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On the tree-width of even-hole-free graphs

Pierre Aboulker ∗ Isolde Adler † Eun Jung Kim ‡

Ni Luh Dewi Sintiari § Nicolas Trotignon §

Abstract

The class of all even-hole-free graphs has unbounded tree-width, as
it contains all complete graphs. Recently, a class of (even-hole, K4)-free
graphs was constructed, that still has unbounded tree-width [Sintiari
and Trotignon, 2019]. The class has unbounded degree and contains
arbitrarily large clique-minors. We ask whether this is necessary.

We prove that for every graph G, if G excludes a fixed graph H
as a minor, then G either has small tree-width, or G contains a large
wall or the line graph of a large wall as induced subgraph. This can
be seen as a strengthening of Robertson and Seymour’s excluded grid
theorem for the case of minor-free graphs. Our theorem implies that
every class of even-hole-free graphs excluding a fixed graph as a minor
has bounded tree-width. In fact, our theorem applies to a more general
class: (theta, prism)-free graphs. This implies the known result that
planar even hole-free graph have bounded tree-width [da Silva and
Linhares Sales, Discrete Applied Mathematics 2010].

We conjecture that even-hole-free graphs of bounded degree have
bounded tree-width. If true, this would mean that even-hole-freeness
is testable in the bounded-degree graph model of property testing. We
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Lyon, within the program ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by
the French National Research Agency (ANR) and by Agence Nationale de la Recherche
(France) under research grant ANR DIGRAPHS ANR-19-CE48-0013-01.

1



prove the conjecture for subcubic graphs and we give a bound on the
tree-width of the class of (even hole, pyramid)-free graphs of degree at
most 4.

Keywords Even-hole-free graphs, grid theorem, tree-width, bounded-
degree graphs, property testing

2012 ACM Subject Classification Theory of computation → Math-
ematics of computing→ Discrete mathematics→ Graph Theory; Theory of
computation → Design and analysis of algorithms → Streaming, sublinear
and near linear time algorithms

1 Introduction

Here, all graphs are simple and undirected. A hole in a graph is an induced
cycle of length at least 4. It is even or odd according to the parity of its
length, that is the number of its edges. We say that a graph G contains
a graph H if some induced subgraph of G is isomorphic to H. A graph is
H-free if it does not contain H. When H is a set of graphs, G is H-free if
G contains no graph of H. A graph is therefore even-hole-free if it does not
contain an even hole.

Even-hole-free graphs were the object of much attention, see for instance
the survey [24]. However, many questions about them remain unanswered,
such as the existence of a polynomial time algorithm to color them, or to find
a maximum stable set. In fact, to the best of our knowledge, no problem
that is polynomial time solvable for chordal graphs is known to be NP-
hard for even-hole-free graphs (where a chordal graph is a hole-free graph).
Despite the existence of several decomposition theorems or structural prop-
erties (see [24]), no structure theorem is known for even-hole-free graphs.

In addition, motivated by the question whether even-hole-freeness is
testable in the bounded degree model of property testing, the structure
of even-hole-free graphs of bounded maximum degree is of interest. If even-
hole-free graphs of bounded degree have bounded tree-width, it would imply
testability in the bounded degree model, because even-hole-freeness is ex-
pressible in monadic second-order logic with modulo counting (CMSO) and
CMSO is testable on bounded tree-width [1]. We will discuss this in greater
detail below. Let us first provide some more background.

Background. We begin by recalling known definitions and results about
tree-width. The clique number of a graph G, denoted by ω(G), is the max-
imum number of pairwise adjacent vertices in G. The tree-width of a graph
G is the minimum of ω(J) − 1 over all chordal graphs J such that G is a
subgraph of J . The tree-width can be seen as a measure of the structural
tameness of a graph: the smaller the tree-width, the more ‘tree-like’ the
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graph. A celebrated result [9] asserts that many problems (including graph
coloring or finding a maximum stable set) can be solved in polynomial time
when restricted to graphs of bounded tree-width. However, many graphs
with in some sense a simple structure have large tree-width. For instance
the complete graph on n vertices, that we denote by Kn, has tree-width
n − 1. A graph H is a minor of a graph G, if H can be obtained from a
subgraph of G by contracting edges. Tree-width is monotone under taking
minors in the sense that if H is a minor of G, then the tree-width of H is
less than or equal to the tree-width of G. It follows that graphs that contain
Kn as a minor have tree-width at least n−1. The converse is not true: grids
have arbitrarily large tree-width but they do not contain K5 as a minor.

The class of all even-hole-free graphs trivially has unbounded tree-width,
as is contains all complete graphs. Also, chordal graphs form a well studied
subclass of even-hole-free graphs of unbounded tree-width. However, even-
hole-free graphs with no triangle have bounded tree-width [7]. This leads
to asking whether even-hole-free graphs of bounded clique number have
bounded tree-width – a question that is first asked and motivated in [6].
This was answered negatively in [22], where (even hole, K4)-free graphs of
arbitrarily large tree-width are described. However, the construction uses
vertices of large degree and a large clique minor to increase the tree-width,
and it seems natural to ask whether this is necessary.

It is known that planar even-hole-free graphs have bounded tree-width [21],
and planar graphs do not contain K` as a minor for ` ≥ 5. Besides that,
it is known that an upper bound on the length of the largest induced cycle
implies an upper bound on the tree-width for graphs of bounded maximum
degree [4].

Our contributions. The results explained above suggest the following
two conjectures.

Conjecture 1. There is a function f : N→ N such that every even-hole-free
graph not containing K` as a minor has tree-width at most f(`).

Conjecture 2. There is a function f : N→ N such that every even-hole-free
graph of degree at most d has tree-width at most f(d).

In this paper we prove Conjecture 1 (cf. Section 3). Indeed, we prove
the following stronger result, which implies Conjecture 1.

Theorem 1.1 (Induced grid theorem for minor-free graphs). For every
graph H there is a function fH : N→ N such that every H-minor-free graph
of tree-width at least fH(k) contains a (k × k)-wall or the line graph of a
chordless (k × k)-wall as an induced subgraph.

Here a wall is a (possibly subdivided) hexagonal grid (cf. Section 3).
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Slightly more generally, Theorem 1.1 implies that (theta, prism)-free
graphs (to be defined in Section 2) exluding a fixed minor have bounded
tree-width. Note that (theta, prism)-free graphs form a superclass of even-
hole-free graphs.

Our theorem can be seen as ‘induced’ version on minor-free graphs classes
of the following famous theorem.

Theorem 1.2 (Robertson and Seymour [20]). There is a function f : N→ N
such that every graph of tree-width at least f(k) contains a (k × k)-wall as
a subgraph.

Theorem 1.2 cannot be strengthened to finding walls as induced sub-
graphs in general, because the complete graph Kn has tree-width n− 1 and
only contains complete graphs as induced subgraphs.

Note that graphs with no induced subdivision of a 6× 3 wall, arbitrarily
large tree-width and girth (in particular triangle and square-free) exist, as
shown in [22]. But as for the construction of (even hole, K4)-free graphs
of unbounded tree-width in [22], vertices of large degree and large clique
minors are needed, we make the following conjecture.

Conjecture 3. For every d ∈ N there is a function fd : N → N such that
every graph with degree at most d and tree-width at least fd(k) contains a
(k × k)-wall or the line graph of a (k × k)-wall as an induced subgraph.

Conjecture 3 implies Conjecture 2. Conjecture 3 is wide open, and our
results can be seen as a step in the direction of a proof.

