
## number of observation periods
T <- 8
## time period of first capture
first <- rep(1, N)
## length of observation history from first capture
len <- T - first + 1
## survival probability
phi <- 0.7
## detection probability
pVec <- rep(c(0.2, 0.8), each=N/2)

## simulate z (alive / dead status),
## and y (encounter histories)
set.seed(0)
z <- matrix(NA, nrow=N, ncol=T)
y <- matrix(NA, nrow=N, ncol=T)
for(i in 1:N) {

z[i, first[i]] <- y[i, first[i]] <- 1
for(t in (first[i]+1):T) {

z[i,t] <- rbinom(1, 1, phi*z[i,t-1])
y[i,t] <- rbinom(1, 1, pVec[i]*z[i,t])

}
}

## Homogeneous Capture-Recapture Model
code <- nimbleCode({

phi ~ dunif(0, 1)
p ~ dunif(0, 1)
for(i in 1:N) {

y[i,first[i]:T] ~ dCJS_ss(phi, p, len=len[i])
}

})
constants <- list(N=N, T=T, first=first, len=len)
data <- list(y=y)
inits <- list(phi=0.5, p=0.5)
Rmodel <- nimbleModel(code, constants, data, inits)

## 2-Group Finite Mixture Capture-Recapture Model
code <- nimbleCode({

phi ~ dunif(0, 1)
for(k in 1:K) p[k] ~ dunif(0, 1)
one ~ dconstraint(p[1] <= p[2])
for(i in 1:N) {

g[i] ~ dcat(pi[1:K])
y[i,first[i]:T] ~ dCJS_ss(phi, p[g[i]], len=len[i])

}
})
K <- 2 ## fixed number of groups
constants <- list(N=N, T=T, first=first, len=len, K=K)
data <- list(y=y, one=rep(1,K-1))
inits <- list(phi=0.5, pi=rep(1/K,K), p=rep(0.5,K), g=rep(1,N))
Rmodel <- nimbleModel(code, constants, data, inits)

## 3-Group Finite Mixture Capture-Recapture Model
code <- nimbleCode({

phi ~ dunif(0, 1)
for(k in 1:K) p[k] ~ dunif(0, 1)
one[1] ~ dconstraint(p[1] <= p[2])
one[2] ~ dconstraint(p[2] <= p[3])
for(i in 1:N) {

g[i] ~ dcat(pi[1:K])
y[i,first[i]:T] ~ dCJS_ss(phi, p[g[i]], len=len[i])

}
})
K <- 3 ## fixed number of groups
constants <- list(N=N, T=T, first=first, len=len, K=K)
data <- list(y=y, one=rep(1,K-1))
inits <- list(phi=0.5, pi=rep(1/K,K), p=rep(0.5,K), g=rep(1,N))
Rmodel <- nimbleModel(code, constants, data, inits)

## Non-Parametric Capture-Recapture Model
code <- nimbleCode({

phi ~ dunif(0, 1)
alpha ~ dgamma(1, 1)
xi[1:N] ~ dCRP(conc=alpha, size=N)
for(i in 1:M) p[i] ~ dunif(0, 1)
for(i in 1:N) {

y[i,first[i]:T] ~ dCJS_ss(phi, p[xi[i]], len=len[i])
}

})
M <- 100 ## maximum number of subgroups
constants <- list(N=N, T=T, first=first, len=len, M=M)
data <- list(y=y)
inits <- list(phi=0.5, alpha=1, xi=rep(1,N), p=rep(0.5,M))
Rmodel <- nimbleModel(code, constants, data, inits)

##################################################
################ Occupancy Models ################
##################################################

## number of sites
N <- 4000
## number of observation periods
T <- 6
## probability of occupancy
pOcc <- 0.7
## detection probability
pVec <- rep(c(0.2, 0.8), each=N/2)

## simulate z (occupied status),
## and y (encounter histories)
set.seed(0)
z <- rep(NA, N)
y <- matrix(NA, nrow=N, ncol=T)
for(i in 1:N) {

z[i] <- rbinom(1, size=1, prob=pOcc)
y[i, 1:T] <- rbinom(T, size=1, prob=z[i]*pVec[i])

}

## Homogeneous Occupancy Model
code <- nimbleCode({

pOcc ~ dunif(0, 1)
p ~ dunif(0, 1)
for(i in 1:N) {

y[i,1:T] ~ dOcc_s(pOcc, p, len=T)
}

})
constants <- list(N=N, T=T)
data <- list(y=y)
inits <- list(pOcc=0.5, p=0.5)
Rmodel <- nimbleModel(code, constants, data, inits)

## 2-Group Finite Mixture Occupancy Model
code <- nimbleCode({

pOcc ~ dunif(0, 1)
for(k in 1:K) p[k] ~ dunif(0, 1)
one ~ dconstraint(p[1] <= p[2])
for(i in 1:N) {

g[i] ~ dcat(pi[1:K])
y[i,1:T] ~ dOcc_s(pOcc, p[g[i]], len=T)

}
})
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K <- 2 ## fixed number of groups
constants <- list(N=N, T=T, K=K)
data <- list(y=y, one=rep(1,K-1))
inits <- list(pOcc=0.5, pi=rep(1/K,K), p=rep(0.5,K), g=rep(1,N))
Rmodel <- nimbleModel(code, constants, data, inits)

## 3-Group Finite Mixture Occupancy Model
code <- nimbleCode({

pOcc ~ dunif(0, 1)
for(k in 1:K) p[k] ~ dunif(0, 1)
one[1] ~ dconstraint(p[1] <= p[2])
one[2] ~ dconstraint(p[2] <= p[3])
for(i in 1:N) {

g[i] ~ dcat(pi[1:K])
y[i,1:T] ~ dOcc_s(pOcc, p[g[i]], len=T)

}
})
K <- 3 ## fixed number of groups
constants <- list(N=N, T=T, K=K)
data <- list(y=y, one=rep(1,K-1))
inits <- list(pOcc=0.5, pi=rep(1/K,K), p=rep(0.5,K), g=rep(1,N))
Rmodel <- nimbleModel(code, constants, data, inits)

## Non-Parametric Occupancy Model
code <- nimbleCode({

pOcc ~ dunif(0, 1)
alpha ~ dgamma(1, 1)
xi[1:N] ~ dCRP(conc=alpha, size=N)
for(i in 1:M) p[i] ~ dunif(0, 1)
for(i in 1:N) {

y[i,1:T] ~ dOcc_s(pOcc, p[xi[i]], len=T)
}

})
M <- 100 ## maximum number of subgroups
constants <- list(N=N, T=T, M=M)
data <- list(y=y)
inits <- list(pOcc=0.5, alpha=1, xi=rep(1,N), p=rep(0.5,M))
Rmodel <- nimbleModel(code, constants, data, inits)

##################################################
############## Fit Model Using MCMC ##############
##################################################

## configure MCMC
conf <- configureMCMC(Rmodel)

## build MCMC
Rmcmc <- buildMCMC(conf)

## compile model and MCMC
Cmodel <- compileNimble(Rmodel)
Cmcmc <- compileNimble(Rmcmc, project=Rmodel)

set.seed(0)
samplesList <- runMCMC(Cmcmc, niter=10000, nchains=3)
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