For Conjecture 2 (that is trivial for d ≤ 2), we give a proof for d = 3
by providing a full structural description of subcubic even-hole-free graphs
(a graph is subcubic if it does not contain a vertex of degree more than 3).
In fact, all these results apply to (theta, prism)-free graphs (cf. Section 2
for the details). We also prove a weakening of Conjecture 2 for d = 4 (cf.
Section 5).

Motivation from property testing. Our other source of motivation for
studying even-hole-free graphs of bounded degree stems from the question
whether even-hole-freeness is testable in the bounded degree graph model.
Motivated by the growing need of highly efficient algorithms, in particu-
lar when the inputs are huge, property testing aims at devising sublinear
time algorithms. Property testing algorithms (simply called testers) solve a
relaxed version of decision problems, they are randomised, and they come
with a small controllable error probability.

Since the input cannot be read even once in sublinear time, testers have
local access to the input graph only. The bounded degree graph model as-
sumes a fixed upper bound d on the degree of all graphs, and the testers
proceed by sampling a constant number of vertices of the input graph and ex-
ploring their local (constant radius) neighborhoods. A property P is testable,
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if there is an ε-tester for P , for every fixed small ε > 0. For an input graph
G, an ε-tester determines, with probability at least 2/3 correctly, whether
G has property P , or G is ε-far from having property P . Here a property
is simply an isomorphism closed class of graphs. A graph G is ε-close to
P , if there is a graph G′ ∈ P on the same number n of vertices as G, such
that G and G′ can be made isomorphic by at most εdn edge modifications
(deletions or insertions) in G or G′, and otherwise, G is ε-far from P . The
number of vertices explored in the input graph is called the query complexity
of the tester. The model requires testers to have constant query complexity.

Properties that are known to be testable in the bounded degree graph
model include subgraph-freeness (for a fixed subgraph), k-edge connectivity,
cycle-freeness, being Eulerian, degree-regularity [14], bounded tree-width
and minor-freeness [3, 15, 18], hyperfinite properties [19], k-vertex connec-
tivity [25, 12], and subdivision-freeness [17]. Properties that are not testable
in the bounded degree model include bipartiteness, 3-colorability, expansion
properties, and k-clusterability, cf. [13].

Since the testers can only explore a constant number of constant radius
neighborhoods in the input graph, intuitively, properties that are testable
should have some form of ‘local’ nature. Hence it might seem unlikely that
properties like Hamiltonicity and even-hole-freeness are testable, due to the
large cycles involved. Indeed, it can be shown that there is no one-sided
error tester for Hamiltonicity (i. e. there is no tester that always accepts yes-
instances) with constant query complexity. More precisely, every one-sided
tester has query complexity at least Ω(n) [16].

Perhaps surprisingly, our results suggest a different picture for even-
hole-freeness. It is known that on graphs of bounded degree and bounded
tree-width, every property that can be expressed in monadic second-order
logic with counting (CMSO), is testable with constant query complexity
and polylogarithmic running time [1]. (Here polylogarithmic in n means
bounded by a polynomial in log n.) It is straightforward to see that even-
hole-freeness is expressible in CMSO. This can be done by expressing that
there is no set X of edges that form an induced hole, where |X| is even
(cf. eg. [10] for more details on CMSO expressibility). Together with the
fact that bounded tree-width is testable, this implies that if Conjecture 2
is true, then even-hole-freeness is testable with constant query complexity
and polylogarithmic running time. (This is done by first testing for bounded
tree-width and, if the answer is positive, testing for even-hole-freeness using
CMSO testability.) Our results in Section 4 imply the following.

Theorem 1.3. On subcubic graphs, even-hole-freeness is testable with con-
stant query complexity and polylogarithmic running time.

Structure of the paper. We start with fixing notation in Section 2. Sec-
tion 3 contains the proof of the induced grid theorem for minor-free graph
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classes, and the proof of Conjecture 1. Section 4 contains the structure the-
orem for subcubic (theta, prism)-free graphs and the proof of Conjecture 2
for d = 3. Recall that (theta, prism)-free graphs are defined in the next
section, and it is a superclass of even-hole-free graphs. In Section 5 we pro-
vide a structure theorem for (even hole, pyramid)-free graphs of maximum
degree 4, and we derive a bound on the tree-width of this class (pyramids
will be defined in the next section). In Section 6 we give ideas suggesting
that a structure theorem for even-hole-free graphs with maximum degree 4
might exist, and if so, should imply bounded tree-width.

2 Notation

We let N denote the set of natural numbers including 0. We use X t Y
instead of X ∪ Y if X ∩ Y = ∅. For any n ∈ N, n ≥ 1, let [n] := {1, . . . , n}.

An (undirected) graph is a pair G = (V (G), E(G)), consisting of a set
V (G), the set of vertices of G, and a set E(G) of edges of G, where an edge
is a two-vertex subset of V (G). A graph H is a subgraph of a graph G,
if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a set X ⊆ V (G) the subgraph
induced by X in G is the subgraph G[X] of G with vertex set X, such
that e ∈ E(G[X]) iff e ∈ E(G) and e ⊆ X. A graph H is an induced
subgraph of G, if H = G[X] for some X ⊆ V (G). For a set S ⊆ V (G) we let
G \ S := G[V (G) \ S] and if S = {v} is a singleton set, then we write G \ v
instead of G \ {v}.

A path in G is a sequence P of distinct vertices p1 . . . pn, where pipi+1 ∈
E(G) for 1 ≤ i < n. Along the paper, unless stated, by path we mean
chordless (or induced) path, i.e. for i, j ∈ {1, . . . , n}, pipj ∈ E(G) if and only
if |i−j| = 1. For two vertices pi, pj ∈ V (P ) with j > i, the path pipi+1 . . . pj
is a subpath of P that is denoted by piPpj . The subpath p2 . . . pn−1 is called
the interior of P . The vertices p1, pn are the ends of the path, and the
vertices in the interior of P are called the internal vertices of P . A cycle is
defined similarly, with the additional properties that n ≥ 4 and p1 = pn. As
in path, we have the notion of chordless or induced cycle. An edge e ∈ E(G)
is a chord of cycle C, if the endpoints of e are vertices of C that are not
adjacent on C. A hole is a chordless cycle of length at least 4. The length
of a path P is the number of edges of P . The length of cycle C is is the
number of edges of C that is not a chord of the cycle. Let G be a graph.
For vertices u, v ∈ V (G), the distance between u and v in G, denoted by
distG(u, v), is the length of a shortest path from u to v, if a path exists,
and ∞ otherwise. For two subsets X,Y ⊆ V (G), the distance between X
and Y is min{distG(x, y) | x ∈ X, y ∈ Y }. For v ∈ V (G), we call the set
NG

r (v) := {w ∈ V (G) | distG(v, w) ≤ r} the r-neighborhood of v (in G).
The degree of a vertex v in G is defined as the number of edges that are

adjacent to v in G. The maximum degree of G is the maximum degree over
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all vertices of G. By Cd we denote the class of all graphs of degree at most
d ∈ N.

The line graph of a graph G is the graph L(G), with V (L(G)) = E(G)
and two vertices of L(G) are adjacent, if their corresponding edges are
incident in G. A clique in G is a set X ⊆ V (G) of vertices such that
{v, w} ∈ E(G) for every pair v, w ∈ X with v 6= w. A graph K is complete,
if V (K) is a clique in K. We use Kk to denote the complete graph on k
vertices. The complete graph K3 is also referred to as triangle. For disjoint
sets A,B ⊆ V (G), we say that A is anticomplete to B if no edges are present
between A and B in G.

A pyramid is a graph made of three paths P1 = x . . . a, P2 = x . . . b,
P3 = x . . . c, each of length at least 1, two of which have length at least 2,
internally vertex-disjoint, and such that abc is a triangle and no edges exist
between the paths except those of the triangle and the three edges incident
to x. The vertex x is called the apex of the pyramid.

A prism is a graph made of three vertex-disjoint paths P1 = a . . . a′,
P2 = b . . . b′, P3 = c . . . c′ of length at least 1, such that abc and a′b′c′

are triangles and no edges exist between the paths except those of the two
triangles.

A theta is a graph made of three internally vertex-disjoint paths P1 =
a . . . b, P2 = a . . . b, P3 = a . . . b of length at least 2 and such that no edges
exist between the paths except the three edges incident to a and the three
edges incident to b.

A wheel is a graph formed from a hole H together with a vertex x that
has at least three neighbors in the hole. Such a hole H is called the rim,
and such a vertex x is called the center of the wheel. We denote by (H,x),
the wheel with rim H and center x.

Figure 1: Pyramid, prism, theta, and wheel (dashed lines represent paths)

Theta and prism are relevant in this work, because of the following well-
known lemma. The following lemma clearly implies that (theta, prism)-free
graphs form a superclass of even-hole-free graphs.

Lemma 2.1. Every theta and every prism contains an even hole.

proof — It follows by the fact that there exist two paths in a theta or in
a prism that have same parity, which induce an even hole. �
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3 Even-hole-free graphs excluding a minor

In this section we prove an ‘induced grid theorem’ for graphs excluding a
fixed minor. From this we derive that even-hole-free graphs excluding a
fixed minor have bounded tree-width.

We begin by defining grids and walls. Let n,m be integers with n,m ≥ 2.
An (n×m)-grid is the graph Gn×m with V (Gn×m) = [n]× [m] and

E(Gn×m) =
{
{(i1, j1), (i2, j2)} | |i1−i2|+|j1−j2| = 1, i1, i2 ∈ [n], j1, j2 ∈ [m]

}
.

Figure 2 shows G5×5.

Figure 2: The (5× 5)-grid G5×5.

Let n,m ≥ 2 be integers. An elementary (n ×m)-wall is a graph G =
(V,E) with vertex set

V =
{

(1, 2j − 1) | 1 ≤ j ≤ m
}
∪
{

(i, j) | 1 < i < n, 1 ≤ j ≤ 2m
}

∪
{

(n, 2j − 1) | 1 ≤ j ≤ m, if n is even
}
∪
{

(n, 2j) | 1 ≤ j ≤ m, if n is odd
}

and edge set

E =
{

(1, 2j − 1), (1, 2j + 1) | 1 ≤ j ≤ m− 1
}
∪
{
{(i, j), (i, j + 1)} | 2 ≤ i < n, 1 ≤ j < 2m

}
∪
{
{(n, 2j), (n, 2j + 2))} | 1 ≤ j < m if n is odd

}
∪
{
{(n, 2j − 1), (n, 2j + 1)} | 1 ≤ j < m if n is even

}
∪
{
{(i, j), (i+ 1, j)} | 1 ≤ i < n, 1 ≤ j ≤ 2m, i, j odd

}
∪
{
{(i, j), (i+ 1, j)} | 1 ≤ i < n, 1 ≤ j ≤ 2m, i, j even

}
.

Figure 3 shows an elementary (5× 5)-wall.
An elementary (n×m)-wall has n horizontal paths, where the first hor-

izontal path is induced by the vertex set
{

(1, 2j − 1) | 1 ≤ j ≤ 2m
}

, the
ith horizontal path is induced by the vertex set

{
(i, j) | 1 ≤ j ≤ 2m

}
.

for 1 < i < n, and the nth horizontal path is induced by the vertex set{
(n, 2j − 1) | 1 ≤ j ≤ 2m

}
if n is odd, and by

{
(n, 2j) | 1 ≤ j ≤ 2m

}
if

n is even. An elementary (n×m)-wall has m vertical paths, where the jth
vertical path is induced by the vertex set

{
(i, 2j−1), (i+ 1, 2j−1) | 1 ≤ i <

n, i odd
}
∪
{

(i, 2j), (i+ 1, 2j) | 1 ≤ i < n, i even
}

, for 1 ≤ j ≤ m. Figure 4
shows an elementary wall with vertical paths.
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Figure 3: The elementary (5× 5)-wall.

Figure 4: An elementary (5 × 5)-wall with three of the five vertical paths
highlighted.

An (n × m)-wall is a subdivision of an elementary (n × m)-wall. An
(n×m)-wall also has n horizontal paths and m vertical paths, which arise
from the paths of the underlying elementary wall including the subdivision
vertices.

Robertson and Seymour’s famous excluded grid theorem states that for
any graph G, either G has small tree-width or G contains a large grid minor,
thus identifying large grid minors as canonical obstructions to small tree-
width.

Theorem 3.1 (Robertson and Seymour [20]). There is a function f such
that for every k ≥ 1 and every graph G, if tw(G) ≥ f(k) then G contains
the (k × k)-grid as a minor.

The theorem continues to hold if we replace grid by wall, and the latter
has the advantage of having a maximum degree of three, which allows finding
walls as subgraphs. Recall Theorem 1.2.

Theorem 1.2 (Robertson and Seymour [20]). There is a function f : N→ N
such that every graph of tree-width at least f(k) contains a (k × k)-wall as
a subgraph.

Obviously, this cannot be strengthened to finding walls as induced sub-
graphs, because the complete graph Kn has tree-width n− 1 and only con-
tains complete graphs as induced subgraphs. A graph G is called chordless,
if no cycle of G has a chord in G. For graphs excluding a fixed minor, we
now prove an ‘induced grid theorem’. Recall Theorem 1.1.

Theorem 1.1 (Induced grid theorem for minor-free graphs). For every
graph H there is a function fH : N→ N such that every H-minor-free graph
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of tree-width at least fH(k) contains a (k × k)-wall or the line graph of a
chordless (k × k)-wall as an induced subgraph.

Observe that the line-graph of a chordless wall has maximum degree at
most 3. For the proof of Theorem 1.1 we need some lemmas and notation. A
fork is a tree with exactly three leaves. A semi-fork is a graph obtained from
a triangle by appending disjoint paths of length at least 1 at each vertex
of the triangle. Note that both a fork and a semi-fork have precisely three
degree-one vertices.

Figure 5: The net graph.

A semi-fork obtained from a triangle by appending disjoint paths of
length exactly 1 at each vertex of the triangle is called a net graph (cf.
Figure 5). Let G be a graph and let v ∈ V (G) be a vertex of degree 3 in G
with neighbors a, b, c. The graph obtained by a net graph replacement at v
is the graph H, with V (H) = (V (G) \ {v})∪ {x, y, z}, where x, y, z are new
vertices, i. e. x, y, z /∈ V (G), and E(H) = E(G\v)∪{xy, yz, xz}∪{xa, yb, zc}.

The ‘grid-like’ configurations we aim for are walls and line graphs of
walls. On the way, we also encounter a slightly untidier ‘mix’ of both,
that we call stone wall. An (n × m)-stone wall is a graph obtained from
a wall W by picking a (possibly empty) subset X of the degree-3-vertices
of W and performing net graph replacements at each vertex in X. Note
that if we perform net graph replacements at all degree-3-vertices of the
wall W , the resulting graph is the line graph of a wall (namely of the wall
W ′ obtained from W by adding an additional subdivision vertex on each
path that connects two degree-3-vertices). Observe that stone walls have
maximum degree 3. A stone wall is homogeneous, if it is either a wall or the
line graph of a wall. Note that because stone walls have maximum degree
at most 3, if a homogeneous stone wall is the line graph of a wall W , W
must be chordless.

A triangulated (n×m)-grid is the graphG4n×m with V (G4n×m) = V (Gn×m)

and E(G4n×m) = E(Gn×m)∪
{
{(i, j), (i− 1, j+ 1)} | 1 < i ≤ m, 1 ≤ j < m

}
,

see Figure 6. The vertices (1, 1), (1,m), (n, 1) and (n,m) are called the
corners of the (triangulated) grid.

Two horizontal paths (resp. vertical paths) in a wall are non-adjacent
if... The following lemma shows that a large wall contains many smaller
induced subwalls.
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Figure 6: The triangulated (5× 5)-grid G45×5.

Lemma 3.2. For n,m ∈ N, let W be an (n ×m)-wall. Let X be a set of
pairwise non-adjacent horizontal paths of W and let Y be a set of pairwise
non-adjacent vertical paths of W , with |X|, |Y | ≥ 2. Then W contains an
induced (|X| × |Y |)-wall W ′, with V (W ′) ⊆

⋃
P∈X V (P ) ∪

⋃
Q∈X V (Q).

proof — Assume that |X| ≥ 2 and |Y | ≥ 2. We obtain W ′ by taking the
subgraph of W induced by the set

⋃
P∈X V (P )∪

⋃
Q∈Y V (Q) and repeatedly

deleting degree-1-vertices until all vertices have degree at least 2. �

For the proof of Theorem 1.1, we use a corollary of the main result of
[11], and we need the notion of contraction. Let G and H be graphs. If H
can be obtained from G by a sequence of edge contractions, then H is called
a contraction of G. Alternatively, contractions can be defined via mappings
as follows. Let G and H be graphs and let ϕ : V (G)→ V (H) be a surjective
mapping such that

1. for every vertex v ∈ V (H), its pre-image ϕ−1(v) is connected in G,

2. for every edge uv ∈ E(H), the graph G[ϕ−1(u)∪ϕ−1(v)] is connected,

3. for every edge uv ∈ E(G), either ϕ(u) = ϕ(v) or ϕ(u)ϕ(v) ∈ E(H).

Corollary 3.3 (Fomin, Golovach and Thilikos [11]). Let H be a graph and
let G be a graph excluding H as a minor. There exists a constant cH such
that if tw(G) ≥ cH · (k + 1)2, then G contains an induced subgraph that

contains G4k×k as a contraction.

The following lemma will help us to find a large stone wall in a graph
containing a large triangulated grid as a contraction.

Lemma 3.4. Let G be a connected graph whose vertex set is partitioned
into connected sets A, A′, B, B′, C, C ′ and S. Suppose that every edge of
G has either both ends in one of the sets, or is from A′ to A, from B′ to B,
from C ′ to C, or from S to A ∪B ∪ C.

If a ∈ A′, b ∈ B′ and c ∈ C ′, then a, b and c are the degree one vertices
of some induced fork or semi-fork of G.

proof — Let P be a shortest path from b to c in G[B′ ∪B ∪ S ∪ C ∪ C ′].
Note that P must go through S. Let Q = a . . . w in G[A′ ∪ A ∪ S] be a
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shortest path such that w has some neighbors in P . Let u (resp. v) be the
neighbor of w in P closest to b (resp. to c) along P . Note that u 6= b and
v 6= c. If u = v, then P and Q form a fork. If u is adjacent to v, then P
and Q form a semi-fork. If u 6= v and uv /∈ E(G), then aQw, bPu and cPv
form a fork. In all cases, a, b and c are the three vertices of degree 1 of the
fork or semi-fork. �

For tidying up stone walls, we make use of a natural variant of Ramsey’s
Theorem for bipartite graphs, first introduced by Beineke and Schwenk in
1975.

Theorem 3.5 (Beineke and Schwenk [2]). For every integer r ≥ 1 there
exists a smallest positive integer n = n(r), such that any 2-edge-coloring of
the complete bipartite graph Kn,n contains a monochromatic Kr,r.

In [23] it was shown that n(r) ≤ 2r(r − 1) + 1.
The next lemma shows that any sufficiently large stone wall also contains

a large homogeneous stone wall as induced subgraph.

Lemma 3.6. For every integer r ≥ 2 there exists an integer n = n(r) such
that every (n× n)-stone wall contains a homogeneous (r × r)-stone wall as
induced subgraph.

proof — Given r, let n = n(r) be large enough. Given an (n×n)-stone wall
W , we define an auxiliary wall W ′, which is obtained from W by contracting
every triangle. Each vertex in W ′ that is the result of contracting a triangle
is colored red (red encodes ‘semi-fork’), and all other degree-3-vertices of W ′

are colored green (green encodes ‘fork’).
Define a complete bipartite graph H with V (H) = A ∪ B as follows.

The elements of A are horizontal paths of W ′, and the elements of B are the
vertical paths in W ′. Note that each vertical path has two colored vertices in
common with each horizontal path, other than the first and last horizontal
paths.

We fix an orientation of the horizontal paths ‘from left to right’. Now
we color the edges of H with four colors. Let P ∈ A be a horizontal path
and let Q ∈ B be a vertical path.
1. If V (P ) ∩ V (Q) ⊆ V (W ′) contains two green vertices, we color the edge
PQ green.
2. If V (P ) ∩ V (Q) ⊆ V (W ′) contains two red vertices, we color the edge
PQ red.
3. If V (P ) ∩ V (Q) ⊆ V (W ′) contains a green and a red vertex, and the
green vertex appears before the red vertex when traversing P from left to
right, then we color the edge PQ white.
4. If V (P ) ∩ V (Q) ⊆ V (W ′) contains a green and a red vertex, and the red
vertex appears before the green vertex when traversing P from left to right,
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then we color the edge PQ black.

By applying Theorem 3.5 (multiple times, if necessary), we find that H
contains a large monochromatic complete bipartite subgraph H ′.

If H ′ is green (or red, respectively), we find a large subwall in W ′ where
all vertices of degree 3 are green (red, respectively) as follows. We take
the horizontal and vertical paths in W ′ that correspond to V (H ′), leaving
out every second path to make sure that the horizontal paths we keep are
pairwise non-adjacent, and that the vertical paths we keep are pairwise non-
adjacent. Then we apply Lemma 3.2. Undoing the contractions of triangles
in the case that H ′ is red, we thus obtain a large induced homogeneous stone
wall in W .

In the case that H ′ is white or black, we find a large subwall W ′′ in W ′

where both red and green appear at each intersection of a horizontal and
a vertical path. W. l. o. g. assume that H ′ is white (otherwise flip the wall
exchanging left and right). We will now explain how to find a large induced
subwall of W .

Let X be a maximal subset of horizontal paths of W ′′ of pairwise distance
at least 10 in W ′′, and let Y be a maximal subset of vertical paths of W ′′

of pairwise distance at least 10 in W ′′. Whenever a path P ∈ X and a path
Q ∈ Y intersect, we reroute the two paths locally around their intersection
to avoid red vertices of degree 3 as follows.

Let u, v, w, x be consecutive degree-3-vertices on Q with u, v on P .
Assume u, v, w, x appear in this order when walking along Q from top to
bottom, and w l. o. g. assume u is red (otherwise walk along Q from bottom
to top). Since H ′ is white, v and w are green and x is red. Now we reroute
P and Q locally, such that after rerouting, both degree-3-vertices at the
intersection of P and Q are green. The rerouting is shown in Figure 7.
Note that there is enough space around the intersection, because we only
use paths in X ∪ Y .

u
v

w x

u
v

w x

Figure 7: Rerouting in the proof of Lemma 3.6.

Rerouting in this manner for every pair of paths in X and Y , we end up
with a large subwall of W ′ that is green, which is also an induced homoge-
neous stone wall in W . �

proof — Proof of Theorem 1.1 Let H be a graph and let G be a graph
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a b

u

c

v

w

A

A′

S

C

B′

C ′

B

PQ

Figure 8: Proof of Theorem 1.1: Using Lemma 3.4 to find an induced fork
or semi-fork in G′.

excluding H as a minor. Corollary 3.3 and let h ∈ N be sufficiently large,
and let k = 8h. Assume tw(G) ≥ cH · (k+ 1)2. Then G contains an induced

subgraph G′, such that G′ contains G4k×k as a contraction, witnessed by

a contraction mapping ϕ : G′ → G4k×k. The graph G4k×k contains (2h)2

graphs G44×4. We pick every second row of graphs G44×4, and every second

graph G44×4 of the row allows us to find an induced fork or an induced

semi-fork in G′ as follows. Assume the vertices of G44×4 are (1, 1), . . . , (4, 4).
Let A′ := ϕ−1((1, 1)), A := ϕ−1((2, 1)), B′ := ϕ−1((1, 4)), B := ϕ−1((1, 3)),
C ′ := ϕ−1((4, 1)), C := ϕ−1((3, 2)), and S := ϕ−1((2, 2)). Lemma 3.4 yields
a fork or a semi-fork in G′[A∪A′ ∪B ∪B′ ∪C ∪C ′ ∪S] and hence in G′ (cf.
Figure 8).

These forks can be combined into a large stone wall by adding induced
paths to connect the forks or semi-forks appropriately, cf. Figure 9.

Hence G contains a large stone wall as induced subgraph, and we can
use Lemma 3.6 to complete the proof. �

Let us remark that the function fH in Theorem 1.1 is computable.

Corollary 3.7. For every fixed graph H, the class of (theta, prism)-free
graphs that do not contain H as a minor has bounded tree-width. In partic-
ular, even-hole-free graphs that do not contain H as a minor have bounded
tree-width.
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Figure 9: Proof of Theorem 1.1: Finding a stone wall in G4k×k.

proof — A large wall contains a theta, and the line graph of a large wall
contains a prism. �

The following corollary reproves a theorem from [21].

Corollary 3.8. Planar even-hole-free graphs have bounded tree-width.

proof — This follows from Corollary 3.7 because planar graphs exclude
K5 as a minor. �

4 Subcubic (theta, prism)-free graphs

In this Section, we prove that even-hole-free subcubic graphs can be de-
scribed by a structure theorem, that implies tree-width at most 3. In fact
our result is for a more general class: (theta, prism)-free subcubic graphs.

A wheel that is not a pyramid is a proper wheel. A sector of a wheel
(H,x) is a subpath of H whose ends are adjacent to x, and whose internal
vertices are not.

An extended prism is a graph made of five vertex-disjoint chordless paths
of length at least 1 A = a . . . x, A′ = x . . . a′, B = b . . . y, B′ = y . . . b′,
C = c . . . c′ such that abc is a triangle, a′b′c′ is a triangle, xy is an edge and
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no edges exist between the paths except xy and those of the two triangles
(see Figure 10).

xa a′

c′

y

b′

b
c

y b′b

c c′

a′

x

a
H

Figure 10: Two different drawings of an extended prism

A subset (possibly empty) of vertices S ⊆ V (G) is a separator of G if
G \ S contains at least two connected components. A clique separator is a
separator S that is a clique.

A proper separation in a graph G is a triple ({a, b}, X, Y ) satisfying the
following.

(i) {a, b}, X, Y are disjoint, non-empty and V (G) = {a, b} ∪X ∪ Y .

(ii) There are no edges from X to Y .

(iii) a and b are non-adjacent.

(iv) a and b each have exactly two neighbors in X.

(v) a and b each have exactly one neighbor in Y .

(vi) There exists a path from a to b with interior in X, and there exists a
path from a to b with interior in Y .

(vii) G[Y ∪ {a, b}] is not a chordless path from a to b.

A proper separator of G is a pair {a, b} ⊆ V (G) such that there exists a
proper separation ({a, b}, X, Y ).

Let C be the class of (theta, prism)-free subcubic graphs. The cube is
the graph made of a hole v1v2 . . . v6v1 and two non-adjacent vertices x and
y such that NH(x) = {v1, v3, v5} and NH(y) = {v2, v4, v6}. Call a graph
in C basic if it is isomorphic to a hole, a clique of size at most 4, the cube,
a proper wheel, a pyramid, or an extended prism. An example of graph in
C that is not basic is provided in Figure 11.

We need the following lemma.

Lemma 4.1. Let G be a theta-free subcubic graph, let H be a hole in G, and
v ∈ G \H. Then v has at most three neighbors in H, and if v has exactly
two neighbors in H, then they are adjacent.
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x1
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p′a′2
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Q′n

p′a′n = p′b′n

xn

u

v

pa2 = pb2

pa3+1

pb3−1

pan−1

pbn−1 = pan−1+1 yn−1

Figure 11: An example of non-basic graph in C

proof — Let v ∈ G \H. Since G is subcubic, dH(v) ≤ 3. If v has exactly
two neighbors in H, but they are non-adjacent then G[H∪{v}] would induce
a theta, a contradiction. �

The main theorem of this section is the following.

Theorem 4.2. Let G be a (theta, prism)-free subcubic graph. Then one of
the following holds:

• G is a basic graph;

• G has a clique separator of size at most 2;

• G has a proper separator.

proof — Let G be a (theta, prism)-free subcubic graph. We may assume
that G has no clique separator (and is in particular connected for otherwise
the empty set is a clique separator).

(1) We may assume that G is (K4, cube)-free.

Proof of (1). If G contains K4, then since G is a subcubic connected graph,
G = K4, so G is basic. The proof is similar when G contains the cube. This
proves (1).

(2) We may assume that G does not contain a proper wheel.

Proof of (2). Let W = (H,x) be a proper wheel in G. Let a, b, c, be the
three neighbors of x. We call A (B, C, resp.) the path of H from b to c
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(from a to c, from a to b, resp.) that does not contain a (b, c, resp.). Observe
that, since G is subcubic, no vertex of G \W has a neighbor in {x, a, b, c}.

Suppose that some vertex y of G \W has neighbors in the three sectors
of W , say a′ in A, b′ in B, and c′ in C. Hence, a, c′, b, a′, c, and b′ appear in
this order along H. If ac′ /∈ E(G), then xaBb′, xcBb′, and xbCc′yb′ induce
a theta, so ac′ ∈ E(G). Symmetrically, c′b, ba′, a′c, b′c, and b′a are all
in E(G), so H, x, and y induce a cube, a contradiction to (1). It follows
that every vertex has neighbors in at most two sectors of W .

If G = W , then G is basic, so suppose that G 6= W . If every component
of G \W attaches to a unique sector or a clique, then G contains a proper
separator, that is the ends of some sector. So, we may assume that G \W
contains a connected component L whose neighbors in W intersects at least
two sectors of W .

Since L is connected, it contains a path P = u . . . v such that u has
neighbors in a sector of W (say C up to symmetry), and v has neighbors in
another sector of W (say A up to symmetry). Suppose that P is minimal
with respect to this property. Then either u = v and by the second para-
graph of this proof, u has no neighbor in B; or u 6= v and, by minimality of
P , u has neighbors only in C, v has neighbors only in A, and the interior of
P is anticomplete to W . In each case, we let u′ be the neighbor of u in C
closest to a along C and we let v′ be the neighbor of v in A closest to c
along A. Note that u′ 6= a, b and v′ 6= b, c because a, b, and c have degree 3
in W . Moreover, because u′ and v′ exist, ab /∈ E(G) and bc /∈ E(G). This
implies, ac /∈ E(G) for otherwise, (W,x) would form a pyramid and be a
non-proper wheel. Now, the three paths axc, B, and aCu′uPvv′Ac form a
theta, a contradiction. This proves (2).

(3) We may assume that G does not contain an extended prism.

Proof of (3). Let W be an extended prism in G, with notation as in the
definition. Suppose that some vertex z of G \ W has neighbors in three
distinct paths among A,A′, B,B′, and C, and call Q,R, S these three paths
(so {Q,R, S} ⊆ {A,A′, B,B′, C}). Since G is subcubic, it follows that z has
exactly one neighbor in each of Q, R, S, and these neighbors are in interiors
of these paths. It is easy to check that some hole H of W contains Q and
R. By Lemma 4.1, z must have three neighbors in H, so H and z form a
proper wheel, a contradiction to (2).

If G = W , then G is basic, so suppose that G 6= W . If every component
of G \W is contained in only V (A), V (A′), V (B), V (B′), or V (C), then
G contains a proper separator, that is the ends the path. So, we may
assume that G \ W contains a connected component L whose neighbors
in W intersects at least two paths of {A,A′, B,B′, C}.

Since L is connected, it contains a path P = u . . . v such that u has
neighbors in a path Q ∈ {A,A′, B,B′, C} and v has neighbors in another
path R ∈ {A,A′, B,B′, C}. Suppose that P is minimal with respect to

18



this property. So by the minimality of P , either u = v and by the second
paragraph of this proof, u = v has no neighbor in {A,A′, B,B′, C}\{Q,R};
or u 6= v and u has neighbors only in Q, v has neighbor only in R and the
interior of P is anticomplete to W .

Note that each of NQ(u) and NR(v) is a vertex or an edge, because u
and v have maximum degree 3 in G. For otherwise, suppose that u has two
non-adjacent neighbors in Q (resp. in R). Since G is subcubic and Q (resp.
R) can be completed to a hole J of W , by Lemma 4.1, u has three pairwise
non-adjacent neighbors in J , so G contains a proper wheel, a contradiction
to (2). We may now break into four cases.

Case 1: {Q,R} = {A,A′} or {Q,R} = {B,B′}. Up to symmetry, we
suppose Q = A and R = A′. Then, P can be used to find a path from a
to a′ that does not contain x, and that together with B, B′ and C form a
prism, a contradiction.

Case 2: {Q,R} = {A,B} or {Q,R} = {A′, B′}. Up to symmetry, we
suppose Q = A and R = B. If u has two adjacent neighbors in A, then A,
A′, C, a subpath of B, and P form a prism. So, u has exactly one neighbor
in A, and symmetrically, v has exactly one neighbor in B. So, A, B, and P
form a theta.

Case 3: {Q,R} = {A,B′} or {Q,R} = {B,A′}. Up to symmetry, we
suppose Q = A and R = B′. If u has two adjacent neighbors in A, then A,
A′, C, a subpath of B′, and P form a prism. So, u has exactly one neighbor
in A, and symmetrically, v has exactly one neighbor in B′. So, A, B′, C,
and P form a theta.

Case 4: {Q,R} is one of {A,C}, {A′, C}, {B,C} or {B′, C}. Up to symme-
try, we suppose Q = A and R = C. If v has two adjacent neighbors in C,
then C, B, B′, a subpath of A and P form a prism. So, v has exactly one
neighbor in C. So, C, B, A′, a subpath of A, and P form a theta.

This proves (3).

(4) We may assume that G does not contain a pyramid.

Proof of (4). Let W be a pyramid with notation as in the definition (so, abc
is the triangle, and x is the apex). First note that a vertex v ∈ V (G \W )
cannot have neighbors in the three paths P1, P2, and P3, for otherwise there
exists a theta from v to x.

If G = W , then G is basic, so suppose that G 6= W . If every component
of G \W attaches to a unique sector, then G contains a proper separator,
that is the ends of some sector. We may therefore assume that G \ W
contains a connected component L whose neighbors in W intersects at least
two paths among P1, P2, and P3.

Since L is connected, it contains a path P = u . . . v such that u has
neighbors in a path Pi (say P1 up to symmetry), and v has neighbors in
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another path Pj (say P2 up to symmetry). Suppose that P is minimal with
respect to this property. So by minimality, either u = v and by the first
paragraph of this proof, u = v has no neighbor in P3; or u 6= v and u has
neighbors only in P1, v has neighbor only in P2, and the interior of P is
anticomplete to W .

Note that each of NP1(u) and NP2(v) is a vertex or an edge. If u = v,
this is because G contains no proper wheel by (2). If u 6= v, this is because
u and v have degree at most 3 and we apply Lemma 4.1.

If NP1(u) and NP2(v) are both edges, then u 6= v (because G is subcubic),
so P1, P2, and P form a prism. If each of NP1(u) and NP2(v) is a vertex,
then P1, P2, and P form a theta. So, up to symmetry, NP1(u) is a vertex u′,
NP2(v) is an edge yz (where x, y, z, b appear in this order along P2). If u′x
is not an edge, then V (P ) ∪ V (W ) \ V (zP2b) induces a theta from u′ to x,
so u′x is an edge. Hence, W and P form an extended prism, a contradiction
to (3) This proves (4).

(5) We may assume that G does not contain a hole.

Proof of (5). Let W be a hole in G. First note that a vertex v ∈ V (G \W )
cannot have three neighbors in W , for otherwise v and W would form a
proper wheel or a pyramid, contradicting 2 or 4. So, by Lemma 4.1, every
vertex of G \W has at most one neighbor in W , or exactly two neighbors
in W that are adjacent.

If G = W , then G is basic, so suppose that G 6= W . If for every
component of G \W , its neighborhood is included in some edge of W , then
G has a clique separator, so suppose that for some connected component L
of G \W , there exist a, b ∈ V (W ) that are non-adjacent and that both have
neighbors in L. Since L is connected, there exists a path P = u . . . v, such
that u is adjacent to a and v is adjacent to b. We suppose that a, b, u, v and
P are chosen subject to the minimality of P . Note that u 6= v since a vertex
in G \W cannot have two non-adjacent neighbors in W .

Suppose that some internal vertex of P has a neighbor x in W . So x
must be adjacent to a, for otherwise a subpath of P from u to a neighbor
of x in P contradicts the minimality of P . Similarly, x is adjacent to b. If a
and b have two common neighbors in W , say x and y (so W = axbya), and
x and y both have neighbors in the interior of P , then the vertices x and y
together with a subpath of P contradict the minimality of P . Hence, x is the
unique vertex of W with neighbors in the interior of P . If u and v each have
exactly two adjacent neighbors inW , thenW and P form an extended prism,
a contradiction to (3). If exactly one of u or v has exactly two neighbors
in W , then W and a subpath of P form a pyramid, a contradiction to (4).
So, u and v both have a unique neighbor in W . Now, P and W form a
proper wheel, a contradiction to (2).

So, the interior of P is anticomplete to W . Hence, P and W form a
theta, a prism or a pyramid, in every case a contradiction to G ∈ C, or
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Figure 12: Two chordal graphs with clique number 4

to (4). This proves (5).

(6) We may assume that G does not contain a triangle.

Proof of (6). Let W = abc be a triangle in G. If G = W , then G is basic,
so suppose that L is a connected component of G \W . If |N(L)| ≤ 2, then
G has a clique separator of size at most 2, so suppose that N(L) = {a, b, c}.

Let P = u . . . v be a path in L such that u is adjacent to a, v is adjacent
to b, and suppose P is minimal. If u 6= v, then P , a, and b form a hole,
a contradiction to (5), so u = v. By (1), u is non-adjacent to c. Hence, a
path in L from u to a neighbor of c, together with a, would form a hole, a
contradiction to (5). This proves (6).

Now, by (5) and (6), G has no cycle. So, G is a tree. It is therefore
a complete graph on at most two vertices (that is basic) or it a has clique
separator of size 1. �

Let us point out that Theorem 4.2 is a full structural description of the
class of subcubic (theta, prism)-free graphs, in the sense that every graph
in the class can be obtained from basic graphs by repeatedly applying some
operations: gluing along a (possibly empty) clique, and an operation called
proper gluing that we describe now.

Consider two graphs G1 and G2. Suppose that G1 contains two non-
adjacent vertices a1 and b1 of degree 3, and such that a path P1 from a1
to b1 with internal vertices all of degree 2 exists in G1. Suppose that G2

contains two non-adjacent vertices a2 and b2 of degree 2, and such that a
path P2 from a2 to b2 with internal vertices all of degree 2 exists in G2. Let G
be the graph obtained from the disjoint union of G1 and G2 by removing the
internal vertices of P1 and P2, by identifying a1 and a2, and by identifying
b1 and b2. We say that G is obtained from G1 and G2 by a proper gluing.

We omit the details of the proof and just sketch it. We apply Theo-
rem 4.2. If G is basic, there is nothing to prove. If G has a clique separator,
it is obtained by two smaller graphs by gluing along a clique. If G has
a proper separation, then it is obtained from smaller graphs by a proper
gluing.
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Corollary 4.3. Every subcubic (theta, prism)-free graph (and therefore ev-
ery even-hole-free subcubic graph) has tree-width at most 3.

proof — The proof is by induction. Let us first prove that all basic graphs
have tree-width at most 3. First observe that contracting an edge with
one vertex of degree 2 preserves the tree-width. It follows that all basic
graphs, except the cube and the extended prisms, have tree-width at most
the tree-width of K4, that is 3. In Figure 12, we show a chordal graph J
with ω(J) = 4 that contains the cube or the smallest extended prism as a
subgraph, showing that here again the tree-width is at most 3.

Also, it is easy to check that the two operations gluing along a clique
and proper gluing do not increase the tree-width (this can be proved by
observing that the operations are particular cases of what is called clique-
sum in the theory of tree-width, or by a direct proof using the definition of
tree-width given at the beginning of the paper). �

Note also that all graphs in C can be proved to be planar by an easy
induction.
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Figure 13: A planar representation of graph in Figure 11
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5 (Even hole, pyramid)-free graphs with maximum
degree at most 4

Our goal in this section is to prove that (even hole, pyramid)-free graphs
with maximum degree at most 4 have bounded tree-width. We rely on two
known theorems that we now explain.

Let H be a hole in a graph and let u be a vertex not in H. We say that
u is major w.r.t. H if NH(u) is not included in a 3-vertex path of H. We
omit “w.r.t. H” when H is clear from the context.

Lemma 5.1. If G be an (even hole, pyramid)-free graph with maximum
degree at most 4, H is a hole of G and v is a vertex that is major w.r.t. H,
then v has exactly three neighbors in H that are furthermore pairwise non-
adjacent.

proof — Since v is major, it has at least two neighbors in H. If v has
exactly two neighbors in H, since v is major these two neighbors are non-
adjacent. Therefore, H and v form a theta, a contradiction. If v has exactly
three neighbors in H, then they are pairwise non-adjacent because v is major
and G has no pyramid. If v has 4 neighbors in H, then it is straightforward
to check that the graph induced by H and v contains an even hole, a con-
tradiction. �

When H is a hole in some graph and u is a vertex not in H with at least
two neighbors in H, we call u-sector of H any subpath of H (of length at
least one) whose ends are adjacent to u, and whose internal vertices are not.

Observe that H is edgewise partitioned into its u-sectors.
Note that by Lemma 5.1, when v is major w.r.t. H, (H, v) is a proper

wheel, so the notion of v-sector in H is equivalent to the notion of a sector
of the wheel (H, v). The following appeared in [8].

Theorem 5.2. [8] Let G be an (even hole, pyramid)-free graph, H a
hole in G and v a major vertex w.r.t. H. If C is a connected component
of G \N [v], then there exists a v-sector P = x . . . y of H such that N(C) ⊆
{x, y} ∪ (N(v) \ V (H)).

A graph G is a ring if its vertex-set can be partitioned into k ≥ 3 sets
X1, . . . , Xk such that (the subscript are taken modulo k):

1. X1, . . . , Xk are cliques;

2. for all i ∈ {1, . . . , k}, Xi is anticomplete to V (G) \ (Xi−1 ∪Xi ∪Xi+1);

3. for all i ∈ {1, . . . , k}, some vertex of Xi is complete to Xi−1 ∪Xi+1;

4. for all i ∈ {1, . . . , k} and all x, x′ ∈ Xi, either N [x] ⊆ N [x′] or N [x′] ⊆
N [x].
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A graph G is a 7-hyperantihole if its vertex-set can be partitioned into
7 sets X1, . . . , X7 such that (the subscript are taken modulo k):

1. X1, . . . , X7 are cliques;

2. for all i ∈ {1, . . . , 7}, Xi is complete to V (G) \ (Xi−1 ∪Xi ∪Xi+1);

3. for all i ∈ {1, . . . , 7}, Xi is anticomplete to Xi−1 ∪Xi+1.

The following is a rephrasing of Theorem 1.8 in [5]. Note that in [5], the
definition of rings is slightly more restricted (at least 4 sets are required).
We need rings with 3 sets for later use in inductions, and slightly extending
the notion of ring cannot turn Theorem 1.8 in [5] into a false statement.

Theorem 5.3. [5] If G is (theta, prism, pyramid)-free and for every hole
H of G, no vertex of G is major w.r.t. H, then G is a complete graph, or
G is a ring, or G is a 7-hyperantihole, or G has a clique separator.

Lemma 5.4. If G is a graph of maximum degree at most 4 that is either a
complete graph, a ring, or a 7- antihole, then G does not contain K6 as a
minor.

proof — For complete graphs, this is obvious since K5 is the biggest com-
plete graph of maximum degree at most 4. For 7-hyperantiholes, the proof
is also easy because each of the cliques in the definition must be on a single
vertex, so that |V (G)| = 7, and a K6 minor obviously does not exists.

So, suppose that G is a ring of maximum degree at most 4 (we use for
G the notation as in the definition of rings).

(1) For all i ∈ {1, . . . , k}, one of Xi−1, Xi or Xi+1 contains only one vertex.
Moreover, |Xi| ≤ 3, and if |Xi| = 3, then Xi−1, Xi+1 and Xi+2 all contain
only one vertex.

Proof of (1). Otherwise, some vertex in Xi, Xi−1, or Xi+1 has degree at
least 5, a contradiction to our assumption.

We now prove by induction on k (the number of sets in the ring) that
G does not contain K6 as a minor. If k = 3 then |V (G) ≤ 5, and if k = 4
then |V (G)| then by (1), we see that |V (G)| ≤ 6, so G does not contain
K6 as a minor since G is not K6. If k ≥ 5, then by (1), there exist two
distinct sets of the ring Xi, Xj that are anticomplete to each other and such
that Xi = {x} and Xj = {x′}. By the definition of rings, G \ {x, x′} has
two connected components C and C ′, and it is straightforward to check the
two graphs GC and GC′ obtained from G[C ∪ {x, x′}] and G[C ′ ∪ {x, x′}]
respectively by adding an edge between x and x′ are rings (this is the place
where we need a ring on three sets). Also, it is straightforward to check that
a K6 minor in G yields a K6 minor in one of GC or GC′ , a contradiction to
the induction hypothesis. �

We can now prove the main theorem of this section.
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Theorem 5.5. If a graph G is (even hole, pyramid)-free with maximum
degree at most 4, then G contains no K6 as a minor.

proof — Suppose that G is a counter-example with a minimum number
of vertices. So, G contains K6 as a minor. By the minimality of G and
the definition of minors, it follows that V (G) can be partitioned into six
non-empty sets B1, . . . , B6 such that for all distinct i, j ∈ {1, . . . , 6}, G[Bi]
is connected and there is at least one edge between Bi and Bj .

Case 1: G contains no hole with a major vertex.
By Theorem 5.3 and Lemma 5.4, G has a clique separator K. It is

straightforward to check that for one component C of G \ K, the graph
G[K ∪ C] contains K6 as a minor, a contradiction to the minimality of G.

Case 2: G contains a hole H and a vertex v that is major w.r.t. H.
By Lemma 5.1, v has exactly three neighbors in H that are pairwise

non-adjacent. Possibly, v has a neighbor w /∈ H (if v has degree three, we
set v = w). Let a, b, c be the three neighbors of v in H.

Up to symmetry, B6 does not contain a, b, c, w, v. So, some connected
component C of G\{v, w, a, b, c} contains B6. By Theorem 5.2, there exists
a v-sector, say P = a . . . b up to symmetry, of H such that N(C) ⊆ {a, b, w}.
Note that if v = w, then {a, b} is a separator of G, in which case the proof
is easier. So in what follow, a reader may assume for simplicity that v 6= w,
though what is written is correct even if v = w.

Let C ′ be the union of all components X of G \ {v, w, a, b, c} such that
N(X) ⊆ {a, b, w}. Let D be V (G) \ (C ′ ∪ {a, b, w}). Note that C ⊆ C ′ and
v, c ∈ D. Note that B6 ⊆ C ′, and since {a, b, w} separates C ′ from D, we
may assume that B4 ∪B5 ⊆ C ′.

Let Sa (resp. Sb) be the v-sector of H from a (resp. b) to c. Let G′ be
the graph obtained from G[C ′ ∪ {a, b, c, v, w}] by adding the edges ca and
cb. Also, the edge cw is added to G′ if and only if w has a neighbor in the
interior of the path formed by Sa and Sb.

(1) G′ is (even hole, pyramid)-free and has maximum degree at most 4.

Proof of (1). Clearly G has maximum degree at most 4. Since G′ \ c is an
induced subgraph of G, every even hole or pyramid of G′ goes through c.

Suppose that J is an even hole of G′. Since it goes through c, up to
symmetry, we may assume that J goes through cb. If J contains a, then G
is formed of a, c, b and a path P of even length from a to b. So, P , Sa and Sb
form an even hole of G, unless w ∈ V (J) and w has a neighbor in the interior
of the path induced by Sa ∪Sb. But this case leads to a contradiction, since
by the definition of G′, we would have cw ∈ E(G′), so J would not be a hole
of G′.

So, J does not go through a. It follows that J is formed by bc and a
path Q of even length from w to b. Note that in this case, cw ∈ E(G) and
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v /∈ V (J), so v 6= w. It follows that Q and v form an even hole of G, a
contradiction.

Suppose that G′ contains a pyramid Π. Since Π contains c, it does
not contain v because v dominates c , in G′, ie NG′ [c] ⊆ NG′ [v] (and in a
pyramid, no vertex dominates another vertex). If we replace c by v in Π,
then we obtain an induced subgraph of G that is not a pyramid since G is
pyramid-free. This implies that cw /∈ E(G′). So, c has degree 2 in Π and
w has no neighbor in the interior of the path induced by Sa ∪ Sb. Hence,
replacing acb by Sa and Sb in Π yields a pyramid of G, a contradiction. This
proves (1).

(2) G′ contains K6 as a minor.

Proof of (2). Suppose that a ∈ B1, w ∈ B2 and b ∈ B3. We then set
B′1 = (B1 \D)∪{c}, B′2 = (B2 \D)∪{v} and B′3 = B3 \D. We observe that
there are edges from B′1 to B′2, from B′1 to B′3 and from B′2 to B′3. Also,
each of these sets is connected in G′, and together with B4, B5 and B6 they
form a K6 minor of G′. We may therefore assume that B3 ∩ {a, b, w} = ∅,
so that B3 ⊆ C ′.

If {a, b, w} ∩ B1 = {a, b}, then {a, b, w} ∩ B2 = {w}. We then set
B′1 = (B1 \D) ∪ {c} and B′2 = (B2 \D) ∪ {v}. We observe that there are
edges from B′1 to B′2. Also, these sets are connected in G′, and together with
B3, B4, B5 and B6 they form a K6 minor of G′. Hence, we may assume that
{a, b, w} ∩B1 6= {a, b}, and symmetrically {a, b, w} ∩B2 6= {a, b}.

We may assume that a,w ∈ B1. We set B′1 = (B1 \ D) ∪ {c, v} and
B′2 = B2 \D. We observe that there are edges from B′1 to B′2. Also, these
sets are connected in G′, and together with B3, B4, B5 and B6 they form a
K6 minor of G′. This proves (2).

Since G′ is smaller than G, (1) and (2) contradict the minimality of G.
�

In the next corollary, we use the function fH(k) as defined in Theo-
rem 1.1.

Corollary 5.6. Every (even hole, pyramid)-free graph of maximum degree
at most 4 has tree-width less than fK6(3).

proof — Suppose that G has tree-width at least fK6(3). By Theorem 5.5,
G does not contain K6 as a minor. By Theorem 1.1, G contains a (3 × 3)-
wall or the line graph of a chordless (3 × 3)-wall as an induced subgraph.
This yields a contradiction because the (3 × 3)-wall contains a theta, and
the line graph of a chordless (3× 3)-wall contains a prism (see Figure 14), a
contradiction to Lemma 2.1. �

This approach might work for maximum degree 5 with much more tech-
nicalities, but for larger values it fails as far as we can see.
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Figure 14: A theta in (3×3)-wall and a prism in the line graph of a chordless
(3× 3)-wall

6 A possible structure theorem for even-hole-free
graphs with maximum degree at most 4

In this section, we investigate a possible structure theorem that would de-
scribe even-hole-free graphs with maximum degree at most 4. We call pat-
terns, the graphs that are represented in Figure 15 and Figure 16. Say that
a graph is basic if it is a complete graph or a chordless cycle, or it can be
obtained from one of the patterns, by replacing dashed lines with paths of
length at least one or contracting some dashed lines into single vertices. We
believe that an even-hole-free graph with maximum degree 4 must be either
basic or decomposable with a clique separator or a 2-join that we define
below.

A 2-join in a graph G is a partition of V (G) into two sets X1, X2 each
of size at least 3, such that for i = 1, 2, Xi contains two non-empty disjoint
sets Ai, Bi, A1 is complete to A2, B1 is complete to B2, and there are no
other edges between X1 and X2. Moreover, for i = 1, 2, Xi does not consist
of a path with one end in Ai, one end in Bi and no internal vertex in Ai∪Bi.

We are not sure that our list of patterns is complete for our class, but
we believe that the real list is close to it and, above all, finite. This should
imply that the tree-width is bounded. Also, we wonder whether a similar
approach can be extended to even-hole-free graphs of maximum degree k
for any fixed integer k. Observe that for k = 3, this is what we actually do
in Theorem 4.2, since the list of basic graphs can be seen as obtained by a
finite list of patterns and the so-called proper separator is a special case of
2-join. For k ≥ 5, rings (already defined in Section 5) become a problem,
but an extension of the notion of 2-join might lead to a true statement.
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